
Diplomarbeit

Real-time Communication
Systems for

Small Autonomous Robots

ausgeführt zum Zwecke der Erlangung des
akademischen Grades eines Diplom - Ingenieurs am

Institut für Computertechnik 384 der

Technischen Universität Wien

unter der Leitung von

O. Univ. - Prof. Dr. Dietmar Dietrich

und

Univ.Ass. Dr. Stefan Mahlknecht

Univ.Ass. Dr. Wilfried Elmenreich

als verantwortlich mitwirkende Assistenten durch

Stefan Krywult
Matr. - Nr. 9827121

Anton-Bosch-Gasse 4/Stg. 1/5, 1210 Wien

Wien, im Oktober 2006 .

http://www.ict.tuwien.ac.at/
http://www.tuwien.ac.at/
mailto:stefan@krywult.at

Abstract

Autonomous systems perform complex tasks to analyse and to react on
their environment. One way to handle this complexity is distributing the
functionality on several hardware modules. Even in small autonomous
systems the predictability of the communication and the synchronization of
all modules is vitally important.

This thesis provides a survey of five protocols that play a major role in
the automotive industry and in the domain of real-time communication:
CAN, LIN, Flexray, TTP/C, and TTP/A. The protocols are compared and
analysed regarding their suitability for small autonomous systems.

Following the results of this investigation, TTP/A is ported to the hard-
ware of the Tinyphoon robot, a research platform for small autonomous and
distributed systems. On the basis of the outcome of the case study enhance-
ments and adoptions of TTP/A are proposed. To address the diversity of
hardware a general concept of making TTP/A more portable is elaborated.

1

Kurzfassung

Autonome Systeme analysieren ihr Umfeld und reagieren entsprechend
darauf. Um die Komplexität dieser Funktionalität besser handhabbar zu
machen, wird sie auf mehrere Hardwaremodule aufgeteilt. Auch für kleine
autonome Systeme sind die Vorhersagbarkeit der Kommunikation zwischen
diesen Modulen und die Synchronisierung des gesamten Systems von großer
Bedeutung.

Diese Arbeit beschreibt die Protokolle CAN, LIN, Flexray, TTP/C und
TTP/A, die in der Automobilindustrie und im Bereich der Echtzeitkom-
munikation eine wichtige Rolle spielen und vergleicht sie bezüglich ihrer
Verwendbarkeit für kleine autonome Systeme.

Den Resultaten dieser Untersuchung entsprechend wird TTP/A auf die
Hardware des Tinyphoon Roboters, eine Forschungsplattform für kleine au-
tonome und verteilte Systeme, portiert. Basierend auf den Ergebnissen dieser
Fallstudie werden Erweiterungen und Anpassungen für TTP/A vorgeschla-
gen. Um der Vielfältigkeit der Hardware in verteilten Systemen Rechnung zu
tragen, wird ein Konzept erstellt, wie die aktuelle TTP/A Implementierung
portabler gestaltet werden kann.

2

Contents

Contents i

List of Figures iv

List of Tables v

List of Listings vi

1 Introduction 1
1.1 Background . 1
1.2 Problem Statements ... 2
1.3 Outline of Thesis . 3

2 Real-time Protocols 4
2.1 Concepts . 4

2.1.1 Basic Terms . 4
2.1.2 Real-Time . 6
2.1.3 Fault Tolerance . 7

2.2 CAN . 7
2.2.1 Mode of Operation . 7
2.2.2 Additional Services . 8
2.2.3 Packet Format . 9
2.2.4 Data Encoding . 11
2.2.5 Physical Layer . 11
2.2.6 Real-Time Extensions 12
2.2.7 Efficiency . 14
2.2.8 Availability . 15

2.3 LIN . 16
2.3.1 Mode of Operation . 16
2.3.2 Additional Services . 17
2.3.3 Frame Format . 18
2.3.4 Data Encoding . 19
2.3.5 Physical Layer . 19
2.3.6 Host Interface . 20

i

2.3.7 Efficiency . 20
2.3.8 Availability . 21

2.4 Flexray . 21
2.4.1 Mode of Operation . 21
2.4.2 Additional Services . 25
2.4.3 Frame Format . 26
2.4.4 Data Encoding . 28
2.4.5 Physical Layer . 29
2.4.6 Host Interface . 30
2.4.7 Efficiency . 30
2.4.8 Availability . 31

2.5 TTP/C . 31
2.5.1 Mode of Operation . 32
2.5.2 Additional Services . 35
2.5.3 Frame Format . 37
2.5.4 Data Encoding . 38
2.5.5 Physical Layer . 39
2.5.6 Host Interface . 39
2.5.7 Efficiency . 40
2.5.8 Availability . 41

2.6 TTP/A . 41
2.6.1 Mode of Operation . 42
2.6.2 Additional Services . 43
2.6.3 Frame Format . 45
2.6.4 Data Encoding . 46
2.6.5 Physical Layer . 46
2.6.6 Application Interface 47
2.6.7 Efficiency . 47
2.6.8 Availability . 48

2.7 Other Protocols . 48
2.7.1 Real-time Ethernet . 48
2.7.2 USB . 49

2.8 Comparison . 50

3 Tinyphoon 55
3.1 Subsystems . 57

3.1.1 Motion Unit . 57
3.1.2 Vision Unit . 59
3.1.3 Decision Making Unit 60

3.2 Communication . 60
3.2.1 Data Provided/Needed by the Subunits 60
3.2.2 Real-Time Requirements 61
3.2.3 Fault Tolerance / Dependability Requirements 62
3.2.4 Data Throughput . 63

ii

3.2.5 Maintainability . 63
3.2.6 Debugging and Monitoring 63
3.2.7 Cost . 64
3.2.8 Implementation Effort 64
3.2.9 Comprehensibility of Interfaces 64

4 Analysis 65
4.1 Current Communication . 65
4.2 Features vs. Complexity . 66
4.3 HW Versus SW . 66
4.4 RT Communication in SW . 67

4.4.1 Time-Triggered CAN 67
4.4.2 LIN . 68
4.4.3 TTP/A . 68

4.5 Results . 69

5 TTP/A on the Tinyphoon 70
5.1 Existing TTP/A . 70

5.1.1 Source Code . 70
5.1.2 Architecture . 71
5.1.3 Bus Subsystem . 74

5.2 HW UART . 75
5.2.1 Receiving . 75
5.2.2 Sending . 78

5.3 Portable TTP/A . 80
5.3.1 Compiler Independence 80
5.3.2 Hardware Abstraction Layer 80
5.3.3 Linker Script . 83

5.4 Evaluation . 86
5.4.1 TTP/A on the LPC 2119 86
5.4.2 Suggested Improvements 87

6 Conclusion 89
6.1 Contribution . 89
6.2 Outlook . 90

Bibliography 91

iii

List of Figures

2.1 Structure of a Node . 5
2.2 Examples for Cluster Topologies 5
2.3 CAN Frame Format . 9
2.4 TT-CAN System Matrix[FMD+00] 13
2.5 Structure of a LIN Frame[LIN03] 18
2.6 Structure of a Flexray Communication Cycle[Fle05b] 22
2.7 Flexray Frame Format . 26
2.8 TTP/C Cluster Cycle[TTA03] 33
2.9 TTP/C Frame Formats[TTA03] 39
2.10 TTP/C Slot Timing[TTA03] 40
2.11 TTP/A Multi Partner Round[EHK+02] 42
2.12 Structure of a TTP/A Communication Cycle[EHK+02] . . . 45
2.13 Structure of a TTP/A Master – Slave Round[EHK+02] . . . 45
2.14 Structure of a TTP/A Frame[EHK+02] 46
2.15 Comparison of the Protocols 52

3.1 The Tinyphoon Robot . 55
3.2 System Architecture of the Tinyphoon Robot 56
3.3 The Motion Unit . 57
3.4 The TinyVision subsystem . 59

5.1 UML Activity Chart of the TTP/A Implementation 72
5.2 Layers of the Portable TTP/A implementation 81

iv

List of Tables

2.1 CAN Physical Layers . 12
2.2 Flexray Physical Layer Characteristics 29
2.3 Comparison of Protocol Characteristics 51

3.1 Input/Output Data of the Vision Unit 61
3.2 Input/Output Data of the Motion Unit 61
3.3 Input/Output Data of the Decision Unit 62
3.4 Tinyphoon Communication Requirements 63

5.1 Timer HAL Macros . 82
5.2 Additional Timer HAL Macros for the Software UART 83
5.3 UART HAL Macros . 84
5.4 HAL Macros for Memory Access 84
5.5 HAL Macros for En-/Disabling Interrupts 85
5.6 HAL Macros for the Node and I/O Configuration 85
5.7 HAL Macros for Controlling an External Transceiver 85

v

List of Listings

5.1 Interface of the Bus Subsystem 74
5.2 Structure for Bus Operations 74
5.3 HW UART Receive Initialization 75
5.4 HW UART Receive Setup . 76
5.5 HW UART Handle Received Byte 77
5.6 HW UART Receive Time-Out 77
5.7 HW UART Receive Interrupt 78
5.8 HW UART Initialize Transmission 79
5.9 HW UART Perform Transmission 79

vi

How wonderful it is
that nobody need wait a single moment

before starting to improve the world.

Anne Frank (1929 - 1945), 1952
Diary of a Young Girl

Chapter 1

Introduction

In many applications embedded systems take over even security and safety
relevant tasks. Small integrated computer systems have been developed
for controlling their environment (e. g., drive/fly by wire). The logical
consequence is the development of completely autonomous systems. They
explore their environment and cope with their tasks without a human user’s
action. Autonomous systems need to be able to collect relevant data of
their environment with sensors, to make decisions based on that data and
to influence the environment using actuators.

1.1 General Issue and Background

With the increasing computing power the complexity of embedded systems
grows. Handling this complexity is a difficult issue that can be managed
using distributed systems i. e., the system is subdivided in smaller parts
that act jointly. The success and the quality of the collaboration highly
depends on the communication system.

The communication system that connects the parts of an autonomous
distributed system has to guarantee that the required pieces of information
are delivered to the various subsystems with an almost constant delay and
early enough, so that the autonomous system can react on changes of its
environment in time i. e., real-time communication.

The case study and target platform of this work is the Tinyphoon research
platform, a small robot for playing robot soccer in the Mirosot league.
Because of its modular design a high performance real-time protocol is
needed, which permits a communication suitable for such an autonomous
system in a highly dynamic environment.

1

1.2. PROBLEM STATEMENTS ... CHAPTER 1. INTRODUCTION

1.2 Problem Statements and Methodology

This work shows the applicability of a time-triggered approach as a solution
to the problem of real-time communication in small real-time systems with
special communication requirements.

The limited resources, the need of fast real-time communication and the
variety of the involved platforms leads to high requirements:

• real-time: guaranteed transmission before a specified deadline

• performance: communication speed and efficiency

• integration: connection of the subsystems to the communication sys-
tem

• availability: available in software and/or in hardware as chip or as
intellectual properties

• portability: implementation for all platforms are available or source
code can be ported easily

• resource-saving: low usage of Flash memory and Random Access Mem-
ory (RAM), small geometrical footprint and low power consumption

• licence: cost and conditions of licencing should allow the use in non-
mass products with total system costs of less than Euro 2000.-

Two ways are chosen in this work to come up with a solution to this
problem: Firstly, widely used popular protocols and decided real-time
protocols are compared and analyzed. Secondly the open real-time protocol
Time-Triggered Protocol – Class A (TTP/A) that has a small footprint
and is designed to be implemented on off-the-shelf microcontrollers, is
implemented keeping the source code portable. TTP/A is then used on a
platform of the Tinyphoon project. This case study is expected to reveal,
which features are missing, which features are not used at all and which
issues have to be solved when making a real-time communication system
portable to many different hardware platforms.

The outcome of this work is relevant for the fast growing domain of high
performance distributed real-time systems with low resource requirements
e. g., in the automotive industry and small autonomous systems.

2

1.3. OUTLINE OF THESIS CHAPTER 1. INTRODUCTION

1.3 Outline of Thesis

This thesis is divided in two parts. The first one (chapter 2) explains the
basic terms and concepts and discusses the advantages and disadvantages of
various real-time communication systems (TTP/A, TTP/C and Flexray).
Moreover, Controller Area Network (CAN) and Local Interconnect Network
(LIN) are included within this discussion because of their importance in
the automotive sector. The basic features of the USB protocol and some
real-time Ethernet variants are also explained.

The second part gives an overview of the target platform and the commu-
nication requirements of its subsystems (chapter 3). Then the applicability
of the protocols that are discussed in the first section, for small automotive
distributed systems is analyzed (chapter 4). Finally, a design of a platform
independent and enhanced version of the TTP/A protocol is proposed as a
solution for the Tinyphoon robot and similar systems (chapter 5).

The thesis ends with a conclusion that sums up the contributions of this
work and gives an outlook on future developments (chapter 6).

3

A man with a watch knows what time it is.
A man with two watches is never sure.

Segal’s Law

Chapter 2

Real-time Protocols

This chapter explains basic concepts of real-time communication protocols,
provides a survey of protocols that play a major role in the automotive
industry. In contrast to LIN, Flexray, Time-Triggered Protocol – Class C
(TTP/C), and TTP/A the CAN protocol has not been designed as real-time
protocol but an extension exists that allows its use in a real-time environ-
ment. Each protocol is described for its own then main attributes of the
protocols (e. g., performance, efficiency,...) are compared.

2.1 Concepts

In this section some basic terms are explained that are used in the following
descriptions of the real-time communication protocols. Then the meaning
of real-time and fault-tolerance is discussed.

2.1.1 Basic Terms

A node is an entity with a processor that runs an application. The appli-
cation uses a communication protocol either in form of a software layer or
in form of a piece of hardware. The bus transceiver converts logical signals
in according voltage levels. In figure 2.1 the general structure of a node is
shown. The bus is the medium (e. g., a kind of wire or fiber), which all nodes
are connected to. The whole network, including the nodes an the bus, is
called cluster. The data packet that is transported through the network is
called frame. Message can be used as synonym for frame and is often used
on a higher abstraction level.

The manner how the nodes are connected to each other is called topol-
ogy. Common network topologies for real-time communication are the bus
topology, the star topology and combinations of these two topologies. Star

4

2.1. CONCEPTS CHAPTER 2. REAL-TIME PROTOCOLS

Figure 2.1: Structure of a Node

topologies can be passive (the branchings of the star are just connected at a
central point) or active (the branchings of the star are connected to a central
electronic device). In normal networks there is only one bus. To ensure that
in case of a bus failure the communication can be continued, the bus can be
replicated. In figure 2.2 three examples for redundant topologies are shown.

(a) Redundant Bus (b) Redundant Active
Star

(c) Redundant Mixed

Figure 2.2: Examples for Cluster Topologies

Babbling idiots are faulty nodes that transmit data on the bus constantly
and detain other nodes from sending. Bus guardians can be used to avoid
this if the communication schedule is defined a priori. The bus guardians
can be situated on the nodes (local bus guardians) or in a central device
like a star coupler (central bus guardian). The bus guardians check on the
basis of the communication schedule, if a node is allowed to write on the
bus at a given time and detain faulty nodes from monopolizing the bus.

If communication is triggered by the occurrence of a particular event, it
is event-triggered (e. g., everytime the temperature of a room changes a
frame is transmitted). In time-triggered communication networks only the
progression of time determines when a frame is sent (e. g., the temperature
of the room is transmitted every 30 seconds). The time-triggered approach
has two major advantages: The communication is predictable (e. g., one
frame every 30 seconds) and it supports a defined error detection latency

5

2.1. CONCEPTS CHAPTER 2. REAL-TIME PROTOCOLS

for omission failures (in our example a node is detected faulty, if no frame
has been sent for 31 seconds). The major disadvantages of time-triggered
communication is that in many cases bandwidth is wasted, because
redundant information is transmitted (e. g., five frames are sent with the
information ”24◦C”, then with ”25◦C”; in an event-triggered system only
two frames are needed instead of six). Moreover, events can be missed is
the time-triggered communication is too slow (e. g., the room temperature
increases from 24◦C to 26◦C within 30 seconds; the time-triggered system
only sends two messages, the event-triggered three). However, it depends
on the application whether this is a problem and whether it can be avoided
by increasing the update rate of the time-triggered system.

The efficiency of a communication protocol is the proportion of the du-
rations of the transmission of the plain payload and of the complete data
frame. The efficiency strongly depends on the actual application. In the
following the best case efficiency of the protocols is calculated.

2.1.2 Real-Time

In a real-time systems the correctness of a result does not only depend on
its value but also on the time[Kop97]. The error in the time domain can be
as severe as an error in the value domain.

Every communication protocol delays the messages that it transports. Real-
time protocols ensure that this delay is predictable and that the deadline
for the arrival of the message is not missed. Moreover, by using a real-time
protocol the jitter of that delay can be kept small. That means, that from
one communication round to another the delay is almost constant. This is
important for the implementation of feedback control algorithms, which are
in general unable to handle varying delays.

If the clocks of all nodes in a cluster are synchronized, a global time is
established. In a cluster with a global time a time stamp refers to the
same moment in time on all nodes. The clocks of a cluster cannot be
synchronized perfectly[Kop97]. The greatest difference between two clocks
in a cluster is the precision of the cluster.

Three types of real-time systems can be distinguished based on the conse-
quences when a deadline is missed[Kop97]:

Soft Real-Time In soft real-time systems the violation of a deadline causes
only a degradation of the service that is provided by the system (e. g.,
voice-over-IP, video streaming, ...).

Firm Real-Time In a firm real-time system the violation of a deadline

6

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

prevents the system from working correctly but the malfunction has
no drastic consequences (e.g. small robots)

Hard Real-Time In hard real-time systems the violation of a deadline
causes a catastrophe (e. g., fly-by-wire system, nuclear plant automa-
tization, break-by-wire, ...).

2.1.3 Fault Tolerance

A fault-tolerant system continues being fully operational even if faults occur.
The type and number of faults that have to be tolerated are specified in the
fault hypothesis. Faults that are not covered by the fault hypothesis, could
cause a malfunction. To prevent the system from a steady malfunction a
never-give-up strategy can be implemented. It tries to bring the system
back to an operational state even after an unexpected fault.

2.2 Controller Area Network

The first CAN specification was released by the Robert Bosch GmbH in
the year 1985. It describes the implementation of the first (physical) and
the second (data link) layer of the Open System Interconnect (OSI) model.
Currently various implementations for the application layer of CAN com-
munication systems exist (e.g. CANopen, SDS, DeviceNet and CAL) and
CAN has become an International Organization for Standardization (ISO)
standard. This standard with the number 11898 is divided in four parts: 1.
data link layer and physical signalling, 2. high-speed medium access unit,
3. low-speed, fault-tolerant, medium dependent interface, 4. time-triggered
communication.1

2.2.1 Mode of Operation

CAN nodes do not have addresses, but Instead every message has an identi-
fier. The nodes of a cluster have to know, which messages they are interested
in and how to interpret them.

The medium access in a CAN cluster is controlled in a decentralized way.
Data is encoded using a recessive and a dominant voltage level where a
dominant level always prevails a recessive one. Every node of the cluster
listens on the bus and verifies, that no other node is currently sending.
Then the node starts the transmission of the message identifier field. After
applying the appropriate voltage level (recessive or dominant) according to
the bit being transmitted, the node checks the state of the bus. If it is equal

1available at www.iso.org

7

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

to the state aimed by the node the transmission of the bit is successful. If
the node tries to transmit a recessive symbol but the bus stays at a dominant
level, another node is transmitting a dominant Symbol simultaneously. That
is the other node has started transmitting a message with a higher priority
at the same time.

This technique of distributed arbitration is called Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA). If messages collide, the message
with the identifier starting with the most dominant bits has the high-
est priority and is transmitted successfully. The transmission of all other
messages is canceled. They are retransmitted as soon as the bus is idle again.

