
Diplomarbeit

Geometric World Model Repository and Localization for

Autonomous Mobile Robots

ausgeführt am Institut für

Computertechnik Inst.-Nr. E384

der Technische Universtiät Wien

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl

und Dipl.-Ing. Dr.techn. Gregor Novak

als verantwortlich mitwirkendem Assistenten

durch

Tobias Deutsch

Matr.-Nr. 9625115

Borschkegasse 1/9

1090 Wien

Wien, 11.Februar 2007

i

Zusammenfassung

Wesentliche Voraussetzung für einen autonom agierenden Roboter ist die Fähigkeit, Wissen
über seine Position in der Welt zu sammeln. Dieses Wissen basiert auf Sensordaten und einem
Weltmodell zusammen, welches wiederum aus einer Karte von statischen Elementen und
Daten über mobile Objekte besteht. Die Sensordaten werden gemeinsam mit dem Weltmodell
zur Bestimmung des wahrscheinlichsten Aufenthaltsorts des Roboters in der Welt verwendet.

Diese Diplomarbeit behandelt die Implementierung eines geometrischen Weltmodells und
eines Lokalisierungssystems. Als Zielplattform dient Roboterfußball, gespielt von kleinen,
autonomen Robotern, die eine Kamera, einen Prozessor und eine Antriebseinheit benötigen.
Da es keine zentrale Kontrolle gibt, müssen sie in der Lage sein, ihre eigenen strategischen
Entscheidungen zu treffen und ihre Position in der Welt selbst zu bestimmen.

Für das Weltmodell und die Lokalisierung wurde jeweils ein einfacher und ein komplexer
Lösungsansatz entwickelt. Aufgrund der geringen Größe des Roboters (7,5×7,5×9 cm3) sind
die verfügbaren Ressourcen stark beschränkt. Abhängig von den vorhandenen Ressourcen
und den Anforderungen an Strategie, Lokalisierung und Weltmodell kann durch die zwei
Varianten ein geeignetes System realisiert werden.

Das geometrische Weltmodell umfasst eine Karte und einen Positionsverlauf für die be-
weglichen Objekte (Ball und Roboter). In der einfachen Variante besteht die Karte aus einer
Menge von Liniensegmenten; die Objekte werden auf einen Punkt simplifiziert. Im Posi-
tionsverlauf werden nur die Positionshypothesen (gegenwärtige und vergangene) gespeichert.
In der komplexen Version bestehen Karte und alle Objekte aus Polygonen. Dies hat den
Vorteil, dass strategisch wichtige Fragen, wie zum Beispiel, ob sich der Roboter hinter dem
Ball befindet, präziser beantwortet werden können. Zusätzlich wird neben der Speicherung
der Positionshypothesen noch eine Positionsvorhersage angeboten.

Der einfache Lösungsansatz für das Lokalisierungssystem basiert auf einem linearen
Näherungsverfahren und stellt eine Weiterentwicklung des bisher für Tinyphoon verwende-
ten Systems dar. Es können nur Sensordaten vom Odometer, vom Kompass und die von
der Kamera erkannten Fixpunkte verwendet werden. Von diesen Fixpunkten muss sowohl
die Richtung, als auch die Distanz erkannt werden. Im Gegensatz dazu kann der verwen-
dete Partikelfilter beim komplexen Lösungsansatz sämtliche Sensordaten, die der Roboter
aufnehmen kann, in die Hypothese integrieren.

Der in dieser Arbeit durchgeführte Vergleich der Lokalisierungsmethoden zeigt deutlich,
dass der komplexe Ansatz bessere Ergebnisse erzielt als der einfache. Die Standardabweichung
unterscheidet sich um den Faktor drei (Partikelfilter: 5 cm, lineares Näherungsverfahren: 15
cm). Im Falle der zwei Varianten für das Weltmodell kann ein Vergleich mangels objektiver
Kriterien nicht formuliert werden. Die Entscheidung, welche Variante verwendet werden soll,
ist eine Designentscheidung und hängt maßgeblich von den verfügbaren Ressourcen und der
weiteren Verwendung der gespeicherten Daten ab.

ii

iii

Abstract

For autonomous behavior, a robot requires knowledge about its position in the world. This
knowledge is gained through collecting relevant information on the environment with sensors
and by comparison of this data with a model of the world. The model consists of a map of
the static environment and information about moving objects. Based upon this model, the
sensor data is used to generate a hypothesis of the position of the robot in the real world.

This thesis focuses on the implementation of a geometric world model and a localization
system. A robot soccer game played by small, autonomous robots is the test-bed for this
work. To be autonomous, each robot has to be equipped with a vision system, a processor,
and a locomotion unit. Further, it has to be able to calculate its own strategic decisions and
localize itself. The used robot system is Tinyphoon.

Due to the small size of the robots — 7.5 cm by 7.5 cm with a height of 9 cm —resources are
limited. This problem is taken into account by providing a simple and a complex approach to
the world model and the localization. Depending on available resources and requirements for
the strategy, the localization, and the world model, an appropriate approach can be chosen.

The geometric world model repository (WMR) is a container storing a map and the position
histories for moving objects (the ball and the robots). In the simple approach, the map is
realized as a set of line-segments. Just the current and past estimated positions are stored
for moving objects. In the complex approach, every object— including the playground—
is stored as a polygon. The advantage to the simple approach is that each object has a
shape. Thus, the question whether a robot is behind the ball can be answered more precisely.
Another feature of the complex approach is the inclusion of a position predictor for each
moving object.

The two approaches to the localization part are a simple position estimator based upon the
linear least squares filter and a particle filter. The simple approach only uses odometric data,
the compass, and landmark sightings with known distance and direction for the localization.
It is an enhancement of the localization algorithm used for the robot Tinyphoon. The par-
ticle filter is able to integrate odometric data, the compass, the three distance sensors, and
landmark sightings with or without a known distance.

The comparison between the two self-localization algorithms carried out in this thesis has
shown that the complex self-localization algorithm produces better results than the simple
approach. The measured standard deviations are: 15 cm for the simple algorithm and 5 cm
for the complex algorithm. Thus, the particle filter enhances the overall performance.

Such a comparison cannot be defined for the WMR. The decision, which one to use is a
design decision which depends on the available resources and the intended further use of the
stored data.

iv

v

Acknowledgments

For I but now declared that Odysseus should suffer many woes ere
he reached his home, though I did not wholly rob him of his return
when once thou hadst promised it and confirmed it with thy nod; yet
in his sleep these men have borne him in a swift ship over the sea and
set him down in Ithaca, and have given him gifts past telling, stores
of bronze and gold and woven raiment, more than Odysseus would
ever have won for himself from Troy, if he had returned unscathed
with his due share of the spoil.

—Oµηρoς (Homer), Oδυσσεια (Odyssey),
Book 13, Lines 131–138

Like Odysseus in Homers Odyssey, it took me a long time to finish my studies and to
finalize my diploma thesis. I took numerous detours along the way and never took the short
way home. But unlike Odysseus, I was never alone. My family and my friends were always
around and supported me. The gifts I brought home are experiences, which cannot be expressed
by grades. For the support and these gifts, I am grateful.

First, I want to express my special thanks to my parents who made my studies possible and
supported me during my entire journey. Also, I want to thank Tatjana for her support and
her patience— it has not always been easy with me during the last twelve months.

I thank my advisor Professor Hermann Kaindl for his support. Further, I want to thank
Gregor Novak for infecting me with robot soccer.

Finally, I would like to thank the following people for their support (in alphabetical order)
Abdul, Alex, Anna, Chris, Doc Joe, Markus, Matthias, Mr.—West-Coast-LATEX-Customs—
Biely, Roland, Rosi, Stefan, Thomas, Zwettler, and anyone else who I unfortunately forgot
to include.

Tobias Deutsch, in February 2007

vi

List of Figures

2.1 MiroSOT System Overview [Nov02] . 8

2.2 Orange Golf Ball. 10

2.3 MiroSOT Small League Playground [FIR06] 10

3.1 Basic Concept for an Autonomous Mobile Robot. 14

3.2 Granularity in CLARAty [VNE+01] . 19

3.3 CLARAty Layers [VNE+01] . 20

3.4 The Decision Layer Interacting with the Functional Layer at Different Levels
of Granularity [VNE+01]. 21

4.1 An Office Map and Its Different Types of Representation. 25

4.2 Generalized Voronoi Graph. [CWEAB00] . 26

4.3 Potential Field. [RBD+05] . 28

4.4 Hybrid Approach to Environment Maps. [YJ99] 29

5.1 Model Underlying the Kalman Filter. [Wik06a] 37

5.2 Kalman Iteration Process . 38

5.3 Resistor Test Results . 40

5.4 Three-Dimensional Grid for Markov Localization 43

5.5 Example for Markov Localization [FBT99]. 44

5.6 Global Localization using Particle Filter [Thr02a] 48

5.7 Distance Between the Real Position and the Estimated Positions 50

5.8 Comparison of Localization Algorithms . 51

5.9 Three Succeeding Steps in the Markov Localization. 52

6.1 Tinyphoon2005 with an Orange Golf Ball. 55

6.2 The Size and the Three Modular Units of Tinyphoon. 56

6.3 Mono Vision Ball Detection Process [MON05] 59

6.4 Stereo Vision Object Detection Process . 60

6.5 Software Architecture With World Model Repository 60

6.6 Five Step Pipeline. 61

6.7 Communication Between the Units of One Robot. 62

vii

viii LIST OF FIGURES

6.8 Wireless Communication Between Robots. 63
6.9 Wireless USB Dongle. 64
6.10 Software Tools for Tinyphoon. 65
6.11 Simulators for Tinyphoon. 66

7.1 Standard Situation in Robot Soccer . 67
7.2 Use Case Diagram . 69
7.3 OOA Class Diagram of the Objects of the Problem Domain 70
7.4 High-Level OOD Class Diagram of the WMR 71
7.5 Sequence Diagram . 73
7.6 Geometric Map . 75
7.7 Position Triangulation . 78
7.8 Model Compass . 79
7.9 Model Vision . 81
7.10 Model Odometry . 82
7.11 Odometric Model Example . 82
7.12 OOD Class Diagram for the Simple WMR. 83
7.13 OOD Class Diagram for the Complex WMR. 85
7.14 OOD Class Diagram for the Self-Localization. 89
7.15 Sequence Diagram for the Simple Self-Localization. 89
7.16 Sequence Diagram for the Complex Self-Localization. 91

8.1 Typical Snapshot of a Simulation Run. 95
8.2 Standard Deviation for the Distance Between the Real and the Estimated

Position. 96
8.3 Simulation Results . 97
8.4 Multi-Hypothesis . 98
8.5 Environment of the Comparison [BDN07] . 99
8.6 Path Estimations for a Single Run [BDN07] 100
8.7 Distances between the Estimated Positions and the True Positions for a Single

Run [BDN07] . 101
8.8 Comparison Results for the EKF for all Runs [BDN07] 102
8.9 Comparison Results for the MCL for all Runs [BDN07] 102

List of Tables

3.1 Three-Layers Architecture . 18

4.1 Comparison of the Environment Maps . 30

5.1 Statistics for the Resistor Test Example . 40
5.2 Statistics after 1000 runs . 40
5.3 Statistics for the Comparison Experiment . 49
5.4 Comparison of the Localization Algorithms 53

8.1 Simulation Results for Different Number of Particles 100

ix

x LIST OF TABLES

List of Algorithms

5.1 Linear Least Squares Algorithm . 36
5.2 Kalman Filter Algorithm . 38
5.3 Extended Kalman Filter Algorithm . 42
5.4 Markov Localization Algorithm . 43
5.5 Particle Filter Algorithm . 46

xi

xii LIST OF ALGORITHMS

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

1 Introduction 1
1.1 Problem Statement and Methodology . 2
1.2 Outline . 2

2 Robot Soccer 3
2.1 RoboCup . 4

2.1.1 Leagues . 5
2.2 FIRA . 6

2.2.1 Leagues . 7
2.3 AMiroSOT . 8
2.4 Summary . 11

3 Autonomous Mobile Robots for AMiroSOT 13
3.1 Hardware . 14
3.2 Sensors . 15
3.3 Communication . 16
3.4 Software Architectures . 17

3.4.1 Overview . 17
3.4.2 Three-Layer Architecture . 17
3.4.3 CLARAty . 18

3.5 Summary . 22

4 World Model Repository 23
4.1 Static vs. Dynamic Data . 24
4.2 Categories of Data . 24

4.2.1 Environment Maps . 24
4.3 Summary . 29

xiii

xiv CONTENTS

5 Localization 31
5.1 Problems . 32
5.2 Taxonomy of Position Estimation Approaches 33
5.3 Linear Least Squares Filter . 34
5.4 Kalman Filter . 36

5.4.1 Kalman Model . 37
5.4.2 Kalman Iteration Process . 38
5.4.3 Example . 39
5.4.4 Non-Linear Kalman Filters . 41

5.5 Markov Localization . 41
5.5.1 Example . 44

5.6 Particle Filter . 44
5.6.1 Example . 47

5.7 Comparison Experiment . 47
5.7.1 Configuration . 48
5.7.2 Results and Interpretation . 49

5.8 Summary . 52

6 Tinyphoon 55
6.1 Hardware . 56
6.2 Sensors . 57

6.2.1 Odometry . 57
6.2.2 Infrared . 58
6.2.3 Vision . 58

6.3 Software Architecture Used for Tinyphoon . 60
6.4 Five Step Pipeline . 61
6.5 Joint Communication Architecture . 62
6.6 Hardware Tools . 63
6.7 Software Tools . 64
6.8 Simulators . 65
6.9 Summary . 66

7 Software System Description 67
7.1 High-Level System Design . 69
7.2 Geometric World Model Repository . 74

7.2.1 Simple WMR . 74
7.2.2 Complex WMR . 75

7.3 Self-Localization . 76
7.3.1 Simple Self-Localization . 77
7.3.2 Complex Self-Localization . 78

7.4 Implementation . 83

CONTENTS xv

7.4.1 Simple WMR . 83
7.4.2 Complex WMR . 84
7.4.3 Self-Localization . 88

7.5 Summary . 90

8 Implemented Self-Localization Systems in Comparison 93
8.1 Between Simple and Complex Self-Localization 93

8.1.1 Simulation Setup . 93
8.1.2 Results . 95
8.1.3 Multi-Hypothesis Resolving . 96

8.2 Between Complex and EKF-Based Self-Localization 98
8.3 Summary . 102

9 Conclusion and Further Work 105

Bibliography 107

A Acronyms 113

xvi CONTENTS

1
Introduction

Well begun is half done.

—Aριστoτελης (Aristoteles)

Robots will invade — like personal computers did twenty years ago— private homes in the
near future. There are already many robots in industrial environments today. They are
operating under well specified conditions and humans that work with robots must adapt
to these conditions (i.e. staying clear of robots performing automated tasks). In private
homes, this is undesirable. Here the robots have to cope with a dynamic —often chaotic —
environment.

Other differences in the requirements between industrial environments and private homes
are the ability to act autonomously and the user interface. For industrial applications, the
installation and maintenance of a host computer controlling the robots is an acceptable cost
factor. To be successful as a commercial product for private homes, the consumers should
be able to install the robot without any previous knowledge and without the need for special
installations in the building. Thus, a robot should be able to act autonomously as soon as it
has been unpacked.

Professional programmers are needed to configure industrial robots for any future tasks.
This is impossible for private homes. Here, the robots have to have an interface which is easy
to use.

Autonomous behavior and an easy to use interface are advantageous in both worlds. In
private homes a robot would not be accepted without them. For industry these improvements
will result in a cost reduction. Autonomous behavior is the core requirement for autonomous
cooperating robots. If several robots are assigned to the same task, they are then able to
team up and to cooperate without further human interaction.

1

2 CHAPTER 1. INTRODUCTION

To develop autonomous cooperating robot teams, a competition was formulated— robot
soccer tournaments. In this test-bed, the robots face similar problems like those in private
homes. They have to localize themselves in an environment where objects are randomly
repositioned. Without cooperation they cannot score and win the game. And they have to
analyze the behavior of their opponents. These three abilities enable a team of robots to
fulfill a complex task with minimal disturbances for the human inhabitants of the private
home.

1.1 Problem Statement and Methodology

The main focus of this thesis is: “How can a robot localize itself in a known environment”.
To solve this problem, the robot first has to be able to store information about the environ-
ment. The combination of this knowledge with actual sensor readings results in an estimation
of the robot’s location at any given time.

To determine which localization algorithm to choose, a comparison between the most
important algorithms is carried out. Based upon the results, the best means of locating
itself —here called localization— is implemented. The resulting system is then compared
with an enhanced version of the for the robot already existing localization approach.

The composition of the data storage depends on the intended further use. The minimum
components required for the localization are: the shape of the playground and the position
of the robot. It is not possible to formulate a comparison like the one for the localization
algorithms. Thus, the methodology for the data storage consists only in the literature research
and the formulation of requirements.

1.2 Outline

To provide background information, Chapter 2 (“Robot Soccer”) gives an overview about
the world of robot soccer. Based upon this chapter, the basic requirements for a robot capable
of playing soccer are presented in Chapter 3 (“Autonomous Mobile Robots for AMiroSOT”).

The next two chapters deal with the basics needed to solve the above stated problem.
Chapter 4 (“World Model Repository”) deals with storage of environmental information. The
localization algorithms and their comparison are presented in Chapter 5 (“Localization”).

