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ABSTRACT

In this contribution, we derive a distribution that is suit-
able for characterizing biazimuth (azimuth of arrival and
azimuth of departure) and delay dispersion of individual
path components in the response of the radio channel.
This distribution maximizes the entropy under the con-
straint that its first and second moments are specified. We
propose to use the density function of the derived distri-
bution to characterize the shape of the biazimuth-delay
power spectrum of individual path components. The ap-
plicability of this characterization in real conditions is as-
sessed using measurement data.

Key words: Path component, von-Mises-Fisher distribu-
tion, biazimuth-delay dispersion, power spectrum, den-
sity function.

1. INTRODUCTION

Due to the heterogeneity of the propagation environment,
the response of the radio channel is the superposition of a
certain number of components. Each component, which
we call a “path component”, is contributed by an electro-
magnetic wave propagating along a path from the trans-
mitter (Tx) to the receiver (Rx). Along this path, the wave
interacts with a certain number of objects called scatter-
ers. Due to the geometrical and electromagnetic proper-
ties of the scatterers, a propagation path may be disper-
sive in delay, direction of departure, direction of arrival,
polarizations, as well as in Doppler frequency when the
environment is time-variant. As a consequence, an in-
dividual path component may be spread or dispersed in
these dispersion dimensions.

Recently, estimation of dispersive characteristics of indi-
vidual path components has gained much attention. Con-
ventional methods rely on estimation of the channel re-
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sponse and any characterizing functions derived from this
response. An example of a characterizing function is
the power spectrum. A traditional estimate of the power
spectrum is the Bartlett spectrum, i.e. the spectrum cal-
culated using the Bartlett beamformer [1]. However, due
to the ambiguity function of the measurement equipment,
the path components in the Bartlett spectrum are blurred
and consequently, their spreads are artificially increased.
In recent years, several methods based on parametric
models have been proposed to estimate the nominal az-
imuth and azimuth spread of path components at one side
of the link [2], [3], [4]. These estimators make use of the
assumption that the azimuth power spectrum of individ-
ual path components exhibits a shape close to the density
function of a distribution, like the uniform distribution
within a certain interval [3], the (truncated) Gaussian dis-
tribution [2], [3] and the von-Mises distribution [4].

Recently, the density function of a bivariate von-Mises-
Fisher distribution has been proposed to characterize the
shape of the biazimuth (azimuth of departure (AoD) and
azimuth of arrival (AoA)) power spectrum of individual
path components [5]. The von-Mises-Fisher distribution
maximizes the entropy under the constraint that its first
and second moments are specified. In [5], the proposed
characterization method is assessed in real conditions us-
ing measurement data.

In this contribution, we derive an entropy-maximizing
distribution suitable for characterizing biazimuth-delay
dispersion of individual path components. More specif-
ically, the density function of this distribution is used
to characterize the shape of the biazimuth-delay power
spectrum of individual path components. The density
function is parameterized by some free parameters. To
identify these parameters, we postulate that in the case
where a path component is slightly dispersed, the pro-
posed density function is close to a truncated multivariate
Gaussian density function. Experimental investigations
assess the applicability of the proposed characterization
in real situations.

The organization of this contribution is as follows. In
Section 2, we derive the entropy-maximizing biazimuth-
delay density function. In Section 3, the signal model is
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presented. Section 4 shows the results and discussions of
the experimental investigations. Finally concluding re-
marks are stated in Section 5.

2. ENTROPY-MAXIMIZING BIAZIMUTH-
DELAY DENSITY FUNCTION

Following the nomenclature in [6], we use a unit vector Ω
to characterize a direction. This vector has its initial point
anchored at the origin O of a coordinate system specified
in the region surrounding the array of interest, and termi-
nal point located on a unit sphere S2 centered at O. In the
case of horizontal-only propagation, the terminal point of
Ω is located on a unit circle S1. The one-to-one relation
between Ω and the azimuth φ is in this case

Ω = e(φ)
.
= [cos(φ), sin(φ)]T (1)

with [·]T denoting transposition.