CAN defines four different types of frames. Remote frames are used to
request data from another node, which responds with the according data
frame with the same identifier. Data frames may also be sent spontaneously.
Error and overflow frames are used to signal error conditions on the bus.

2.2.2 Additional Services

Beyond the normal data transportation CAN provides two additional ser-
vices.

Acknowledgement

During the transmission of a frame a recessive bit is sent, the acknowledge-
ment slot. This bit is overwritten with a dominant one by a receiver, if the
frame has been received successfully. By checking the acknowledgement slot
a sender can notice if its transmission has been received successfully by at
least one node.

Error Signaling and Fault Confinement

All nodes perform tests to detect various errors (bit monitoring, bit stuff-
ing check, frame check, acknowledgement and Cyclic Redundancy Check
(CRC)). A detected error can be signaled to the other nodes by transmit-
ting an error frame. Thus, all nodes of the clusters are informed about
the error and may discard the received message to keep the data consistent
within the cluster. The transmitters will try to resend the message as soon
as the bus is available again.

The reception of an error frame and the results of the own error detection are
used to maintain two counters, one for receiving and one for transmitting
errors. The current value of these counters represents the quality of the

8

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

communication. Their values are increased in case of an error and decreased
whenever communication is performed successfully.

Depending on these two values the CAN is one of the three states:

Error active The controller participates in the communication and sends
error frames when it detects an error.

Error passive The controller participates in the communication and sus-
pends communication for the time of one error frame when it detects
an error.

Bus off The controller does not participate in the communication at all.

2.2.3 Packet Format

Four different frame formats are defined in the CAN specification:

Data frame Data frames are used for sending application data from one
node to another. In figure 2.3 the structure of the CAN data frame is
shown.

Figure 2.3: CAN Frame Format

SOF The start of frame field is a single dominant bit that marks the
start of the data or remote frame.

Identifier The identifier is used for classifying the type of the mes-
sage. This field is also used for prioritizing the frames using the
CSMA/CA technique.

RTR The Remote Transmission Request (RTR) bit is used to dis-
tinguish data (RTS bit is dominant) and remote frames (RTR
bit is recessive). This bit is also used for Carrier Sense Multiple
Access/Collision Detection (CSMA/CD).

r1 and r0 The bits r0 and r1 are reserved. They have to be trans-
mitted as dominant bits but are ignored by the receiver.

9

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

Data Length Code The data length code stores the length of the
payload. It is encoded as standard binary number from zero
to eight. The first bit is the Most Significant Bit (MSB) and
dominant bits represent a binary zero and recessive bits a binary
one.

Data The data field contains the payload and is transferred MSB
first.

CRC The CRC code is 15 bits long and is generated from all fields de-
scribed above using the generator polynomial shown in equation
2.1.

x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 (2.1)

CRC Delimiter This single recessive bit delimits the CRC.

Acknowledge Slot This single recessive bit is overwritten by the re-
ceiver, if a correct frame has been received.

Acknowledge Delimiter Another single recessive bit.

End of Frame The end of the frame is signaled by 7 recessive bits.

Remote frame This type of frames is used for polling other nodes. The
structure of these frames is almost the same as the structure of the
data frames. But remote frames do not have a payload, the Remote
Transmission Request (RTR) bit is recessive and the data length code
is interpreted as the length of the requested data.

Error frame Error frames are used for signaling errors. It consists of six
to twelve dominant bits and eight recessive ones.

Overload frame These frames consist of six dominant and twelve recessive
ones. They can only be distinguished from error frames because of the
context they occur in.

Two data or remote frames are always divided by at least three recessive
bits if no overload or error frame is transmitted.

Part B of the CAN specification introduces extended frames. These frames
have a 29 bit long identifier field. The additional 18 bits of the identifier
are prefixed with the substitute remote request bit (SRR, recessive) and the
identifier extension bit (IDE, also recessive) and are filled in after the eleven
identifier bits of the standard frame.

In this way the SRR bit replaces the RTR bit of the standard frame and the
IDE bit the reserved bit r1. Standard and extended frames are distinguished
by the IDE bit. Thus, both type of frames can be used within the same
cluster.

10

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

2.2.4 Data Encoding

CAN uses the Non-Return to Zero (NRZ) encoding. A bit is signaled by
applying a dominant voltage level to the bus or releasing it for the complete
bit time.

On all fields of data or remote frames except the delimiters, the acknowledg-
ment slot and the end of frame field bit stuffing is applied. Whenever five
equal bits are transmitted consecutively a complementary bit is filled in.

Some error and overflows violate the bit stuffing rule and can thus be iden-
tified as bit stuffing errors.

2.2.5 Physical Layer

Multiple standards describe a physical layer for CAN . The most important
ones are:2

ISO 11898-2 high speed This physical layer specification provides a
communication speed of up to 1 Mbit and is the most common physical
layer for CAN networks. Signals are transmitted differentially on two wires
using -2 V and +7 V. Only bus topology is allowed. Each end of the bus
has to be terminated with a 120Ω resistor.

ISO 11898-3 fault-tolerant This specification targets applications
where fault tolerance is required. It needs no termination resistors and
supports various topologies. During normal operation differential commu-
nication is used as in ISO 11898-2 at a speed of up to 125kbit/s. But
communication can be performed even using only one of the two wires in
a degraded mode with reduced communication speed. This fact makes this
physical layer fault-tolerant. The ISO 11898-3 specification is mainly used
in the automotive industry for car body electronics.

SAE J2411 single wire This specification has been designed for the
control of comfort electronics in cars. Short single wire networks of almost
any topology can be created. A maximum of 32 nodes can communicate
in this network with a speed of 33.3 kbit/s. A high speed diagnostic mode
allows speeds up to 83.3 kbit/s.

ISO 11992 point-to-point In this specification a physical layer is
defined using daisy-chaining to connect the nodes. The networks must have
a bus topology and must not exceed 40m of length. The communication

2http://www.can-cia.org/can/physical-layer/

11

http://http://www.can-cia.org/can/physical-layer/

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

ISO 11898-2 ISO 11898-3 SAE J2411 ISO 11992
type high speed fault-tolerant single wire point-to-point
maximum
speed

1 Mbit 125 kbit/s 33.3 kbit/s 125kbit/s

max. nodes 110 32 32 2
max. net-
work length

6500m 500m 40 m

topology bus daisy-chain
fault-
tolerant

no yes no yes

connection 2 wires 2 wires 1 wire unshielded
twisted pair

voltage -2V/+7V -2V/+7V, sup-
ply: 5V

supply: 12V or
24V

termination 120 Ω none -
usage standard

applications
car body elec-
tronic

car comfort
electronic

vehicle with
trailer(s)

Table 2.1: CAN Physical Layers

speed is up to 125 kbit/s. The ISO 11992 standard has been developed to
electrically connect vehicles with their trailers.

Many other physical layers are also used for CAN (e. g., optical physical
layers), but those mentioned above are the most popular ones. Because of
the need of a high bit rate in the field of application of this thesis, CAN
physical layer refers to the ISO 11898-2 standard unless otherwise noted.

The length of the bus is limited by the communication speed, because of the
bit-wise arbitration in CAN. It has to be ensured, that every CAN node reads
the same bit value from the bus, if two nodes start sending simultaneously.
Thus, the propagation delay between two arbitrary nodes must not exceed
a certain value. This value depends on the configuration of the cluster, but
is allowed to be at most 11

8 of the length of a bit.

2.2.6 Real-Time Extensions

The basic CAN is not suitable for the communication in hard real-time sys-
tems. The Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
medium access strategy introduces a non-deterministic jitter of the latency.
Only the message with the highest priority has a fixed, defined latency, if it
can be presumed, that the system design inhibits a collision of two frames

12

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

with the highest priority. The jitter of the latency is undetermined even for
messages with the second highest priority, because the whole capacity of
the bus may be used for messages with the highest priority and starvation
of nodes that try to send messages with a smaller priority, might occur.

Time-Triggered CAN (TT-CAN)[ISO04] (ISO standard 11898-4) solves this
problem by introducing a time-triggered additional medium access strategy
that is time-triggered. A time master node starts the communication cycle
by transmitting a reference message. The falling edge of the start of frame
bit of this message marks the start of the communication cycle, the basic
cycle. The basic cycle is divided in time windows (slots) of various lengths.
In exclusive time windows only one node is allowed to transmit a message.
In arbitrating time windows all nodes are allowed to send and CSMA/CA
is used for bus arbitration.

Every node has to know, in which slot it has to transmit or receive a certain
message. The schedule of a cluster may have various basic cycles of the same
structure, which are grouped to the system matrix. In figure 2.4 an example
for a TT-CAN system matrix is shown. The lines are formed by the basic
cycles. The rows are the time windows. Adjacent arbitrating time windows
may be combined to a single large one.

Figure 2.4: TT-CAN System Matrix[FMD+00]

13

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

Two levels of TT-CAN are defined. TT-CAN level one the time is
measured in bit times of the CAN bus. Thus, the timeliness of the of the
communication can be guaranteed, but no global time is established. Level
2 of TT-CAN addresses this feature. The time master includes its current
time in the reference message. The other nodes measure the time between
two reference messages and correct their clocks to match the values sent by
the master. The time in TT-CAN level 2 clusters is measured in Network
Time Unit (NTU). The duration of a NTU is in the same order as the
duration of one bit time. A global time with a precision of one NTU can be
established.

The time master is obviously a single point of failure. Therefore, the time
master can be replicated in a TT-CAN cluster. If no traffic is received
a potential time master starts sending reference frames with a certain
priority. If it receives a reference frame with a lower priority, it transmits
a reference frame at the start of the next basic cycle. The other time
master loses the arbitration because of the CSMA/CA algorithm. Thus,
conflicts between potential time masters that start sending coinstan-
taneously are resolved and the potential time master with the highest
priority succeeds. When an expected reference frame is not sent within a
certain time-out, potential time masters start transmitting reference frames.

Though TT-CAN can be build in software using a CAN controller, the
hardware of this controller at least has to be equipped with an additional
circuitry for time-stamping incoming messages[HMFH00].

2.2.7 Efficiency

The maximum length of the payload of a CAN frame is eight bytes (= 64
bits = Tpayload max). The overhead caused by wrapping the payload in a
frame (Tframing) is calculated according to equation 2.7.

nheader = nsof + nid + nrtr + nreserved + nlengthcode = (2.2)
= 1 + 11 + 1 + 2 + 4 = 19 (2.3)

ntrailer = ncrc + ncrcdel + nackslot + nackdel + neof = (2.4)
= 15 + 1 + 1 + 1 + 7 = 25 (2.5)

Tframing = (nheader + ntrailer) · Tbit = (2.6)
= (19 + 25) · Tbit = 44 · Tbit (2.7)

Another overhead (Tcoding) is added because bit stuffing is performed and
the bus has to be released for at least three bit times before a new frame is

14

2.2. CAN CHAPTER 2. REAL-TIME PROTOCOLS

started. The amount of bits that are stuffed in the frame depends on the
content of the frame and the identifier. Thus, an upper and a lower bound
are calculated for the coding overhead.

Tcoding max = nstuffbits max · Tbit + Tinterframe = (2.8)

=
nheader + nmaxpayload + ncrc

5
· Tbit + 3 · Tbit = (2.9)

= (
19 + 64 + 15

5
+ 3) · Tbit = (

98
5

+ 3) · Tbit = 22 · Tbit (2.10)

Tcoding min = (0 + 3) · Tbit = 3 · Tbit (2.11)

efficiencymax =
Tpayload max

Tpayload max + Tframing + Tcoding min
= (2.12)

=
64 · Tbit

(64 + 44 + 3) · Tbit
=

64 · Tbit

111 · Tbit
= 0.5766 (2.13)

efficiency ′max =
Tpayload max

Tpayload max + Tframing + Tcoding max
= (2.14)

=
64 · Tbit

(64 + 44 + 22) · Tbit
=

64 · Tbit

130 · Tbit
· Tbit = 0.4923 (2.15)

Depending on content and the identifier of the frames from zero to 19 bits
are stuffed in the frame. The maximum efficiency of CAN is 57.66% if no bit
stuffing occurs. The TT-CAN protocol is less efficient because an additional
overhead is caused by embedding the communication in time slots.

2.2.8 Availability

CAN controllers are available in many different versions: as Intellectual
Property (IP) (e.g. net list), as stand-alone controller or integrated in vari-
ous microcontrollers.

Due to this variety and the low costs of these hardware implementations,
software implementations of CAN are not common.

Manufactures of CAN enabled Integrated Circuits (IC) have to license CAN
from the Robert Bosch GmbH.

15

2.3. LIN CHAPTER 2. REAL-TIME PROTOCOLS

2.3 Local Interconnect Network

The Local Interconnect Network (LIN) is developed by the LIN consortium3.
This protocol has been designed to satisfy the needs of the automotive indus-
try for cheap and simple communication protocol for multiplexing various
signals on a single bus. LIN can be used for real-time communication, but
it does not offer a global-time or fault-tolerance features. The protocol can
be implemented in hardware and in software even on low performance off-
the-shelf microcontrollers using a standard Universal Asynchronous Receiver
and Transmitter (UART). This description of the LIN protocol is based on
the LIN specification 2.0 issued in 2003[LIN03].

2.3.1 Mode of Operation

LIN is a master-slave protocol. In every cluster a single master polls the
slaves for a certain information according to its internal schedule. The
polling process is implemented by splitting the LIN frame. The header
is sent by the master. It contains unique mark for the frame start and an
identifier that informs the nodes about the length and the meaning of the
data. The actual data is then sent in the response field by the slaves, which
is responsible for sending this type of messages. Every LIN master node
also incorporates a client implementation, which is used for sending and
receiving data as well as for error detection.

Beyond 60 identifiers (0 – 59) for data frames special identifiers exist for
diagnostic frames (60 and 61) and user defined frames (62). The identifier
63 is reserved for future use. The payload has a maximum length of eight
bytes and is divided in signals. A signal is a value of a certain meaning and
a certain length. LIN frames with the same identifier always contain the
same signals at the same position.

Each node has to be configured to read the frames, it is interested in, from
the bus, and to respond to headers of frames it has to transmit. The com-
plete schedule of the communication is only known by the master and is
processed cyclically.

The LIN specification defines three modes a frame can be transmitted:

Unconditional frames These frames are standard way of transmitting
frames. When the transmission of a certain frame is scheduled, the
master sends the header and the according node completes the frame
with its data and a checksum.

Event-triggered frames To reduce the average bandwidth requirements
for rarely changing signals, event-triggered frames have been intro-

3http://www.linlin-subbus.org

16

http://www.linlin-subbus.org

2.3. LIN CHAPTER 2. REAL-TIME PROTOCOLS

duced. Multiple nodes may react on the same identifier. The slaves
only respond on the header if they have something to transmit (e. g.,
an event has occurred). If none of the slaves responds, the master
knows that no event happened. If one of the slaves replies, the frame
is received correctly. However, another slave also may have started a
transmission and stopped sending as it noticed the ongoing bus ac-
tivity. Therefore, the master has to schedule another event triggered
frame to ensure that there are no other events pending. If more than
one slave responds on the header, the frame is corrupted, the master
detects a checksum error and has to poll all slaves using unconditional
frames. The answers of the slaves contain the identifier of the re-
lated unconditional frame. Thus, it can be distinguish, which event
occurred.

Sporadic frames Sporadic frames can be scheduled by the master in
free slots of the predefined, fixed communication schedule, whenever
needed. Usually the slave implementation of the master node trans-
mits the data of this frame.

2.3.2 Additional Services

Beyond the standard communication features, LIN offers means for diag-
nostic communication and status management is able wake-up a sleeping
cluster.

Diagnostic Communication

The LIN consortium has defined a special diagnostic transport layer. Di-
agnostic communication is performed using special frames, master request
frames (identifier 60) and slave response frames (identifier 61).

The nodes of a LIN cluster have a node address for diagnostic communi-
cation. Slaves can be addressed and messages up to 4095 bytes can be
exchanged. The diagnostic transport layer fragments and defragments the
messages accordingly, so they can be transported using the diagnostic frames
that carry at most eight bytes. Thus, the same diagnostic protocols can be
used in the LIN cluster and on a higher level communication systems that
the cluster might be connected to.

Status management

Every node has to report its state with at least one bit in one of the un-
conditional frames, which it transmits. This bit is set, if an error occurred
during sending or receiving the response fields. The bit is cleared after its

17

2.3. LIN CHAPTER 2. REAL-TIME PROTOCOLS

transmission. The master processes these bits an deduces the state of the
nodes.

But also the slave nodes use this information and the information about
successful data transfers to appraise their current status.

Cluster Wake-up

The master can put the cluster in sleep mode by sending a master request
frame with the invalid node address zero. Once the cluster is asleep every
node can wake it up by keeping the bus in the dominant state for 250µs to
5ms. After the end of the wake-up signal all salves are ready for participat-
ing in the communication within 100ms. The master starts executing its
communication schedule not longer than 150ms after this signal.

2.3.3 Frame Format

Figure 2.5 shows the structure of a LIN frame.

Figure 2.5: Structure of a LIN Frame[LIN03]

Header The master starts a new frame by sending the header.

Break symbol The break symbol consists of at least 13 dominant
bits, followed by a single recessive one. It is a unique symbol
that signals the start of a new frame and that can not occur
within a regular frame.

Synch byte The synch byte is a single byte with the value 0x55. It
forms a pattern of alternating bit values that can be used by
the slaves to synchronize their bit clock to the bit timing of the
master.

Protected identifier The protected identifier consists of a six bit
long identifier (0 – 63) and two parity bits that are calculated
as shown in equation 2.17. ⊕ is the operator for the exclusive-or

18

2.3. LIN CHAPTER 2. REAL-TIME PROTOCOLS

operation and ID [i] is the bit number i of the ID.

Bit6 = ID [0]⊕ ID [1]⊕ ID [2]⊕ ID [4] (2.16)
Bit7 = ¬(ID [1]⊕ ID [3]⊕ ID [4]⊕ ID [5]) (2.17)

Response A slave responds to the header and completes the frame by trans-
mitting the response field.

Data The data field contains at least one at most eight bytes of data.
Signals with a length of more than one byte are transmitted in
little-endian order.

Checksum In the LIN specification two types of checksums are de-
fined. The classic checksum is calculated using the bytes of the
data field only. The calculation of the extended checksum also
includes the protected identifier. Both types of checksums are
calculated in the same way: All bytes are added in a eight bit
register. In case of an overflow, the carry bit is also added. The
inverted result of this calculation is then used as checksum.

2.3.4 Data Encoding

LIN uses standard UART frames with NRZ encoding. The frames have one
start, one stop bit and eight data bits that are sent Least Significant Bit
(LSB) first.

There is only one exception. The break field consists of at least of 13 con-
secutive dominant bits. This pattern is not a valid UART frame.

Every two bytes of a frame may be separated with an additional space. The
total length of the space must be smaller than 40% of the total frame length.

Two frames are separated by an inter frame space.

2.3.5 Physical Layer

LIN uses an improved version of the physical layer defined in the ISO stan-
dard 91414. The bidirectional bus consists of a single wire and supports a
data rate of up to 20 kbit/s. The LIN bus forms a wired AND gate. Every
LIN transmitter has a built-in pull-up resistor and can pull the bus down to
ground level with a transistor. The recessive state (≥0.6V) signals a logical
one and the dominant state (≤0.4V) signals a logical zero.

The maximum length of the LIN bus is 40 meters and up to 16 LIN nodes
may be connected.

4available at http://www.iso.org

19

http://www.iso.org

2.3. LIN CHAPTER 2. REAL-TIME PROTOCOLS

2.3.6 Host Interface

The LIN specification defines a set of C-functions as interface to the host
application. This set includes functions for initialization, for manipulating
and querying the predefined signals, for managing the schedule in the
master node and for controlling the bus interface. A configuration and a
diagnostic Application Programming Interface (API) are also available.