Chapter 6 (“Tinyphoon”) describes the target platform for this thesis. It is a robot fitting
the requirements in Chapter 3.

In Chapter 7 (“Software System Description”), the a data storage and a localization system
resulting from the previous chapters is presented. Further, the implementation is described. A
comparison between the new localization approach and the enhanced version of the approach
used by the Tinyphoon is conducted in Chapter 8 (“Implemented Self-Localization Systems
in Comparison”).

This work concludes with Chapter 9 (“Conclusion and Further Work”). It is a summa-
rization of the results of this thesis and gives an outlook on further work.

2
Robot Soccer

Der Ball ist rund und das Spiel dauert 90 Minuten.

—Sepp Herberger

The ball is orange and the game lasts 10+80 minutes.

—Tobias Deutsch, after he had to referee for one and a half
hours a RobotSOT match (which has a net play time of
ten minutes).

To force progress it is wise to set up a competition— like the U.S.A. raced with the
U.S.S.R. for the first man on the moon. In the field of artificial intelligence (AI) during
the 80’s and 90’s of the last century, this competition was to build a chess computer able
to beat the greatest human chess players (world champions). After Deep Blue1 had beaten
Garry Kasparov in 1997 this task shifted its aim from competitions with humans towards
performance optimization. Deep Blue was a special high end computer consisting of more
than 500 processors and was solely built for this task (and dismantled afterwards). 480 of
these processors were special purpose chips designed for computer chess [Hsu06]. Nowadays,
programs like Deep Fritz2 using almost standard PCs3 with much less calculation power can
be victorious over human world champions.

With the chess competition won, AI needed a new — more complex —goal. A goal within
a domain where progress can be — like in chess — easily defined. The idea for robots playing

1http://www.research.ibm.com/deepblue
2http://www.chessbase.com
3The last match between a human world champion —Wladimir Kramnik — and the computer chess

program Deep Fritz was done by using a computer equipped with eight Intel Xeon processors each op-

erating at a frequency of 900 MHz. It took place in December 2006 and was won by the computer

(http://www.rag.de/microsite_chess_com).

3

http://www.research.ibm.com/deepblue
http://www.chessbase.com
http://www.rag.de/microsite_chess_com

4 CHAPTER 2. ROBOT SOCCER

soccer first appeared in 1992 in the paper “On Seeing Robots”[Mac93]. In the same year,
in Tokyo a workshop on grand challenges in AI discussed independently about soccer as a
possible domain. The game of soccer played by robots opened a large field of research topics
like real-time sensor fusion, reactive behavior, decision making, learning, multi agent systems,
and vision.

A competition with similar goals like robot soccer is the race of self guided cars through
the Mojave Desert [Pat05]. This race is hosted by the U.S. government’s Department of
Defense Advanced Research Project Agency (DARPA). The goal is to navigate through the
desert along a 100-plus mile track along predefined track points without any interference by
human operators or any other external computer. In the first year (2004), no car was able
to complete the path, moreover, no one was able to go further than 7.36 miles. In 2005,
all but one contestant were able to get far past that mark. From twenty-three teams, five
completed the 132-mile track, and the best four were within the 10 hour limit. The winner—
Stanford Racing Team — finished in 6 hours 53 minutes tightly followed by CMU’s Red Team
(+11 minutes), and CMU’s Red Team Too (+21 minutes). Compared to 2004, this result is
astonishing. The problem with this competition is money —the need for a real size vehicle
and a lot of hardware makes a large budget unavoidable. Furthermore, a perfect test site like
the Mojave Desert is not always around the corner.

Thus, robot soccer is not the only competition set up to enforce progress in robotics.
But unlike other competitions like the DARPA challenge, robot soccer is resource friendly.
Depending on the available skills, space, and money, a team can participate at different
leagues. These are ranging from simulation leagues (with no robot-hardware involved), over
leagues dedicated to one commercially available robot (e.g. Sony Aibo), to leagues where
everything is built by the team (mechanics, electronics, and software).

Robot Soccer is a game similar to human soccer restricted in size and rules to the abilities
of robots.

Next, the two world organizations4 for robot soccer— RoboCup (Section 2.1) and FIRA
(Section 2.2) —and their leagues are introduced. Finally, the new league AMiroSOT is
described in Section 2.3.

2.1 RoboCup

“RoboCup is an international research and education initiative. Its goal is to
foster artificial intelligence and robotics research by providing a standard problem
where a wide range of technologies can be examined and integrated.”5

4Since 1997, there are two robot soccer world organizations. Due to the fact that their leagues are relatively

orthogonal, optimistic observers believe that a unification into one organization may be possible. (Compare

http://www.heise.de/tp/r4/artikel/19/19792/1.html)
5http://www.robocup.org/Intro.htm

http://www.heise.de/tp/r4/artikel/19/19792/1.html
http://www.robocup.org/Intro.htm

2.1. ROBOCUP 5

Founded in June 1993 first as the Robot J-League (Japanese Professional Soccer League),
it transformed within a month to the international organization RoboCup6. Until 1996,
mainly conferences and workshops were held. The Pre-RoboCup-96 in Osaka was a test-run
for the First Robot World Cup Soccer Games in 1997 in Nagoya. While the test was held
with 8 teams from Japan, the World Games had almost 100 participating teams and over
5,000 spectators.

Although robot soccer is a very broad and complex competition —the fun is an add on—
they soon introduced a second type of competition— RoboCupRescue —many autonomous
agents in a hostile unknown area carry out rescue tasks. Finally, to support young scien-
tist and schools RoboCupJunior was added. A RoboCup@home league is planned, but the
definition of the tasks is not finished. This league will focus on real-world applications and
human-machine interaction with autonomous robots.

To enforce the promotion of science and technology, RoboCup formulated an ambitious
goal:

The Landmark Project By mid-21st century, a team of fully autonomous humanoid robot
soccer players shall win the soccer game, comply with the official rule of the FIFA,
against the winner of the most recent World Cup.7

While 50 years (until 2050) seems to be a very short period, FIRA argues that from the
first flight of the brothers Wright to the first industrial produced and soled yet engine it took
also only 50 years (1903-1947), and by 1969 man flew to the moon. As another example
they mention chess: from ENIAC to Deep Blue beating Kasparow it took exactly 50 years
(1947-1997). Also the completion of the human genome sequence was done in less than 50
years (1953-2001).

In [BM03] several scientists — like Bernhard Nebel from the team CS Freiburg — stated,
that they believed in the basic reachability of this goal. They believe that at least a demon-
stration game between humans and robots will be possible.

2.1.1 Leagues

A common rule for all different types of leagues and robots is that the robots/agents have
to act autonomously.

The RoboCup organization holds tournaments in the following three major categories:
soccer, rescue, and junior.

RoboCupSoccer The vanilla soccer competitions, as originally formulated.

Simulation League 2D — Simulation of independently acting agents on a virtual field. 5-
minute halves.

6http://www.robocup.net
7http://www.robocup.org/overview/22.html

http://www.robocup.net
http://www.robocup.org/overview/22.html

6 CHAPTER 2. ROBOT SOCCER

Simulation League 3D— Enhancement of the 2D simulation league. A complex physic
model adds the third dimension and thereafter more complex game situations. 5-minute
halves.

Small Size Robot League f-180— Up to five small robots per team not larger than 18 cm
in diameter using an orange golf ball play on an area slightly larger than a ping-pong
table. 10-minute halves.

Middle Size Robot League f-2000— Up to four middle-sized robots per team not larger than
50 cm in diameter using an orange soccer ball play on a field of a size of 12×8 meters2.
10-minute halves.

Four-Legged Robot League — Is played by four dog-shaped robots (SONY’s AIBO8) per
team using an orange golf ball on a field the size of 5×3 meters2. 10-minute halves.

Humanoid League — Biped autonomous humanoid robots. This league is still very young
and thereafter design rules like size, sensor, etc. are in draft mode. Instead of soccer
games, they compete by solving challenges (penalty kick, one vs. one, sprint, etc.).

RoboCupRescue The idea behind RoboCupRescue is to promote the development of
robots/agents for search and rescue operations, human assistance, etc.

Rescue Simulation League — A generic urban disaster simulator is used to evaluate the team
with the best rescue strategy.

Rescue Robot League —Duplicated sites of actual disasters are the playground in which
robot teams compete for speed and reliability in search and rescue missions.

RoboCupJunior While the target of RoboCup and RoboCupRescue is scientific progress,
RoboCupJunior is designed to be fun and educational. Young people and students are the
target participants.

Soccer Challenge — A simplified game of soccer played 1 vs. 1 or 2 vs. 2.

Dance Challenge — The dancing judged by performance, creativity and choreography makes
this league the most creative one.

Rescue Challenge — In an artificial disaster scenario victims have to be rescued.

2.2 FIRA

Like RoboCup, FIRA9 (Federation of International Robot-soccer Association) also pushes
scientific and technological progress via direct competition using the game of soccer. Among

8http://www.sony.net/Products/aibo/
9http://www.fira.net

http://www.sony.net/Products/aibo/
http://www.fira.net

2.2. FIRA 7

the objectives of the association are support of young scientists, promote the development of
autonomous multi-agent robotic systems, bringing scientists from different backgrounds like
robotics, sensor fusion, intelligent control, communication, etc. together using the annual
FIRA Robot World Cup and Congress.

FIRA was founded by Prof. Jong-Hwan Kim, KAIST, Daejeon, Korea, in 1995 and in
the following year the first international championship was held there. While the FIRA
Cup and the associated congress are the flagships of FIRA, they also organize —among other
meetings —the International Robot Olympiad. The aim of this olympiad is similar to existing
Mathematics-, Physics- and Chemistry Olympiads — offering young promising pupils a place
to compete and to exchange (social networking).

2.2.1 Leagues

In contrast to RoboCup, the FIRA rules are much more adopted towards robot soccer.
Especially the playgrounds are equipped with a border like in ice hockey and the corners are
beveled.

HuroSOT— Humanoid Robot World Cup Soccer Tournament. Biped humanoid robot with
a maximum size of 150 cm and a maximum weight of 30 kg. The playground is up to
3.5×4.3 meters2 and an orange soccer ball is used. 5-minute halves.

KheperaSOT— One fully autonomous robot per team based upon Khepera robot equipped
with an on board vision system. The playground is 1.3×0.9 meters2, a yellow tennis
ball is used. 5-minute halves.

MiroSOT — Micro Robot World Cup Soccer Tournament. Two teams, each equipped with 3
to 11 robots and a host computer connected to a vision system installed 2 meters above
the playground (Figure 2.1). The robots are limited to a cube smaller than 7.5 cm×7.5
cm×7.5 cm. An orange golf ball is used. This league is divided into four leagues. They
differ in the number of robots per team and size of the playground. The smallest league
has 3 robots and a field size of 1.5×1.3 meters2. These numbers increase up to 11 robots
and a dimension of 4.0×2.8 meters2. 5-minute halves.

NaroSOT — Five robots, one host computer, and a vision system installed above the play-
ground per team. Each robot is limited to 4 cm×4 cm×5.5 cm. The playground is
1.3×0.9 meters2. An orange ping-pong ball is used. 5-minute halves.

RoboSOT —Up to three robots per team, each robot equipped with its own vision and
decision system. A team may use an external host computer to process the vision
information of each robot. Each robot is limited to 20 cm×20 cm. No limit in height
is given. The playground is 2.6×2.2 meters2. A yellow tennis ball is used. 5-minute
halves.

8 CHAPTER 2. ROBOT SOCCER

Figure 2.1. MiroSOT System Overview [Nov02]

SimuroSOT— SimuroSOT is like playing a virtual game of MiroSOT — hence, the rules are
the same like for the middle and the large league of MiroSOT. 5-minute halves.

2.3 AMiroSOT

MiroSOT is a challenging league. The robots are one of the smallest in both organizations
and move at a high velocity (up to 3 m/s). High electrotechnical, mechanical, and program-
ming skills are necessary to build a competitive team. The smallest league needs about 2
m2 of space and only three robots are needed for a start. Some teams sell their robots to
finance the development of new ones. Thus, this league is a perfect place to start with robot
soccer and grow with the skills gained. It is also an active community with more than 20
participating teams at the world cup 2006 in Dortmund10.

What is missing in this league is the autonomous action. Most of the robots have a
one-way communication with the host computer. They only receive movement commands
which they execute. The simplest commands are the velocities for the left and the right
wheel. More sophisticated approaches receive relative target coordinates, which are then
transformed by the robot into wheel velocities. The external host computer has a complete
world view through the atop mounted camera and is in control of all robots of the team.
The only competitive approach in this setup is to calculate the strategy and the coordination
between the robots at the host. Thus, introducing more autonomous actions to the robots is
counterproductive.

Autonomous cooperative behavior between robots is useful in environments without glob-
ally available information and the lack of a central processing unit. If each robot perceives
the world only partly through its local sensors, communication among the team mates is
advantageous to generate a more complete world view. This is then done by collecting of

10http://www.firaworldcup.de

http://www.firaworldcup.de

2.3. AMIROSOT 9

the incomplete world views of each team mate. These views are then combined into a single
world view. The coordination among the team mates can be done by assigning roles for each
robot in advance or by agreement and dynamic reallocation of the roles.

To establish such an environment, which enforces the usage of autonomous cooperative
robots, some of the basic concepts of MiroSOT have to be altered. The global vision system
has to be banned. The host computer is only allowed to send referee commands to the robots
(e.g. start or stop the game). The severity of the changes leads towards a new league. This
league should be designed in such way that existing MiroSOT teams can upgrade their robots
to the new set of rules.

The — yet still to be officially founded— resulting league is named Autonomous Micro
Robot World Cup Soccer Tournament (AMiroSOT) [KDB+06]. The rules are basically the
ones for MiroSOT11 with the following major adaptions:

• No central vision system — compare with MiroSOT Law 4

• No communication with an external host computer— compare with MiroSOT Law 3

• Robots are allowed to be slightly higher (90 mm instead of 75 mm) — compare with
MiroSOT Law 2.b

• The team-colors are attached to the sides and not on the upper side of the cube —
compare with MiroSOT Law 2.b

• The robots have to move to the predefined position for penalty kick, free kick, free ball,
and kick off autonomously— compare with MiroSOT Laws 10, 11, 12, 13

Additions to these rules are:

• The cameras have to be mounted parallel to the floor (within some tolerance). This
rule avoids the usage of omni-vision cameras which provide a 360◦round view of the
field. A typical camera has a field of view of approximately 45◦. Thus, the omni-vision
provides up to eight times more information on the environment. Resulting, such a
round view device reduces the necessity for environment information exchange.

• Restricted amount of battery capacity12. Analysis of the MiroSOT matches has shown
that the robots move all the time over the whole field. They usually travel faster than
the ball. Strategic positioning is — except for the goalkeeper— not necessary. With a
reduced capacity of the battery, the robots are forced to use their resources economically.
To enforce the development of such robots for a longer period, this reduction has to
be done annually. Otherwise, economy would be in the focus of the participating
universities only in the first few years.

11The official MiroSOT rules can be found at the FIRA home page at http://fira.net/soccer/MiroSOT/

overview.html.
12The capacity of a battery is difficult to measure. Thus, the rule for a restricted amount of battery capacity

is more or less a gentleman’s agreement.

http://fira.net/soccer/MiroSOT/overview.html
http://fira.net/soccer/MiroSOT/overview.html

10 CHAPTER 2. ROBOT SOCCER

Similar to MiroSOT, the robot is allowed to overlap the ball up to 30%. The ball itself
is an orange golf ball13, 14 (see Figure 2.2) with a diameter of 42.7mm and 46g weight. The
orange color simplifies the task of detecting the ball in the vision system. In the future, the
color may change to less distinct colors like white.

Figure 2.2. Orange Golf Ball.

The playgrounds are the same as in MiroSOT. Figure 2.3 shows a field for the smallest
league. The marked predefined positions FK (Free Kick), PK (Penalty Kick), and FB (Free
Ball) are important for the robots to position themselves according to the actual referee
command.

Figure 2.3. MiroSOT Small League Playground [FIR06]

13Golf balls are—according to the official rules (http://www.usga.org/playing/clubs_and_balls/guide/

book/appendix3ball.html)—greater than 42.62mm in diameter with no upper bound specified. The United

States Golf Association (USGA) provides a list of conforming golf balls (including diameter and weight) at

http://www.usga.org/equipment/conforming_golf_ball/conforming_golf_ball.asp
14The number of dimples does not matter, but it should be mentioned that there is only one official golf

ball with an odd number of dimples (333).

http://www.usga.org/playing/clubs_and_balls/guide/book/appendix3ball.html
http://www.usga.org/playing/clubs_and_balls/guide/book/appendix3ball.html
http://www.usga.org/equipment/conforming_golf_ball/conforming_golf_ball.asp

2.4. SUMMARY 11

2.4 Summary

Robot soccer is a competition set up to enforce development in the fields of robotics and
artificial intelligence. The basic idea reaches back to 1992, and the first tournament was held
in Japan in 1993. Today, there are two major organizations in the world of robot soccer:
RoboCup and FIRA. Both organize annually world championships in their leagues. These
leagues range from tiny robots not larger than four by four centimeters up to large robots
with a diameter of 40 cm and a hight of more than one meter. Biped humanoid robots are
still in the beginning but they are another step towards the landmark project as denoted by
RoboCup:

By mid-21st century, a team of fully autonomous humanoid robot soccer play-
ers shall win the soccer game, comply with the official rule of the FIFA, against
the winner of the most recent World Cup.