Among all distributions on S1, the von-Mises distribution
maximizes the entropy provided the first moment

µΩ

.
=

∫

Ωf(Ω)dΩ

is specified [6], [7]. Here, f(Ω) denotes the density func-
tion of any distribution on S1. Notice that

∫

f(Ω)dΩ =
1. The density function of the von-Mises distribution is
given by [8, P. 36]

f(Ω) =
1

2πI0(κ)
exp{κΩ̄

T
Ω} (2)

with I0(·) denoting the modified Bessel function of the
first kind and order 0, κ ≥ 0 being the concentration pa-
rameter, and Ω̄ ∈ S1. For κ > 0, Ω̄ is the mode of
f(Ω) and Ω̄ = ‖µ

Ω
‖−1µ

Ω
holds. Here, ‖ ·‖ denotes the

Euclidean norm. It is shown in [6] that the root second
central moment of a distribution on S1, i.e. the direction
spread σΩ, is uniquely determined by the norm of the

first moment: σΩ =
√

1 − ‖µΩ‖2. It follows from this
result that the von-Mises distribution also maximizes the
entropy under the constraint that the mode, provided that
it exists, and the direction spread are specified. In [9], the
von-Mises density function has been used to characterize
the shape of the azimuth power spectrum of individual
path components.

Among all distributions on S1 × S1, the generalized von-
Mises-Fisher distribution [7] maximizes the entropy un-
der the constraints that the first moments

µ
Ωi

.
=

∫

Ωif(Ω1,Ω2)dΩ1dΩ2, i = 1, 2 (3)

and second moments in the matrix

ΣΩ1Ω2

.
=

∫

Ω1Ω
T

2f(Ω1,Ω2)dΩ1dΩ2 (4)

are specified. In (3) and (4), f(Ω1,Ω2) is the density
function of any distribution on S1×S1. The density func-
tion of the generalized von-Mises-Fisher distribution is of
the form [7]

f(Ω1,Ω2) = C · exp{aT

1Ω1 +aT

2Ω2 +Ω
T

1AΩ2}, (5)

where C denotes a normalization constant, while a1,
a2 ∈ R

2×1 and A ∈ R
2×2 are free parameters. This

density function has been proposed in [5] to characterize
the shape of the biazimuth power spectrum of individ-
ual path components. In this case, Ω1,Ω2 are written to
be Ωi = e(φi), i = 1, 2 with φ1 and φ2 denoting the
AoD and AoA respectively. The expressions of the free
parameters a1, a2 and A are identified in [5]. Exper-
imental investigations reported in this reference showed
that this density function can be used to characterize the
shape of the biazimuth power spectrum of individual path
components.

Following the same approach as used in [5], we derive
in the sequel a distribution suitable to describe disper-
sion of individual path components in Ω1, Ω2 and prop-
agation delay τ . More specifically, the density function
of the sought distribution characterizes the shape of the
biazimuth-delay power spectrum of individual path com-
ponents.

We define the parameter vector ψ
.
= [ΩT

1 ,ΩT

2 , τ ]T. The
density function f(ψ) of the distribution maximizing the
entropy with its first moment

µψ
.
=

∫

ψf(ψ)dψ

and second moments in the matrix

Σψ
.
=

∫

ψψTf(ψ)dψ

specified, is of the form [7]

f(ψ) ∝ exp{bTψ +ψTBψ}, (6)

where b ∈ R
5×1 andB ∈ R

5×5 are free parameters.

The biazimuth-delay distribution induced by the above
entropy-maximizing distribution via the mapping
[φ1, φ2, τ ] 7→ [e(φ1)

T,e(φ2)
T, τ ] has density function

f(φ1, φ2, τ) = f(ψ)|ψ=[e(φ1)T,e(φ2)T,τ ]T . (7)

To identify the expressions of the vector b and the matrix
B, we assume that in the case where dispersion of indi-
vidual path components is small, the density function in
(7) is close to a truncated multivariate Gaussian density
function. Define the parameter vector ω

.
= [φ1, φ2, τ ]T.