Beyond the programming interface the LIN specification specifies a file for-
mats that store all communication-relevant settings, e. g., signals, frames
and the master schedule (LIN description file) as well as a description of
LIN nodes (node capability file). These file formats ensure the correct col-
laboration of development tools of various companies.

2.3.7 Efficiency

The maximum efficiency of a LIN frame can be calculated from the trans-
ferred bytes of data and the minimal slot length that is needed to schedule
this message.

Theader is the amount of time for transmitting the header that has always the
same length. Tdata max is the time needed for transferring the payload data of
the maximum length of eight bytes. Tresponse max includes Tdata max and the
time needed to transmit the checksum. Header and response transmission
time are added to get the minimum time Tframe max for transmitting a LIN
frame with a payload of maximum length.

Theader = (Tbreak + Tsynch + Tid) · Tbit = (2.18)
= (14 + 10 + 10) · Tbit = 34 · Tbit (2.19)

Tdata max = Ndata max · 10 · Tbit = (2.20)
= 8 · 10 · Tbit = 80 · Tbit (2.21)

Tresponse max = Tdata max + Tcrc = (2.22)
= 80 · Tbit + 10 · Tbit = 90 · Tbit (2.23)

Tframe max = (Theader + Tresponse max) · Tbit = (2.24)
= (34 + 90) · Tbit = 124 · Tbit (2.25)

According to the LIN specification, the minimum length of a frame slot is
40% longer than the minimum length of the packet that is sent in the slot.

Tframe slot = Tframe max · 1.4 = (2.26)
= 124 · Tbit · 1.4 = 173.6 · Tbit (2.27)

20

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

The efficiency of LIN is calculated by opposing the minimum time for a frame
slot (Tframe slot) and the time for sending the actual payload (Tdata max).

efficiencymax =
Tdata max

Tframe slot
= (2.28)

=
80 · Tbit

173.6 · Tbit
=

80
173.6

= 0.4608 (2.29)

The upper bound for the efficiency of the LIN protocol is thus 46.08%.

2.3.8 Availability

LIN is often implemented in software, but there are also hardware imple-
mentations and LIN IPs.

Only members may use intellectual properties of the LIN consortium. To
become an associated member an admission fee of $ 10,000.– and an annual
fee has to be paid. Members do not have to pay any license fees for their
products that use LIN. The specification is openly available for download
on the website of the consortium5.

2.4 Flexray

Flexray is an upcoming standard for real-time communication in the auto-
motive industry. It is developed by the Flexray consortium6. This section is
based on the Flexray Protocol Specification[Fle05b] and the Flexray Physi-
cal Layer Specification[Fle05a].

2.4.1 Mode of Operation

The Flexray protocol is executed in communication cycles. Each cycle con-
sists of a static segment, a dynamic segment, a symbol window and a net-
work idle time. The length of each segment is specified in macroticks. If no
dynamic segment or the symbol is not used the length of the respective seg-
ment can be set to zero. The static and dynamic segments are divided into
time slots. The clocks of all nodes are synchronized. Therefore, every node
knows the number of the current slot and when a new slot starts. An action
point is defined by specifying the number of macroticks since the start of a
slot. The transmitting node starts sending at the according action point.

5http://www.lin-subbus.org/frontend/stylesheets/request_doc.htm, visited on
2006-10-06

6http://www.flexray.org

21

http://www.lin-subbus.org/frontend/stylesheets/request_doc.htm
http://http://www.flexray.org

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

Every frame has an identifier that specifies the number of the slot, which it
has to be sent in. For every channel each identifier must not be used more
than once within one communication cycle.

Figure 2.6 shows the structure of a Flexray communication cycle.

Figure 2.6: Structure of a Flexray Communication Cycle[Fle05b]

There are three possibilities how communication in a Flexray cluster can be
performed:

1. The dynamic segment is not used. All communication is performed
within the static segment.

2. Only one static slot is used for synchronization. The actual communi-
cation is performed within the dynamic segment.

3. Both, the static and the dynamic segment are used for communication.

It depends on the requirements of the application, which of these modes of
operation is adequate.

Static Segment

The static segment is used to exchange information with a guaranteed max-
imum delay and jitter. Time Division Multiple Access (TDMA) is used for
arbitration within the static segments. The segment is divided into time
slots with the same length that is equal for both channels.

The application can decide to send the same frame on both channels. Thus,
faults on one channel can be tolerated. If fault tolerance is not needed the
communication speed can be doubled for particular slots by sending different
frames on each channel.

22

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

Dynamic Segment

The dynamic segment is used to exchange information that has to be trans-
mitted in varying and unknown intervals, efficiently. However, generally it is
not possible to determine a maximum delay for frames that are transmitted
within the dynamic segment. Mini-slotting is used for the arbitration within
this segment. The segment is divided into mini-slots. Dynamic slots are su-
perimposed on them. If no data is transmitted in a dynamic slot, it only
consists of one single mini-slot. Otherwise the dynamic slot is expanded over
as many mini-slots as needed for the transmission of the complete frame.
The number of mini-slots depends on the length of the dynamic segment and
must not be exceeded. The smaller the identifier of a frame, the smaller is
the number of the slot a message is assigned to and the higher is the priority
of this message.

Symbol Window

In this segment symbols (such as the Media Access Test Symbol) may be
transmitted. The protocol performs no arbitration for this segment. This
has to be handled by the application.

Network Idle Time

No communication is allowed during the network idle time. The length of
the idle time is the total length of the communication cycle minus the length
of the static segment, of the dynamic segment and of the symbol window.

Addressing Modes

The nodes of a Flexray cluster do not have an address on the protocol
layer. But all frames have an identifier that enables the receiving nodes to
filter incoming messages. Only those important for the application layer are
stored.

Clock Synchronization

The right timing is crucial for the communication within a Flexray cluster.
All nodes must agree on the number and the start of the current macrotick.
This can only be guaranteed by performing a clock synchronization.

Within a Flexray cluster this is performed using the Fault-Tolerant Midpoint
Algorithm[LL84]. Every node saves the arrival time of data frames that are
transmitted in the static segment and have a special bit set. These frames
are called Sync Frames and are transmitted from nodes that have a reliable

23

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

clock that should be used for synchronization. Then the sender’s action
point (the point in time when the sender started transmitting the frame)
is estimated by considering propagation delay. The difference between the
estimated action point of the sending nodes and the action point of the
receiving node are stored in a sorted list. If a frame is transmitted an both
channels, the smaller difference is stored in the list.

The k smallest and the k largest values are removed from the list, where k
is calculated from the number of stored differences (n) using equation 2.30.

k =

0 if 1 ≤ n ≤ 2
1 if 3 ≤ n ≤ 7
2 if 8 ≤ n

(2.30)

The largest and the smallest of the remaining values are averaged to cal-
culate the midpoint value. This value interpreted as the deviation of the
node’s clock from the global time. Offset and rate error are calculated from
the deviation and corrected every second communication cycle during the
network idle time.

In a Flexray cluster with a communication speed of 10Mbit/s the clocks can
be synchronized with a precision better than 1µs.[Fle05b]

Node Integration

When a new node is connected to a cluster it has to adopt the current
timing of the cluster to be able to join the communication. The process
of integration differs for normal nodes and nodes that can initiate a cluster
start-up (coldstart nodes)

Normal nodes These listen on both Flexray channels and tries to receive
two valid startup frames from a coldstart node, adopts its timing and
performs clock synchronization. Then it searches for startup frames
from two distinct coldstart nodes and checks whether they fit in the
own schedule. If this is the case for four cluster cycles and clock
synchronization can be performed without errors the node enters the
normal operation mode.

Coldstart nodes These perform a very similar procedure of integration,
but they start normal operation after synchronizing themselves with
at least one coldstart node for three cluster cycles.

Cluster Startup

If coldstart nodes do not receive any Flexray frames during the process of
integration they initiate a cluster startup. The application may veto the

24

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

startup.

The startup is initiated by sending a Collision Avoidance Symbol (CAS).
Then the coldstart node starts sending startup frames accordingly to its
schedule. If a startup frame is received between the transmission of the CAS
and the first transmission of the startup frame the node stops the startup
and tries to integrate on the other coldstart node that transmitted this
frame. Thus, the scheduling of the startup frame decides, which coldstart
node performs the startup if more then one node initiated the cluster startup
simultaneously by sending the CAS.

Fault Handling

A fatal error within the protocol engine or the product specific part causes
the Flexray node to stop participating in the communication immediately.
This stop can also be encompassed by the application through the Controller
Host Interface (CHI) .

Non fatal errors may cause the protocol engine to only degrade the commu-
nication service that means it receives data frames from the bus but does
not transmit any. However, the exact behavior in such cases depends on the
configuration.

2.4.2 Additional Services

Beyond the basic data transportation features Flexray provides following
additional services.

Fault Tolerance

Flexray supports the implementation of a fault-tolerant communication.
The dual-channel topology provides means to implement communication
systems that can tolerate the breakdown of one channel. But Flexray does
not provide a complete ready-to-use solution.

Also the clock synchronization algorithm, the node integration and cluster
start-up process of Flexray are designed to tolerate faults. However, a fault
hypothesis is not part of the Flexray specification.

In an additional specification bus guardians for Flexray controller are de-
scribed. These guardians are are used locally, directly on the Flexray node.
The bus guardians protect only the static segment against timing violations.

25

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

Global Time

To synchronize the medium access of the nodes within the TDMA scheme
the clocks of the communication controllers have to be synchronized as de-
scribed earlier. All communication controller of a Flexray cluster agree with
a limited deviation on this time. It is made available to the host application
and can be used for performing actions synchronously to the communication
or for time-stamping.

Membership

Flexray supports the implementation of a membership service but does not
provide a ready-to-use solution.

The frame format defines a flag that specifies whether a membership vec-
tor is included within the payload or not. During a communication cycle
Flexray controllers process the vector from all valid incoming frames from
both channels and perform an or-operation. The result can be used by the
application for implementing a membership service. It is the responsibil-
ity of the application software to calculate and to transmit an appropriate
network management vector.

Cluster Wake-Up

To save energy a cluster can be set to sleep mode. Every node of the cluster
can wake it up by sending the wake-up symbol. The transmission of this
symbol is triggered by the host application. The bus drivers of the other
nodes detect the wake-up symbol and wake the communication controller
that inform the host processor. The wake-up is only sent on one of the two
channels to ensure that communication is still possible, in case a faulty node
sends wake-up symbols continuously.

2.4.3 Frame Format

The Flexray frame format is shown in figure 2.7.

Figure 2.7: Flexray Frame Format

26

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

Header segment This segment contains important information about the
frame.

Bits These bits are used to mark special frames.

Reserved Bit This bit is reserved for future use, must be trans-
mitted as 0 and must be ignored when it is received.

Payload Preamble Bit This bit indicates that additional in-
formation is stored at the beginning of the payload segment.

Null Frame Indicator If this bit is set the data in the payload
segment is invalid.

Sync Frame Indicator If this bit is set, the node should use
the timing of this frame for its synchronization process.

Startup Frame Indicator This bit indicates whether the
frame is a startup frame or not. Frames having this bit set
are used for cluster startup and also have to be sync frames.

Frame ID The frame identifier specifies the slot, which the frame has
to be transmitted in. Therefore, every identifier may only be used
once per communication round and per channel. 0 is an invalid
frame identifier.

Length The length of the payload segment in words (two bytes).

Header CRC Some parts of the data in the header (sync and startup
frame indicator, frame identifier and payload length) is relevant
for the right operation of the protocol. Hence, it is protected with
this additional header CRC. The CRC code is 11 bits long and is
generated using the polynomial shown in equation 2.31.

x11+x9+x8+x7+x2+1 = (x+1)·(x5+x3+x1)·(x5+x4+x3+x+1)
(2.31)

0x01A is used as initialization vector of the header CRC.

Cycle Count This field contains the the value of the communication
cycle counter of the sending node.

Payload segment In this segment the actual application data is transmit-
ted. According to the value the state of the payload preamble bit in the
header segment additional administrative information might precede
the payload.

For frames transmitted within the static segment this information is a
network management vector. With network management vectors that
are received during a communication cycle a bitwise OR operation is
performed and the result is made available to the application layer at
the end of the cycle. The length of the network management vector
has to be configured in the communication controller. All additional

27

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

network management functionality has to be performed by the appli-
cation software.

For frames within the dynamic segment the additional information is a
16 bit long message identifier. This identifier may be used by receiving
nodes for filtering certain packages. However, it is the task of the
application to set the identifier and the payload preamble indicator
correctly.

The maximum length of the payload is limited by the number of bits
that are used for encoding it. The seven bit long length field limits
the maximum size of the payload to (27 − 1) · 2 = 127 · 2 = 254 Bytes.

Trailer segment The trailer segment contains a 24 bit CRC code. It is 11
bits long and is generated using the polynomial shown in equation 2.32.

x24+x22+x20+x19+x18+x16+x14+x13+x11+x10+x8+x7+x6+x3+x+1 =

= (x+1)2·(x11+x9+x8+x7+x5+x3+x2+x+1)·(x11+x9+x8+x7+x6+x3+1)
(2.32)

0xFEDCBA is used as initialization vector for frames sent through
channel A and 0xABCDEF for those on channel B.

2.4.4 Data Encoding

The bits of the Flexray data frames are transmitted using the NRZ encoding.
Before and after the actual frame data and between every two transmitted
bytes special bit sequences are inserted to support synchronization between
sender and receiver.

Transmission Start Sequence Each transmission is started by pulling
the data line low for a predefined amount of time. This period is used
for setting up active star coupler accordingly.

Frame Start Sequence Each data frame is preceded with one high bit.

Byte Start Sequence Each data byte is preceded with one high and one
low bit.

Frame End Sequence One low bit and one high bit are appended to each
frame.

Dynamic Trailing Sequence After the transmission of the last bit of a
frame within the dynamic segment, the data line is hold low until the
next minislot. Then, a single high bit is transmitted.

Three different bit sequences may be transmitted as symbols:

28

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

p
oi

n
t-

to
-p

oi
n
t

p
as

si
ve

b
u
s

p
as

si
ve

st
ar

ac
ti

ve
st

ar

maximum distance between two nodes 24m 24m 24m 24m to/from star
minimum number of stubs 0 4 3 2
maximum number of stubs 0 22 22 -
minimum number of splices 0 2 1 -
maximum number of splices 0 - 1 -

Table 2.2: Flexray Physical Layer Characteristics

Collision Avoidance Symbol This symbol is transmitted by pulling the
data line low for a certain amount of time. It is preceded by a trans-
mission start sequence. The symbol is used during the cold start to
determine the leading cold start node. All other nodes integrate on
this node and synchronize their communication on it.

Media Access Test Symbol This symbol looks like the collision avoid-
ance symbol. However, they can be distinguished because the media
access test symbol is sent within the symbol window. The transmission
of this symbol is triggered via the CHI .

Wakeup Symbol This symbol consists of alternating sequences of low and
high bits. The sequences have a predefined length. The number of
signal changes also can be configured. The symbol is used to wake up
the sleeping nodes of a cluster. It may only be transmitted on one
channel at a time. Its transmission is triggered by the host.

2.4.5 Physical Layer

A passive bus, a passive star, or an active star topology can be used in a
Flexray cluster. It is also possible to use a combination of the active star
and the bus topology. The nodes of a Flexray cluster can be interconnected
with one or two busses. If two busses are used, both have to belong to one
single cluster. Bridges between different clusters can only be built using a
second communication controller.

A dedicated electrical physical layer specification for Flexray systems exists
[Fle05a]. It defines a differential transmission using ± 600mV.

The maximum distance between two active stars is limited to 24m. Only
two active stars are allowed to be placed on every signal path.

29

2.4. FLEXRAY CHAPTER 2. REAL-TIME PROTOCOLS

The information is sent over the network using the NRZ coding and a max-
imum speed of 10 Mbit/s.

2.4.6 Host Interface

The Flexray host interface is divided in two parts, the protocol data inter-
face and the message data interface. The protocol data interface allows to
configure the protocol parameters, to control the protocol execution (e. g.,
change the execution state, perform external clock synchronization), and
to read the status of the protocol execution (e. g., slot counter, macro tick
counter, clock rate correction).

Through the message data interface the received data can be accessed and
the data that has to be transmitted, is be handed over to the communica-
tion controller. This interface is also used for configuring the handling of
incoming and outgoing data (e. g., in which time slot data is stored in which
buffer).

Beyond, the host interface offers additional services: Received messages can
be filtered using the first two bytes of their payload. A powerful, con-
figurable interrupt logic can provide interrupts on all important protocol
events. Moreover, the network management service preprocesses all incom-
ing network management vectors (all vectors of a communication cycle are
or-ed and the result is made available to the application).

2.4.7 Efficiency

For the calculation of the efficiency, only the static segment is considered.
The maximum length of the payload of a Flexray frame is 240 bytes (= 1920
bits = npayload max). The overhead caused by wrapping the payload in a
frame (Tframeing) is calculated according to equation 2.34.

Tframing = (nheader + ntrailer) · Tbit = (2.33)
= (5 · 8 + 3 · 8) · Tbit = 64 · Tbit (2.34)

Another overhead (Tcoding) is added because additional bits have to be trans-
mitted at the start of a transmission, of a frame, and of a byte, as well as
at the end of each frame.

Tcoding = (ntransmission start + nframe start + nbyte start · nbytes max + nframe end) · Tbit =
(2.35)

= (3 + 1 + 2 · 240 + 2) · Tbit = 486 · Tbit (2.36)

30

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

efficiencymax =
Tmaxpayload

Tmaxpayload + Tframeoverhead + Tcoding
= (2.37)

=
1920 · Tbit

(1920 + 64 + 486) · Tbit
= 0.7773 (2.38)

According to equation 2.38 the maximum efficiency of the Flexray frame
encoding is 77.73%. However, this calculation does not consider the padding
time of the frames in the time slots. This time depends on the topology of the
cluster. A lower bound for the maximum efficiency can be calculated from
the maximum slot duration (Tslot max). According to [Fle05b] tslot max = 659
Macroticks. At 10Mbit/s a Macrotick has a length of at least 1µs. Thus
Tslot max = 659µs.

efficiencymax lo =
Tmaxpayload

Tslot max
= (2.39)

=
1920 · Tbit

659µs
=

1920 · 10−7s

6590 · 10−6s
= 0.2914 (2.40)

The lower bound for the maximum efficiency is 29.14%.

2.4.8 Availability

At the day of writing several Flexray implementations are available. The
Robert Bosch GmbH7 offers a Flexray intellectual property (IP) module that
is called E-Ray and that can be synthesized either as a stand-alone device
or as part of another IC.

Freescale Semiconductors8 produces stand alone Flexray controllers called
MFR4200 and MFR4300.

Currently no software implementations of the Flexray protocol are known.

The development of Flexray is managed by the Flexray consortium. A
registered copy of the Flexray specification is available for free, but the use
of the intellectual property is only allowed to members. Memberships are
available for EUR 7.500,- and for EUR 15.000,-.9

2.5 TTP/C

The TTP/C is a part of the Time-Triggered Architecture (TTA) and the
major member of the time triggered protocol family. It is developed by the

7www.bosch.com
8www.freescale.com
9according to the information on the Flexray website at 2006-08-26

31

http://www.bosch.com
http://www.freescale.com

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

TTA-Group10 and is mainly used in the avionic industry. Class C refers
to the group of applications that TTP/C is designed for, as defined by the
Society of Automobile Engineers (SAE)11. Class C communication protocols
provide high speed communication at minimum 125kbit/s that can be used
for real-time control (e.g. engine control, brake by wire).

This chapter is based on the specification of the version 1.1 of the TTP/C
[TTA03].