Another step leading towards this goal is to transform the successful MiroSOT league from
semi-autonomous into a fully autonomous league called AMiroSOT. The small robots, with
a dimension of 7.5 cm by 7.5 cm, are equipped with cameras and communication systems.
They navigate through the playground based solely on their own sensor readings and the
sensor information exchanged with their team mates.

.

12 CHAPTER 2. ROBOT SOCCER

3
Autonomous Mobile Robots for

AMiroSOT

Law I A robot may not harm a human or, by inaction, allow a hu-
man being to come to harm.

Law II A robot must obey orders given it by human beings except
where such orders would conflict with the first law.

Law III A robot must protect its own existence as long as such
protection does not conflict with the first or second law.

—Those are the “Three Laws of Robotics” by Isaac Asimov

To be able to play AMiroSOT — which is the test environment for this thesis — autonomous
mobile robots according to the rules are needed. A mobile robot is capable to move in a given
environment. It has locomotion, optional sensors, and energy resources on board. It can com-
municate with a host to receive movement commands and send back sensor information. To
be autonomous, this robot also has to have a processing unit on board, and it has to be
equipped with sensors. This unit helps to transform the sensor data into a world view. The
robot now can calculate strategic decisions on how to fulfill its tasks which are predefined or
given by an operator online. The communication with the operator can be realized with radio
transmissions, but also infrared and other vision-based systems like gestures. Based upon
the strategic decisions, motion paths are planned. Through sensor feedback the execution of
theses paths is monitored. For cooperative behavior with other robots, wireless communica-
tion is needed. Through this communication channel, the robots exchange sensor information
and strategic decisions. This chapter gives a basic overview about the requirements and the
components of an autonomous mobile robot for AMiroSOT.

13

14 CHAPTER 3. AUTONOMOUS MOBILE ROBOTS FOR AMIROSOT

“An autonomous agent is a system situated within and a part of an environ-
ment that senses that environment and acts on it, over time, in pursuit of its own
agenda and so as to effect what it senses in the future.” [FG97]

A robot is a real world agent. Thus, the term “agent” can be replaced by “robot” in the
above given definition. Figure 3.1 translates this definition into a basic work flow. Through
the sensors information about the world is perceived. This data has to be transformed into
information processable by the further units. After the strategic decisions have been made,
the actions which are necessary to fulfill these decisions are selected. Finally, the robot
influences the environment by executing the actions using its actuators.

Figure 3.1. Basic Concept for an Autonomous Mobile Robot.

In AMiroSOT exists one further restriction to this definition of autonomy. During game-
play, the robot is only allowed to communicate with its team mates. The communication
with the host computer is only allowed to transmit referee commands to the robots.

The chassis, power supply, actuators, and processors will be handled in the hardware
section. Next, a short overview about sensors will be given. After some fundamental issues
about communication are raised, different software architectures are introduced.

3.1 Hardware

The fast and sometimes rough play demands a strong and stable chassis. It is the platform
where everything else is mounted. The occupied area should not exceed 7.5×7.5 cm2. For
higher stability in fast turns, heavy elements like motors and battery packages are mounted
as low as possible.

At the front and at the back, the chassis has to have a special gear to be able to lead the
ball. The small size allows no additional shooting device for additional ball handling.

3.2. SENSORS 15

Due to the high speed of the game, a two-wheeled locomotion driven by two motors is
preferable. Three- and four-wheel systems would have too small wheel diameters. The
resulting loss of momentum is a serious disadvantage in the competition. Within the small
game fields, acceleration is as important as maximum speed.

The battery package has to be designed to be able to serve the motors, the sensors, and
the processors for at least one half-time of the game. Furthermore, to fulfill the requirement
to be mounted as low as possible, it has to be small. Ideally, it is positioned at a place where
it is easily exchangeable.

Part of the hardware is also at least one processor with enough ports to read all sensor
information and to control the wheel encoders. Preferably, instead of being directly connected
to the processor a bus system is used to communicate with the sensors and actuators. For
processing video data an additional processor is recommended.

Finally, a radio communication system has to be implemented. This enables communica-
tion among the robots. Furthermore, tasks can be sent to the robot by an operator.

3.2 Sensors

For autonomous navigation and strategy planning, the robot needs to perceive its envi-
ronment through different sensors. Like humans, who have five senses, the robot then builds
upon these various sensor readings its view about the world. The following list gives a short
overview about possible sensors for AMiroSOT.

Odometry Odometry is position estimation during wheeled navigation; e.g. by using wheel
rotation encoders as data source (see [Wik06c]). This position estimation system —or
relative movement estimation system — is treated as a sensor.

Distance Typical types of distance sensors are infrared and supersonic. Their task is either
to provide the distance to the next obstacle or a boolean signal if an obstacle is closer
than a given threshold. To cope with faulty distance sensor readings, out-of-range
errors, and unexpected objects, probabilistic algorithms to determine whether the value
returned should be rejected or not have to be used (see [FT06] Chapter 6).

Vision The task of a vision system is to generate out of the perceived images abstract
information about the environment — the so called landmarks, other robots, etc. Omni-
vision camera systems1 are not allowed in AMiroSOT.

Tactile These types of sensors are providing boolean information if a sensor has physical
contact with an obstacle (e.g. bump sensor).

1Omni-vision camera systems are single cameras looking skywards with a mirror mounted at the top.

Through this mirror, the camera produces spherical images. After post-processing, the outcome of this system

is a 360◦panoramic view.

16 CHAPTER 3. AUTONOMOUS MOBILE ROBOTS FOR AMIROSOT

3.3 Communication

As mentioned above, one purpose of communication is to cooperate with other robots or
to communicate with the operator. The other purpose is to exchange data internally between
different units — the sensors have to send data to the processor, the processor has to send
motion commands to the wheel encoders. Thus, two different types of communication exist:
internal and external.

Internal Internal communication is typically wired, reliable, and has a high transmission
rate. The transmitted data is predictable (in the sense of what type of data is trans-
mitted at what time). If there is only one processor and no sensor bus, internal com-
munication is not needed.

External The radio controller mentioned in “Hardware” (Section 3.1) is used for external
communication. Because this communication is done via radio, it is neither reliable
nor fast (at least much slower than the internal communication). The type of data
needed to coordinate strategic decisions with other robots is usually determined when
the corresponding event occurs. The point of time when this event occurs and a message
has to be sent may be unpredictable. Thus, external communication is asynchronous.

As a result, internal and external communication are recommending different types of
communication. Due to the a priori predictability of the internally transmitted data, a
data-oriented time triggered protocol is preferable. On the other hand, the event triggered
communication pattern of the external communication suggests a message-oriented protocol.

Data-oriented In data-oriented communication predefined data packages are transmitted
at predefined points in time. This transmission also takes place if the values of the data
packages have not changed.

A priori to using data-oriented communication, the data which has to be transmitted
(typically a reference to a variable) and the time slot in the communication cycle when
it has to be transmitted have to be specified. The initialization establishes a stateful
communication channel between all participants. Each participant is provided with
the a priori known time schedule containing the information when which data will be
updated. To keep these updates synchronous, precautions to guarantee a global time
base have to be established.

Message-oriented A communication is initialized if a new message has to be sent. The
system has to wait until the communication channel is free for transmission. If a colli-
sion occurs during the transmission, the process has to be restarted until the message
has been successfully transmitted. This method of communication is asynchronous
and stateless (at least at the data transmission level). Usually, no guarantees for the
maximum duration until successful delivery of the message can be given.

3.4. SOFTWARE ARCHITECTURES 17

The main differences of these two methods are the higher payload of the message-oriented
protocol (messages are only transmitted if they contain new data) and the guaranteed trans-
mission of data in the data-oriented protocol. Chapter 5 explains why data-oriented trans-
mission is preferable for communication— localization can only be done with data from the
same time base. This time base cannot be guaranteed with the message-oriented protocol.

3.4 Software Architectures

Software architectures for robot soccer range from simple monolithic systems to sophis-
ticated layered architectures. The German national team (GermanTeam) participating in
the RoboCup Sony Aibo league has such a layered approach [RBD+05]. The qualification
matches prior to the world championships do not select the best team. Instead, they select the
best approach for a module. After integration tests, they have the best solutions of all teams
combined into one very competitive solution. GermanTeam won the world championships in
2004 and 2005.

The rules for AMiroSOT give no restrictions regarding the software architecture a robot can
be equipped with. This section gives a general introduction into architectures for autonomous
robots and a short overview about two selected architectures: the Three-Layer architecture
and CLARAty.

3.4.1 Overview

According to [Gat97], the need for a layered software architecture for autonomous mobile
robots was recognized in the early 1980’s. Separation between robot control and logic resulted
in better software designs and an easier decomposition of complex tasks. Additionally, it
resulted in the ability to reuse the logic for several robots or one robot working as a platform
for different tasks without the need of reprogramming all the low-level robot control units.

The reasons for introducing layered software architectures are ranging from decomposing
a complex task to creating robot-independent reusable software. Each new research project
introduces new (more or less different) architectures and it is very likely that an ideal general
solution will never be found.

3.4.2 Three-Layer Architecture

Three-Layer architectures as proposed in [Gat97] are divided vertically into the control
layer, the sequencer layer, and the deliberative layer (see Table 3.1). The control layer is the
lowest layer and the deliberative layer the highest. The sequence layer is located between
them.

The flow of information is strictly upwards and the flow of commands —the other way
round— strictly downwards. Each layer is able to operate independently of the layers atop
of it. Due to the flow of information, commands, and the nature of each layer, during one

18 CHAPTER 3. AUTONOMOUS MOBILE ROBOTS FOR AMIROSOT

Table 3.1. Three-Layers Architecture
Layer Task Constraints

Deliberative Costly computations like long-term
path planning and other strategic
decisions.

All time-consuming algorithms
should be placed here.

Sequence Long term goals provided by the de-
liberative layer are decomposed into
a set of primitive behaviors of the
control layer.

Prediction should only be made
in context of how to reach the
long term goals.

Control Reactive control algorithms or prim-
itive behaviors like wall-following,
moving to a target, avoiding colli-
sion, etc.

Internal states should be avoided
whenever possible and— if un-
avoidable — expire after a short
period.

run of the deliberative layer, several rounds of the sequence layer and many rounds of the
control layer are processed.

“By the standards of AI, the deliberative layer was trivial and uninteresting,
which is precisely what makes the three-layer architecture non-trivial and very
interesting.” [Gat97]

As shown in [Gat97], each layer should be simple and easy to handle. Complex behavior
emerges from the combination of them.

A problem of this approach is that it is up to the system designer which functionality
accounts to which layer. This results usually in the fact that one of the three layers is
over-dominant. Further, several modules which are logically located at the control layer are
duplicated in the deliberative layer due to algorithmic needs [VNE+01].

3.4.3 CLARAty

Other than the Three-Layer architecture, CLARAty2 [NWB+03] is a two dimensional ap-
proach. One dimension— similarly to the Three-Layer architecture — is divided into a func-
tional and a decision layer. The functional layer matches the control layer, and the decision
layer is a combination of the sequence and the deliberation layer. The second dimension is
the granularity of the software modules.

The granularity describes the partonomy (part-whole-relationship) of a robot. The lower
the granularity, the more detailed access to the modules is possible (e.g. robot arm vs. joint
motor). According to [VNE+01], the concept of granularity is inspired by the object oriented
programming concept. In Figure 3.2 an additional dimension called abstraction has been

2Coupled Layer Architecture for Robotic Autonomy —CLARAty

3.4. SOFTWARE ARCHITECTURES 19

added to visualize the generalization structure of the elements of the functional layer. For
example, the arm of the robot Rover is a specialization of the class Appendage which is
itself specialized from the Coordinated System class. Atop of these classes, as the top
generalization, resides the class Robot. At the granularity axis is the decomposition of the
robot into its parts. In Three-Layer approaches, this granularity is distributed to the different
layers, although the distributed elements originally belonged to the same layer.

Figure 3.2. Granularity in CLARAty [VNE+01]

Next to these principal design issues, special care was taken during design to keep the
CLARAty platform independent and reusable. Robot projects based upon CLARAty have
to write their own hardware interfaces. For higher level functionality, existing code can be
reused (without any adaption). This also simplifies the use of third party software modules.

Functional Layer The functional layer (Figure 3.3(a)) is a hardware abstraction and pro-
vides procedural robot control methods in different levels of granularity— e.g. move
ahead, turn left/right, move to position, and move to position as fast as possible. This
granularity is reached through an object oriented inspired approach. The highest level
of granularity could be represented by the robot. The robot is then decomposed into
smaller elements like locomotor and manipulator. These are themselves divided into
their various parts. Finally, the direct motor control level is the one with the lowest
granularity.

20 CHAPTER 3. AUTONOMOUS MOBILE ROBOTS FOR AMIROSOT

Other features are decoupling system limitations from algorithmic limitations, which
enables the use of general algorithms and the separation between behavioral definitions
and their implementation. The general algorithms can be replaced, if they are inefficient
or obsolete, through newly added hardware. Each unit in the functional layer can also
provide information about its energy consumption for certain actions. For simulation
purposes, a unit gives feedback about the estimated outcome of the demanded action,
without really executing it.

Decision Layer The decision layer (Figure 3.3(b)) plans, schedules and carries out the
decisions resulting from planning. The decision layer is divided into two main areas:
the goal oriented area and the planning oriented area. Goals are modeled by the goal
net located in the mission planning space. This net realizes the break down of large
goals into their intermediate goals. In CLARAty, a goal is a constraint like ’a joint
angle should not exceed 30◦’ [VNE+01]. Inside the robot planning space are the task.
A task is a set of parallel of sequential activities which specify what should be done
(e.g. ’the joint should be at 20◦’).

In the decision layer, the granularity is the decomposition of tasks into subtasks. These
subtasks may belong to several tasks.

(a) Functional Layer (b) Decision Layer

Figure 3.3. CLARAty Layers [VNE+01]

The interaction between the functional layer and the decision layer is designed as a client-
server model with the latter acting as client [NWB+03]. The decision layer selects appropriate
actions from the functional layer at different levels of granularity. Dependent on the algo-
rithmic needs, a robot arm can be directed either by providing target coordinates or by

3.4. SOFTWARE ARCHITECTURES 21

controlling the joint motors directly. In Figure 3.4, a sequence of goals and tasks leads to a
terminal state. This state represents a tasks which accesses the appropriate function in the
lower level. This function is decomposed until the finest granularity is reached. Finally, the
such found functions are accessing the hardware. In Figure 3.4 is the resulting set of goals,
states, and functions marked green.

Figure 3.4. The Decision Layer Interacting with the Functional Layer at Different Levels

of Granularity [VNE+01].

As an additional benefit, the CLARAty project has developed a simulator where the robot
platform can be modeled in 3D. This helps — for example — in developing and optimizing
of complex leg movements of hexapods (six legged robots), which are usually built after the
model of insects.

CLARAty has been successfully implemented and tested by NASA. It has been used for
the development of several rovers (Rocky 7, Rocky 8, K9, and FIDO) and for a Mars mission
[NWB+03, SHP+03].

22 CHAPTER 3. AUTONOMOUS MOBILE ROBOTS FOR AMIROSOT

3.5 Summary

This chapter has shown some basic requirements and concepts for certain autonomous
mobile robots. To fit the rough world of robot soccer and the strict rules of AMiroSOT, a
robot has to be compact, robust, and fast. Further, to be independent, it has to be equipped
with a processor, an energy source, and sensors. To be able to cooperate with its teammates,
a radio communication module has to be provided.

4
World Model Repository

Man is the microcosm: I am my world.

—Ludwig Wittgenstein

The World is its own best model [Bro91]1. Obviously, the world is best represented by itself
containing every bit of information naturally — why do we need an abstracted representation?
First, the world does not store its history— if we want to find out about e.g. the preferred
attack situation of our opponents, we need a history of their former positions and actions.
Second, sensor data is only limited liable — thus, for reducing the influences of measurement
errors, we need algorithms like Kalman filter or particle filter (Chapter 5 Localization). Third,
information which is exchanged among the team mates has to be processed and stored. And
fourth, such an abstraction is needed to establish consistency of information for every module.
As a result, a module is needed where information is processed and stored— the world model
repository (WMR).

World Model Repository A collection of data, which is either (in)directly observable or
generated by the robot or a-priori knowledge. The world model repository (WMR)
represents the state of the world as perceived by the robot.

This chapter gives an overview about the data stored in a WMR. This data can be classified
in two different ways: static vs. dynamic (Section 4.1), and categorized by content (Section
4.2).

1In the publication [Bro91], the sentence “The World is its own best model” never appears, although the

meaning of it fits with the content of the publication. However, many publications like [Gat97] are referring

to this publication using this sentence.

23

24 CHAPTER 4. WORLD MODEL REPOSITORY

4.1 Static vs. Dynamic Data

Depending on the application, the developer determines which information is based on
a-priori knowledge and, thus, static, and which information can change or be collected dur-
ing runtime, using e.g. sensor data, and is, thus, dynamic. Dynamic data, which does not
represent internal states (e.g. statistics calculated by the Decision Unit), has to be based on
symbols which are generated from data from the sensors of the robot.