The truncated Gaussian density function is of the form

fG(ω) ∝ 1

det(Σω)1/2
exp{−1

2
(ω − µω)T

Σ
−1
ω (ω − µω)}, (8)



τ̄ [ns] φ̄1 [◦] φ̄2 [◦] στ [ns] κ1 σφ1
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Figure 1. 3dB-spread surfaces calculated using the density function (13) with parameter settings given above.

with µω
.
= [φ̄1, φ̄2, τ̄ ]T denoting the mode of fG(ω) and

Σω
.
=





σ2
φ1

ρφ1φ2
σφ1

σφ2
ρφ1τσφ1

στ

ρφ1φ2
σφ1

σφ2
σ2

φ2
ρφ2τσφ2

στ

ρφ1τσφ1
στ ρφ2τσφ2

στ σ2
τ



 . (9)

Notice that strictly speaking, the traditional meaning of
σφ1

, σφ2
, ρφ1φ2

, ρφ1τ and ρφ2τ as second-order central
moments of a 3-variate Gaussian distribution does not
apply anymore to (8), due to the fact that the azimuth
ranges are bounded. However, these parameters provide
good approximations of these moments when σφ1

, σφ2

are small. For notational convenience, we use ρ1, ρ2 and
ρ12 to denote ρφ1τ , ρφ2τ and ρφ1φ2

respectively.

In the case where dispersion of a path component is suf-
ficiently small, the following approximations hold:

(φ1 − φ̄1)(φ2 − φ̄2) ≈
[e(φ1) − e(φ̄1)]

TR[e(φ2) − e(φ̄2)] (10)

(φi − φ̄i)(τ − τ̄) ≈
[e(φi) − e(φ̄i)]

Te(φ̄i + π/2)(τ − τ̄) (11)

(φi − φ̄i)
2 ≈ ‖e(φi) − e(φ̄i)‖2 (12)

with i ∈ {1, 2} and

R
.
=

[

cos(φ̄1 − φ̄2) − sin(φ̄1 − φ̄2)
sin(φ̄1 − φ̄2) cos(φ̄1 − φ̄2)

]

.

The motivation for selecting the matrix R and the mean-
ing of this matrix are described in [5]. Notice that sub-
traction of azimuth variables arising in the right-hand
side in (8) and the left-hand sides in (10)–(12) is defined
in such a way that the resulting angle lies in the range
[−π, π).

Inserting (10), (11) and (12) into (8) and identifying (7)
and (8), yields for (7)

f(φ1, φ2, τ) = D · exp{α1 cos(φ1−φ̄1) + α2 cos(φ2−φ̄2)

+ (τ−τ̄)[α3 sin(φ1−φ̄1) + α4 sin(φ2−φ̄2)]

+ α5(τ−τ̄)2 + α6 cos[(φ1−φ̄1)−(φ2−φ̄2)]}, (13)

where D is a normalization factor, while α1, . . . , α6 are
given by

α1 =
1

a

[

κ1(ρ
2
2 − 1) +

√
κ1κ2(ρ12 − ρ1ρ2)

]

,

α2 =
1

a

[

κ2(ρ
2
1 − 1) +

√
κ1κ2(ρ12 − ρ1ρ2)

]

,

α3 =
√

κ1(ρ12ρ2 − ρ1)/(aστ ),

α4 =
√

κ2(ρ12ρ1 − ρ2)/(aστ ),

α5 =
1

2a

1 − ρ2
12

σ2
τ

, α6 =

√
κ1κ2(ρ1ρ2 − ρ12)

a

with κi = 1/σ2
φi

, i = 1, 2 denoting the concentration

parameters in AoD and AoA respectively and a = ρ2
2 +

ρ2
12 + ρ2

1 − 2ρ12ρ1ρ2 − 1.