2.5.1 Mode of Operation

TTP/C uses a TDMA scheme to access the bus after a successful startup
has been accomplished. In a TDMA round every node may access the bus
only once. At a configured time it is allowed to transmit data for a pre-
defined time (node slot). Thus, all nodes in the cluster have to agree on
the actual time. This is achieved by synchronizing the clocks of the nodes
as described later in this section. A appropriate configuration for the com-
munication has to be created for every node. It is stored in the Message
Descriptor List (MEDL), a data structure in the Communication Network
Interface (CNI), the application interface of the communication controller.
The communication has to be designed in a way that at no time more than
one node is allowed to transmit data on the bus.

The TTP/C communication controller decides according to the MEDL when
data has to be transmitted on or received from the bus, and where in the
CNI the data is read from and stored to, respectively. The application can
not influence the timing of the communication. The CNI forms a temporal
firewall[Kop97].

TDMA rounds with the same sequence of slots are grouped forming a cluster
cycle. Nodes with the same position within different TDMA rounds of the
same cluster cycle are equal in length and have the same sending node. The
cluster cycle is repeated continuously. Every node sends the same piece of
data (same length and same semantic meaning) in its slot within a particular
type of TDMA round. The content of a frame may differ from one TDMA
round to another. Figure 2.8 shows the structure of a cluster cycle.

Cluster Mode

Distributed systems may have more than one functional behavior, which are
called modes. Depending on the current task of the system the mode can
be changed accordingly. Each mode of the distributed systems requires the
exchange of a different set of data. TTP/C reflects these needs by allowing

10http://www.ttagroup.org
11www.sae.org

32

http://http://www.ttagroup.org
http://www.sae.org

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

Figure 2.8: TTP/C Cluster Cycle[TTA03]

the definition of multiple cluster cycles and offering means for switching
between them safely.

At least two cluster modes have to exist in every TTP/C cluster: the startup
mode and one application mode. If it is required by the application addi-
tional application modes can be added. Special modes may also be designed
for debugging, diagnosis or maintenance.

Virtual member nodes

In TTP/C a fixed slot in every TDMA round is allocated for every node.
However, in a TTP/C cluster physical nodes may share a single node slot.
The transmission of the data is multiplexed. The physical nodes access the
bus alternately. They behave like a single node that is called virtual member
node.

Controller State

The controller state (C-state) is composed of a set of values that reflect the
actual state of the communication controller:

Global Time The time of the start of the current slot in macroticks.

Round Slot Position The number of the current slot in the cluster cycle.

Cluster Mode The current cluster mode (defines, which schedule is used).

Deferred Pending Mode Changes Pending mode changes that will be
performed at the start of a new cluster cycle.

Membership Information Information about the activity of the nodes
in the cluster. The membership information is consistent among all
cluster nodes.

33

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

Thus, the C-state must be equal on all nodes under normal operating con-
ditions. Otherwise, one or more nodes would violate the timing when they
access the bus or they do not agree on the list of active nodes. TTP/C
provides means to check the consistency of the C-state on all nodes and to
recover from C-state errors (Never Give Up (NGU) strategy).

Clock Synchronization

TTP/C uses the Fault-Tolerant Average (FTA) algorithm [KO03] to syn-
chronize the clocks of the nodes: Every node measures the time between
the expected and the real arrival time of a data frame. The propagation
delay is considered by subtracting a configurable amount of time from the
measurement. If the received data frame is sent by a node with a precise
clock (according to the MEDL of the receiving node), the measured time
difference is included in the calculation of the clock correction term. It is
stored on a push-down stack with a depth of four entries. At a slot that
is configured in the MEDL, all nodes calculate the correction term. The
smallest and the largest value are removed from the stack. The average of
the two remaining values is then used as clock correction term.

The nodes correct their clocks by a configurable number of microticks every-
time a definable number of macroticks has elapsed until the complete clock
correction term has been applied.

TTP/C also supports the synchronization to an external clock. The host
application informs the TTP/C controller about an external clock correction
term, that is added to the internal one.

At minimum four nodes are needed to be able to tolerate one byzantine fault
per TDMA round[KHK+96]. A dependable clock synchronization is crucial
for the functioning of the TDMA bus accessing strategy.

According to [KHK+96] the achievable precision of the ensemble of clocks
in a typical cluster with a communication speed of 10Mbit/s is better than
0.25µs.

Node Integration

An integrating node has to adopt the current C-state of the cluster. It listens
for frames, which include the current C-state (frames with explicit C-state,
see 2.5.3). Within two TDMA rounds at least one frame with an explicit
C-state has to be transmitted in order to allow integration of nodes. If such
a frame is received, the node sets its own C-state accordingly and starts
participating in the communication in a passive way: frames are received
and handed to the host and clock synchronization is performed. After a
configurable number of correct frames has been received and more correct

34

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

than incorrect frames have been received (clique avoidance, see 2.5.2) the
node starts sending in its assigned slot.

Cluster Startup

A node performs a cold start, if its configuration allows a cold start and
the node has not received any frames during the integration process for a
certain time. The node sends cold start frames (see 2.5.3) on both channels.
It then receives frames until the it reaches its own sending slot. If the node
has received frames and the majority of them have the same C-state, the
node starts transmitting frames according to its schedule.

In case that the majority of nodes in the cluster have another C-state, or in
case that no frame has been received the node starts the integration process
again. The number of cold start attempts that my be performed is limited,
to detain cold starting nodes with an incoming link failure from continuously
impeding the communication on the bus.

Cold start integration enabled nodes integrate on cold start frames. This
process is very similar to the normal node integration. The main differences
is that cold start frames may collide. If this collision is detected by all
nodes, the integrity of the frame destroyed and the frame is ignored. A
critical situation may occur, if two nodes send a cold start frame at almost
the same time. Due to the propagation delay of the bus, these two frames
may be received by the other nodes in a different order on networks with
a bus topology. In networks with star topology each of the replicated star
couplers may decide differently, which frame comes in first.

TTP/C solves this problem by introducing the big bang. Every integrating
node ignores the first cold start frame. The cold starting nodes receive no
response and retries the cold start after a certain time. This retry time-out is
larger than the maximum propagation delay of the bus and is unique within
the cluster. Therefore, there is no collision during the second attempt of the
cold start and all nodes integrate on the same cold start node.

2.5.2 Additional Services

Besides the normal data transfer TTP/C offers some additional services.
These are described in this section.

Fault Tolerance

One of the main design goals of TTP/C is fault tolerance. An additional
specification for a fault tolerant layer (FT-COM) on top of TTP/C exists.
It has the same interface as the normal CNI. Under this interface the com-

35

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

plete implementation of the fault tolerant communication is hidden. There-
fore, the FT-COM CNI is completely transparent for the host application.
The fault tolerant layer uses the replicated communication channels of the
TTP/C bus.

TTP/C specifies central bus guardians that are displaced from the commu-
nication controllers and powered by their own supply. Thus, the likeliness
of a failure of the node and the bus guardian at the same time is reduced
because of the spacial distance.

Other services that are described in the next sections the membership ser-
vice, the implicit acknowledgement and the clique avoidance improve the
ability of detecting and handling faults additionally.

Global Time

To synchronize the medium access of the nodes within the TDMA scheme
the clocks of the communication controllers have to be synchronized as de-
scribed earlier. All communication controller of a TTP/C cluster agree with
a limited deviation on this time. It is made available to the host application
and can be used for performing actions synchronously to the communication
or for time-stamping.

Membership

Every TTP/C communication controller implements a membership vector.
Every bit in this vector represents a node of the cluster. If a valid frame is
received from a certain node in its sending slot within the TDMA round,
the according bit in the vector is set to one. Otherwise, the bit is set to
zero. The membership vector is part of the C-state. Thus, all nodes of a
cluster have to agree on the current membership vector.

Implicit Acknowledgement

A TTP/C controller can detect outgoing link failures using the membership
information of its successors. If the membership information is included
explicitly in the frame only the according bit has to be checked. Otherwise,
the membership information is only part of the CRC calculation. In this
case the receiving node calculates both possible CRCs and compares it to
the received one. There are three possible cases:

1. The received CRC and the first calculated checksum are equal: The
last transmission has been successful.

36

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

2. The received CRC and the second calculated checksum are equal: A
disturbance during either the last transmission or during the reception
occurred. The following frame has to be investigated to make a final
decision about the acknowledgement.

3. The received CRC is and both calculated CRCs are unequal: The
transmission of the successor has been disturbed. Further investigation
is needed to make a final decision about the acknowledgement.

In case a further investigation is needed the frame sent by the successor of
the successor is used similarly to the description above to make a decision.
If again both checksums are unequal, the frame of the next successor is used,
and so forth.

Clique Avoidance

All nodes of a TTP/C cluster have to agree on the cluster’s current C-state.
The C-state is communicated either implicitly or explicitly whenever a node
transmits a frame. Groups of nodes that agree on the same C-state are
called cliques. It is crucial for the proper functioning of the communication,
that the developing of such cliques is avoided.

To detect cliques every node counts agreed and disagreed frames:

Agreed Frames are received frames with implicit C-state that pass the
CRC test, received frames with explicit C-state that pass the CRC
test and contain the same C-state as the receiving node and frames
that are transmitted.

Disagreed Frames are received frames with implicit C-state that do not
pass the CRC test and received frames with explicit C-state that pass
the CRC test but do not contain the same C-state as the receiving
node.

If the number of the disagreed frames is larger than that of the agreed ones,
it is very likely, that there are at least two cliques and the node is not a
member of the largest one. In such a case the node stops participating in
the communication immediately. Thus, the formation of cliques is avoided.

2.5.3 Frame Format

TTP/C uses three different types of frames:

Frames with explicit C-state This type of frame consist of a frame type
identifier, a possible mode change request, the C-state of the sending

37

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

communication controller and a CRC. Included in this CRC but not
within the data frame is the schedule identifier of the frame. Integrat-
ing nodes can only synchronize themselves on frames with an explicit
C-state.

Frames with implicit C-state These frames are very similar to those of
the preceding type. However, they only include the C-state in the
calculation of the CRC but not in the actual data frame. This allows
the C-state of a controller to be tested for consistency without trans-
mitting it. The disadvantage of this technique is, that communication
failures and differences in the C-state can not be distinguished. In
many cases communication failures are transient failures that do not
require any action from the node whereas an illegal C-state is a critical
error that detains the node from participating in the communication
correctly.

Coldstart frames This is a special type of frames. It is only used during
the startup of the cluster. These frames have no payload and no
complete C-state. They only transport a part of C-state (the current
global time and the current round slot) that is necessary for a node to
synchronize itself during the cluster startup.

In figure 2.9 the structure of these three types of frames is shown.

In current implementations maximum frame length is limited to 240 bytes.
In a frame with an implicit C-state thereof 3 bytes are used for the CRC
and one byte for the header.[Kop01].

2.5.4 Data Encoding

The TTP/C specification does not define a certain bit encoding. Only the
timing of the transmission of the data frames within the TDMA slots is
specified in a more detailed way.

A TDMA slot starts with the transmission of a node (transmission phase -
TP). After the transmission the receiving nodes process the received data
frame (post-receive phase - PRP). Before a node starts sending, it has to
prepare the data frame (pre-send phase - PSP). This has accomplished be-
fore a new slot starts, in order that the transmission starts exactly on the
beginning of the time slot. In the time between post-receive phase and pre-
send phase the communication controller is idle. The bus is only accessed
during the transmission phase.

Figure 2.10 depicts the slot timing.

38

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

Figure 2.9: TTP/C Frame Formats[TTA03]

2.5.5 Physical Layer

The TTP/C specification does not define a physical layer. Only the require-
ments on the physical layer are listed:

• The physical layer must have two independent channels.

• The physical layer must support broadcasts.

• The propagation delay of the physical layer must be known.

2.5.6 Host Interface

TTP/C ’s host interface is realized by the CNI. It is accessed like normal
memory and forms a temporal firewall between the host Central Processing

39

2.5. TTP/C CHAPTER 2. REAL-TIME PROTOCOLS

Figure 2.10: TTP/C Slot Timing[TTA03]

Unit (CPU) and the communication controller. Hence, the host CPU can
not influence the timing on the bus.

The CNI is composed of three different parts:

Status area In this part the communication controller stores all variables
that refer to the current protocol state (e.g. C-state, protocol execu-
tion state, current clock correction term, ...). This section is read-only
for the host.

Control area This part is used by the host to govern the controller (e.g.
switch it on and off, request a cluster mode change, synchronize the
clock to an external clock, ...)

Message area In this section the data for every incoming and outgoing
frame of every time slot and every communication channel is stored.
Every block of frame data is prefixed with a frame status field that is
not transmitted and contains important informations about the frame
(e.g. error flags). The MEDL of the communication controller has to
be configured properly so the controller puts the received data to and
sends the data from the correct address in the memory.

2.5.7 Efficiency

The calculation of the efficiency of Time-Triggered Protocol (TTP)/C is dif-
ficult, because the specification neither contains a description of the frames
on bit level nor a detailed description of the timing for the bus access. Ac-
cording to [Kop01] the minimum overhead of a TTP/C frame with implicit
C-state is one byte for the header and three bytes for the checksum and the
minimum length of the interframe gap is 5µs at a communication speed of
10Mbit/s.

40

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

Tpayload max = npayload max · 8 · Tbit = (2.41)
= 236 · 8 · Tbit = 1888 · Tbit (2.42)

Tframing = nframing · 8 · Tbit (2.43)
= 4 · 8 · Tbit = 32 · Tbit (2.44)

efficiencymax =
Tpayload max

Tpayload max + Tframing + Tinterframe gap
= (2.45)

=
1888 · Tbit

1888 · Tbit + 32 · Tbit + 5µs
= (2.46)

=
1888 · 0.1µs

1920 · 0.1µs + 5µs
=

188.8µs

197µs
= 0.9584 (2.47)

The maximum efficiency that can be achieved in a TTP/C cluster is 95.8%.

2.5.8 Availability

TTP/C is available as IP from TTChip12 and as complete IC (e.g.
AS8202NF from Austria Micro Systems13).

TTP/C has been designed to be implemented in silicon. Hence, there is no
software implementation available.

The development of TTP/C is managed by the TTA-Group14. A registered
copy of the TTP/C specification is available for free. Chip designers and
producers have to pay a license fee for using the intellectual property.

The TTA-Group accepts associate members (companies that develop prod-
ucts related to TTP/C) and affiliate members (companies that want to use
TTP/C related technology). Only the committee members have an influence
on the development of TTP/C .

2.6 TTP/A

TTP/A is a member of the time triggered protocol family for SAE class A
applications. Class A covers low speed communication (about 10kbit/s) in
the domain of convenience features in vehicles. TTP/A has been designed
to be implemented in software on small off-the-shelf microcontrollers and is
used for sensor actuator bus systems. TTP/A is not fault tolerant and is
rarely used by the industry.

12http://www.ttchip.com
13http://www.austriamicrosystems.com
14http://www.ttagroup.com

41

http://www.ttchip.com
http://www.austriamicrosystems.com
http://www.ttagroup.com

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

This section is based on the version 2.0 of the TTP/A specification[EEE+01].
The specification is explained and interpreted in [EHK+02]. This document
also gives some hints for implementing TTP/A.

2.6.1 Mode of Operation

TTP/A is a master slave protocol and uses a combination of polling (like
LIN) and TDMA (like TTP/C and Flexray) for bus arbitration. The com-
munication is performed in cycles (rounds) that are started by the master
node. It sends a round identifier that is one byte long (fireworks byte) and
different from all bytes that may be sent during normal data transmissions.

The firework byte signals the start of a new round and, which of the prede-
fined communication schedules, the Round Definition List (RODL), should
be used by the slaves. There are up to six different schedules available. They
are designed offline and have to ensure, that at no time two nodes transmit
at the same time. Thus, each slave has its own set of schedules. According
to the entries in the schedule the nodes send or receive data. This data is
stored in a special data structure, the Interface File system (IFS) where it
can be accessed by the application. This type of communication cycle is
called Multi partner (MP) round. Such rounds are used for real-time com-
munication. An example for a MP round is shown in figure 2.11. At most
62 bytes of application data can be transferred within a MP rounds.

Figure 2.11: TTP/A Multi Partner Round[EHK+02]

There are two additional firework bytes that start special communication
cycles that are used for maintenance and configuration. The Master slave
(MS) rounds are scheduled regularly and allow to read and write arbitrary
files in the cluster’s IFS. First a record is addressed by the master by
sending a Master Slave Address (MSA) that carries the address of the data
record: the node identifier, the file number and the record number. The
type of the access is also encoded in this frame. In the Master Slave Data
(MSD) that is scheduled at least after one MP round, the slave node either
receives data from the master and stores it in its IFS or the slave reads the
record from the IFS and transmits it to the master within the MSD round.
The MSA round is also used for clock synchronization. It carries the epoch
counter, the number of the current communication round.

42

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

As the description above shows, the proper reception of the fireworks byte
is crucial for a slave to participate in the communication correctly. Thus,
the fireworks bytes are protected by a code with a Hamming distance of at
least four[HH00]. The fireworks byte of the MSA round is 0x55. This bit
pattern allows clock synchronization and an automatic baud rate detection.
The lower three bits of the fireworks bytes specify the number of the
communication schedule used for this round. Thus, there are eight different
rounds (0–7). Schedule number five (fireworks byte 0x55) is reserved for
the MSA round and number one is reserved for the MSD (fireworks byte
0x49).

The execution of task can be triggered internally when a execution of a file is
scheduled in the RODL or externally by the master, when the MSA contains
an execution command. This feature is used to synchronize the actions of a
TTP/A node to the communication.

2.6.2 Additional Services

Beyond the basic functionality for transferring data TTP/A offers additional
services for synchronizing the cluster, for network management and for ac-
cessing the data stored in the IFS of a cluster. The features membership
service, cluster wake-up, and baptizing are optional and need not be part of
every TTP/A implementation.

Global Time

TTP/A provides a simple clock synchronization that is not fault tolerant.
The slaves synchronize their clocks on the start of the fireworks bytes that
are sent by the master. Additionally, the slaves adopt the epoch counter,
which is included in every MSA round.

However, the protocol is designed to be implemented on very cheap hardware
and not every node is expected to have a precise crystal oscillator. To
guarantee that even in long MP rounds the clock precision of such nodes
is good enough to be able to participate in the communication without
violating the timing constraints of the TDMA scheme, TTP/A slave nodes
can be resynchronized on arbitrary bytes in this round. The time slots that
are used for synchronization are marked with a special flag in the schedule
of the slaves.

The clock synchronization has to be precise enough to ensure that the time
difference between the expected and the real start of a transmission never
exceeds the duration of one bit.

43

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

Membership Service

TTP/A provides a simple membership service that is not fault-tolerant. The
master of the cluster maintains two membership vectors. In one a flag is
set for every slave if it participates in the communication in MP rounds as
expected. The other vector provides information, if the slave nodes have
responded in the last MSD round correctly after they had been addressed
for a read access in the previous MSA round.

Sleep mode

A cluster can be put in sleep mode by the master by sending a special
execution command during the MSA round. The cluster wakes up again as
soon as traffic is detected on the bus.

Baptizing

For configuration and debugging the slaves of a TTP/A cluster have to
be addressed in the MSA round. This address can be assigned statically
at compile time or dynamically when the node is connected to the bus.
A baptizing algorithm as proposed in [EHPS02] is used for the dynamic
assignment. The problem is that all unbaptized that only all unbaptized
nodes can addressed at once.

First the unique physical name of an unbaptized node has to be found:

1. The master write a physical name in a special record on all unbaptized
nodes.

2. The master triggers a comparison of this physical name with the unique
name of the unbaptized nodes.

3. In the following MSD round only unbaptized nodes respond with a
physical name identifier that is greater than or equal the value written
in step 1.

4. By repeating this algorithm a binary search is implemented.

Then the logical name has to be assigned:

1. The new logical name is written to a special record on all unbaptized
nodes.

2. The master triggers the execution of a task that copies the logical
name to the intended location in the IFS if the physical name of the
node is equal to the comparison value.