The design decision which data to model static and which dynamic has great impact on
the performance and the possibilities of the robot, especially on the Decision Unit. Static
data is usually more reliable but cannot be corrected if the deviation from the reality is too
large. E.g. if the size of a playground is predefined with a width of one meter instead of three
meters, the wrong value will still be trusted. Hence, the data of the stereo vision system
will be rejected as out of bounds although it had been correct. Dynamic data can adapt to
wrongly perceived/defined data, but the data is of lower quality, and additional calculation
time is needed to process and store the perceived data.

Examples in the domain of robot soccer for static data are: maps; shape, color and number
of the robots; shape and color of the ball; special positions on the playground like free kick
point. The positions and the history of the positions of the robots and the ball are dynamic.

4.2 Categories of Data

Ideally, all data is stored in a generic way in the WMR. This includes environment maps,
objects, positions, histories, rules, tasks, goals, semantic information, etc. The downside is
an increase in complexity. Robot soccer data like rules, tasks, and strategic goals is better
stored implicitly in the strategic instruction set of the decision unit.

The WMR as used for robot soccer contains the following categories of data:

Environment Map A map of the room/playground. Environment maps are discussed in
Section 4.2.1.

Predefined Position The rules define several positions on the playground for special situ-
ations. E.g. the positions of the robots when a penalty kick is carried out.

Robot Each robot is represented by its shape, direction, and position. The direction and
the position are stored in a history to calculate speed, acceleration, and possible future
positions. For team mates (includes the robot itself), additional information like their
last action and their strategic role (e.g. striker, goalie) is stored.

Ball Shape, position and position history of the ball.

4.2.1 Environment Maps

Environment maps are used to store static information about the area like walls or doors.
Sometimes, also moving objects are included in the representation (e.g. occupancy grids).

4.2. CATEGORIES OF DATA 25

The environment— e.g. an office (Figure 4.1(a)) —can be represented using either topological
maps (Figure 4.1(b)) or metrical maps which are divided into: (1) geometrical maps (Figure
4.1(c)), and (2) grid maps (Figure 4.1(d)).

(a) Office (b) Topological Representation

(c) Geometrical Representation (d) Grid Representation

Figure 4.1. An Office Map and Its Different Types of Representation.

Metric maps capture the geometric properties of the environment and store the location
in a set of coordinates in cartesian space. Topological maps describe the connectivity of
different places ([Thr02b] and [Bai02]). Thus, the properties of topological and metric maps
are complementary.

Topological Maps

“Topological representations aim at representing environments with graph-like
structures, where nodes correspond to “something distinct” and edges represent
an adjacency relationship between nodes.” [CLH+05]

In robotics, this broad definition is usually applied to generate roadmaps of the environ-
ment. As shown in Figure 4.1(b), the rooms are the nodes and the edges are passages between
them. Enriched with additional information like distance between the nodes, node type, and

26 CHAPTER 4. WORLD MODEL REPOSITORY

direction to the node, these roadmaps can be used for navigation and inter-room path plan-
ning. For intra-room path planning, the nodes have to store additional information about
the shape of the room (see Section 4.2.1).

While roadmaps are easy to use, they are difficult to generate automatically. The problem
is to define what a room is (e.g. is this just a cupboard or a passage) and to detect cycles.
If the robot should generate the map by itself, and the concept of rooms is not needed, the
generalized Voronoi graph (GVD) is the better choice.

A Voronoi diagram is a surface divided into an arbitrary number of sections each containing
a point [Wik06d]. The sections are generated in such a manner that each point of the border
between two adjacent sections is at the same distance to the two points in the sections. The
GVD [CWEAB00] is constructed similarly. Here, the points are not points, but the outer
hull of obstacles like walls. The graph is drawn in such a manner that it is equidistant
to its tangential borders. If the graph is divided (e.g. in case of a crossroad), a “virtual”
border is risen between the two resulting graphs. The points of these graphs are again placed
in equidistance between the real borders and the virtual border. A robot equipped with
distance sensors to the front and to the side can easily build this graph automatically to map
the environment. The resulting map (Figure 4.2) is ideal for path planning, due to the fact
that the graph can directly be used as a path.

Figure 4.2. Generalized Voronoi Graph. [CWEAB00]

Geometric Maps

Geometric maps — also called feature-based maps or landmark maps — describe the environ-
ment using geometric primitives like points, lines, and circles or using polygons (see Figure
4.1(c)). To auto-generate geometric primitives out of sensor data is a difficult and time-
consuming task. Thereafter, these maps are usually predefined by humans. Another ap-
proach to use geometric maps to represent dynamic/unknown environments is to connect

4.2. CATEGORIES OF DATA 27

sensor readings with a pre-defined set of object types (see Section 6.2.3). These object types
can be represented in the map using primitives.

The advantage of geometric maps is that they are storage efficient. They can also be easily
converted into grid maps which will be discussed in the next section.

Cell Decompostion

The environment is divided into simple cells which have a physical meaning (e.g. occupied).
Other than topological maps which are abstract representations, cell decomposition represents
occupied/unoccupied areas within the chosen granularity in a geometrically exact way.

The simplest approach to define the cells is to use adjacent squares. Other, more complex
methods are trapezoidal decomposition where the area is divided into large trapezoids, and
morse decomposition where the cells can be of arbitrary shape (e.g. circular slices). Also the
areas defined by a GVD can be used. A more detailed explanation of these methods can be
found in [CLH+05].

Grid Maps The basic idea is a cell decomposition where the environment is divided into a
grid of similar quadratic cells (see Figure 4.1(d)). Each cell is either marked as occupied
or as free. An extension of the cell decomposition is the occupancy map [BFHS96]. Here
the cells are not marked with the boolean values occupied and free. They are marked
with the belief that it is occupied. The value ranges from 0 to 1, where 0 represents free
and 1 represents occupied. This makes the grid map more robust against sensor failures
and environment changes. Especially the problem of cell flickering2 can be avoided.

The implementation of grid maps is simple — a two dimensional array representing the
map storing at each array element the occupancy belief. The downside of this approach
is that for large areas either the array gets too large or the resolution of the cells is too
rough. Based upon the assumption that adjacent areas of the grid are marked with
the same value, hierarchical approaches like quadtrees help to reduce size and search
cycles.

Potential Field Map Similarly to grid maps, the area is divided into cells. But, other than
in grid maps — where the cells are filled with absolute values for the occupancy belief—
the potential field map stores a vector for each cell. This vector shows the gradient and
the direction towards the highest value of the eight surrounding cells. (see Figure 4.33).
The result is a 3D map where the peaks represent obstacles and the valleys unoccupied
areas. The downsides are the same as for grid maps, but the advantage is that robot

2In grid maps using boolean values for the cells, the belief whether a certain cell is occupied or not may vary

between the two extremes free and occupied due to sensor errors, self positioning imprecisions, and different

angles of view. The closer the belief is to the threshold above which the cell is marked as occupied, the more

likely it is that the state of the cell will change between the opposite values rapidly back and forth —thus,

making navigation more difficult.
3Here the direction of the vector is inverted— it points towards the “valleys”.

28 CHAPTER 4. WORLD MODEL REPOSITORY

navigation can be implemented very easily. The robot tries to reach its target without
“climbing to the top of the peaks”.

Figure 4.3. Potential Field. [RBD+05]

The potential field in Figure 4.3 not only uses the vectors to avoid collisions but also
to enforce strategically important areas. The robot is naturally attracted towards or
distracted from these areas during path planning. To avoid collisions with moving
objects, not only the area where the object is at the moment but also the predicted
position in the future is raised— the gradient of the vector is increased. After a strategic
evaluation of the situation, important areas are raised or leveled. The outcome is a
reduction of possible target positions and pathes. This results in a speed up for the
strategy unit.

Hybrid Approaches

Sometimes it is preferable to use different types of maps in one application. For the two
different tasks of calculating strategic decisions and short term path planning, two different
views of the world are advantageous. The strategic view should be reduced to a minimalistic
abstract model which is best represented by a geometric map. For short term planning (how
to reach the strategic position), detailed information about obstacles is needed. A potential
field map is capable of providing detailed information enriched with a plausibility grade for
this information.

In [YJ99], a combination between a grid-based map and a roadmap is proposed. Each room
is represented by its own grid and possible connection points (doors, passages, etc.). The
room grids are connected with transition graphs. The main advantages are the reduced size
of the actually used grid map and the ease of inter-room path planning. Only when moving
to another room, the next detailed map has to be loaded. The room transition graph itself is
very simple to implement and can be extended with the distances from one door to another in
one room to optimize inter-room path planning. When a robot maps the environment (Figure
4.4(a)), it collects the data in a large grid (Figure 4.4(b)) until enough data is collected to
recognize and distinguish between the rooms. The rooms are then stored in smaller grids,
and connections between the rooms are represented as graphs (Figure 4.4(c)).

4.3. SUMMARY 29

(a) Environment and

robot path.

(b) Grid Map (c) Hybrid Map

Figure 4.4. Hybrid Approach to Environment Maps. [YJ99]

4.3 Summary

The world model repository (WMR) is the module where all data representing the current
state and the history of the world is stored. This data can either be dynamic or static. In
the domain of autonomous robot soccer, the WMR contains an environment map, predefined
positions, all robots (the robot itself, the team mates, and the opponents), and the ball. The
map and the predefined positions are static. For dynamic data (robots and the ball), also a
history is stored.

Environment maps can be categorized into three groups:

Topological Maps —represent connections between distinct points in the world
(e.g. roadmap).

Geometric Maps —describe the world through an abstraction. This can be the position of
a landmark or a square representing the space occupied by a table or a chair.

Grid Maps — decompose the world into cells. Each cell stores the belief that it is occupied
by an obstacle.

Table 4.1 summarizes the main differences between the three basic types of environment
maps. Geometric maps and topological maps with attached distances store their values in
variables. Thereafter the precision of the predefined or measured values does not decline
through storage. In grid maps, the precision for these values is lower bounded by the grain
size of the grid. Along with the high precision comes the difficulty of building the map
autonomously. To be able to mark an obstacle precisely in a geometric map, it has first to be
fully measured, or — if dealing with landmarks — the type, the position, and the alignment
of the object has to be detected. For topological maps, additionally the relations between
the landmarks have to be determined. Due to the fact that grid maps only store the belief
that a cell is occupied, only the cells corresponding to the obstacle have to be found and

30 CHAPTER 4. WORLD MODEL REPOSITORY

marked. The downside of this easiness of construction is that no information why this cell
has been marked is stored. Thus, if faced with an update task, the map has to be rebuilt.
In topological and geometrical maps updates are easier. Once the perceived object has been
identified, it has to be associated with an already stored entity. Then the attributes of this
entity are updated.

Table 4.1. Comparison of the Environment Maps
Topological Geometric Grid

Precision n/a4 + −
Automatic Generation Difficulty + + −
Automatic Update Difficulty − − +

For robot soccer, geometrical maps are preferable. The world is a priori known. Robots
and the ball do not change their size or shape during game play. Thus, prior to the game,
the map can be generated, and during the game only position and alignment updates have
to be performed.

4Topological maps store links between distinct objects. These links are of boolean type. Thus, precision

of these connections cannot be expressed. Only the additional values like distance attached to the links may

have a precision.

5
Localization

In theory, there is no difference between theory and practice.
In practice, there is.

—Attributed to Yogi Berra and Jan L.A. van de Snepscheut

It is the mark of an instructed mind to rest satisfied with the
degree of precision which the nature of the subject admits and not
to seek exactness when only an approximation of the truth is possible.

—Aριστoτελης (Aristoteles), Nicomachean Ethics

The last two sections were about the sensors an autonomous robot is equipped with and
the types of maps that may be implemented in a world model repository. This section deals
with the problem of relating sensor readings to a position— i.e. localization.

A definition of localization which can be found in [Fox98] reads as follows:

Given A model of the environment such as a grid-based geometric description
of obstacles or a topological map of the environment.

Task Estimate the location of the robot within the environment based on ob-
servations. These observations typically consist of a mixture of odometric
information about the robot’s movements and information obtained from the
robot’s proximity sensors or cameras.

In this section, problems are presented which may occur while performing a localization
task. After introducing a taxonomy for localization algorithms, four different types of them —
linear least squares filter, Kalman filter, Markov localization, and particle filter —are dis-
cussed. They are ordered by their complexity (and by historic development). First the

31

32 CHAPTER 5. LOCALIZATION

simplest filter, the linear least squares filter, is described. Afterwards the Kalman filter and
its derivates are shown. Next, Markov localization is presented. Finally, the particle filter,
which is based upon the principles of the Markov localization, is explained. It is noteworthy
to mention that the Kalman filter can be used within a Markov localization or particle filter
algorithm as an extension to get better results. After all algorithms are discussed, they are
compared via a simulation example.

5.1 Problems

Localization could be as easy as this: collect all data, merge it, and figure out the perfect
position. Unfortunately, one is confronted with problems. These problems can be divided into
two groups. The first group consists of “fundamental problems”, which are due to restrictions
in hardware or stem from inherent computer science (complexity) limitations. The second
group can be roughly termed as “environmental conditions”, which are located in the “real
world” the robots have to interact with. In the following the diverse problems are sketched.

Fundamental problems are independent of the concrete applications. They formulate the
core problems of localization and are the same for all localization algorithms. The most
important fundamental problems are:

Unreliable sensor data Data measured by sensors is not reliable (e.g. reflection of ultra
sonic distance sensors).

Restricted field of view It is not possible to have a reliable complete round view with the
sensors — similar to the vision of humans. Note that even sensors like omni-vision have
uncovered areas.

Computation time Localization algorithms like Markov localization are computationally
complex. Hence, selecting the right algorithm for a given application is crucial.

Time base for sensor readings If two sensor readings are made at different local times,
they have to be integrated into the model sequentially by running the algorithm twice.
Alternative approaches to this problem can be found in [KFM02].

Frequency of sensor updates On the one hand, some algorithms like Kalman filter rely
on a fixed time interval between two sensor updates. On the other hand, for certain
tasks, some sensors like vision need too much time to be updated in each cycle along
with other sensors like odometry. Other algorithms — for example the particle filter —
are able to deal with optional sensor data.

Multi-hypotheses It is advantageous if several hypotheses for one estimation problem can
be followed until one hypothesis proved to be correct.

In contrast to the fundamental problems above, the environmental conditions are design
issues. For every problem it has to be decided in advance, whether the robot should be able

5.2. TAXONOMY OF POSITION ESTIMATION APPROACHES 33

to deal with it or not. If a robot is always started at the same position, e.g. the so-called
bootstrap problem (see below) needs not to be considered. Amongst others, environmental
conditions are:

Kidnapped robot problem The robot is arbitrarily replaced. It has to find out that it
has been replaced and thereafter performs a global relocation. [EM92]

Bootstrap problem Special case of the kidnapped robot problem where the robot is in-
formed that it has been replaced (especially after initialization). [EM92]

Moving objects If other robots are not detected as such, they may be handled as a wall
and thereafter produce a wrong position belief.

Changing environment Even with a priori known maps, the environment may change.
Unmovables, like walls, may be razed or newly constructed resulting in a different map.
Thus, map building is necessary for these environments. Map building and localization
are strongly related tasks. Therefore, in the literature the combination of both is
suggested— simultaneous localization and map building (SLAM) [FT06]. However,
map building is outside the scope of this work.

Note that these lists are by no means complete. They reflect the main issues dealt with in
literature.

5.2 Taxonomy of Position Estimation Approaches

To be able to compare localization algorithms, they have to be classified. At [Fox98], the
following taxonomy of position estimation approaches is introduced:

Local vs. global localization The majority of localization algorithms start at a known
position and add internal movement data (e.g. odometric sensor data) and external
environment data (e.g. distance sensors) to this position each cycle. If the robot is
replaced or the sensor data quality is too low, these algorithms are usually not able
to recover to a useful position estimation (Kidnapped robot problem). Members of
these so-called local approaches are the linear least squares estimator and the Kalman
filter. Robots equipped with global localization algorithms like Markov localization and
particle filter are able to localize themselves even under global uncertainty.

Static vs. dynamic environments In static environments, a once generated map can be
used for every succeeding run without loss of certainty. While this is sufficient for
indoor environments and robot soccer (changes are rare and the robot can be informed),
outdoor navigation is much more complex. In these dynamic environments, parking cars
could be mapped as unmovable obstacles in one run. The following day, all cars may
be relocated to random positions.

34 CHAPTER 5. LOCALIZATION

Passive vs. active approaches If the robot’s position estimation can only be done with
the incoming sensor data stream, we talk about passive localization approaches. Active
approaches enable the robot to influence this stream. Intentionally, moving towards
areas where the next possible landmark is expected increases the quality of the estima-
tion, regardless whether the landmark has been found or not. Active approaches are
usually coupled with global localization algorithms.

This chapter focuses on local and global localization, static environments, and passive
approaches. Active approaches have to be discussed along with the decision making. To be
able to cope with dynamic environments, map (re-)building is necessary. Both topics are not
within the scope of this work.

5.3 Linear Least Squares Filter

The linear least squares filter (LLSQ) is a simple state estimator. Based upon an obser-
vation history, outliers are muted. The dimensions of the state are not correlated— hence,
the x and y values of a position are treated independently resulting in the fact that a faulty
value in one dimension has no influence on the trustworthiness of its counterpart in the other
dimension. The advantage of the LLSQ for localization is that the interval between the posi-
tions does not have to be constant (c.f. Kalman filter). This filter can only be used for local
localization.