Fig. 1 depicts the 3dB-spread surface
{

(φ1, φ2, τ) : f(φ1, φ2, τ) =
1

2
f(φ̄1, φ̄2, τ̄)

}

(14)

computed using the density function (13) for the two pa-
rameter settings also reported in this figure. We observe
that these surfaces are close to ellipsoids when κ1 and κ2

are large. This is reasonable as the density function (13)
is close to the density function of a truncated multivari-
ate Gaussian distribution (8) in the case of small disper-
sion. Notice that the 3dB-spread surface of the multivari-
ate Gaussian distribution is an ellipsoid.

3. SIGNAL MODEL

We consider the case where the path components are dis-
persed in biazimuth and delay. Following the nomencla-
ture in [6], the continuous-time (complex baseband rep-
resentation of the) output signal of the Rx array reads

Y (t) =

∫ +π

−π

∫ +π

−π

∫ +∞

−∞

c2(φ2)c1(φ1)
Ts(t − τ)

h(t;φ1, φ2, τ)dφ1dφ2dτ + W (t). (15)



In (15), Y (t) ∈ C
M2×1 contains the output signals of

the Rx array elements observed at time instance t, s(t) ∈
C

M1×1 denotes the complex baseband representation of
the transmitted signal, and the function h(t;φ1, φ2, τ) is
referred to as the (time-variant) biazimuth-delay spread
function of the propagation channel. In a scenario where
the electromagnetic energy propagates from the Tx to the
Rx via D paths, h(t;φ1, φ2, τ) can be decomposed as

h(t;φ1, φ2, τ) =

D
∑

d=1

hd(t;φ1, φ2, τ). (16)

The summand hd(t;φ1, φ2, τ) denotes the dth path
component. The noise vector W (t) ∈ C

M2×1

in (15) is a circularly symmetric, spatially and tem-
porally white complex Gaussian process with com-
ponent spectral height σ2

w. Finally, ci(φ)
.
=

[ci,1(φ), . . . , ci,mi
(φ), . . . , ci,Mi

(φ)]T ∈ C
Mi×1, i =

1, 2 are the responses of the Tx array and the Rx array
respectively.

We assume that the biazimuth-delay spread functions
hd(t;φ1, φ2, τ), d ∈ {1, . . . ,D} are uncorrelated com-
plex (zero-mean) orthogonal stochastic measures, i.e.

E[hd(t;φ1, φ2, τ)∗hd′(t′;φ′

1, φ
′

2, τ
′)] = Pd(φ1, φ2, τ)

δdd′δtt′δ(φ1 − φ′

1)δ(φ2 − φ′

2)δ(τ − τ ′), (17)

where (·)∗ denotes complex conjugate, δ·· and δ(·) rep-
resent the Kronecker delta and Dirac delta function re-
spectively, t and t′ are discrete time instants at which the
spread function are sampled, and

Pd(φ1, φ2, τ)
.
= E[|hd(t;φ1, φ2, τ)|2]

is the biazimuth-delay power spectrum of the dth path
component. Identity (17) implies that the spread func-
tions of different individual path components or at differ-
ent observation instants are uncorrelated. With the above
assumptions, h(t;φ1, φ2, τ) is also an uncorrelated com-
plex zero-mean stochastic measure specified by

E[h(t;φ1, φ2, τ)∗h(t′;φ′

1, φ
′

2, τ
′)] = P (φ1, φ2, τ)

δtt′δ(φ1 − φ′

1)δ(φ2 − φ′

2)δ(τ − τ ′) (18)

with P (φ1, φ2, τ) =
∑D

d=1 Pd(φ1, φ2, τ).

The biazimuth-delay spectrum Pd(φ1, φ2, τ) describes
the manner the average power of the dth path component
is distributed with respect to AoD, AoA and delay. We
assume that

Pd(φ1, φ2, τ) = Pd · f(φ1, φ2, τ ;θd),

where Pd represents the total average power of the dth
path component and f(φ1, φ2, τ ;θd) is the density func-
tion (13) with path-specific parameters

θd
.
= [φ̄1,d, φ̄2,d, τ̄d, κ1,d, κ2,d, στd

, ρ1,d, ρ2,d, ρ12,d].