44

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

2.6.3 Frame Format

The TTP/A protocol transfers one byte per frame. The meaning of the
bytes is defined only by the time, when they are sent.

In figure 2.12 a piece of a TTP/A communication with a MP round is shown.

Figure 2.12: Structure of a TTP/A Communication Cycle[EHK+02]

Every round starts with a fireworks byte. In a MP round every node sends
and receives bytes accordingly to its schedule. In contrast in the MSA round
only the master node transmits data. The data of a MSD round is either
sent by the master or a single slave node. Both, the MSA and the MSD
round have the same structure (see figure 2.13): the fireworks byte, four
bytes of data and a checksum. The checksum is calculated from the first
five bytes of the MS round using the exclusive OR operation.

Figure 2.13: Structure of a TTP/A Master – Slave Round[EHK+02]

45

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

2.6.4 Data Encoding

TTP/A uses the NRZ encoding. The data is transmitted in standard UART
frames with a start bit, eight data bits, a parity bit, and a stop bit.

A bus idle time of one bit time before and after the UART frame is added.
These idle times form a two bit Inter Byte Gap (IBG) when the frames are
sent consecutively. Figure 2.14 shows a TTP/A byte frame.

Figure 2.14: Structure of a TTP/A Frame[EHK+02]

Two communication rounds are divided by a Inter Round Gap (IRG) of at
least 13 bit times. During this time the bus is idle.

2.6.5 Physical Layer

The definition of the physical layer is not within the scope of the TTP/A
specification. The specification only defines the requirements on the physical
layer:

• The physical layer has to support the transportation of UART mes-
sages.

• If the baptizing feature of TTP/A is used, the physical layer also
has to support concurrent transmissions. A collision may destroy the
transmitted frames, but the master has to be able to detect that there
is ongoing communication on the bus.

The timing of the TTP/A protocol is defined on bit level. One node sends
after the other and the gaps between two frames on the bus is fixed to 2 bit
times. Although this gap allows some jitter, this fact puts a restriction on
the length of the TTP/A bus.

46

2.6. TTP/A CHAPTER 2. REAL-TIME PROTOCOLS

2.6.6 Application Interface

The interface to the TTP/A protocol is IFS. The IFS consists of up to 64
files with up to 256 records. Records are four bytes long. The first record
of a file is the header record and stores the attributes of the file.

There are special files that are used to configure the TTP/A protocol:

RODL File This file contains the communication schedules.

Configuration File The configuration file contains the node identifier
(logical name) of the node and is used by the baptizing algorithm.

Membership File The membership file is only available on the master
node and contains the membership vectors.

Round Sequence File The Round Sequence (ROSE) file is also only avail-
able on the master node. The master schedules the communication
rounds according to this file.

Documentation File In the documentation file the unique, 64 bit long
physical name of the node is stored.

All other files can be used by the application. Callbacks can be registered for
every file. It is called whenever the the current slot of the schedule contains
an execute command for that file.

Through the IFS on the master node also the content of the MSA and
the MSD can be assigned. Thus, it is possible to implement a gateway
on the master that handles incoming requests over another interface and
accesses the IFS of the cluster accordingly. Such a gateway can be used with
appropriate software [KS04b] to visualize and modify the IFS conveniently
on a Personal Computer (PC).

2.6.7 Efficiency

The maximum efficiency of TTP/A round can be calculated from the max-
imum payload of 62 Bytes and the overhead that is added by the framing
of each byte (Tframing = 3 · Tbit), the IBG for every byte (TIBG ≥ 2 · Tbit),

47

2.7. OTHER PROTOCOLS CHAPTER 2. REAL-TIME PROTOCOLS

the IRG (TIRG ≥ 13 · Tbit), and the fireworks byte.

Tmax payload = Nmax payload · 8 · Tbit = (2.48)
= 62 · 8 · Tbit = 496 · Tbit (2.49)

Tmax round = (Nmax payload + 1) · (8 · Tbit + Tframing + TIBG) + TIRG =
(2.50)

= (63 · 13 + 13) · Tbit = 832 · Tbit (2.51)

efficiencymax =
Tmax payload

Tmax round
= (2.52)

=
496 · Tbit

832 · Tbit
= 0.5962 (2.53)

The upper bound for the efficiency of TTP/A is 59.62%.

2.6.8 Availability

The TTP/A protocol has been standardized in the Smart Transducer
Specification[OMG02] of the Object Modelling Group15. The specification
of the TTP/A protocol is available for free. Moreover, the source code of a
C-implementation for the eight bit microcontrollers from Atmel16 is available
under a modified version of the BSD license17.

Currently no pure hardware implementation of TTP/A exists, but an en-
hanced UART supporting synchronization and time-stamping in hardware
has been implemented[DEE03].

2.7 Other Real-Time Protocols

2.7.1 Real-time Ethernet

Ethernet is not suitable for real-time application because of its medium
access strategy. The CSMA/CD technique just detects collision and tries
to retransmit the frame after a random time. Thus, CSMA/CD is not
predictable and frames may even get lost. However, due to the enormous
success of Ethernet within the last decade, Ethernet components have
become very cheap. Meanwhile industrial Ethernet is even used in plant
automatization.

15http://www.omg.org
16http://www.atmel.com
17available at http://www.vmars.tuwien.ac.at/ttpa

48

http://www.omg.org
http://www.atmel.com
http://www.vmars.tuwien.ac.at/ttpa

2.7. OTHER PROTOCOLS CHAPTER 2. REAL-TIME PROTOCOLS

To make Ethernet suitable for real-time applications, the use of CSMA/CD
has to be avoided, that means that collisions have to be avoided. Mainly,
there are three approaches for solving this problem:

Topology based Switched Ethernet avoids collision by establishing a
point-to-point connection between sender and receiver. Thus no colli-
sions can occur. The problem of this solution is that switches create
an additional, unpredictable delay.

Software based Examples for software based solutions are Powerlink and
the IEEE 1588 Precise Clock Synchronization Protocol. A low-level
driver is used for synchronizing the clocks of the nodes and to establish
a TDMA scheme on top of Ethernet to allow a collision free commu-
nication. The precision that can be reached using these techniques is
coarse.

Hardware based Examples hardware based solution are PROFInet V3,
EtherCAT and Time-Triggered Ethernet. PROFInet enforces a
TDMA based access scheme through the hardware. EtherCAT uses a
kind of master-slave concept, where the frames from the master are
piped through one node after the other. The major problem of these
methods is, that new, proprietary hardware is needed. Time-Triggered
Ethernet also uses special switches but allows standard Ethernet con-
trollers to participate in the communication that is not time critical.

A detailed discussion of these approaches can be found in [KS04a].

The components of real-time Ethernet are too large as they could be used
on small robots.

2.7.2 Universal Serial Bus

Another very wide spread protocol is the Universal Serial Bus (USB)
protocol[USB00]. The USB protocol is a master-slave protocol. The host
controller, the master, polls data from the slaves. The USB specification
defines various transfer modes that fit needs of different applications. Two
of them are interesting for real-time communication:

Isochronous Transfer For every connection with this transfer type a con-
figurable bandwidth is assigned. In case of an error no retransmission
is scheduled.

Interrupt Transfer This transfer mode allows fast polling of the slave in
regular intervals (up to one access every millisecond in high speed
mode). In case of a transmission error the slave is polled once more.

49

2.8. COMPARISON CHAPTER 2. REAL-TIME PROTOCOLS

More and more microcontroller with included USB slave controllers are
brought on the market . There are also stand-alone ICs available. It is
much more difficult to find USB host controllers. They are integrated in
powerful microprocessors or are designed as Peripheral Component Inter-
connect (PCI) devices.

One of the major problems of using USB for real-time communication is,
that the scheduling of the messages is performed by the driver of the host
controller. This task and the control of the USB host controller make the
driver complex. Moreover, important features like the clock synchronization
are missing.

2.8 Comparison

In table 2.3 the five protocols described above are compared.

The appearance of the specifications of Flexray and TTP/C shows the differ-
ent design philosophies: Flexray is defined very precisely using Specification
and Description Language (SDL) diagrams, but leaves the implementation
of many higher level services (e. g., the membership service) to the appli-
cation designer. On the contrary the TTP/C specification defines a lot of
sophisticated features as part of the protocol, but does not give any detailed
information for the implementation. A comparison of a previous version of
Flexray with TTP/C is presented in [Kop01].

Flexray allows event-triggered communication in the dynamic segment. In
the static segment all time slots have the same length, but a node is allowed
to send in various of these slots. TTP/C schedules slots with varying lengths
within a TDMA cycle, but every node is allowed to transmit data at most
once in a cycle.

Most of the algorithms used in the TTP/C protocol and some used in the
Flexray protocol are verified formally. Another difference is that TTP/C also
supports the use of central bus guardians. Flexray uses local bus guardians.

TTP/A provides real-time communication, but no fault tolerance. It is the
only protocol that is only available as software implementation. LIN can
be also used for real-time communication, but lacks the functionality of a
global time. These two protocols are compared in detail in [EK04].

CAN is the only protocol that is not suitable for real-time communication.
But a real-time communication capable protocol (TT-CAN) can be built
with adapted hardware and an additional software layer.

50

2.8
.

C
O

M
P
A

R
IS

O
N

C
H

A
P

T
E

R
2.

R
E

A
L
-T

IM
E

P
R

O
T

O
C

O
L
S

CAN LIN Flexray TTP/C TTP/A
gross comm. speed 1 Mbit/s 20 kbit/s 10 Mbit/s typical 25 Mbit/s 18 typical 19,2 kbit/s 18

medium twisted pair ISO k-line twisted pair typical 100Mbit-
Ethernet 18

typical ISO k-line 18

topology bus bus bus, star (a/p),
mixed

bus, star (active),
mixed

bus

max. number of
nodes

> 100 16 64 depends on physical
layer

depends on physical
layer (max. 255)

medium access CSMA/CA Master/Slave TDMA, Minislotting TDMA Master/Slave,
TDMA

acknowledgement explicit no no implicit no
fault tolerance no no yes yes no
bus guardians no no local local or central no
membership no no supported fault-tolerant simple
clock sync. no no ≤ 0.25µs @10Mbit/s ≤ 1µs @10Mbit/s ≤ 52µs @19.2kbit/s
determinism no yes yes (static seg.) yes yes
max. payload 8 bytes 8 bytes 254 bytes 236 bytes 1 byte
frame protection CRC-24 (+CRC-11) CRC-24 1 parity bit/byte
efficiency < 57.66% < 46.08% > 29.14%, < 77.73% < 95.8% < 59.62%
availability HW, IP HW, IP, SW HW, IP HW, IP SW
size integrated integrated, 3.1

kbyte ROM
/ 648 byte
RAM[Atm05]

LQFP6419 LQFP8019 2784 bytes ROM / 63
bytes RAM[Trö02]

cost IC or IP licence IC or licence IC or IP licence IC or IP licence free

18The physical layer is not in the scope of the protocol specification.
19Low Profile Quad Flat Package with 64 and 80 pins respectively.

Table 2.3: Comparison of Protocol Characteristics

51

2.8. COMPARISON CHAPTER 2. REAL-TIME PROTOCOLS

Figure 2.15 shows a diagram that compares the most important attributes
of the protocols. The attributes have been selected accordingly to the re-
quirements that are put on a communication system when it is used on a
small autonomous system.

(a) CAN (b) LIN

(c) Flexray (d) TTP/C

(e) TTP/A

Figure 2.15: Comparison of the Protocols

Speed The comparison of the gross speed of the protocols shows that
Flexray and TTP/C are high speed protocols whereas LIN and TTP/A are
used for low speed applications. CAN also allows high speed communication

52

2.8. COMPARISON CHAPTER 2. REAL-TIME PROTOCOLS

but far not as fast as Flexray and TTP/C. Because of the large differences
of the speed of the protocols a logarithmic scale has been used for speed in
the diagrams in figure 2.15.

Efficiency The most efficient protocol is TTP/C, which includes impor-
tant protocol data only in the calculation of the CRC. Thus, the current
state of the nodes can checked without transmitting any extra bytes. The
efficiency of CAN and TTP/A is comparable to the average efficiency of
Flexray. But in many application the efficiency of Flexray exceeds that of
CAN and TTP/A. The polling technique reduces the efficiency of LIN.

Max. Data Chunks The maximum length of data chunks that can be
transmitted without fragmentation is limited to eight bytes in CAN and
LIN. TTP/A solely uses frames with the length of a single byte. However,
up to 62 bytes can be transmitted consecutively, because no additional pro-
tocol information is stuffed in the frames. Flexray and TTP/C allow the
transmission of up to 254 and 236 bytes respectively in a single data frame.

Global Time CAN and LIN do not provide a global time for synchroniz-
ing action in the cluster and for creating timestamps that are valid on all
nodes of the cluster. The precision of the global time in a TTP/A cluster is
not as accurate as that of the global time in a Flexray or TTP/C cluster.
The two latter protocols allow a clock synchronization with a precision bet-
ter than one microsecond. Because of the large differences of the precision
of the global time in Flexray, TTP/C, and TTP/A clusters the logarithm
of the reciprocal precision has been used for the diagram in figure 2.15.

Fault Tolerance Flexray and TTP/C are the only two communication
systems that are fault-tolerant. They have replicated communication chan-
nels, fault-tolerant start-up, and clock synchronization algorithms and bus
guardians. A specification of a transparent fault tolerance layer is available
for TTP/C. The Flexray protocol leaves the design of such a layer to the
developer of the application.

Dependability Flexray and TTP/C have been designed to provide a high
dependability. Especially the algorithms used by TTP/C have undergone
numerous tests and have been verified formally. CAN has been approved for
many years and has be integrated in billions of products. TTP/A has not
been thoroughly tested in everyday life, but its design addresses the issue
of dependability. LIN is used for convenience functions in the automotive
industry and dependability is not a main design criteria of LIN.

53

2.8. COMPARISON CHAPTER 2. REAL-TIME PROTOCOLS

Simplicity LIN is a very simple protocol. Especially a slave implementa-
tion can be realized with very little effort. The implementation of TTP/A
is more sophisticated, but the effort is still in the same magnitude. The
medium access technique of CAN makes an implementation more elaborate.
Flexray and TTP/C are far more complex than the three other protocols.

Cheapness The cost of using the protocols in an application is comparable
to their simplicity. The simpler the protocol the cheaper is its use. However,
apart from mass production this is not true for CAN. Because of the high
number of applications that use this protocol, CAN controllers are very
common and cheap.

Smallness LIN and TTP/A can be implemented in software occupying
some hundred bytes of FLASH memory. CAN controllers are integrated on
many microcontrollers and no additional space on the Printed Circuit Board
(PCB) is needed. In contrast, Flexray and TTP/C are only available as sep-
arate communication controllers. Some implementations are even realized
in large Field Programmable Gate Arrays (FPGA).

54

When I’m working on a problem, I never think about beauty. I think only
how to solve the problem.

But when I have finished, if the solution is not beautiful, I know it is
wrong.

R. Buckminster Fuller (1895 - 1983)
US Architect and Engineer

Chapter 3

Target System – Tinyphoon
Robot

The Tinyphoon[NM05] is a small autonomous mobile robot in the shape of a
cube with a side length of about seven centimeters. It has been developed at
the Center of Excellence for Autonomous Systems of the Vienna University
of Technology by a team led by Gregor Novak and Stefan Mahlknecht as
a research platform for small autonomous robots. New concepts can be
developed and approved in the challenging field of robot soccer. Its design
is modular, various modules can be stacked one over another (see figure 3).

Figure 3.1: The Tinyphoon Robot

These modules are interconnected with a bus and are carried by a me-

55

CHAPTER 3. TINYPHOON

chanical system that has been designed for playing robot soccer. This
mechatronic part is about three centimeters high and is equipped with two
strong DC motors. Moreover, the rechargeable battery for powering the
Tinyphoon is stored here.

Three electronic modules have been designed up to now: a Vision Unit, a
Decision Making Unit and a Motion Unit controlling the locomotion. Ad-
ditional modules are planned to host extra sensors or provide computing
power. The current architecture of the Tinyphoon robot is shown in figure
3.

Figure 3.2: System Architecture of the Tinyphoon Robot

56

3.1. SUBSYSTEMS CHAPTER 3. TINYPHOON

3.1 Subsystems

In order to play soccer a robot has to collect data about its environment,
to make strategic decisions upon this information and to act accordingly.
Each of these capabilities is a complex task. To handle this complexity
modularity has been one of the most important principles for the design
of the Tinyphoon. There is a separate and exchangeable module for each
capability, namely the Vision Unit module for performing image recognition
and visual self localization, the Decision Unit module for making strategic
decisions and the Motion Unit module for path planning and for controlling
the motors of the wheels. The hardware of the modules differs heavily.

3.1.1 Motion Unit

In figure 3.1.1 the Motion Unit of the Tinyphoon is shown. The main
task of this unit is the feedback control of the motors. A XC 167
processor[Sie06](marked in the figure with letter a) from Infineon1 is used
for this task because of its outstanding peripherals. It also processes the sig-
nals from the encoders (512 impulses per rotation) of every motor, monitors
the supply voltage from the battery pack and reads the sensors mounted on
the Motion Unit: an analog gyro sensor with built-in thermometer (letter
b), an analog magnetic field sensor (letter c) and two two-axis acceleration
sensors with Pules Width Modulation (PWM) output (letter d).

Figure 3.3: The Motion Unit

A Blackfin 531 Digital Signal Processor (DSP) (letter e) acts as coprocessor.
It delivers the computing power needed for path planning [SJ05][SJN05]. In
earlier versions of the Tinyphoon the DSP was also used for running a ball

1http://www.infineon.com

57

http://www.infineon.com

3.1. SUBSYSTEMS CHAPTER 3. TINYPHOON

detection algorithm[MON05]. It is connected with the XC 167 via a fast
SPI connection.

Moreover, the Motion Unit is equipped with a radio module (letter f) that
allows exchanging information with other Tinyphoon robots and receiving
commands from a personal computer.

The motor driver (letter g) controls the supply voltage of the motors ac-
cordingly to the PWM signals from the XC 176.

The communication interface to other modules will be implemented on the
XC 167, there is no dedicated communication controller.

XC 167CS The XC 167CS is a 16-bit automotive microcontroller with 5
pipeline stages and runs at 40 Mhz. It has multiple register banks allowing
fast context switches. It has several powerful peripherals that support a
kind of Direct Memory Access (DMA) mode. Some of the main features of
the XC 167CS are listed below:

• 6 kbyteon-chip Static Random Access Memory (SRAM), 128 kbyteon-
chip Flash Program Memory, 512 kbyteexternal Random Access Mem-
ory (RAM)

• One cycle 16bit multiplication and one cycle Multiply and Accumulate
(MAC) instruction

• 16 channel Analog Digital Converter (ADC) (10-bit or 8-bit, conver-
sion Time down to 2.55µs)

• 16 programmable Interrupt priorities for 77 sources

• Five multifunctional timers/counters (with the functionality of a two
channel decoder)

• Two 16-channel capture/compare units and flexible PWM signal gen-
eration

• Two synchronous/asynchronous serial communication channels (US-
ART), two high-speed synchronous serial communication channels

• Dual CAN Interface

• I2C bus interface

Blackfin coprocessor The Blackfin processor is connected to the XC 167
via a Serial Peripheral Interface (SPI) interface. It runs at 600 MHz and
works as coprocessor. The Blackfin processor from Analog Devices 2 is a

2www.analogdevices.com

58

3.1. SUBSYSTEMS CHAPTER 3. TINYPHOON

mixture of a microprocessor and a DSP. Therefore, it is perfectly suited for
number crunching applications like path planning.