The position of a robot is represented by the state vector s (5.1). It consists of the two
values for x and y and the direction ϕ.

s = [x y ϕ]T (5.1)

For non-deterministic moving objects like robots, second order polynomial equations are
used to calculate the elements of the state vector at the time t (5.2, 5.3, 5.4). For the
ball and other non-self steered objects, a polynomial equation of first order can be used
(e.g. xt = a + bt).

xt = a + bt + ct2 (5.2)

yt = d + et + ft2 (5.3)

ϕt = g + ht + it2 (5.4)

Equation (5.5) can be used to calculate the three elements a, b, c. Looking at the matrix
notation (5.6) for this equation, the parts of the equation can be identified as the time matrix
A, the value history px for x, and the result vector rx containing a, b and c.

Arx = px (5.5)

5.3. LINEAR LEAST SQUARES FILTER 35



1 t0 t20
1 t1 t21
1 t2 t22
...

...
...

1 tn−1 t2n−1


 a

b

c

 =



x0

x1

x2

...
xn−1


(5.6)

rx = (AT A)−1AT px (5.7)

The transformed equation to calculate rx (5.7) can be adapted to calculate the result
vectors for y and ϕ by replacing the history-vector. The same time matrix A is used to
calculate all three result vectors.

The length n of the history defines the adaption rate of the estimation to new circumstances
(e.g. new primary direction). In combination with the degree of the polynomial equations
(compare (5.2)), the linear least squares filter can be configured to different tasks like high
vs. low update rate, fast vs. slow changing situations.

The values are stored with an increasing index for older measurements —hence, at t0, the
most recent measurement is stored whereas at tn the oldest one. To optimize the implemen-
tation, all elements of the state vector s should be stored in one matrix together with their
timestamp t. This results in the data matrix (5.8) as proposed by [Nov02, Section 5.3]. To
fulfil the demand that the first row has to be the most recent measurement, the matrix has
to be implemented as a FIFO (first in, first out) queue.



0 x0 y0 ϕ0

t1 x1 y1 ϕ1

t2 x2 y2 ϕ2

...
...

...
...

tn−1 xn−1 yn−1 ϕn−1


(5.8)

The resulting Algorithm 5.1 fills the data matrix with the incoming sensor updates in a
FIFO manner. As soon as enough sensor/position updates have been collected (as defined
by n), the position estimation can be calculated. Equations (5.9) and (5.10) are filling the
new values for time (in this case, the time step is constantly one) and sensor readings (s)
into the arrays. The old values are shifted by one position, resulting in the removal of the
oldest ones. If the array is filled, and thereafter the number of iterations j is equal or larger
than the size of the array n, the state can be estimated. The result vector rx is determined
using the matrix transformation described in (5.7) and the sensor reading history px (5.11).
The components of rx are then needed for the state estimation of xt (5.12). To enhance this
algorithm to represent more dimensions like y and ϕ in the state, the equations (5.10), (5.11),
and (5.12) have to be replicated for each dimension.

A detailed example of the LLSQ can be found at [Nov02, pages 50–52]. It shows the
localization for a MiroSOT system. At [WPF98, page 671 pp.] a detailed discussion of the
LLSQ and annotations regarding its implementation are given.

36 CHAPTER 5. LOCALIZATION

Algorithm 5.1 Linear Least Squares Algorithm
upon initialization do

j ← 1

An,3 ← (ai,k)n,3 =
h

1 0 0
i

i
end upon

upon sensor update s do

for i = 1 to n do

(ai)n ←

8><>:
h

1 0 0
i

if i = 1h
1 ai−1,2 + 1 (ai−1,2 + 1)2

i
otherwise

(5.9)

pxi ←

(
sx if i = 1

pxi−1 otherwise
(5.10)

end for

if j≥n then

rx ← (AT A)−1AT px (5.11)

xt ← a + bt + ct2 (5.12)

end if

j ← j + 1

end upon

5.4 Kalman Filter

The Kalman filter1 (KF) — or discrete Kalman filter— is a recursive state estimator, which
can deal with incomplete and noisy data. This filter was first published by R. E. Kalman
[Kal60] in 1960 and thereafter named after him. It is based upon the Hidden Markov Model
(HMM)2 and linear algebra. The algorithm is divided into two update phases: (a) mea-
surement update and (b) prediction update. In (a), new sensor values are used to refine the
prediction, whereas (b) predicts the new state estimation using the refined prediction of phase
(a). Based upon the HMM, the calculation is always time-constant and can be optimized.

Other than the linear least squares filter, which basically uses the mean of the last n obser-
vations to determine the new state, the Kalman filter generates and adapts a world transition
model. Over time, its state estimations are getting more robust against measurement outliers.

Traditionally, the KF is used for local localization problems. New works have shown
solutions how to add sensor readings of landmark sightings to the world model to enable global
localization [FT06]. A more complete discussion about the problems of global localization in
the domain of the KF can be found in [Neg03, page 122 pp.].

1Good introductions to the Kalman filter can be found in [WB95] and [May79, Chapter 1].
2The Hidden Markov Model is a discrete-time stochastic Markov process with unknown parameters. A

process based upon the Markov property is called Markov process. The Markov property basically means that

if the present is known, no additional information can be gained from the past.

5.4. KALMAN FILTER 37

5.4.1 Kalman Model

The model underlying the KF (see Figure 5.13) is divided into a visible and a hidden part.
The visible part consists of the system input and the sensor readings whereas the hidden part
contains the state vector, the transition models, etc. As can be seen, the estimated state x

at time k is based upon the previous state estimation xk−1 and the system input or control
vector uk. The sensor observation vector yk is derived out of the current state xk.

Figure 5.1. Model Underlying the Kalman Filter. [Wik06a]

xk = Axk−1 + Buk + wk (5.13)

yk = Cxk + vk (5.14)

Equations (5.13) and (5.14) are describing Figure 5.1. The first one defines the recursive
state estimator xk∈Rn, where n is the dimension of the state vector and k is the time index
representing the time in multiples of ∆t. It is a combination of the transition of the last
state, the system input, and noise. The transition from one state to the next is defined in
the matrix A, which has a dimension of n×n. Next, to determine the relation between the
system input uk and the state, the matrix B with a dimension of n×o is used. The constant
o gives the dimension of u, where u∈Ro. The system input uk represents for example motion
commands. Finally, to model uncertainty, a system noise wk is added. The noise is white
and with normal probability distribution p(w)∼N(0, Q).

Equation (5.14) gives the relation between the sensor observation vector yk (yk∈Rm, where
m is the dimension of the sensor vector) and the state vector xk. This relation is stored in
C. This matrix has a dimension of m×n. Similarly to wk, the variable vk adds system noise
to this relation. This noise is independent of w, but also white and with normal probability
distribution p(v)∼N(0, R).

3Circles are vectors, squares are matrices, and stars represent gaussian noise. The stars are attached with

the associated covariance matrix at their lower right side.

38 CHAPTER 5. LOCALIZATION

The matrices Q and R are the process and the measurement covariance matrices. Next to
their task to add system noise, they can be used to define a priori known relations between
e.g. sensor readings. Their dimensions are n×n for Q and m×m for R.

Note that the matrices A, B, C, Q, and R are considered constant in time for the discrete
Kalman filter. For other versions of the KF, like the extended Kalman filter, this may change.

5.4.2 Kalman Iteration Process

The model described above is the theoretical background for the iteration process, which
is the algorithm used for state estimation (see Algorithm 5.2). This algorithm is divided into
the “Time Update” or prediction phase, and the “Measurement Update” or correction phase
which are processed periodically (see Figure 5.2). In the first phase, the state is predicted
upon the current internal state of the filter. The second phase corrects this prediction using
the noisy measurements.

Figure 5.2. Kalman Iteration Process

Algorithm 5.2 Kalman Filter Algorithm
upon initialization do

k ← 0

end upon

upon sensor update y do

k ← k + 1

Time Update

x̂k ← Axk−1 + Buk (5.15)

P̂k ← APk−1A
T + Q (5.16)

Measurement Update

Kk ← P̂kCT

CP̂kCT + R
(5.17)

Pk ← (I −KkC)P̂k (5.18)

xk ← x̂k + Kk(yk − Cx̂k) (5.19)

end upon

For prediction of the estimation x̂ (Equation (5.15)) of the state vector x, only two compo-
nents of the original equation (compare with Equation (5.13)) are used: The state transition
and the system input. The intermediate error covariance matrix P̂ with the dimension n×n

5.4. KALMAN FILTER 39

describes the estimated accuracy of the state estimation. In Equation (5.16), the trustwor-
thiness of the prediction is lowered by the process covariance matrix Q.

The Kalman gain K (Equation (5.17)) describes the proportion between how much the
predicted state can be trusted, and up to which extent the new measurements have to be
integrated. Ideally, the predicted state is accurate enough that the noisy sensor data is not
needed for precise state estimation. P̂ is updated with the Kalman gain in Equation (5.18)
resulting in the error covariance matrix P . Thus, K and P are recursively influencing each
other. I is the identity matrix with dimension n×n. Finally, the new state x is obtained by
adding to the predicted state x̂ the deviation of the actual and the predicted measurement
in proportion to the Kalman gain (Equation (5.19)).

5.4.3 Example

The following example, which demonstrates the KF, is an adoption of the example found
in [Wen00b]4. The mean resistor value of a set of 100 resistors should be determined5. The
available measurement device has a standard deviation of 13 Ω, the quality of the mean value
should not exceed a standard deviation of 3 Ω.

An intuitive approach towards this problem is to build the average of all measured values.
Alternatively filtering techniques like KF can be used. While the average algorithm needs
no initial information, the KF needs to be well initialized. The parameters used for this
example are: A = [1], B = [0], C = [1], R =

[
132

]
, Q = [0], P0 =

[
32

]
, and x0 = [105]. The

values used for A, B, and C are simply describing an average algorithm implemented with
the KF. R and P0 are part of the specification (standard deviations for measurement device
and mean). For x0, a priori knowledge — also known as a good guess — is needed.

As can be seen in Figure 5.3, the KF reaches a stable value for mean earlier than the
average algorithm. Stable means in this case that the estimated values are staying within
the standard deviation around their average. Additionally, the filter is more robust against
outliers, especially during the first 20 steps.

Table 5.1 shows that both algorithms are returning good results for the standard deviation
of the mean value and both produce a minimum error of 0 Ω. The maximum error shows
the difference between the average algorithm and the KF best: while the first one produces
results even outside the standard deviation of the measurement device, the latter one is even
with its worst case almost inside the target area of ±3 Ω.

In Table 5.2, the results of 1000 runs of this example are shown. Similarly to the single
run experiment, the KF outperforms the average algorithm by filtering out the outliers. Data
analysis has shown that the average algorithm needs up to 60 measurements to stabilize while
the KF needs at most 15 steps.

4The series of publications [Wen00a], [Wen00b], [Wen00c], and [Wen00d] are a good introduction to the

Kalman filter in German.
5All 100 resistors are of perfect quality and have a value of 100 Ω.

40 CHAPTER 5. LOCALIZATION

Figure 5.3. Resistor Test Results

Table 5.1. Statistics for the Resistor Test Example
Max.Error Min.Error Avg.Error better than Sensor

Sensor data 34.4 0.0 10.9 0%

Average 16.7 0.0 1.9 94%

KF 3.1 0.0 0.9 94%

LLSQ 22.5 0.1 6.5 72%

Concluding, the KF and the average algorithm produce results which are within the given
range. The advantage of the KF lies in filtering out outliers and in an earlier stabilization of
the resulting value. It should be mentioned that, if the KF is initialized with a value for x0

far from the real value, the filter may not be able to produce a stable, correct result within
100 iterations, while the average filter recovers from bad initialization values.

The linear least squares filter has been added to this example to visualize the differences
between it and the KF. As can be seen in Figure 5.3, the LLSQ estimates the next value upon
the last three measurements. Thus, the LLSQ is sensitive towards value changes and value
change tendencies. As a result, no stable mean can be produced. If we take a completely

Table 5.2. Statistics after 1000 runs
Max.Error Min.Error Avg.Error better than Sensor

Sensor data 67.8 0.0 10.4 0%

Average 39.3 0.0 2.0 89%

KF 7.2 0.0 1.6 90%

LLSQ 39.3 0.0 5.6 75%

5.5. MARKOV LOCALIZATION 41

different example — non-linear robot path estimation— this characteristic produces better
results than the discrete KF, which can only slowly adopt to a new movement direction. For
dealing with the problem of non-linearity, the KF has to be extended.

5.4.4 Non-Linear Kalman Filters

To be able to use the KF in non-linear environments, the data has to be linearized using
methods like Taylor expansion. This linearization has to be calculated in each cycle, resulting
in a decrease of performance. The most common non-linear Kalman filters are the extended
Kalman filter (EKF) and the unscented Kalman filter. A short overview of the EKF is given
in this section.

Extended Kalman Filter

The matrices A, B, and C used in Equations (5.13) and (5.14) are constant over time for
the discrete case. The EKF replaces the linear transition model Axk + Buk and the linear
measurement model Cxk with the non-linear functions g and h (Equations (5.20) and (5.21)).
Thus, the resulting belief of the estimation is no longer represented by a gaussian distribution.

xk = g(uk, xk−1) + wk (5.20)

yk = h(xk) + vk (5.21)

In Algorithm 5.3— which is similar to Algorithm 5.2— the non-linearization of the matrices
A, B and C is done using Taylor approximation and Jacobians. The matrices A and B are
represented by the Jacobian Gk, and the matrix C by Hk.

5.5 Markov Localization

The linear least squares filter and the Kalman filter are only able to represent one state
estimation. If e.g. based upon the current sensor readings the robot can be at two different
positions but not in between, other approaches have to be used. An intuitive approach is
to use topological or grid maps of the environment as discussed in Section 4.2.1. For each
possible position, the possibility of the robot to be there is calculated based upon the previ-
ous distribution and the actual sensor readings. Finally, the area with the highest belief is
selected as estimated position. In case of global uncertainty —several not connected areas;
each area with a high possibility— the robot has to continue moving until the possibility for
all but one area have decreased, and, therefore, only one possible estimation of the robot
position remains. Like the Kalman filter, the Markov localization (ML) is based upon the
Markov assumption. Thus, all past information is already inside the model through recur-
sively applying the algorithm and sensor data on one set of locations.

In the resulting Algorithm 5.4, initially no position is known. Thereafter all locations have
a uniform belief (Equation (5.27)). In case the starting position is known, the initialization

42 CHAPTER 5. LOCALIZATION

Algorithm 5.3 Extended Kalman Filter Algorithm
upon initialization do

k ← 0

end upon

upon sensor update y do

k ← k + 1

Time Update

x̂k ← g(uk, xk−y) (5.22)

P̂k ← GkPk−1G
T
k + Qk (5.23)

Measurement Update

Kk ← P̂kHT
k

HkP̂kHT
k + R

(5.24)

Pk ← (I −KkHk)P̂k (5.25)

xk ← x̂k + Kk(yk − h(x̂k)) (5.26)

end upon

of the localization beliefs can be adopted to this a priori knowledge. In each cycle, the
location probabilities are updated. This is not only done using sensor readings but also —
as an extension to the intuitive approach— actions executed by the system. Equation (5.28)
applies the actions. E.g. if the robot moves one step right, all position estimations can be
moved accordingly. After the sensor inputs have been applied (Equation (5.29))6, all beliefs
have to be normalized7 (Equation (5.30)). The sum of the beliefs for each location has to be
1. The normalization step can be skipped if no new sensor inputs are available.

For each element that has to be considered for localization, another dimension is added
to the state space. Thus, for the typical case of x, y and ϕ and grid representation of the
locations, we have a three dimensional grid (see Figure 5.4).

For a soccer field of 2 by 2.5 meters2 and a resolution of 2 cm×2 cm×5◦, the resulting
array has 900,000 cells, each filled with the belief of the actual position. Even with optimiza-
tion techniques, the time needed to process this large array is problematic. As mentioned
above, the space can be reduced using topological maps, but this may not be possible for all
applications. Furthermore, even topological maps can get huge.

This localization method can easily be used not only to observe the self position, but also

6In case of distance sensors or landmark sightings, the belief P (s|`) in Equation (5.29) can be expressed

by Equation (5.31) [Fox98].

Pm(di|`) =
1

σ
√

2π
e
− (di−oi)

2

2σ2 (5.31)

Here di, denotes the measured distance with a sensor, which has a standard deviation of σ. The measured

distance is compared with the real distance oi at location ` to the next known obstacle.
7To avoid degeneration problems, the belief should be lower bounded to an ε which should be small enough

not to distort the result.

5.5. MARKOV LOCALIZATION 43

Algorithm 5.4 Markov Localization Algorithm
upon initialization do

for all locations ` do

Bel(L0 = `)← P (L0 = `) (5.27)

end for

end upon

upon update do

if action a is executed then

for all locations ` do

P (Lt|Lt−1, at−1)←
X
`′

P (Lt = `|Lt−1 = `′, a)Bel(Lt−1 = `′) (5.28)

end for

end if

if sensor input s is perceived then

for all locations ` do

Bel(Lt = `) ← P (s|`)P (Lt|Lt−1, at−1) (5.29)

Bel(Lt = `) ← Bel(Lt = `)

P (s|Lt)
(5.30)

end for

end if

end upon

Figure 5.4. Three-Dimensional Grid for Markov Localization

to observe several moving entities like the ball and other robots. Each area which is rated
with a high belief represents at least one of these entities. Thus, it is a powerful tool for
sensor data integration.