Clearly, the center of gravity of Pd(φ1, φ2, τ) coin-
cides with (φ̄1,d, φ̄2,d, τ̄d), i.e. the location at which

Table 1. Setting of the measurement equipment.

Carrier frequency 5.25 GHz

Bandwidth 200 MHz

Chip frequency 100 MHz

Code length 255 Chips

Tx array height 1.53 m

Rx array height 0.82 m

the density function f(φ1, φ2, τ ;θd) exhibits its maxi-
mum. The shape of Pd(φ1, φ2, τ) is determined jointly
by κ1,d, κ2,d, στd

, ρ1,d, ρ2,d and ρ12,d.

Let θ denote a vector containing the model parameters in
(15)

θ
.
= [σ2

w, P1, P2, . . . , PD,θ1,θ2, . . . ,θD].

A stochastic maximum likelihood estimator of θ can be
easily derived [10] for the case where the spread func-
tions of the path components are Gaussian. Due to the
property expressed in (17), the spread functions of dis-
tinct path components or at different time instants are
independent. The SAGE algorithm [11] can be easily
implemented as a low-complexity approximation of the
maximum likelihood estimator. Due to the space limita-
tion, the descriptions of the maximum likelihood estima-
tor and the SAGE algorithm are omitted in this paper.

4. EXPERIMENTAL INVESTIGATIONS

The measurement data were collected using the MIMO
wideband radio channel sounder Elektrobit Propsound
CS [12] [13]. The setting of the equipment is reported
in Table 1. The Tx and Rx were both equipped with two
identical 50-element dual-polarized omni-directional ar-
rays (See Fig. 2). The polarization direction of the ele-
ments is ±45◦ slanted with respect to the vertical.

The measurement experiment was conducted in a big
hall. During the measurement procedure, the hall was
crowded with people moving around. These movements
introduced time variations of the channel response. The
positions of the Rx and Tx were kept fixed during the
measurement procedure. Fig. 3 (a) and Fig. 3 (b) show
a photograph of the surroundings of the Tx and the Rx
respectively. Fig. 4 depicts the map of the premises. We
notice that the Rx position is in the hall and the Tx is lo-
cated at the entrance of a corridor. The data of 900 mea-
surement cycles were collected within a period of 60 s. A
measurement cycle refers to the interval within which all
50 × 50 subchannels are sounded once.

In order to maintain low computational complexity, the
measurement data collected using two identical subarrays
of the Tx and Rx arrays are considered. Each subarray
consists of 9 dual-polarized elements uniformly spaced
on a cylinder (See Fig. 2). Fig. 5 depicts the estimated
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Figure 2. Illustration of the antenna arrays used in the
Tx and the Rx of the channel sounder.

(a) Surroundings of the Tx.

(b) Surroundings of the Rx.

Figure 3. Photographs of the premises where the mea-
surement experiment was conducted.

Figure 4. Map of the premises where the measurement
experiment was conducted. The Tx and Rx locations are
marked with “P1” and “Rx10” respectively.
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Figure 5. Estimated delay power spectrum.

delay power spectrum obtained by averaging the squared
responses of the 81 subchannels of the 9 × 9 MIMO sys-
tem. Again, to limit the computational effort the observa-
tion samples collected from delay 160 ns to delay 270 ns
are considered in the estimation process.

In the SAGE algorithm, the dynamic range for the path
power estimates is set to be 30 dB with respect to the
maximum power estimate. The Bartlett beamformer [1]
is used to initialize the path parameter estimates. The
parameters that the Bartlett beamformer is incapable to
estimate are set to certain predefined values. So, the es-
timates of the concentration parameters κ1,d, κ2,d, d =
1, . . . ,D are set to 50 and the estimates of the coefficients
ρ1,d, ρ2,d, ρ12,d, d = 1, . . . ,D equal 0. With this setting
it is assumed a priori that the path components are close
to being specular and that no dependency occurs across
the considered dispersion dimensions.