Sensors A gyro sensor detects the rotation of the robot and two orthog-
onally mounted acceleration sensors sense the change of velocity in each
direction. The magnetic field of the earth is also measured, but the re-
sults of this sensor are disturbed because of the strong magnetic fields of
the electro motors. 2 magnetic encoders on the wheels with 512 pulses per
rotation

3.1.2 Vision Unit

The Vision Unit subsystem is shown in figure 3.1.2. The Vision Unit enables
the robot to get an overview about its environment. Two CMOS cameras
with a resolution of 640 x 480 take pictures simultaneously. Each of them is
connected to a separate core of a dual-core Blackfin 561[Dev06] DSP from
Analog Devices3 (marked with letter h). The two cores perform edge and
color blob detection. The gathered data is then sent to a single-core Blackfin
537 DSP (letter i) via SPI4, where the two-dimensional edges are combined
and three-dimensional lines are calculated. Based on the blobs and the lines
object recognition can be performed. More details about the vision system
can be found [BAS+06].

Figure 3.4: The TinyVision subsystem

The complete subsystem is mounted on a head that can be rotated by
a stepper motor. This motor is controlled by a LPC 2119 ARM7-TDMI
processor[Phi06] (letter j) that also functions as a communication interface
to the other subsystems. It is connected to the single-core DSP via SPI.

3http://www.analog.com
4Serial Peripheral Interface

59

http://www.analog.com

3.2. COMMUNICATION CHAPTER 3. TINYPHOON

3.1.3 Decision Making Unit

An embedded 32-bit processor provides the necessary computation power for
decision making. A built-in floating point unit supports algorithms based on
fuzzy logic or neuronal networks and various filter algorithms. Linux or Win-
dows CE can be used as operating system on this platform. The processors
of the MCP family with Power architecture from Freescale5 are currently
evaluated regarding its use on the Decision Making Unit. S fuzzy logic
framework for the Decision Unit has already been implemented [Web06].

Two tasks are assigned to the Decision Making Unit:

1. It merges the data received from the sensors on the Motion Unit, from
the vision unit and from other robots to create a world model.

2. Decisions are made based upon the interpretation of this world model
and a predefined strategy.

Integrating a communication system with high real-time requirements as
part of such a complex software system is only possible using special oper-
ating systems (e.g. Real-Time Linux). Therefore, we decided to integrate a
LPC 2119 ARM7-TDMI processor for handling the communication.

3.2 Communication Requirements

This section analyzes the data to be exchanged and additional attributes of
the communication system.

3.2.1 Data Provided/Needed by the Subunits

Tables 3.1, 3.2, and 3.3 show the data that needs to be communicated by
each module with a description of the data, its length, the transmission
direction (input or output) and the update interval.

Table 3.1 lists the data that is sent and received by the Vision Unit. The
Vision Unit has to be configured with the description of the objects that
have to be recognized. The more different types of objects are to be searched
for in the image the slower runs the detection algorithm. A maximum of
eight object descriptions can be processed at a time. But these descriptions
can be changed for every new image. A list of the recognized objects is then
transmitted by the Vision Unit. Moreover, the to-be and the current position
of the rotatable head and and the result of the visual self-localization has to
be communicated.

5http://www.freescale.com

60

http://www.freescale.com

3.2. COMMUNICATION CHAPTER 3. TINYPHOON

Description Len Dir Interval
object descriptions 8 · 32 I 20ms
detected objects 16 · 8 O 20ms
to-be head position 2 I 20ms
last head position 2 O 20ms
self-localization 6 O 20ms

Table 3.1: Input/Output Data of the Vision Unit

The communication requirements of the Motion Unit are shown in table 3.2.
It receives a command specifying the action to be performed with the nec-
essary parameters. The Motion Unit provides the data collected from the
sensors as well as commands and data from other robots that is received via
the wireless link.

Description Len Dir Interval
command 12 I 20ms
position delta 6 O 20ms
gyro sensor 2 O 20ms
acceleration sensor 2*2*2 O 20ms
magnetic field 2 O 20ms
temperature sensor 1 O 1000ms
supply voltage 1 O 1000ms
remote command 32 O 20ms
remote response 32 I 20ms
remote robot data 3*64 O 20ms

Table 3.2: Input/Output Data of the Motion Unit

The communication requirements of the Decision Unit are shown in table
3.3. The results of the object recognition of the Vision Unit, data received
via the serial link and the information from the sensors on the Motion Unit
are combined with the knowledge about the environment (e.g. the football
ground, the soccer game) to a more reliable world model.

3.2.2 Real-Time Requirements

The main sensor of the Tinyphoon is the camera system. The maximum
update frequency of the Vision Unit is 50 Hz. This frequency is also used
for scheduling communication cycles. A trigger for the communication may
be received via the wireless link to synchronize the robots. This is important,

61

3.2. COMMUNICATION CHAPTER 3. TINYPHOON

Description Len Dir Interval
current position 6 O 20ms
teammates 3 · 6 O 20ms
opponents 4 · 6 O 20ms
ball 4 O 20ms
goals 2 · 6 O 20ms
boards 4 · 6 O 20ms

Table 3.3: Input/Output Data of the Decision Unit

because information about recognized objects is exchanged among the robots
and this is much more useful if the robots rate exactly the same situation.

The maximum speed of the Tinyphoon robot is 4 m/s. Therefore, an object
may move up to 2 · 8 cm from one image to another (e.g. two Tinyphoon
robots driving with full speed in opposite directions). State estimation can
be used to calculate the likely position of objects in the near future. However,
this requires that the point in time when the picture is taken is known
exactly.

If an error of ≤ 1 mm is considered as negligible, the overall jitter (including
the jitter of the communication) has to be smaller than 125 µs.

3.2.3 Fault Tolerance / Dependability Requirements

Every functional unit exists only once on the Tinyphoon. Therefore, there is
no fault tolerance on level of functional units. This is not a serious problem
because a fail safe state exists, the robot can stop all motors at any time.

The communication system is partly integrated on functional units (e.g. the
XC 167 microcontroller on the Motion Unit) and can not be replicated to
provide redundancy.

Moreover, all subsystems depend on each other. The Tinyphoon can not
continue operation when a subsystem fails. However, the failure of a sub-
system or of the communication system must be detectable for every other
unit to change to a safe state.

The length of the communication wires amounts only in a few centimeters
and using the physical layer with differential signal transmission protects the
data on the bus against electromagnetic disturbance (e.g. from the motors).

The small size of the Tinyphoon robot guarantees that no human and no
machine could be harmed in case of a failure. Hence, features related to
fault tolerance need not be considered when a communication protocol for
the Tinyphoon robot is selected.

62

3.2. COMMUNICATION CHAPTER 3. TINYPHOON

3.2.4 Data Throughput

Table 3.4 shows the number of bytes that need to be transferred for every
subsystem.

Subsystem Length Interval
Vision Unit 394 20ms
Motion Unit 288 20ms
Decision Unit 88 20ms
Total 770 20ms

Table 3.4: Tinyphoon Communication Requirements

770 bytes need to be transferred every 20ms.

770 byte

20 ms
= 15400 byte/s (3.1)

TTP/A needs thirteen bits (one bit inter-byte gap, one start bit, eight data
bits, one parity bit, one stop bit and again one bit inter-byte gap) to encode
one byte on the bus.

15400 byte/s ≡ 204100 bit/s (3.2)

Considering the protocol overhead and future expansions, a communication
speed of at least 0.25 Mbit is required.

3.2.5 Maintainability

Maintainability is one of the main issues for the communication system of
the Tinyphoon robot. New subsystems will be created and the old ones are
modified continuously. Hence, the communication system has to be adapt-
able to new hardware platforms and new fields of application. The same
code has to be reused on many platforms to confine the effort of changing
the protocol.

3.2.6 Debugging and Monitoring

As the Tinyphoon is a research project many people work on various topics
around the robot. Hence, debugging facilities are one of the crucial features
the communication system is required to provide. On the one hand the com-
munication itself has to be debugged on the other hand the interfaces and
the functioning of the subsystems have to be tested using the communication
system’s debugging facilities.

63

3.2. COMMUNICATION CHAPTER 3. TINYPHOON

For software development a Joint Test Action Group (JTAG)
interface[IEE90] exists for every microcontroller or processor. How-
ever, JTAG debugging interfaces are not compatible for devices from
different vendors. Thus, a mechanism is needed to access the interface of
every subsystem.

In the future we also plan to simulate parts of the Tinyphoon in software
for testing purposes. Hence, a fast real-time communication between the
simulation host (typically a standard personal computer) and the respective
Tinyphoon hardware will be required.

3.2.7 Cost

The latest technologies are used to build the Tinyphoon, which is very cost-
intensive. However, the cost for particular development tools turned out to
be much more expensive than the actual hardware. Therefore, the avail-
ability of free or low priced development tools and documentation is vitally
important for future extensions.

3.2.8 Implementation Effort

Currently various platforms are used on the Tinyphoon. Therefore, the
communication system has to be integrated on each of this platforms. A
small implementation effort allows the fast adaption of the communication
system to new hardware platforms.

3.2.9 Comprehensibility of Interfaces

On large microcontrollers or processors a communication layer is introduced.
So only a few developer get in touch with the interface of the communication
system directly. Application programmers can use an API to access the
functionality of the communication system. As the Tinyphoon is a very
heterogeneous system a comprehensible interface makes it easier to port
this API to other platforms.

64

It requires a very unusual mind
to undertake the analysis of the obvious.

Alfred North Whitehead (1861 - 1947)
English Mathematician and Philosopher

Chapter 4

Problem Analysis

This section analyses existing implementation of the communication on the
Tinyphoon robot and discusses the suitability of the real-time protocols
described in chapter 2 for the use on this autonomous system.

4.1 Current Communication

Currently, two modules for the Tinyphoon are available: the Motion Unit
and the Vision Unit module. The two modules originally communicated
using the CAN protocol. The communication was performed by the
integrated CAN controllers of the XC 167 on the Motion Unit and of the
LPC 2119 on the Vision Unit. The LPC 2119 has been added to the
schematics of the Vision Unit to perform the rotation of the head and all
communication related tasks, whereas the XC 167 has to perform many
other, partly time critical tasks: reading the sensors and the encoders,
generating the PWM signals for the motors, sending and receiving data
through the wireless link and communicate with its co-processor.

The hardware of the modules has been designed in a way that allows
connecting a CAN transceiver either to the I/O pins of the integrated
CAN controller or to the I/O pins of the UART of the LPC 2119 and the
XC 176, respectively. This guarantees flexibility and allows the software
implementation of a communication protocol. Thus, a communication
protocol that can be implemented in software and that uses the serial ports
can be integrated on the Tinyphoon without having to modify the hardware.

For the FIRA World Championship in Summer 2006 a stripped-down version
of the Tinyphoon has been created. It consists only of a motion and a vision
unit. These two modules communicate with a very simple protocol, based on

65

4.2. FEATURES VS. COMPLEXITY CHAPTER 4. ANALYSIS

standard UART frames. There is no mechanism for bus arbitration required
because the connection is bidirectional. However, the communication system
turned out to be one of the most error-prone subsystems. Problems with
the interpretation of the semantic and the structure could be solved by
rendering the specification of the protocol more precisely. But the reception
of messages asynchronously to the program execution caused unexpected
problems that were hard to track down and solutions were quite complex.
Moreover, this approach is not applicable for systems with more than two
communication partners.

4.2 Features Versus Complexity

Flexray and TTP/C offer by far the most features related to real-time and
fault tolerance. The communication controllers have interfaces with sev-
eral communication parameters that have to be configured extensively to
establish a communication. This can hardly be accomplished without using
special tools, like cluster designers. These tools are very expensive. The
fault-tolerant features of Flexray and TTP/C would lead to an unnecessary
overhead since the intended application does not require fault-tolerance.
Moreover, with a small number of nodes as on the Tinyphoon both com-
munication systems only run in a degraded mode that is not really fault-
tolerant.

CAN, LIN, and TTP/A provide less features but the configuration and the
use of the communication interfaces are much simpler. Anyway, TTP/A
even provides a simple membership service and a global time that is required
to synchronize tasks in different subsystems.

4.3 Hardware Versus Software Implementation

Small systems like the Tinyphoon put strong restrictions on the design of the
PCB. An external communication controller needs additional space on the
PCB. It may not be possible on all systems to provide this space. However,
on the Vision Unit the LPC 2119 microcontroller is only used for the gen-
eration of a PWM signal for rotating the head and for the communication.
The PWM signal could also be generated on one of the Blackfin DSP. The
MF4300 Flexray controller has about the same size as the LPC 2119. Thus,
the communication controller could be used instead of the microcontroller.

On the Motion Unit the XC 167 performs many tasks and can not be
replaced by a communication controller. Because of the high number of
sensors and the necessary analog circuitry there is not enough space for
an additional communication controller without a complete redesign of the

66

4.4. RT COMMUNICATION IN SW CHAPTER 4. ANALYSIS

Motion Unit.

Software implementations of communication systems require additional cal-
culation time and peripherals. On the LPC 2119 of the Vision Unit enough
resources are available. The XC 167 on the Motion Unit is also equipped
with enough peripherals and plenty of calculation time is available, because
calculation intensive tasks are delegated to the coprocessor. However, the
XC 167 already has to perform some time-critical tasks. These have to be
combined with the requirements of the communication system. One possi-
bility is that the scheduler of the communication also triggers all the other
time critical tasks.

4.4 Real-time Communication in Software

This section discusses the feasibility of the software implementation of time-
triggered CAN, LIN and TTP/A on the Tinyphoon hardware.

4.4.1 Time-Triggered CAN

The most obvious idea is to use a software layer above CAN that makes
the communication predictable and fits the needs of real-time applications
by bypassing the CSMA/CA bus access schema. TDMA and clock synchro-
nization can be used to avoid collisions on the bus completely. TT-CAN
follows this strategy.

This approach uses the integrated CAN controllers for handling the commu-
nication. Only the timing is controlled by the software layer, which reduces
the effort of the implementation. However, TT-CAN implementations need
an adapted CAN controller that supports the handling of timing information
in hardware. Each node has to synchronize itself on the reference message
of the master node. The controller has to measure the start of the mes-
sage exactly and supply the software layer with this information[HMFH00].
Usually, CAN controllers only inform the software when a message has been
received. This technique does not allow a precise clock synchronization.
Thus, the communication is not efficient because long breaks between two
messages have to be scheduled and the temporal coordination of actions in
the subsystems is hardly possible.

Another critical point is the implementation effort on the LPC 2119 and
the XC 176 platform respectively. To our knowledge, currently no such
implementation is available, least of all a free one.

67

4.4. RT COMMUNICATION IN SW CHAPTER 4. ANALYSIS

4.4.2 LIN

LIN is designed to be implemented on small microcontrollers with a stan-
dard UART. Both microcontrollers a perfectly adequate for implementing
LIN. Moreover, a lot of source code for various LIN implementations is
available on the Internet. Moreover, the compatibility of development
tools is guaranteed by the LIN specification that defines file formats for
the description of complete LIN clusters and single LIN nodes. Thus,
application specific tools can be developed that interface with off-the-shelf
LIN configuration tools.

The major disadvantage of LIN is the lacking of a global time. Thus, LIN can
be used for real-time communication but not for synchronizing actions within
the cluster. As argued above, this is a crucial feature of a communication
system that is used on an autonomous system like the Tinyphoon.

The slow nominal communication speed is an additional, but minor problem.

4.4.3 TTP/A

TTP/A is very efficient (see table 2.3) and the source code of an open source
implementation in C1 exists, which can be used for free, even for commercial
applications. TTP/A offers clock synchronization and a comprehensible
application interface, the IFS. The global time allows the the generation of
time stamps that are valid in the whole cluster.

Hence, TTP/A fulfils all major requirements for the communication on the
Tinyphoon. However, there are some issues that require a closer investiga-
tion:

• The performance has to be boosted. The transmission is byte-oriented
with a synchronization event between every two bytes, limiting the
performance and the efficiency.

• In the current implementation, the error handling of messages has to be
done by the application, increasing the complexity of the application
software.

• The existing implementation is designed for eight bit microcontroller
from Atmel2. The effort for porting the code to other platforms (16-
and 32-bit platforms) has to be evaluated.

• The C implementation of TTP/A uses a software UART, but only

1available at http://www.vmars.tuwien.ac.at/ttpa
2http://www.atmel.com

68

http://www.vmars.tuwien.ac.at/ttpa
http://www.atmel.com

4.5. RESULTS CHAPTER 4. ANALYSIS

pins with hardware UART functionality are connected to the bus
transceivers on the modules of the Tinyphoon.

4.5 Results

The discussion in this chapter has shown that the lack of space on the PCB
does not allow the use of an external communication controller and that
the multitude of features of Flexray and TTP/C makes their interfaces very
complex. Thus, a software implementation of a simpler protocol is suggested.

The implementation of time-triggered CAN would require extra hardware
support that currently is not available on the Tinyphoon robot. LIN can be
implemented with small effort, but lacks features like a global time. More-
over, the frame length of CAN and LIN is limited to eight bytes. Thus, long
pieces of data have to be fragmented into several frames. The fragmentation
and defragmentation produces an additional overhead in the complexity of
the software implementation and the execution of the communication.

TTP/A is more efficient than CAN and LIN. It features a global time and
the byte-wise transmission of the payload allows the exchange of messages
up to 62 bytes without any fragmentation.

Due to these reasons we decided to evaluate TTP/A on the hardware of the
Tinyphoon.

69

There are three principal means of acquiring knowledge ...
observation of nature, reflection, and experimentation.

Observation collects facts; reflection combines them;
experimentation verifies the result of that combination.

Denis Diderot
French Author and Philosopher (1713 - 1784)

Chapter 5

TTP/A on the Tinyphoon

This chapter describes the techniques used to make the existing implementa-
tion of TTP/A portable and to adapt it for the Tinyphoon platform. Finally,
the result of the implementation are evaluated and discussed.

5.1 Existing TTP/A implementation

The existing implementation of TTP/A was written by Christian
Trödhandl1. In contrast to the first version that is realized in assembler
and therefore is extremely hardware dependent, the current version is writ-
ten in C. The TTP/A is targeted to the the AVR platform from the Atmel2.

5.1.1 Source Code

The source was developed for the AVR enabled version of the GNU C Com-
piler (GCC). It uses some features of the GCC that are not compliant with
the American National Standards Institute (ANSI) C standard[ANS89].

The source code is organized three subdirectories:

/src This directory contains the actual source code of the TTP/A protocol.

/include In this directory the header files are store. It has to be added to
the application that wants to use the TTP/A protocol.

/ldscripts The linker scripts for the special memory sections of the protocol
code are stored here.

The code is divided in six logical parts:
1available at http://www.vmars.tuwien.ac.at/ttpa
2http://www.atmel.com

70

http://www.vmars.tuwien.ac.at/ttpa
http://www.atmel.com

5.1. EXISTING TTP/A CHAPTER 5. TTP/A ON THE TINYPHOON

Main File The main file main.c implements the entry point and initializes
the protocol and the user application.

Scheduler In schedule.c a small scheduler is implemented that supports
the prioritization of tasks. The scheduler can be deactivated.

Protocol Core The core of the protocol is implemented in ttpa.c. The
files ttpa_*.c contain some core related functions.

MS round The handling of MSA and MSD rounds is implemented in the
files ms.c and ms_*.c. The implementations of MS rounds for master
and slave differ strongly. Thus, role specific parts are implemented in
separate files.

IFS Functions for managing and accessing the IFS are provided in the file
ifs.c. Helper functions are implemented in ifs_*.c. Two assembler
files are used for the definition of the file look-up table (ifs_tab.S)
and weak symbols for the files (ifs_weak.S).

Bus The bus related functions are implemented in the files bus_*.c. The
original version of TTP/A provides a software UART only. Addi-
tional code is needed for accessing the bus in the slave implementation
(bus_*_slave.c).

5.1.2 Architecture

Figure 5.1 shows a simplified Unified Modelling Language (UML) activity
chart of the TTP/A slave implementation.