44 CHAPTER 5. LOCALIZATION

5.5.1 Example

The following example visualizes the Markov localization algorithm very well. It is taken
from [FBT99]. In this example, a robot moves along a hall way and has to determine its
position starting from global uncertainty.

First, the robot is initialized in the hallway with no information about its whereabout (Fig-
ure 5.5(a)). A priori knowledge like the floor plan has been provided. The robot immediately
senses a landmark— a door (Figure 5.5(b)). Applying these sensor readings to the Markov
algorithm, all positions which are not close to a door are rated with a very low belief. In
Figure 5.5(c), the robot starts moving to the right. Applying this action to the state space
results first in a shift to the right for all three possible positions, and second, due to the
uncertainty of the movement, the gaussian peaks are lowered and widened. Finally, the robot
senses a second door (Figure 5.5(d)). With this second landmark the global position of the
robot is known— no other than the second door has a door very close to its left.

(a) Global Uncertainty (b) One Door Sensed - Three Possibilities Left

(c) Movement Increases Global Uncertainty (d) Another Door Sensed - Self Position Found

Figure 5.5. Example for Markov Localization [FBT99].

5.6 Particle Filter

Like mentioned above, the Markov localization can only be optimized to some extent. For
larger environments, it is certain that either the precision or the calculation time is getting
problematic. To overcome this, the number of cells has to be reduced without deterioration of
the desired precision. The Particle filter— or Monte Carlo Localization (MCL) — replaces
the dense grid representation by a much lower number of particles. These particles are
state vectors representing the belief that the true location is exactly here. Applying various
techniques — like resampling — the desired goal of a high precision with a low number of cells
can be reached. Particle filters are state of the art in robotics for position estimation.

The basic concept for the algorithm is a Monte Carlo approximation with Sequential Im-
portance Sampling (SIS). Initially, random particles are generated and their weight is set
to the reciprocal value of the number of particles. In each cycle, the weight of a particle is
calculated by multiplying its old weight with the probability that this particle represents the

5.6. PARTICLE FILTER 45

real state regarding the newest sensor readings. After normalization of the weights, the real
state can be estimated using them.

The SIS step— multiplying the old weight with the new probability— leads to degenera-
tion. After several cycles, particles with a low probability are converging towards zero. Even
if the sensor readings suggest that one of these particles should increase its weight, the pre-
viously strong particles will override this and stay strongly weighted. Thus, once a degree
of certainty of the estimation has been reached, the model cannot change its estimation any
more.

One possibility to avoid this is to replace SIS with Sampling Importance Resampling (SIR).
Here, the weight of each particle is determined each round independently from the previous
one. After estimation of the state, a new set of particles is drawn from the actual set. This
new set is used as basis for the next cycle. The particles are drawn in such a way that more
important ones are more likely to be picked. Thus, areas with a high probability are gaining
more weight by replicating their particles, whereas areas with a low probability are thinning
out. Once an area has no particle left, another source for degeneration displays — due to the
lack of appropriate particles, local maxima will dominate the estimation.

With the introduction of reinjection— some particles are replaced by uniformly distributed
new ones —empty areas can be refilled regularly. The decision when and how many particles
should be replaced by these reinjected ones can be done in several ways. Usually, either a
fixed number of particles is reinjected each round, or, if the quality of the estimation is below
a threshold, reinjection is carried out8.

For additional reduction of the particles, several other methods like dynamically adopted
number of particles and Rao-Blackwellization (components with linear dynamics can be esti-
mated using the Kalman filter and feed-back into the particle filter) can be used. All of these
optimizations are always a tradeoff between additionally needed computation power and the
number of particles. The number for a given application should be selected carefully.

Algorithm 5.5 shows a classical particle filter with SIR as the only enhancement. During
initialization, all of the N particles are generated by distributing them uniformly over the
state space (Equation (5.32)). At the beginning of every cycle, the cycle index k is increased
and temporary particles x̃k

(i) are generated out of the state space xk under the conditions of
the particle from the previous cycle ˜xk−1

(i) and the command control9 uk (Equation (5.33)).
Using the actual sensor data yk, the weight w̃k

(i) for the particles is calculated in Equation
(5.34). In (5.36), the normalized weights of Equation (5.35) are used to calculate the state
estimation for xk under the condition of all previous sensor readings y1:k. As preparation for
the resampling step, all tuples

{
x̃k

(i), w̃k
(i)

}
have to be sorted in descending order with the

highest weight-value first. During resampling, N times a random number j is drawn in such

8Note that re-injecting particles decreases the quality of the estimation. If no counter measures are imple-

mented, after injection of the first set of particles, in every cycle more and more particles are replaced. This

results in a complete “breakdown” of the state estimation.
9See also Kalman filter Equation (5.13).

46 CHAPTER 5. LOCALIZATION

Algorithm 5.5 Particle Filter Algorithm
upon initialization do

// generate random particles

for all i ∈ N do

x
(i)
0 ∼p(x0) (5.32)

end for

k ← 0

end upon

upon sensor update y do

k ← k + 1

for all i ∈ N do

// generate particle

x̃k
(i) ∼ p

“
xk|uk, x

(i)
k−1

”
(5.33)

// calculate weight/probability of particle

w̃k
(i) ← p

“
yk|x̃k

(i)
”

(5.34)

end for

// normalize particle weights

for all i ∈ N do

w̃k
(i) ← w̃k

(i)

"
NX

j=1

w̃k
(i)

#−1

(5.35)

end for

// estimate current state

E(g(xk|y1:k))←
NX

j=1

g
“
x̃

(j)
k

”
w̃

(j)
k (5.36)

// resample particles

sort
n

x̃k
(i), w̃k

(i)
oN

i=1
such that w̃k

(i) > w̃k
(i+1)

for all i ∈ N do

draw j with probability w̃k 
x

(i)
k ,

1

N

ff
←

n
x̃k

(j), w̃k
(j)

o
(5.37)

end for

// re-inject random particles

for all i ∈ T do

replace x
(i)
k with new random particle

end for

end upon

5.7. COMPARISON EXPERIMENT 47

a way that tuples with a higher weight are preferred. For each j, the corresponding x̃k
(j)

is drawn and assigned to the final state x
(i)
k (Equation (5.37)). All final state vectors are

assigned with a uniform weight. To avoid local maxima, finally, T particles are replaced with
newly generated uniformly distributed ones. T is much smaller than N , typically 100 times
and more.

5.6.1 Example

This example is in principle similar to the example for the Markov localization (Section
5.5.1) but more complex. It is taken from [Thr02a]10. The robot knows its environment, but
does not know where it is at the moment of initialization.

The four subsequent pictures in Figure 5.6 show a robot, which operates in an office and
tries to perform a global self localization. In all pictures, the walls are grey, the robot is green
with a small blue line denoting the heading direction, the values of the sensor readings of
the 24 distance sensors11 are represented by the blue rays emitting from the robot, and the
multidimensional particles are represented by the red dots.

In Figure 5.6(a), the robot is freshly initialized with all particles uniformly distributed
over the area. After moving from one room to the hallway (Figure 5.6(b)), almost every
other possibility than being in the hallway has been eliminated. When moving into another
room in Figure 5.6(c), the robot has only two — but equally likely— possibilities for its global
location left. Only few particles to the right of the robot are disturbing the otherwise perfectly
estimated position (Figure 5.6(d)). Once a reliable position estimation has been found, it is
unlikely that more disturbances than shown in the last figure will occur.

5.7 Comparison Experiment

To compare all four localization algorithms handled in this chapter— linear least squares
algorithm, Kalman filter, Markov localization, and particle filter —a simulation has been
carried out during this work. The aim of this simulation is to track a single object, which is
observed by a non-moving single vision system, which is mounted above the area.

The object to be tracked is a robot, which travels at a constant speed in total two meters.
The outputs of the vision system are the absolute position coordinates x and y, but no
direction φ. The standard deviation of the perceived position is six centimeters from the real
position. The robot moves at constant speed, and during the simulation run, 100 data points
are collected. Thus, the robot travels 2 cm per time frame. The localization algorithms have
to estimate the real robot position using only the few unreliable sensor readings. Additional
data like odometry, multiple objects, and motion control have been left out intentionally.

10The example as an animation can be found at https://www.cs.washington.edu/ai/Mobile_Robotics/

projects/index.html
11The precision of these sensor readings is very low or even faulty. Some of the blue rays are cutting through

walls, others are too short without an obstacle present.

https://www.cs.washington.edu/ai/Mobile_Robotics/projects/index.html
https://www.cs.washington.edu/ai/Mobile_Robotics/projects/index.html

48 CHAPTER 5. LOCALIZATION

(a) Global Uncertainty (b) Reduction of Possibilities

(c) Two Positions Left (d) Real Position Found

Figure 5.6. Global Localization using Particle Filter [Thr02a]

5.7.1 Configuration

All localization methods use the algorithms described in this chapter. The following list
gives only information about the parameters and optional elements for each algorithm.

Linear Least Squares Algorithm Has a queue length of 5 steps. It uses a polynomial
equation of second order to approximate the position.

Kalman Filter The matrices are initialized as follows:

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , B =


0
0
0
0

 , C =

[
1 0 0 0
0 1 0 0

]
, P0 =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 ,

5.7. COMPARISON EXPERIMENT 49

Q =

[
0.14 0
0 0.14

]
, R =


3600 0 0 0

0 3600 0 0
0 0 3600 0
0 0 0 3600

 , u0 =
[

0
]
, x0 =


0
0
1
0


The state vector x consists of four components: x, y, δx, and δy. Thus, the state
transition matrix is filled in such a way that each cycle the new position is approximated
with the addition of the delta values to the previous position. The sensor matrix C

correlates the sensor readings to the first two elements of the state vector. To guarantee
a standard deviation of the estimation of not more than 3, the diagonal of P0 has been
set to this value. The error covariance matrix for the measurement has been set to the
variance of the vision sensor. Q has been determined using optimization experiments12.
The motion control u is set to 0 because no information about it is available. This is
also the reason why the KF and not the EKF has been used. For this setup, the EKF
would only be a more complex implementation of the KF with no gain of precision.

Markov Localization The grid is configured to have a cell size of 5×5 cm2. As action
update, the probability for the vicinity of the estimated position is increased. This is
done applying a multi-variant distribution with a σ much larger than the sensor error.

Particle Filter 1000 particles are used. Further, in each cycle, 10 particles are reinjected.
No action update is used.

5.7.2 Results and Interpretation

Figure 5.7 and Table 5.3 show error statistics for the path estimations depicted in Figure
5.8. The path given by the sensor (Figure 5.8(b)) is perceived by the vision system using
the real path of the robot (Figure 5.8(a)). Sensor data is also used as a benchmark for the
localization algorithms — only if such a localization is on average better than the perceived
sensor data, the effort is worth while.

Table 5.3. Statistics for the Comparison Experiment
Max.Error Min.Error Avg.Error better than Sensor

Sensor data 176.6 3.6 68.6 0%

LLSQ 100.1 9.5 51.1 67%

KF 126.6 13.2 57.7 54%

ML 189.9 28.9 110.8 22%

MCL 153.6 5.5 51.8 76%

12The simulation is implemented in AnyLogic. This simulation environment allows to define a function

which gives a quality measure for the simulation outcome. This function together with the information which

parameters are searched—and, thus, changeable— enables the system to carry out optimization experiments.

The outcomes are approximated optimal parameters for the algorithm.

50 CHAPTER 5. LOCALIZATION

Figure 5.7. Distance Between the Real Position and the Estimated Positions

Although the estimated path of the linear least squares algorithm moves sometimes back
and forth (see Figure 5.8(c)), the overall performance is reasonably well good. It is second
best compared to the benchmark, and in the category of the average distance to the real
position it is the best. Also, the maximum error is the lowest in the test.

The Kalman filter follows the real path even with these faulty sensor readings (Figure
5.8(d)). The delayed adaption to course changes is systematic. To overcome it, additional
information like motion commands is needed to apply the EKF. According to the table, the
KF is second worst in the overall performance, only outperforming the Markov localization.
But if the shape of the path is more important than the error distance to the real path, the
KF is the best choice.

The worst result in this test is the one of the Markov localization. While Figure 5.8(e)
suggests the same result interpretations like for KF, the error distances in Figure 5.7 are
showing that the estimated path is on average twice as bad as the other estimations. A closer
look at Figure 5.8(e) explains what happens — after the last estimated position, the path
is still far too short. Hence, the estimated positions were right, but a few cycles too late.
This is the result of the degeneration problem. As can be seen in Figure 5.9, a once selected
position (dark area) is still active, although the real position (red point) has moved on. An
estimated position tends to stay active the next cycle due to the normalization phase at the
end of each cycle. After a while, this “the winner takes it all”-situation is ended by a strong
difference between the real and the estimated position. Due to algorithmic racing conditions
and numeric imprecisions, three new areas claim to be the real position. Once again— the
winner takes it all — the area with the highest belief remains. After the resulting jump in
the estimation, the real position and the estimated position are matching again. The delay
in adapting to the real positions is the reason for the observed large error rate.

5.7. COMPARISON EXPERIMENT 51

(a) Real Robot Path (b) Sensor Data

(c) Linear Least Squares Filter (d) Kalman Filter

(e) Markov Localization (f) Particle Filter

Figure 5.8. Comparison of Localization Algorithms

52 CHAPTER 5. LOCALIZATION

Figure 5.9. Three Succeeding Steps in the Markov Localization.

Finally, the particle filter produces similar results as the LLSQ. If the state vector is
extended by the direction ϕ, the MCL and the other two algorithms would outperform LLSQ.
In LLSQ, each dimension is treated independently, while the other algorithms are putting
them into relation. Thus, if there is a main movement direction, sensor readings, which
suddenly change the direction to the opposite are more likely to be discarded.

Because no code optimizations were done, timings of the different algorithms are not shown
here. However, it can generally be said that the LLSQ is the fastest, shortly followed by the
KF. The MCL is slower by a power of ten but this number varies for different numbers of
particles. The slowest algorithm is the ML. Comparison experiments with more optimized
implementations can be found in [GBFK98] and [GF02].

In this setup, ML and KF were more robust against data outliers than LLSQ and particle
filter. This advantage was gained at the cost of flexibility towards course changes. LLSQ is
the winner of this simple setup, while the results of the MCL will increase in quality with
the introduction of further state dimensions, action update, and sensor readings.

5.8 Summary

The simulation experiment presented in Section 5.7 showed that there cannot be such a
thing as a general optimal localization algorithm. The choice for the best algorithm for a
given application depends on several parameters, like available performance, type of objects
to be tracked, robustness against outliers, or flexibility towards course changes. Table 5.4
gives an overview of the strengths and weaknesses of the different algorithms. It is based
upon the comparison table given at the end of the 8th chapter of [FT06].

The first five rows are showing clearly that the ability to deal with multiple hypotheses is
strongly related with the ability to handle raw data with any type of noise. Further, multiple
hypotheses are needed for global localization. Optional sensor data is necessary for the case
that the vision system needs 5 to 10 cycles to generate new landmarks. If the algorithm
demands all sensor data in every round, this either leads to a decrease of cycles to fit the
worst case, or the landmarks from the vision system have to be approximated if no new data
is available.

The next three rows are about efficiency. LLSQ, KF, and EKF are more efficient than ML
and MCL— they only store a small state space. ML with the largest state space also takes
longest, and the precision is always lower bounded to the cell size (see Section 4.2.1).

In the last two rows, robustness and flexibility are shown. Here, the EKF is at its best. KF

5.8. SUMMARY 53

Table 5.4. Comparison of the Localization Algorithms
LLSQ KF EKF ML MCL

Measurements landmarks landmarks landmarks raw raw

Noise Gaussian Gaussian Gaussian any any

Optional sensor inputs no no13 no13 yes yes

Global Localization no no13 no13 yes yes

Multi-Hypothesis no no13 no13 yes yes

Efficiency (time) ++ ++ + − +

Efficiency (memory) ++ ++ ++ − +

Resolution ++ ++ ++ − +

Robustness − ++ ++ − +

Flexibility ++ − + − +

and LLSQ are serving either the robustness or the flexibility, while ML has problems serving
any of the two.

In this overview, MCL is always good. Thus, for most applications, it is the algorithm of
choice.

13There are extensions for the KF and the EKF where the observed landmarks are handled as features

and for every feature the measurement update round is initialized. Thus, optional sensor readings and global

localization are then possible.

54 CHAPTER 5. LOCALIZATION

6
Tinyphoon

Figure 6.1. Tinyphoon2005 with an Orange Golf Ball.

The Tinyphoon robot (see Figure 6.1) is developed for the FIRA MiroSOT League and
the AMiroSOT League [NM04]. The ambitious goal, is to create a team of autonomously
cooperating soccer playing robots, each of them not larger than an area of 7.5×7.5 cm2. To
fulfill this goal each robot needs a camera system among other sensors, radio communication,
and a decision module. This chapter gives an overview about these components and the
modules of the robot.

Tinyphoon is permanently improved. The resulting versions differ more or less in every
component. Especially the used processors and the vision system are constantly equipped
with increasing capabilities. The Tinyphoon 2006 described in this work is the latest version
with a highly advanced vision system. While the hardware design has been finished —except
for some minor adaptions —the software is still work in progress. To assist the software
development of the different modules, simulators have been written.