After 10 SAGE iteration cycles, the parameter estimates
of 20 path components are obtained. Table 2 reports the
values of these estimates. The mean of the delay spread
estimates of these components is 5.0 ns. The AoD spread
estimates range from 4.4◦ to 16.2◦ with a mean equal to
9.0◦. The AoA spread estimates range from 3.2◦ to 8.8◦

with a mean 5.0◦. The difference between the AoA and
AoD spread estimates can be attributed to the different
structures of the environments surrounding the Tx and
the Rx. From these results we observe that in a closed
environment, e.g. in a corridor where the Tx is located,
path components exhibit larger angular spreads than in an
open environment, like the hall where the Rx is located.

Fig. 6 depicts Bartlett(Σ̂), Bartlett(Σ(θ̂)) and the es-

timated power spectrum P̂ (φ1, φ2, τ). The notations

“Bartlett(Σ̂)” and “Bartlett(Σ(θ̂))” denote the Bartlett
spectrum calculated from respectively the sample covari-
ance matrix and the covariance matrix computed based

on the parameter estimate θ̂. The estimated power spec-

trum P̂ (φ1, φ2, τ) is given by

P̂ (φ1, φ2, τ) =
20
∑

d=1

P̂d · f(φ1, φ2, τ ; θ̂d), (19)

where θ̂d denotes the estimate of the path-specific param-
eter θd. Note that although the biazimuth power spectra
are plotted versus delay in Fig. 6, the power spectrum



of individual path components is estimated in AoA, AoD
and delay jointly.

From Fig. 6 we observe that the estimated power
spectra of individual path components are more con-
centrated than the corresponding footprints observed

in Bartlett(Σ(θ̂)). The blurring effect observed in

Bartlett(Σ(θ̂)) is due to the product of the ambiguity
functions of the Tx and Rx array responses in azimuth.

Bartlett(Σ̂) and Bartlett(Σ(θ̂)) are observed to be sim-

ilar. In the following, the ratio tr[ΣS(θ̂)]/tr[Σ̂] is cal-
culated, which can be conceived as the fraction of the
signal power extracted from the sample covariance ma-
trix. Here, tr[·] denotes the trace of the matrix given as

an argument. The signal-only covariance matrix ΣS(θ̂) is

calculated using the parameter estimate θ̂ with the noise
variance estimate σ̂2

w set to zero. This ratio equals 87.6 %
for the considered case.

Although Bartlett(Σ̂) and Bartlett(Σ(θ̂)) in Fig. 6 are
observed to be similar, their significant global and local
maxima slightly differ. This difference might be due to
the fact that in the parameter estimation process, the as-
sumption of horizontal-only propagation is used. How-
ever, from the photographs shown in Fig. 3 we see that
this assumption may not hold for all propagation paths.
This inconsistency may introduce estimation errors as
shown by further simulation studies. Another reason
which might lead to this effect is that the derived den-
sity function (13) only provides an approximation to the
shape of the effective power spectrum of individual path
components. Estimation errors might result in the case
where the difference is significant.

Fig. 7 depicts the estimated 3dB-spread surfaces (14)
with the true path component parameters replaced by
their estimates. The color of the surfaces codes the path
power estimates according to the included color scale.
We observe that some of the surfaces are not symmet-
ric with respect to the axes of the delay, the AoD and
the AoA. This effect indicates dependency of dispersion
of individual path components across different dispersion
dimensions. Some recent published works, e.g. [9], as-
sume that dispersion of individual propagation paths in
different dimensions (e.g. in delay and in AoA) is in-
dependent. Clearly, this assumption does not hold for
some of the estimated path components in the investi-
gated propagation environment. Further investigations
are necessary in order to assess whether this observation
is valid for all types of environments or not.