After the initialization the slave waits for a MSA round. It uses the peri-
odical pattern of the MSA fireworks byte for synchronization (bus_sync).
When the bus operation succeeds the received fireworks byte is handled
(ttpa_recvfb). After bus synchronization the only possible firework byte
is 0x55, the identifier of a MSA round. The new communication round
is started (ttpa_newround) by selecting the RODL that is assigned to the
round. Then the first frame is marked as current frame (ttpa_next_frame)
and the scheduled action is read from the RODL (ttpa_next_rodlentry).
The code execution is then continued depending on the current schedule
entry:

Bus Receive Sync One or more bytes have to be received from the
bus. The start of the transmission is used to resynchronize the
node. The reception is prepared in the function ttpa_recvsyncframe
by configuring the bus subsystem for the next receive operation
(bus_receivebyte_init). The completion of the bus operation is sig-
naled by the bus subsystem by calling the function, which the pointer

71

5.1. EXISTING TTP/A CHAPTER 5. TTP/A ON THE TINYPHOON

Figure 5.1: UML Activity Chart of the TTP/A Implementation

bus_op_complete points at. It has been set to ttpa_recvsyncslot.
In this function the clock synchronization is performed and then the

72

5.1. EXISTING TTP/A CHAPTER 5. TTP/A ON THE TINYPHOON

handler for received bytes, ttpa_recvslot, is called. If there are more
bytes that have to be received, the normal receive operation (see next
paragraph) is performed. Otherwise, a new frame is started.

Bus Receive This operation is the same as the one described above, but
no clock synchronization is performed.

Bus Send Passive This operation is performed in the send slots of the
node when the node tries to integrate itself in the cluster. It is used
at start-up or after an error. The node tries to receive something
in its send slots to ensure that no other node uses these slots for
transmissions. Thus, collisions due to wrong configurations can be
avoided. First ttpa_sendpasvframe configures the bus subsystem
(bus_recvbyte_init) for receiving and waits for the completion of
this operation. Then ttpa_sendpasvslot is called. If the receive op-
eration was not successful, the slot is empty and the node can use it
for transmissions. If there are more slots to be tested, this operation
is repeated, otherwise the handling of the next frame is started.

Bus Send Once the node has verified, that its send slot is free,
it uses this operation to transmit data in the slot. In
ttpa_sendbyte_init the bus subsystem is configured for a transmis-
sion (bus_send_byte_init). After the completion of the bus opera-
tion, ttpa_sendslot is called. If more bytes have to be transmitted,
the send operation is repeated. Otherwise, otherwise the handling of
the next frame is started.

Execute This operation executes a task that has either been defined by the
application or by the protocol (e. g., for handling MS rounds). In the
function ttpa_execframe a timer is configured to generate a time-out
event at the start of the time slot. After the time-out the function
ttpa_execslot is called. It triggers the preparation of the next frame
and then performs the configured task.

Execute at the End of the Round Also the IRG can be used for exe-
cuting tasks. This operation is almost the same as the normal execute
operation but it signals the end of a communication round instead of
preparing the next frame.

End of the Round If the communication round is finished and no task
execution is scheduled for the IRG, tis operation is performed. In
ttpa_eor a timer is configured to trigger the start of a new round at
the appropriate point of time.

After the processing of the frame either a new frame or a new communi-
cation round is started. In the first case ttpa_next_frame is called and

73

5.1. EXISTING TTP/A CHAPTER 5. TTP/A ON THE TINYPHOON

the next scheduled action is read from the RODL (ttpa_next_rodlentry).
In the second case the slave node executes the function ttpa_eor_slave
that configures the bus subsystem for the reception of a new fireworks
byte. As soon as the bus operation is finished, the fireworks byte is inter-
preted (ttpa_fbrecv) and the according communication round is started
(ttpa_newround).

5.1.3 Bus Subsystem

The read and write operations on the bus are performed through the bus
subsystem. This design decision makes it easy to integrate new implementa-
tions of the bus access. Listing 5.1 shows the interface of the bus subsystem
that is defined in bus.h.

int bus_init(void);
void bus_sendbyte_init(bus_iobuf_t *param);
void bus_recvbyte_init(bus_iobuf_t *param);
void bus_sync(void);
void (* volatile bus_op_complete) (bus_iobuf_t *);

Listing 5.1: Interface of the Bus Subsystem

The interface defines function for initializing the bus subsystem and for ini-
tiating a transmission or a reception of a byte. On slave nodes an additional
function for synchronizing with the bus has to be implemented. A pointer
bus_op_complete has to be set to a function that is called after the bus
operation has been finished. The configuration and the result of a bus op-
eration is stored in the structure bus_iobuf_t. Listing 5.2 shows the fields
of this structure.

typedef struct bus_iobuf_t {
uint8_t buf;
parity_t par;
uint16_t slotstart;
union status_t {

struct fields_t {
unsigned spdup : 3;
unsigned timeout : 1;

} fields;
bus_io_err_t error;

} status;
} bus_iobuf_t;

Listing 5.2: Structure for Bus Operations

74

5.2. HW UART CHAPTER 5. TTP/A ON THE TINYPHOON

The field uint8_t buf stores the byte that has to be transmitted or that
has been received. The field parity_t par is an enumeration type that
specifies the parity. The number of the microtick when a byte has to
be transmitted or has been received is stored in uint16_t slot_start.
The union status stores a speed-up factor and a timeout flag, when the
structure is used for the configuration of a bus operation, or an error field
when the structure is used for returning the result of an operation.

5.2 Hardware UART Implementation

The TTP/A implementation originally uses a UART that is implemented
in software. This ensures a very precise synchronization because an input
capture logic is used to detect the start of a transmission with the precision
of one internal micro tick. However, the software implementation needs one
interrupt for every bit. This leads to a high interrupt load even at small
bit rates and influences coexisting applications on the same microcontroller.
Thus, the bus interface has also been implemented using a hardware UART.
Due to the schematics of the Tinyphoon’s modules only this implementation
can be used for the communication.

The source code shown in the next sections 5.2.1 and 5.2.2 has been designed
to work with the Hardware Abstraction Layer (HAL) proposed in section
5.3.2. All hardware specific parts are replaced by the call of a macro.

5.2.1 Receiving

The code for receiving a byte from the bus is divided in four functions and
a interrupt service routine.

The first function is part of the bus interface and is called by the TTP/A
core code to initiate the reception of a byte in the next time slot. The
function bus_recvbyte_init has a parameter of the type bus_iobuf_t *
(see listing 5.3). It stores the time-out of this parameter in its own data
structure, sets the global pointer for the timer callback to the setup func-
tion and configures the timer to raise an interrupt on the start of the next
slot. HAL_HW_UART_RECV_SU_CORR can be used to correct a possible delay
of the hardware UART. Then, the function bus_transcvr_recv switches a
possible transceiver to receive mode, if needed. The UART receive interrupt
is still disabled.

void bus_recvbyte_init(bus_iobuf_t *param)
{

bus_hwuart_buf.timeout =

75

5.2. HW UART CHAPTER 5. TTP/A ON THE TINYPHOON

param ->status.fields.timeout;

ttpa_sig_oc = (void (*)()) bus_recvbyte_setup;

hal_set_timer_compare_value(param ->slotstart +
HAL_HW_UART_RECV_SU_CORR + ttpa_bitlength);

hal_delete_compare_match_interrupt ();
hal_enable_compare_match_interrupt ();

bus_transcvr_recv ();

hal_uart_rx_disable ();
}

Listing 5.3: HW UART Receive Initialization

On the start of the time slot bus_recvbyte_setup is called (see listing 5.4).
The expected transmission starts one bit time after the call of this function.
First the reception of bytes is enabled and the output compare logic is
configured to generate a match event 12.5 bit times after the start of the
slot. Following, the call back that is called, when a byte is received by the
UART, is set to bus_recvbyte.

The bus subsystem has to implement two modes of byte reception, one with
time-out and another without a time-out. In the case that a time-out is
used, the pointer for the callback of the compare match interrupt is set to
bus_recvbyte_to and the interrupt is enabled. Otherwise, the interrupt is
disabled.

At the end of the function pending UART receive interrupts are cleared and
the interrupt is enabled.

void bus_recvbyte_setup(void)
hal_uart_rx_enable ();
hal_inc_timer_compare_value (12 * ttpa_bitlength +

ttpa_bitlength >>1);
bus_uart_recv = bus_recvbyte;

if(bus_hwuart_buf.timeout) {
ttpa_sig_oc = (void (*)()) bus_recvbyte_to;
hal_delete_compare_match_interrupt ();
hal_enable_compare_match_interrupt ();

} else {
hal_disable_compare_match_interrupt ();

}
hal_delete_uart_receive_interrupt ();

76

5.2. HW UART CHAPTER 5. TTP/A ON THE TINYPHOON

hal_enable_uart_receive_interrupt ();
}

Listing 5.4: HW UART Receive Setup

If a byte has been received successfully, then bus_recvbyte is called to
handle it (see listing 5.5). The UART receive interrupt is disabled and a
structure bus_iobuf_t is prepared to be passed to the bus_op_complete
callback. In this structure the time of the start of the transmission, a possible
error during the transmission, the received byte and its parity are stored.
Afterwards, the reception of bytes is disabled. This has to be done after the
received byte and its parity have been read, because this information may
be lost, when the UART is disabled. Finally, the bus_op_complete callback
is called.

void bus_recvbyte(void)
{

bus_iobuf_t buf;
hal_disable_uart_receive_interrupt ();
buf.slotstart = recv_time - (12* ttpa_bitlength);
if (hal_uart_check_error ()) {

buf.status.error = BUS_IO_FE;
}
else {

buf.status.error = BUS_IO_OK;
}
buf.par = hal_uart_get_parity ();
buf.buf = hal_uart_get_value ();

hal_uart_rx_disable ();

(* bus_op_complete)(& buf);
}

Listing 5.5: HW UART Handle Received Byte

In case that a time-out occurs, the function bus_recvbyte_to (see listing
5.6) is called by the compare match interrupt service routine. Again a
bus_iobuf_t is prepared. The error field is set accordingly to signal a time-
out. Then both, the compare match and the UART receive interrupts are
disabled and the callback bus_op_complete is called.

void bus_recvbyte_to(void)
{

bus_iobuf_t buf;

77

5.2. HW UART CHAPTER 5. TTP/A ON THE TINYPHOON

buf.status.error = BUS_IO_TIMEOUT;

hal_delete_compare_match_interrupt ();
hal_enable_compare_match_interrupt ();
hal_disable_uart_receive_interrupt ();

(* bus_op_complete)(& buf);
}

Listing 5.6: HW UART Receive Time-Out

The last piece of the hardware UART implementation for the reception of
bytes is the interrupt service routine for the UART receive interrupt (see
listing 5.7). It stores the time of the reception of the byte and adds a
correction value to consider the different delays of different hardware UART.
Then the callback, which the pointer bus_op_complete points at is called.

hal_uart_receive_interrupt ()
{

recv_time = hal_get_timer ();
recv_time += HAL_HW_UART_RECV_CORR;
(* bus_uart_recv)();

}

Listing 5.7: HW UART Receive Interrupt

5.2.2 Sending

The implementation for sending bytes is realized in two functions. The first
one is called by the TTP/A core to configure the transmission of a byte for
the next time slot. The second is used internally as callback for the timer,
when the transmission starts.

The function bus_sendbyte_init (see listing 5.8) is part of the bus inter-
face. It initiates the transmission of a byte at the beginning of the next time
slot. The byte to be transmitted, its parity and the start of the next time
slot is passed to the function in a bus_iobuf_t structure.

The parameters for the transmission are copied to local data structures
and the callback for the compare match interrupt service routine is set to
bus_sendbyte. Then, the compare value is set accordingly, so that the
compare match interrupt is raised exactly when the transmission has to be
started. Possibly pending compare match interrupts are deleted and the
interrupt is enabled. Finally, a possible transceiver is switched to transmit
mode.

78

5.2. HW UART CHAPTER 5. TTP/A ON THE TINYPHOON

void bus_sendbyte_init(bus_iobuf_t *param)
{

bus_eff_bitlen = ttpa_bitlength >>
param ->status.fields.spdup;

bus_hwuart_buf.buf = param ->buf;
bus_hwuart_buf.par = param ->par;

ttpa_sig_oc = (void (*)()) bus_sendbyte;

hal_set_timer_compare_value(param ->slotstart +
HAL_HW_UART_SEND_CORR);

hal_delete_compare_match_interrupt ();
hal_enable_compare_match_interrupt ();

hal_transceiver_send ();
}

Listing 5.8: HW UART Initialize Transmission

The function bus_sendbyte (see listing 5.9) is called when the transmission
has to be started. The parity mode of the hardware UART is configured and
the data byte is transmitted. Then a bus_iobuf_t structure is prepared.
The start of the next slot is set to 13 bit times after the start of the last
slot. The error field is set accordingly to signal a successful transmission.
Finally, the bus_op_complete callback is called and the structure is passed
as parameter.

void bus_sendbyte(void)
{

bus_iobuf_t buf;

hal_uart_set_parity(bus_hwuart_buf.par);
hal_uart_send_byte(bus_hwuart_buf.buf);

buf.slotstart = hal_get_timer_compare_value () +
bus_eff_bitlen * 13;

buf.status.error = BUS_IO_OK;

(* bus_op_complete)(& buf);
}

Listing 5.9: HW UART Perform Transmission

79

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

5.3 Portable TTP/A Implementation

Based on the description of the TTP/A implementation above, an architec-
ture and modifications of the source code are proposed in this section, to
make the main part of the C implementation independent from the target
platform. The adoptions are minimized and pooled in two files, one for
the processor architecture and one for the concrete hardware of the node
(including processor model and I/O configuration).

5.3.1 Compiler Independence

Many hardware platforms are only supported by a single compiler and there
is no universal compiler. Therefore, a portable source code has to be written
in a way, that as many compilers as possible are able to compile it correctly.
These compilers are often very specialized, limited and/or proprietary. How-
ever, every modern compiler is at least compatible to the C standard of
ANSI. Source code that does not use any other C constructs than defined
by this standard is understood by most of the compilers. Thus, the first
step of creating a portable version of TTP/A is replacing constructs that
are not compliant with the ANSI C standard. Especially constructs for the
definition and initialization of complex data types (e. g., anonymous struc-
tures, initialization of selected fields of a structure, ...) that are supported
by the GCC are not part of the ANSI C standard.

5.3.2 Hardware Abstraction Layer

To make the source code independent from the hardware the implementa-
tion of a HAL is proposed. The HAL defines a standardized interface to
the hardware at a very low level of abstraction. The level has to be that
low, because portability has not been considered consequently during design
phase of the implementation. One the one hand there is an interface to the
bus subsystem that allows a high level of abstraction. It would allow driver
like implementation of the bus subsystem. On the other hand the timer
used by TTP/A is read, written and configured in several protocol states.
Moreover, in the current source code the timer hardware is accessed directly,
there is no abstract software interface.

Figure 5.2 shows the proposed architecture for a portable version of a
TTP/A implementation.

The HAL is implemented using macros. The advantage of macros is that it
is guaranteed, that no overhead is added to the code. Almost all compilers
understand macros. Another possibility is the use of inline functions. A
compiler can check the syntax of a call of an inline function in contrast to

80

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

Figure 5.2: Layers of the Portable TTP/A implementation

the call of a macro. However, inline functions are not part of the ANSI C
standard. Moreover, if a compiler supports inline functions, it is up to the
compiler to decide how the call of an inline function is realized and whether
an overhead is added or not.

The HAL is divided in three parts: timer related functionality, UART-
related functionality and other functionality that does not fit in one of the
two other groups. Because of the low level of abstraction many macros have
to be defined. However, tests on the LPC platform have shown, that most
of the macros can be kept simple and implemented with one line of code.

Timer

The macros of the HAL that are related to the timer are listed and described
in table 5.1. If the implementation of the software UART is used, another
seven macros listed in table 5.2 are necessary.

Additionally, for every used timer interrupt an according macro has to
be defined that is used as entry point for the interrupt service rou-
tine (hal_overflow_interrupt(), hal_compare_match_interrupt(), and
hal_input capture_interrupt(). Another macro (hal_timer_t) is used
to define the data type of the timer (e. g., uint16_t for a 16 bit wide timer
register).

UART

The macros of the HAL that are related to the timer are listed and described
in table 5.3.

81

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

Macro Description
hal_configure_timer() Configures timer for use with

TTP/A
hal_set_timer(value) Sets TTP/A timer/counter to

value
hal_get_timer() Sets TTP/A timer/counter to

value
hal_set_timer_compare_value(value) Sets TTP/A timer/counter

compare register to value
hal_inc_timer_compare_value(value) Sets TTP/A timer/counter

compare register to value
hal_get_timer_compare_value() Sets TTP/A timer/counter

compare register to value
hal_delete_compare_match_interrupt() Deletes eventually pending

timer overflow interrupt
hal_enable_compare_match_interrupt() Enables timer overflow inter-

rupt
hal_disable_compare_match_interrupt() Disables timer overflow inter-

rupt
hal_delete_overflow_interrupt() Deletes eventually pending

timer overflow interrupt
hal_enable_overflow_interrupt() Enables timer overflow inter-

rupt
hal_disable_overflow_interrupt() Disables timer overflow inter-

rupt
hal_delete_input_capture_interrupt() Deletes eventually pending

timer overflow interrupt

Table 5.1: Timer HAL Macros

Other Issues

Some more macros are defined in the HAL for accessing to Flash memory
and Electrically Erasable Programmable Read-Only Memory (EEPROM),
for enabling and disabling interrupts, for configuring the node, for reading
the I/O pin for the software UART and for controlling a possible, external
transceiver. These macros are described in table 5.4, 5.5, 5.6, and 5.7.

The macros for accessing the EEPROM may be defined as constant numbers
if on a particular platform no EEPROM is available. The parts of the code
for accessing the EEPROM is never executed, if no files of the IFS are
configured to be stored in the EEPROM.

The macros related to the transceiver may be empty if no transceivers are
used that need to be switched between transmit and receive mode.

82

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

Macro Description
hal_enable_input_capture_interrupt() Enables timer input capture

interrupt
hal_disable_input_capture_interrupt() Disables timer input capture

interrupt
hal_set_input_capture_falling_edge() Configures input capture

mechanism to trigger on a
falling edge

hal_set_input_capture_raising_edge() Configures input capture
mechanism to trigger on a
raising edge

hal_set_input_capture_toggle_edge() Configures input capture
mechanism to trigger on any
edge

hal_get_input_capture_value() Reads value from input cap-
ture register

hal_set_pin_on_compare_match(value) Configures compare match
logic to set pin state to value
on next match event

Table 5.2: Additional Timer HAL Macros for the Software UART

5.3.3 Linker Script

A special linker script is used for generating special sections for the IFS and
a table of tasks that is executed during the initialization. The linker script
strongly depends on the used platform and of the linker. Thus it has to
be changed accordingly. Unfortunately, at the time of writing there is no
documentation about the layout of these sections available.

The according linker file for a target platform have to be created using the
linker file of the available implementation as example. For many linker
graphical tools exist, which allow a convenient adaptation of the linker files.
In many cases linker files have to be created for new projects anyway.