55

56 CHAPTER 6. TINYPHOON

In this chapter, the Tinyphoon platform and its control concept [NRB+06] will be in-
troduced. To follow the concept of Chapter 3 — “Autonomous Mobile Robots”— , first the
hardware (Section 6.1) and the sensors (Section 6.2) are described. Afterwards, the software
architecture (Section 6.3) and the five step pipeline (Section 6.4) are introduced. For com-
munication, the real time data oriented communication system TTP/A is used. TTP/A and
the data exchanged will be shown in Section 6.5. Software tools for remote control of the
Tinyphoon are listed in Section 6.7. Finally, the simulators developed for Tinyphoon are
listed in Section 6.8.

6.1 Hardware

The robot is divided into different units — Vision Unit, Decision Unit, Motion Unit —
which are packed into a volume less than 7.5× 7.5× 9 cm3 (Figure 6.2). The small size and
the little weight (less than 450 g including batteries) enable the robot to reach a maximum
speed of 3.5 m/s with an acceleration of 5 m/s2. The size of the playgrounds used in robot
soccer are ranging from 1.5 × 1.3 m2 to 4.0 × 2.8 m2. Thus, a Tinyphoon robot can reach
almost every position in less than one second. During the design phase of the chassis, special
care was taken to keep the center of gravity as low as possible enabling a very high speed
when doing turns.

Figure 6.2. The Size and the Three Modular Units of Tinyphoon.

Vision Unit The Vision Unit consists of a Blackfin Dual Core Processor Module @ 2x600
MHz, a Blackfin Single Core Module @ 600 MHz, and a stereo vision camera capable of
30 fps. Additionally, this unit is built upon a turnable turret, which enables it to follow
the ball with the “eyes” while moving into a different direction. The outputs of the
Vision Unit are global self localization, the relative ball position, and relative positions
of visible robots. It accepts absolute head rotation coordinates.

6.2. SENSORS 57

Decision Unit The Decision Unit is a single board, which hosts a XSCALE 32-Bit Em-
bedded Platform @ 400 MHz and the Real-Time Wireless Interface (1 Mbps, 2.4 GHz)
for external communication purposes. Additionally, the I2C bus for sensor commu-
nication is placed here. This units hosts three different software modules: decision
making, world model repository, and communication. The Decision Unit collects all
sensor data — from the Vision Unit, Motion Unit, and other robots — fills them into
the world model repository and calculates the next action to be executed by the Motion
Unit.

Motion Unit The Motion Unit is the basic platform upon which the other two units reside.
It contains two wheels, each equipped with a single stage gear, two DC Motors with
magnetic Dual-Channel Encoder (512 Pulses/Rotation), a Li-Ion Rechargeable Battery
2.3 Ah @ 7.2 Vm, and the XC167 Automotive µController including a Blackfin Single
Core Co-Processor Module. Additionally, the Motion Unit also hosts the odometry
sensors: compass, gyro, acceleration (both directions). For fast ball detection, an
additional mono vision camera system is integrated in the chassis. This camera can take
pictures at a rate of 60 fps. The Motion Unit provides the local self localization and
accepts action commands from the Decision Unit which are executed using trajectories.

The units are connected via serial communication interfaces (UART) among each other.
The communication between the units is implemented with TTP/A (see Section 6.5). This
communication bus allows adding and removing of nodes. Due to this modular design, new
units can be added— e.g. the world model repository is moved from the Decision Unit to a
new unit equipped with its own processor to add more calculation power.

6.2 Sensors

To enable the Tinyphoon robot to navigate autonomously, it is equipped with a broad
range of sensors. They can be grouped into three categories: odometry, infrared, and vision.
The first category focuses on internal sensor data while the other two are collecting external
sensor data.

6.2.1 Odometry

As described in Section 3.2, an odometry sensor is not a distinct sensor, but a system
which integrates several sensors into one set of data — the relative movement. The Motion
Unit provides an interface to fetch this set of data in a manner indistinguishable from other
sensor readings.

Currently, the implemented approach to odometry is simple — the steps of the wheel en-
coders are integrated into ∆x, ∆y, and ∆α, where ∆α is derived from ∆x and ∆y. The
encoders have a resolution of 600 steps per turn; data is updated at a rate of 600 Hz.

58 CHAPTER 6. TINYPHOON

Because no other sensor-information is used, influences like slip and drift are ignored. Thus,
the resulting odometric data is of good quality only for slow movement and short distances.
For a planned trajectory of 2.6 m straight ahead, tests have shown an average positioning
error of ∆x = ±2 cm and ∆y = ±20 cm. The strong deviation in y-axis is the result of a bad
calibration for the slightly different diameters of the wheels1. With increased speed (more
than 1 m/s) and/or a lot of turns, the quality drops drastically. Thus, navigation should
trust solely on odometric data only for short distances.

From the sensors of the Motion Unit listed in Section 6.1, currently only the Dual-Channel
Encoders are used. While problems like variable size of wheels and mechanical differences
between left and right side can be solved with calibration, other problems like drift and slip
cannot be addressed, making other— more sophisticated —approaches necessary. In [NS04] a
trajectory controlling algorithm using all sensors is introduced. [SJ05] additionally introduces
neural networks to cope with slip and drift.

6.2.2 Infrared

Two short range and two long range infrared (IR) distance sensors are applied to the
Tinyphoon platform. The short range IR-sensors — Sharp GP2D120 — General Purpose Type
Distance Measuring Sensors — have a range from 4 cm to 30 cm and are mounted forward with
an azimuth of 15◦. Due to their position on the robot, the lower bound cannot be reached.
Their purpose is collision avoidance and ball detection. To support the localization process,
the long range IR-sensors —Sharp GP2Y0A02YK— Long Distance Measuring Sensors — are
mounted atop the turnable head providing them with relatively clear view to the borders.
They have a range from 20 cm to 150 cm. All IR-sensors are connected using the I2C bus
and have an update frequency of up to 10 kHz.

6.2.3 Vision

The vision system is divided into two parts: (1) a fast and simple mono-vision for ball
detection integrated into the body of the robot [MON05], and (2) the turnable stereo-vision
head for complex object detection [BAS+06, Bad07]. Both systems produce as output highly
abstracted symbols of detected objects and landmarks. These symbols consist of direction
and distance towards the object and the type of the object. For some landmarks, only the
direction and the type are available. The distance is then not available. This accounts for
partly observed landmarks or for objects which are too small to calculate a precise depth
information.

Mono-Vision

This system is optimized to recognize a circular shaped object in a predefined color. Thus,
edge detection (Figure 6.3(a)) can be reduced to a so called “short line detection” or SLD

1The wheels are designed equally. The diameter differences are manufacturing imprecisions.

6.2. SENSORS 59

where only lines with a pixel length of 20 to 50 are considered. Furthermore, only the
left and the upper neighbor pixel are used reducing the usually needed nine multiplications
and nine additions to two comparisons per pixel. Parallel to edge detection, the color blob
detection (Figure 6.3(b)) is executed. Next, the found short lines close to the detected blob
are combined during object detection. The resulting algorithm outputs the detected ball
position on the picture. Using a priori knowledge —the diameter of the ball and the hight of
the camera above the ground— the position of the ball on the playground can be calculated.

(a) Edge Detection (b) Blob Detection

Figure 6.3. Mono Vision Ball Detection Process [MON05]

The camera used provides a frame rate of up to 60 Hz, a resolution of 320x200 and an
opening angle of 55 degrees. As a controller, an Analog Devices BF533 Blackfin DSP with
600 MHz is used.

The mono-vision system is fast— up to 60 frames per second— and accurate in detection
of the presence and the direction to the ball. Its downside is its lack of accuracy in the
distance to the ball and its restriction to only circular or ball shaped objects.

Stereo-Vision

The stereo-vision system, which is mounted on a turnable head is designed to recognize a
broad range of objects. These objects are defined using primitive 3D objects like ball and
box. Parameters are size, height above floor, and color. As an output, this system produces
so called “sight-vectors”— 3D polar coordinates (α,β,r) — of actually observed objects and a
quality of the sighting2. The quality —which ranges from 0 to 1— is a combined representa-
tion of the accuracy that the primitive object has been detected, the accuracy that the color
is matching, and the correctness of the resulting position.

The detection process is divided into four steps. First, each of the two cameras captures
an image (Figure 6.4(a)) and does a mono-vision edge detection (Figure 6.4(b)) and blob
color segmentation (Figure 6.4(c)) for its own. The resulting two sets of edges are unified
into a feature based depth map. Using the feature based depth map, a 3D line detection is
carried out. Finally, the objects are detected with the 3D lines and the combined blob color
information (Figure 6.4(d)).

Opposite to the mono-vision, the stereo-vision produces precise positions3 of arbitrary
2Sighting is defined as “The act of catching sight of something, especially something unusual or searched

for.” In robotics it is used for the successfully recognized landmark through the vision system.
3The distance to partially observed objects may be—similar to mono-vision—wrong. This error is reduced

by using depth information gained from the stereo edge detection.

60 CHAPTER 6. TINYPHOON

(a) Captured Image (b) Edge Detection (c) Blob Detection (d) Combined Data

Figure 6.4. Stereo Vision Object Detection Process

objects, but it is relatively slow. The detection process is running at 5 Hz in full resolution
of 320× 200. To speed-up the process, an area of interest can be selected—e.g. 15 Hz for an
area of 200 × 100 pixels. Thus, the performance is tightly bound to the area of interest. It
should be mentioned that the number of predefined objects to be detected has no influence
on the performance.

Mono and stereo vision share the same problems: illumination, reflection due to flat per-
spective4, correct distance for partially observed objects, calibration of cameras, etc.

6.3 Software Architecture Used for Tinyphoon

The approach to the software architecture used for Tinyphoon is a scaled down CLARAty
architecture with an additional unit — the world model repository (WMR) —attached to the
Functional Layer and Decision— now called Reasoning— Layer (see Figure 6.5). Decision
making is implemented as a rule based fuzzy logic mechanism utilizing XML to store the
rules (see [ENW05] and [Web05]).

Figure 6.5. Software Architecture With World Model Repository

If the WMR is implemented as part of the Reasoning Layer— as suggested by the
CLARAty-architecture —several problems arise. The two layer client-server approach col-
lides with the requirement that the WMR can be utilized by the Reasoning Layer and the
Functional Layer. Thus, the WMR acts as its own server with both layers as its clients.

4Figure 6.4 is a good example for surface reflection. The blob detection produces two ball objects. Not

until the combination of 3D lines and the blob fields, the false positive ball can be eliminated—see boxed

orange area at the bottom of Figure 6.4(d).

6.4. FIVE STEP PIPELINE 61

The Reasoning Layer contains the Decision Unit. The Functional Layer contains two units:
the Vision Unit and the Motion Unit. The WMR is distributed to all of these three units
with the main part residing at the Decision Unit. The main part of the WMR consists of the
localization and the main data storage. The other two units are provided with the data they
need for operation.

The distribution of the units across several processors leads to the necessity of another
unit— the Communication Unit. It works as an abstraction layer to the communication
hardware described in Section 6.5. In combination with WMR, communication provides the
functionality needed for a shared world model.

6.4 Five Step Pipeline

The basic control concept drafted in Chapter 3 is parallelized in Tinyphoon using a five
step pipeline (Figure 6.6). At the beginning of each step, the newly generated data of the last
step is distributed among the units. The maximum time allowed to finish one step is 20 ms.
Thus, each component — even computationally expensive parts like decision making— has to
finish its processing within this time frame. If a component like the stereo vision cannot fulfill
this tight time corset, the algorithms have to be adapted towards the in that case optionally
available data.

Figure 6.6. Five Step Pipeline.

Step 1 — Raw sensor data collection and preparation The Motion Unit (see Section
6.1) calculates the relative movement (∆x, ∆y, and ∆α) using its odometric sensors.
These three values can be used to determine the local self localization.

The Vision Unit (see Section 6.1) detects the Ball using color matching, meanwhile the
stereo image is processed with an edge detection algorithm. Based upon the detected
edges other robots are extracted. This may be supported with information about the
position of other robots provided by the WMR (see Chapter 4). As a third task, the
Vision Unit calculates the global self localization.

Step 2 — Information exchange with other robots (optional) Each robot sends its
newly observed and prepared sensor data to its teammates.

Step 3 — Update WMR The WMR integrates all new data (own and shared) into its

62 CHAPTER 6. TINYPHOON

database and estimates the new position of every object— including currently not ob-
served objects — using e.g. Kalman filter or particle filter.

Step 4 — Strategy selection and distribution The Decision Unit calculates its next ac-
tion using a two step schema: first, a role — striker, defense, goal keeper, etc. — is
selected, second, the best action is chosen. This action command is transferred to the
Motion Unit.

Step 5 — Action Execution The selected action is executed using predefined trajectories.

Note that the time-span between fetching the sensor information and executing the re-
sponding action is four cycles. Thus, a delay of 80 ms between observation and reaction has
to be included into the calculations. For stereo vision based information, this gap is even
worse. A frame rate of 15 Hz leads to an additional delay of 40 ms, 120 ms in total. If
the delay is not considered, even under perfect localization the possible distance to the true
position is up to 28 cm (respectively 42 cm) for a maximum speed of 3.2 m/s.

6.5 Joint Communication Architecture

Communication in Tinyphoon has several duties. It has to transmit data from one unit to
another inside the robot, and it has to exchange data with other robots. Thus, communication
in Tinyphoon is split up into two different parts:

Internal Communication The task of the internal communication is to ensure the data
exchange between the units (Figure 6.7). All three hardware units of Tinyphoon (Vision
Unit, Decision Unit, and Motion Unit) are connected via a daisy-chain wire line. The
WMR resides at the Decision Unit and is masked by the internal communication. Thus,
it appears to all other units as an independent hardware. The internal communication
is responsible for passing over packages until the receiver has been reached and to
encapsulate logical units.

Figure 6.7. Communication Between the Units of One Robot.

6.6. HARDWARE TOOLS 63

External Communication External communication is needed for team coordination and
inter-robot data exchange purposes. The task of the external communication is to send
and transmit packages wirelessly to the team mates (Figure 6.8).

Figure 6.8. Wireless Communication Between Robots.

As already shown in Chapter 3, the internal communication and the external communica-
tion are tightly coupled for localization purposes. Internal and external communication are
working on different media (wireless and wire line) and are in principle asynchronous. In
Tinyphoon, this gap is covered by the implemented joint-communication architecture. This
architecture guarantees that internal and external communication are running synchronously
and are based upon the same schedule. Thus, for the software system, they appear as one
communication channel.

The concept used for the communication is the one from TTP/A [EI03]. This means that
the communication happens time triggered, time is synchronized implicitly through commu-
nication, and the values are transferred via an Internal File System (IFS). It is capsulated
in such a way that TTP/A can be exchanged easily by another communication protocol
(e.g. CAN). Because TTP/A provides no error correction, error correction has to be inte-
grated into the communication system. Each value has one distinct sender and one or more
receivers. Values, which are not updated in every round (e.g. global self position), need an
updated flag. This enables the system to distinguish between old data and data which has
been updated but has the same value as before. A more detailed explanation of the TTP/A
implementation for Tinyphoon can be found in [Kry06].

6.6 Hardware Tools

For communication with a host PC, a wireless USB dongle (Figure 6.9) is used. It enables
a PC to establish a radio communication with the Tinyphoon robots. This dongle provides
16 channels at a frequency of 2.4 GHz. The maximum payload per message is 28 bytes. It
is integrated into the system with a transparent UART mode — the application is not aware

64 CHAPTER 6. TINYPHOON

that the serial connection is interrupted. Two modes of operation are available: master and
slave. The master can send either point to point to a slave or broadcast a message to all
slaves. A slave can only communicate with the master. Thus, point to point communication
between slaves has to be implemented using the master as a relay station.

Figure 6.9. Wireless USB Dongle.

6.7 Software Tools

To control Tinyphoon remotely and to collect debugging information, three tools have been
developed. Each one focuses on a sub task. For some tasks like displaying vision, debugging
data tools are under development by the Tinyphoon team. It is planned to include all these
tools into one framework.

TinyControl has been developed to control the robots in a game of AMiroSOT. Each robot
can be applied with a strategic role (defender, goalie, or striker). During interruptions
the robots are informed about the referee decisions. These can be free ball for one team,
penalty kick, and others. All robots can be started and stopped with the large buttons
in the middle of the form. For configuration purposes, each robot can be assigned to a
position on the playground. Debugging information is displayed at the large field below
the form (see Figure 6.10(a)).

TinyTelemetry focuses on the motion unit of one robot. Thus, all sensor information,
which can be collected from the motion unit, is displayed here. This includes the
acceleration sensors, the odometry, the wheel encoders, and the compass. Furthermore,
motion commands can be directly entered using this tool (see Figure 6.10(b)).

TinyVisualizer is able to display all sensor information, the world model repository, and
data from the localization process. This is a powerful tool to debug the localization
or the strategy during game play. Even the particles of the particle filter (see Section
5.6) can be displayed, resulting in large amount of data, which has to be additionally
transmitted via radio communication (see Figure 6.10(c)).

RFModuleGUI can send and receive data as transmitted by the radio transmission module.

6.8. SIMULATORS 65

(a) TinyControl (b) TinyTelemetry (c) TinyVisualizer

Figure 6.10. Software Tools for Tinyphoon.