5. CONCLUSIONS

In this contribution, we derived a distribution which is
suitable for characterizing biazimuth (azimuth of arrival
and azimuth of departure) and delay dispersion of indi-
vidual path components in the response of the propaga-
tion channel. This distribution maximizes the entropy
under the constraint that its first and second moments are

Figure 7. Estimated 3dB-spread surfaces of individual
dispersed path components. The color of the surfaces
codes the path power estimates according to the color
scale reported on the right.

specified. The density function of the distribution charac-
terizes the shape of the biazimuth-delay power spectrum
of individual path components.

Preliminary experimental investigations were conducted
to assess the applicability of the proposed characteriza-
tion in real situations. From the obtained results we ob-
served that dispersion of the path components in both az-
imuths and delay is much smaller than that one might in-
fer from the corresponding footprints in the Bartlett spec-
trum. Moreover, the estimated power spectra of some
path components are not symmetric with respect to the
axes of the delay, the azimuth of arrival and the azimuth
of departure. This indicates dependency across differ-
ent dispersion dimensions. The results also show that the
characterization method should include dispersion in ele-
vation.
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Figure 6. Estimated biazimuth-delay power spectrum.



Table 2. Estimates of the parameters of individual path components.

d τ̄d ns φ̄1,d [◦] φ̄2,d [◦] στd
ns κ1,d σ1,d [◦] κ2,d σ2,d [◦] ρ1,d ρ2,d ρ12,d Pd[10−7] Pd [dB]

1 210 40 146 4.7 56.3 7.6 203.8 4.0 0.1 0.0 0.1 3.8 0
2 170 50 28 4.4 22.5 12.1 265.0 3.5 0.5 0.0 −0.3 3.5 −0
3 210 124 146 4.7 37.5 9.4 320.0 3.2 −0.3 0.0 −0.1 3.1 −1
4 170 126 26 4.9 95.0 5.9 176.3 4.3 −0.3 −0.2 0.4 1.8 −3
5 165 120 20 9.4 33.8 9.9 111.3 5.4 0.7 −0.4 −0.6 1.0 −6
6 170 −50 26 4.3 43.8 8.7 321.3 3.2 −0.3 −0.1 0.4 0.7 −7
7 210 −130 148 4.0 103.8 5.6 147.5 4.7 0.4 0.1 0.0 0.7 −7
8 245 136 138 4.2 57.5 7.6 90.0 6.0 0.3 0.0 −0.5 0.6 −8
9 245 74 136 4.2 36.3 9.5 290.0 3.4 0.4 0.2 −0.7 0.6 −8
10 175 176 26 5.9 116.3 5.3 210.0 4.0 −0.4 −0.8 0.5 0.5 −9
11 245 36 6 5.8 35.0 9.7 65.0 7.1 0.0 −0.8 0.4 0.5 −9
12 245 14 138 3.7 170.0 4.4 260.0 3.6 0.3 −0.3 0.7 0.3 −11
13 200 56 32 4.5 96.3 5.8 107.5 5.5 0.2 −0.4 −0.1 0.3 −11
14 250 168 30 4.8 16.3 14.2 52.5 7.9 0.5 0.2 0.9 0.3 −12
15 175 −134 22 6.4 71.3 6.8 163.8 4.5 0.2 −0.1 −0.8 0.2 −12
16 210 −38 146 5.7 12.5 16.2 73.8 6.7 0.2 0.0 0.3 0.2 −14
17 210 −178 148 4.2 13.8 15.5 66.3 7.0 −0.1 0.1 −0.1 0.1 −15
18 195 50 150 2.9 56.3 7.6 298.8 3.3 −0.1 −0.1 −0.2 0.1 −16
19 170 50 0 3.2 30.0 10.5 157.5 4.6 0.3 0.2 0.4 0.1 −16
20 210 110 110 7.9 52.5 7.9 42.5 8.8 −0.5 0.6 −0.3 0.05 −19

Mean 5.0 57.8 9.0 171.1 5.0 0.1 -0.10 0.0
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