83

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

Macro Description
hal_uart_configure() Configures the UART
hal_uart_set_parity(value) Sets parity mode to even or to

odd
hal_uart_rx_disable() Disables reception of bytes (of-

ten also the received data is
cleared)

hal_uart_rx_enable() Enables reception of bytes
hal_uart_send_byte(value) Transmits the byte value
hal_uart_get_value() Returns last byte received
hal_uart_check_error() Checks whether an error oc-

curred during reception of the
last byte

hal_uart_get_parity() Returns parity of the last byte
received

hal_uart_receive_interrupt() Header of UART receive inter-
rupt

hal_delete_uart_receive_interrupt() Deletes possibly pending
UART receive interrupt

hal_enable_uart_receive_interrupt() Enables UART receive inter-
rupt

hal_disable_uart_receive_interrupt() Disables UART receive inter-
rupt

Table 5.3: UART HAL Macros

Macro Description
hal_progmem_read_byte() Reads a byte from the pro-

gram memory (usually flash
ROM)

hal_progmem_read_word() Reads a word from the pro-
gram memory (usually flash
ROM)

hal_eeprom_is_ready() Returns true if the EEPROM
is ready for a read or write op-
eration

hal_eeprom_read_byte() Reads a byte from the EEP-
ROM

Table 5.4: HAL Macros for Memory Access

84

5.3. PORTABLE TTP/ACHAPTER 5. TTP/A ON THE TINYPHOON

Macro Description
hal_enable_interrupts() Globally enables interrupts
hal_disable_interrupts() Globally disables interrupts

Table 5.5: HAL Macros for En-/Disabling Interrupts

Macro Description
hal_configure_swuart_io() Configures the I/O pins used

by the software UART
hal_configure_node_swuart() Performs node specific config-

uration that is related to the
software UART

hal_configure_hwuart() Performs general configura-
tion that is related to the
hardware UART

hal_configure_node_hwuart() Performs node specific config-
uration that is related to the
hardware UART

hal_sw_uart_rxpin_is_high() Tests whether the receive pin
of the software UART is at a
high level

Table 5.6: HAL Macros for the Node and I/O Configuration

Macro Description
hal_init_transceiver() Initializes the transceiver
hal_transceiver_recv() Switches the transceiver to re-

ceive mode
hal_transceiver_send() Switches the transceiver to

transmit mode

Table 5.7: HAL Macros for Controlling an External Transceiver

85

5.4. EVALUATION CHAPTER 5. TTP/A ON THE TINYPHOON

5.4 Evaluation

To evaluate the proposed HAL architecture on the one hand and the ap-
plicability of TTP/A on the current Tinyphoon hardware TTP/A has been
ported to the LPC 2119 from Philips Semiconductors3. The experiences
gained during porting have been used to improve the HAL architecture and
to suggest improvements of the TTP/A protocol that make it even more
suitable for the use on small autonomous robots.

5.4.1 TTP/A on the LPC 2119

The LPC 2119[Phi06] microcontroller bases upon the ARM7 core. It has
been selected to be used on the Tinyphoon because of its powerful archi-
tecture despite its small footprint. It features the standard peripherals of
a typical microcontroller (UART, timers with input capture and compare
match logic, I/O ports, I2C and CAN bus, ...).

A test cluster consisting of a master and a slave node has been build. The
WinARM version of the ARM GCC 4.0.2 has been used for the develop-
ment. The original TTP/A implementation also has been written for a
version of the GCC. Thus, all compiler extensions that are not supported
by the ANSI C standard have been disabled to emulate a compiler that
understands ANSI C constructs only.

During the implementation of the HAL some problems had to be solved:

• The AVR platform supports at most 16-bit wide timers whereas the
timer registers of the LPC 2119 are 32 bit wide. A special data type
has been defined that has the same bit width as the timer registers.
Whenever the value of a timer is stored in a variable, this data type
has to be used.

• The timers of the LPC 2119 can not raise an interrupt when the timer
register overflows. Thus, this behavior has to be emulated using an-
other compare match unit.

• The interrupt concept of the LPC 2119 is much more complex than
that of the AVR microcontrollers. The macros have been designed
in a way to support both of them. However, on platforms with a
complex interrupt logic some additional steps might be necessary till
the interrupt service routine is called correctly (e. g., entries in linker
and/or start-up files, modifications of interrupt vector table, ...

3now NXP, http://www.nxp.com

86

http://www.nxp.com

5.4. EVALUATION CHAPTER 5. TTP/A ON THE TINYPHOON

• The timings might vary from one platform to another (e. g., the UART
receive interrupt is raised earlier or later after the reception of a byte).
To solve this problem correction values are used in the critical parts
of the source code.

• The adaption of the linker file turned out to be a very cumbersome
job.

• The implementation of the hardware UART has not improved the
maximum performance as expected. The reason for this behavior is,
that the action for the next frame is prepared in the inter frame gap
after the previous bus operation has been finished. The implemen-
tation of the software UART stops the reception of a byte after the
raising edge of the stop bit has been detected. In contrast the hard-
ware UART samples mid of the stop bit and then raises the receive
interrupt. Therefore, the preparation time for the next slot is even
shorter and the maximum baud rate is smaller than that of the imple-
mentation using a software UART.

5.4.2 Suggested Improvements of TTP/A

The suggestions are based on the issues that came up during porting and
testing TTP/A on the hardware of the Tinyphoon. The problems are
grouped in three categories: enhancing performance, improving the han-
dling of large chunks of data and avoiding the use of linker scripts.

Enhancing Performance

A hardware UART has been implemented in order to improve the perfor-
mance of TTP/A while the load of the microcontroller is reduced. However,
tests have shown, that on the AVR platform the hardware UART configura-
tion (up to 16000 bit/s) does not even reach the performance of the version
using the software UART (up to 19200 bit/s).

The different way of stop bit detection in combination with the way of
preparing the next byte frame causes this problem. The hardware UART
generates a receive interrupt after the stop bit has been sampled in the
middle of the bit, whereas the software UART stops receiving as soon the
raising edge of the stop bit has been detected. The preparation of the next
frame slot is started as soon as the reception or transmission of the last
slot has been completed. Thus, the preparation time is shorter when the
hardware UART is used.

To solve this problem the preparation of next frame slot can be started
while the preceding frame is still being received or transmitted. In this

87

5.4. EVALUATION CHAPTER 5. TTP/A ON THE TINYPHOON

moment the communication is completely handled by the hardware UART.
Therefore, the computing power of the CPU can be used for the preparation.

The frames of TTP/A are 13 bits long. but the maximum length of a trans-
mission with a hardware UART is twelve bits (one start bit, eight data bits,
one parity bit and two stop bits). Thus, a continuous transmission using
a standard hardware UART is impossible. This restriction impedes the
exploitation of the powerful features of more enhanced hardware UART that
allow the transmission of multiple bytes without the interaction of the CPU.

Moreover, the transmission of every byte has to be triggered by a timer. One
the one hand this increases the load on the CPU(e. g., timer configuration,
interrupt handling) on the other hand not only the start of a transmission
but the complete transmission is closely related to the timing, which makes
a separate implementation of the UART and the timer subsystems hardly
possible. Hence, the code lacks portability.

Handling of Large Data Packets

TTP/A has been designed as communication protocol for smart transduc-
ers. The protocol is adequate for exchanging small amounts of data. It
causes only a little overhead but only supports frames with the length of
one byte. Though many frames can be scheduled consecutively to avoid
fragmentation of the payload, TTP/A provides no means to check the in-
tegrity of the complete payload. Thus, the application has to ensure, that
all bytes of the payload have been communicated successfully. A checksum
mechanism as provided by LIN would reduce the effort for the application
design. Additionally, the encapsulation of an integrity check in the protocol
ensures the compatibility thereof among all TTP/A nodes.

Linker Scripts

Linker scripts are highly hardware and linker dependent. The process of
porting TTP/A also includes the complex adaption of the linker scripts.
This effort only can be reduced by avoiding linker scripts. The current
version of the TTP/A implementation uses them heavily for providing a
comfortable programming interface while keeping memory requirements low.

In the future configuration tools will be available that can configure the IFS
and the RODL of TTP/A nodes. Hence, there programming interface will
not be used by the programmer directly and can be designed in a way that
no linker scripts are needed.

88

A conclusion is the place
where you got tired thinking.

Martin H. Fischer
American (German-born) Physician and Author (1879 - 1962)

Chapter 6

Conclusion

This chapter summarizes the contribution of this thesis and gives an outlook
on future work in the covered domain.

6.1 Contribution of This Thesis

This thesis has described the five real-time protocols CAN, LIN, Flexray,
TTP/C, and TTP/A in detail. The comparison of the protocols also
considers the special needs of small autonomous systems. All important
characteristics are listed in table form and the main attributes are also
compared in a diagram.

The communication requirements of the subsystems of the Tinyphoon robot
have been analyzed. Each subsystem and the data it needs or provides
has been described. This analysis of the communication on the Tinyphoon
has shown, that real-time features (e. g., predictable communication, small
jitter, global time) improve the interaction of the subsystems and allow
new approaches of application design. Fault tolerance is not an issue on
small robots but a high data throughput and the maintainability of the
communication system are vitally important.

CAN and LIN lack some of the important real-time features whereas
Flexray and TTP/C are very complex. TTP/A combines the basic
real-time features with a small implementation footprint. Its standardized
debugging and configuration interface allows the observation of the commu-
nication and the platform-independent tuning of the configuration of each
subsystem. TTP/A is implemented in software and coexists with other
applications, which saves valuable space on the PCB. Moreover, the source
code of TTP/A is available for free. Because of these features TTP/A has

89

6.2. OUTLOOK CHAPTER 6. CONCLUSION

been evaluated on the Tinyphoon robot.

Based on an analysis of the mode of operation of the current TTP/A
implementation an architecture for making TTP/A portable is proposed.
A HAL has been designed and implemented on the original platform of the
TTP/A implementation. A case study on the hardware of the Tinyphoon
robot has proved the capability of this concept and that TTP/A can be
used for the communication on small autonomous systems.

Based on the evaluation of this case study a proposal for further improve-
ments of TTP/A have been derived. Methods have been proposed to make
TTP/A easier to port to new hardware platforms and to make it even more
suitable for the use on small autonomous systems like the Tinyphoon robot.

6.2 Outlook to Future Work

Currently a new protocol based on TTP/A is being developed. Its
performance will be boosted by supporting the application of the advanced
features of modern, powerful UART hardware units. The protection of
data frames with a checksum will ease the handling of large chunks of data.
This protocol will suit the needs of small autonomous systems even better
than TTP/A.

The communication architecture of the Tinyphoon robot has to be revised in
the future. The current implementations of the subsystems are designed ac-
cording to the event-triggered paradigm. With the introduction of a global
time base the complete system can be synchronized. Hence, all measure-
ments on the robot can be triggered at the same point in time, which
makes the fusion of the result considerably easier. Therefore, we plan to
integrate real-time communication on the Tinyphoon robot and to use a
time-triggered software design.

In the future the wireless communication system of the Tinyphoon robot can
be used to synchronize measurements within a group of robots. This sim-
plifies the exchange and the interpretation of data about their environment.
Thus, a distributed world model of all robots can be established.

The separation of the communication protocol from the application reduces
the effort of maintaining the source code. The communication system can
be added to the software of new subsystems easily.

90

Bibliography

[ANS89] ANSI – American National Standard Institute. Ansi standard
x3.159-1989, December 1989.

[Atm05] Atmel Corporation. Application note AVR322: LIN v1.3 protocol
implementation on atmel avr microcontrollers, 05 2005.

[BAS+06] M. Bader, M. Albero, R. Sablatnig, J. E. Simó, G. Benet, G. No-
vak, and F. Blanes. ”embedded real-time ball detection unit for
the yabiro biped robot”. In ”Fourth Workshop on Intelligent Solu-
tions in Embedded Systems (WISES’06)”, Vienna, Austria, 2006.

[DEE03] Martin Delvai, Ulrike Eisenmann, and Wilfried Elmenreich. A
generic architecture for integrated smart transducers. In Proceed-
ings of the 13th International Conference on Field Programmable
Logic and Applications, Lecture Notes in Computer Science, Lis-
boa, Portugal, September 2003. Springer Verlag.

[Dev06] Analog Devices. Datasheet Blackfin 561, 2006.

[EEE+01] Stephan Eberle, Christian Ebner, Wilfried Elmenreich, Georg
Färber, Peter Göhner, Wolfgang Haidinger, Michael Holzmann,
Robert Huber, Ralf Schlatterbeck, Hermann Kopetz, and Alec
Stothert. Specification of the ttp/a protocol. Research Report
61/2001, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2001.

[EHK+02] Wilfried Elmenreich, Wolfgang Haidinger, Raimund Kirner,
Thomas Losert, Roman Obermaisser, and Christian Trödhandl.
TTP/A smart transducer programming - a beginner’s guide. Re-
search Report 33/2002, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2002.

[EHPS02] Wilfried Elmenreich, Wolfgang Haidinger, Philipp Peti, and
Lukas Schneider. New node integration for master-slave fieldbus

91

BIBLIOGRAPHY BIBLIOGRAPHY

networks. In Proceedings of the 20th IASTED International Con-
ference on Applied Informatics (AI 2002), pages 173–178, Feb.
2002.

[EK04] Wilfried Elmenreich and Stefan Krywult. Comparison of fieldbus
protocols LIN 1.0, LIN 2.0, and TTP/A. Research Report 3/2004,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[Fle05a] FlexRay Consortium. FlexRay communication system, electrical
physical layer specification, version 2.0, 2005.

[Fle05b] FlexRay Consortium. FlexRay communication system, protocol
specification, version 2.0, 2005.

[FMD+00] Thomas Fuhrer, Bernd Muller, Werner Dieterle, Florian
Hartwich, Robert Hugel, Michael Walther, and Robert Bosch
GmbH. Time triggered communication on CAN. In Proceedings
of the 7th International CAN Conference, Amsterdam, 2000.

[HH00] Wolfgang Haidinger and Robert Huber. Generation and analysis
of the codes for TTP/A fireworks bytes. Research Report 5/2000,
Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2000.

[HMFH00] Florian Hartwich, Bernd Müller, Thomas Führer, and Robert
Hugel. CAN network with time triggered communication. In Pro-
ceedings of the 7th International CAN Conference, Amsterdam,
2000.

[IEE90] IEEE – Institute of Electrical and Electronics Engineers. Ieee
standard 1149.1: Standard test access port and boundary-scan
architecture, 1990.

[ISO04] ISO – International Organization for Standardization. Road ve-
hicles – controller area network (CAN) – Part 4: Time-triggered
communication, 2004.

[KHK+96] H. Kopetz, R. Hexel, A. Krüger, D. Millinger, and A. Schedl.
A synchronization strategy for a TTP/C controller. In Appli-
cation of Multiplexing Technology (SP-1137), Detroid, MI, USA,
February 1996. Society of Automotive Engineers, SAE Press.

[KO03] H. Kopetz and W. Ochsenreiter. Clock synchronization in dis-
tributed real-time systems. In IEEE Transactions on Computers,
pages 933–940, August 2003.

92

BIBLIOGRAPHY BIBLIOGRAPHY

[Kop97] Kopetz. Real-time systems: design principles for distributed em-
bedded applications. Kluwer Academic Publishers, 1997.

[Kop01] Hermann Kopetz. A comparison of TTP/C and FlexRay. Re-
search Report 10/2001, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2001.

[KS04a] Stefan Krywult and Christian Steiner. Survey on present real-
time ethernet solutions. Research Report 12/2004, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2004.

[KS04b] Stefan Krywult and Christian Steiner. TTP/A gateway. Re-
search Report 37/2004, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
2004.

[LIN03] LIN Consortium. LIN Specification Package, Revision 2.0,
September 2003.

[LL84] J. Lundelius and N. Lynch. A new fault-tolerant algorithm for
clock synchronization. In Proceedings of PODC ’84, New York,
NY, USA, 1984. ACM Press.

[MON05] S. Mahlknecht, R. Oberhammer, and G. Novak. ”real-time image
recognition system for tiny autonomous mobile robots”. Real-
Time Systems, 29, 2005.

[NM05] G. Novak and S. Mahlknecht. Tinyphoon - a tiny autonomous mo-
bile robot. Technical report, Institute for Computer Technology,
Vienna Universitys of Technology, Vienna, Austria, 2005.

[OMG02] OMG – Object Management Group. Smart transducers interface
specification v1.0 – ptc/2002-10-02, 08 2002.

[Phi06] Philips. Datasheet LPC2119, 2006.

[Sie06] Siemens. Datasheet XC167, 2006.

[SJ05] M. Seyr and S. Jakubek. ”mobile robot predictive trajectory
tracking”. In Proceedings of the 2005 ICINCO, ICINCO, 2005.

[SJN05] M. Seyr, S. Jakubek, and G. Novak. Neural network predictive
trajectory tracking of an autonomous two-wheeled mobile robot.
In Proceedings of the 16th IFAC World Congress, Elsevier, Prag,
2005.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[Trö02] Christian Trödhandl. Architectural Requirements for TTP/A
Nodes. Master’s thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Aus-
tria, May 2002.

[TTA03] TTAGroup. Time-triggered protocol TTP/C high-level specifica-
tion document, Protocol Version 1.1, edition 1.4.3, 2003.

[USB00] USB Implementers Forum. Universal serial bus specification, re-
vision 2.0, 04 2000.

[Web06] Daniel Weber. Decision making in the robot soccer domain. Mas-
ter’s thesis, Vienna University of Technology, 2006.

94

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Background
	1.2 Problem Statements ...
	1.3 Outline of Thesis

	2 Real-time Protocols
	2.1 Concepts
	2.1.1 Basic Terms
	2.1.2 Real-Time
	2.1.3 Fault Tolerance

	2.2 CAN
	2.2.1 Mode of Operation
	2.2.2 Additional Services
	2.2.3 Packet Format
	2.2.4 Data Encoding
	2.2.5 Physical Layer
	2.2.6 Real-Time Extensions
	2.2.7 Efficiency
	2.2.8 Availability

	2.3 LIN
	2.3.1 Mode of Operation
	2.3.2 Additional Services
	2.3.3 Frame Format
	2.3.4 Data Encoding
	2.3.5 Physical Layer
	2.3.6 Host Interface
	2.3.7 Efficiency
	2.3.8 Availability

	2.4 Flexray
	2.4.1 Mode of Operation
	2.4.2 Additional Services
	2.4.3 Frame Format
	2.4.4 Data Encoding
	2.4.5 Physical Layer
	2.4.6 Host Interface
	2.4.7 Efficiency
	2.4.8 Availability

	2.5 TTP/C
	2.5.1 Mode of Operation
	2.5.2 Additional Services
	2.5.3 Frame Format
	2.5.4 Data Encoding
	2.5.5 Physical Layer
	2.5.6 Host Interface
	2.5.7 Efficiency
	2.5.8 Availability

	2.6 TTP/A
	2.6.1 Mode of Operation
	2.6.2 Additional Services
	2.6.3 Frame Format
	2.6.4 Data Encoding
	2.6.5 Physical Layer
	2.6.6 Application Interface
	2.6.7 Efficiency
	2.6.8 Availability

	2.7 Other Protocols
	2.7.1 Real-time Ethernet
	2.7.2 USB

	2.8 Comparison

	3 Tinyphoon
	3.1 Subsystems
	3.1.1 Motion Unit
	3.1.2 Vision Unit
	3.1.3 Decision Making Unit

	3.2 Communication
	3.2.1 Data Provided/Needed by the Subunits
	3.2.2 Real-Time Requirements
	3.2.3 Fault Tolerance / Dependability Requirements
	3.2.4 Data Throughput
	3.2.5 Maintainability
	3.2.6 Debugging and Monitoring
	3.2.7 Cost
	3.2.8 Implementation Effort
	3.2.9 Comprehensibility of Interfaces

	4 Analysis
	4.1 Current Communication
	4.2 Features vs. Complexity
	4.3 HW Versus SW
	4.4 RT Communication in SW
	4.4.1 Time-Triggered CAN
	4.4.2 LIN
	4.4.3 TTP/A

	4.5 Results

	5 TTP/A on the Tinyphoon
	5.1 Existing TTP/A
	5.1.1 Source Code
	5.1.2 Architecture
	5.1.3 Bus Subsystem

	5.2 HW UART
	5.2.1 Receiving
	5.2.2 Sending

	5.3 Portable TTP/A
	5.3.1 Compiler Independence
	5.3.2 Hardware Abstraction Layer
	5.3.3 Linker Script

	5.4 Evaluation
	5.4.1 TTP/A on the LPC 2119
	5.4.2 Suggested Improvements

	6 Conclusion
	6.1 Contribution
	6.2 Outlook

	Bibliography