6.8 Simulators

To decouple the development of the hardware and the software, simulators were introduced
into the Tinyphoon project. With the advance of the Tinyphoon project, the requirements for
the simulators rose. First, only a platform for testing the decision was needed, and TinySim-
ulator was introduced. With the requirement to be able to test the strategy against other
teams, a wrapper for TinySimuroSOT was needed. After the split-up of the software into
several modules —TinyReasoning, TinyWorldModelRepository, trajectories for the Motion
Unit and new projects using the Tinyphoon as a hardware platform — the design of the new
simulator MPSim started.

TinySimulation is a simulator (see Figure 6.11(a)), which has been developed solely for test-
ing of the TinyReasoning module. It provides no communication between the robots,
and only one team is controlled via the module. The other team can be directed to
certain points to test basic strategic setups.

TinySimuroSOT (Figure 6.11(b)) is a wrapper class to be able to use TinyReasoning with
the official FIRA simulator SimuroSOT (implemented with Macromedia Director 3D).
While in TinySimulation the restricted vision is simulated (only objects, which are
within the vision cone are sensed), TinySimuroSOT provides all robot positions to the
TinyReasoning module. This is done because SimuroSOT uses the MiroSOT rules
where a centralized camera is placed above the playground, and each robot receives a
complete world view.

MPSim — Multi Purpose Simulator— is the successor of TinySimulator and still under
development by the Tinyphoon team. Other than TinySimulator, MPSim simulates
a robot/real world interface. Hence, MPSim provides the sensors and actuators of
the robot. Only information about objects within range and the speed of the wheels
are exchanged between the robot implementation and the simulator. This enables the
simulator to generate a more realistic environment using a physics engine. The rules
of the game are not hard coded like in the other two simulators. They can be adopted

66 CHAPTER 6. TINYPHOON

to many different applications like e.g. automotive applications, BubbleFamilyGame5,
billiard, and, of course, soccer.

(a) TinySimulation (b) TinySimuroSOT

Figure 6.11. Simulators for Tinyphoon.

6.9 Summary

Tinyphoon is a tiny robot specially designed for full autonomous activity. It is based upon
a solid two-wheeled motion unit which enables it to reach velocities of up to 3.5 m/s at an
acceleration of up to 5 m/s2. For navigation, a broad range of sensors is applied, especially the
turnable stereo-vision head for object detection should be mentioned. The Decision Unit is
equipped with a fast processor capable of combining the collected sensor data and calculating
strategic decisions. Furthermore, the robot can communicate wireless with other Tinyphoon
robots, thus, enabling the development of robot swarms.

5The ARS-PA project of ICT as a long-term goal plans to implement reasoning strategies into the

Tinyphoon robots based upon Sigmund Freuds psycho analysis (refer [DLP+06]). For this reason, a game

has been defined where populations (families) of creatures — so called Bubbles —have to deal with restricted

resources like energy (the BubbleFamilyGame). http://ars.ict.tuwien.ac.at

http://ars.ict.tuwien.ac.at

7
Software System Description

Thoughts without content are empty, intuitions without concepts are
blind.

— Immanuel Kant, Critique of Pure Reason

Beware of bugs in the above code; I have only proved it correct, not
tried it.

—Donald E. Knuth, (1977)

Figure 7.1(a) shows a typical situation in robot soccer. Each robot observes only a small
part of the playground. Possible contents of their field of view are one of the two goals,
team mates, opponents, and the ball. The goals can be used for localization purposes. They
are the only landmarks available. The other contents have to be stored in the World Model
Repository (WMR). When one of them is currently not visible — which is usually the case —
the current position has to be estimated based upon the stored observations.

(a) Real Situation (b) Observed by Robot

Figure 7.1. Standard Situation in Robot Soccer

67

68 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

As depicted in Figure 7.1(b), the robot of interest observes its own blue goal, the ball,
and parts of another robot. Thus —next to odometry and distance sensor information— one
landmark is available for self-localization. The partly observable robot can be identified as
an opponent. To identify which one of the three opponents it is, position estimations for all
of them are calculated. The observed robot is then assigned to the observation history with
the closest estimated position. Due to the fact that there is only one ball in the game, the
ball observation can easily be added to the ball observation history in the WMR.

The self-localization integrates sensor data from different sources. Odometry, compass, and
distance information is available in each cycle. The resulting position estimation is relatively
precise (inside a circle with a diameter of 10 centimeters around the real position). The game
field is symmetrical around two axis. It only differs in the coloring of the goals. Thus, the
estimated position can also be diagonally opposed. To be able to solve this ambiguity, vision
information is needed. The period between capturing an image containing a landmark and
the output of the relative position ranges from 20 to 100 milliseconds. This relative position
has to be unbiased by the estimated traveled track during this delay. Resulting, the vision
data is approximately at the same quality as the combination of the other three sensors, but
without it, a correct global localization would not be possible.

Concluding, the WMR has to contain at least a model of the playground (static data) and
the position history of all robots and the ball (dynamic data). The self-localization has to
be able to integrate the information of all four types of sensor (odometry, compass, distance
sensor, and vision) into an estimated position.

This chapter presents a software system. It is the implementation of such a geometric
WMR in combination with a self-localization module. As described earlier in this thesis,
the Tinyphoon robot has only limited resources. Dependent on the application, the software
system has to meet different requirements on complexity, speed, precision, and resource uti-
lization. These may range from cases where a simple world model with a fast and simple but
unprecise self-localization system is sufficient up to where a complex world model in combi-
nation with a precise self-localization system is necessary. To meet this, the software system
consists of two different implementations for the WMR and the self-localization module. The
first one —simple implementation— aims at fast algorithms which utilize little resources.
The second one — complex implementation— focuses on better self-localization results and a
more complex modeling of the environment. Both implementations share the same high-level
system design.

In the first section of this chapter, the high-level system design is defined (Section 7.1).
Next, the two different approaches to WMR are described (Section 7.2). Afterwards, the
self-localization systems and the used sensor models are described in Section 7.3. Finally, the
whole software system implementation is described in Section 7.4.

7.1. HIGH-LEVEL SYSTEM DESIGN 69

7.1 High-Level System Design

Three actors which use the WMR and the self-localization can be identified: Motion Unit,
Vision Unit, and Decision Unit. These units are identical to the units defined in Chapter 6.
The tasks of these actors are:

Motion Unit — provides sensor readings of the odometry, the compass, and the infrared
sensors. This actor requests no data from the WMR. The only interaction between
Motion Unit and WMR is that the Motion Unit stores data into the WMR.

Vision Unit — provides landmark sighting vectors and information about detected objects.
Requests information about the static world (e.g. shape of the playground) and the
current self position from the WMR.

Decision Unit — needs information about the static world, dynamic objects in this world,
and the current self position for decision making. No information is stored into the
WMR by this actor.

Figure 7.2 shows the use cases in which these actors participate in. The main system of
interest is the WMR. The localization system is a sub-system of WMR (see Chapter 4). The
WMR is the system where all sensor data from different units is stored. The localization
system combines all available sensor data into a position estimate. If the localization system
is placed elsewhere, this data has to be transferred from the WMR. Thus, the design decision
that the localization is a part of the WMR reduces the communication overhead. The five
identified use cases are:

Figure 7.2. Use Case Diagram

70 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

Process Sensor Data Raw sensor data information has to be fed into the WMR. This
data can be odometric data, compass readings, infrared sensor distance readings, or
landmark sighting vectors. The actors Motion Unit and Vision Unit participate in this
use case.

Store Dynamic World Information The vision system is able to detect dynamic objects
like robots or the ball directly. This data has only to be stored by the WMR. No further
processing is needed. The Vision Unit participates in this use case.

Fetch Static World Information Static information about the world (e.g. shape and po-
sition of landmarks, number of robots per team) is needed for two tasks: detection of
landmarks through the vision system and for decision making. Thus, Vision Unit and
Decision Unit participate in this use case.

Fetch Dynamic World Information For strategic assessments of a situation information
about the position of all dynamic objects is needed. The Decision Unit participates in
this use case.

Get Current Self Position Similarly to the dynamic world information, the current self
position is important for situation assessment. Furthermore, this information helps in
identifying landmarks more precisely. The two actors Decision Unit and Vision Unit
participate in this use case.

The objects of the problem domain in the real world are shown in Figure 7.3. The depicted
object-oriented analysis (OOA) diagram represents the structural part of a requirements
model. It defines the problem which has to be solved by the software [Kai99]. The domain of
robot soccer contains a Ball-A, the Playground-A, two goals (Goal-A), and soccer robots.

The attribute Color of the class Ball-A denotes of course the color of the ball. According
to the rules, an orange ball is used.

Figure 7.3. OOA Class Diagram of the Objects of the Problem Domain

7.1. HIGH-LEVEL SYSTEM DESIGN 71

The soccer robots are grouped into the team mates and the opponents. The object
TeamMate-A represents every soccer robot of the robots own team — the robot itself is also a
member of the group of team mates. Each soccer robot of the opposing team is represented
by an Opponent-A object. While the number of balls in a game of AMiroSOT is limited to
one, the number of soccer robots per team may vary from one to up to eleven soccer robots.
During training and testing, one team may be completely absent. This varying number of
soccer robots is defined by the ’*’ for the associations between Playground-A and TeamMate-A

and Opponent-A in Figure 7.3. Thus, the design allows zero or more soccer robots per team.

The classes TeamMate and Opponent can be generalized to a SoccerRobot class. Thereafter,
common attributes are factored out to SoccerRobot. The attribute Color defines the team
color of a soccer robot. Possible team colors are red and green.

The two goals are areas inside the playground with a special meaning. Each team aims at
pushing the ball into the goal of the opponent to score. Further, the goals can be distinguished
from each other. The attribute Color of the class Goal models this distinction. One goal is
blue, the other yellow. Thus, they can be used for localization purposes. In AMiroSOT, the
borders are tall solid walls which isolate the soccer robots from the outside world. Thus, all
objects of interest reside inside the playground. Hence, the ball and the soccer robots are
always inside the playground.

As stated above, the simple and the complex implementation share the same high-level sys-
tem design. Thus, before showing their design in detail, this high-level design is described,
see Figure 7.4. According to [Kai99], “an OOD1 model is a model of the proposed soft-
ware system’s internal construction.” It defines the solution to the above given problem by
describing the objects of the software system.

Figure 7.4. High-Level OOD Class Diagram of the WMR

1OOD—Object-oriented design

72 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

The dynamic entity team mate — TeamMate-A in the OOA model —which is represented
in the software system by the class TeamMate. Similarly, the opponent robot is represented by
the class Opponent (Opponent-A in the OOA model). As in the OOA model, TeamMate and
Opponent are generalized to the class SoccerRobot and is the software systems’ representation
of the class SoccerRobot-A. It has the attributes Position, Shape, and Color. The attribute
Color defines the team color and is the representation of the attribute Color in the OOA
model. Position denotes the location and heading of the robot on the playground. The
attribute Shape describes of course the shape of the robot.

The class Ball is the representation of the ball (Ball-A in the OOA model). It differs
from TeamMate and Opponent in the attribute Size instead of Shape. A ball in robot soccer
is always a sphere. Thus, only the radius of this sphere has to be given.

The playground Playground-A is in the software system represented by the class
Playground. The two goals from the OOA model (Goal-A) are now attributes of Playground.
An additional attribute is Border. This attribute enables the class to determine if a position
is inside or outside the playground. The design decision that the goals and the borders are
parts of the playground consequently results in the fact that every static world information
is modeled into the class Playground. Thus, an additional class has to be added which
stores the instances of the dynamic entity classes Ball, TeamMate, and Opponent. This is
done by the introduction of the class WMRView. As described in Chapter 4, a WMR stores
information about the static environment and the dynamic entities. Thereafter, WMRView not
only stores instances of the dynamic entity classes, furthermore it stores an instance of the
class Playground. For the realization of the use case “get current self position” a system
capable of transforming sensor readings into position estimations has to be added— the class
SelfLocalization (see Chapter 5). As described above, the localization is a part of the
WMR.

The sequence diagram in Figure 7.5 shows the interaction between the three actors and
the instantiated objects from the above described OOD. Further, it shows the interaction
between external actors and the software systems’ internal objects and the time-dependence
between all use cases but one. The use case “fetch static world information” occurs during
system configuration only. The interaction takes place during one operation cycle — from
receiving the odometric data to providing all relevant information to the Decision Unit.

The first five sequences initiated by the Motion Unit and the Vision Unit are in no particular
order. The raw sensor readings from the odometry and the sighting vector of the detected
landmark are stored into the localization for further processing. The positions of the detected
ball and the two robots are passed to their respective object to be stored in the position
history. All these sequences are represented in the use case diagram by the two use cases:
process sensor data and store dynamic world information.

The sequences initiated by the Decision Unit are the two use cases: fetch dynamic world
information and get current self position. First, the Decision Unit requests information about
the current self position. This information is provided by the localization which calculates

7.1. HIGH-LEVEL SYSTEM DESIGN 73

Figure 7.5. Sequence Diagram

74 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

it using the latest sensor information. The self position is stored to the history of the first
team mate. Team mate one represents the robot itself. Finally the self position is returned
to the Decision Unit. Next, information about all dynamic objects is requested. Thus, the
ball position history and the position histories of all team mates and opponents are polled.
All but one real world objects represented by their respective position history have already
been sighted. For the ones with at least one entry in the history, the last known position is
returned. For the second opponent, which has not been observed yet, ’no position stored’ is
returned.

Concluding, the sequence diagram shows that the WMRView is a unit which decouples the
inner system from the outer clients/actors. All information is passed to or received from the
WMRView. The inner classes like Ball can be accessed only through the WMRView. Such
a design is a structural design pattern called façade [GHJV95, Chapter 4].

7.2 Geometric World Model Repository

As mentioned above, two different approaches for a geometric world model repository
(WMR) are described here. The simple approach is designed to store only the history of
the positions and the playground. The complex approach additionally stores the arbitrary
shapes of the robots. In case of the Tinyphoon robot, this is a square. This enables a more
precise check if an estimated position is inside the borders of the playground. In the case
the robot is close to the border, the heading of the orientation of its shape gives additional
information on the plausibility of this position. A shape overlapping the border indicates a
weak estimation.

The WMR is used —next to the above described features — as a hardware abstraction
layer. Every sensor reading is stored into the WMR for exchange purposes. Values of infrared
sensors, odometric sensors, vision readings, etc. are put into the WMR.

7.2.1 Simple WMR

This scaled-down WMR provides only a position history and static environmental infor-
mation. The position history contains two types of information: the positions based upon
observations and positions interpolated from previous entries. The entries are sorted by
timestamp. If the maximum queue length has been reached, the oldest entries are deleted
first.

All dynamic entities (team mates, opponents, and the ball) are treated as points. Thus,
overlapping between dynamic entities cannot be recognized. The information if a position is
inside the playground is reduced to the boolean values true and false.

The static environmental information consists of the shape of the playground and the
landmarks. A playground has six landmarks (three for each goal). Information about the
shape and the color of the dynamic entities is not stored in this simple WMR. This data has

7.2. GEOMETRIC WORLD MODEL REPOSITORY 75

to be provided to the actors by an a-priori static configuration. For example, the Vision Unit
has to read the geometric information about dynamic entities from a config-file.

7.2.2 Complex WMR

This WMR is designed as a geometric map built out of polygons (Figure 7.6). This allows
verification of the possibility of positions. The intersection area between two dynamic entities
or between an dynamic entity and the borders of the playground can be calculated and put
into proportion of the total area of the dynamic entity. Thus, small overlapping may be ac-
cepted due to the knowledge about imprecisions in localization. Larger overlapping indicates
that the localized position(s) may be useless. Other than with geometric primitives — where
the calculation of the intersection area between two distinct primitive types is always a special
case and has to be specified— polygon intersection is always calculated identically. To speed
up this process, each polygon has an outer bounding box. These boxes are aligned to the x

and y axis. Most of the time, a test against the bounding boxes is sufficient to determine
exactly if an overlapping or an intersection between two polygons occurred. Only if the test
result is ambiguous, the time-consuming polygon intersection test has to be executed.

Figure 7.6. Geometric Map

Each dynamic entity— ball, team mate, or opponent —has a position predictor attached
to it. Other than localization— which estimates the current position based upon sensor
readings — prediction is a look into the future based upon the estimated position history.

76 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

There are different types of position predictors: linear, non-linear, and knowledge-based.
For the ball, a linear predictor is sufficient —the ball moves straight ahead at a decreasing
velocity. Only if an external force affects on the ball, it changes its course. In the case of a
border, this impact can be forecasted and the predicted path can be adjusted. The case of an
impact with a robot is highly dynamic (when will it happen) and difficult to predict (what
is the exact position and orientation of the robot). Thus, in this case, the linear predictor is
only informed that an impact happened, and that the history of ball observations has to be
cleared. Robots have a non-linear movement. Precise long-term predictions are not possible.
The Kalman filter can be used for short term predictions. As described in Section 5.4.4,
this filter can be configured to estimate non-linear movement. For long-term predictions,
knowledge-based approaches may be used. The future actions of a robot are predicted, based
upon a history analysis and potential threats.

The ball has a tail attached to it. The area described by this tail is used to answer if a
robot is behind the ball. This knowledge is important when trying to shoot the ball into a
certain direction.

Additionally points of interest can be added. These may be positions on the playground
(e.g. penalty kick position) or of landmarks detectable by the vision system. The stored
landmarks are the same as for the simple WMR. The points of interest are drawn as dots in
Figure 7.6.

The concept of areas of interest provides a grouping mechanism for the dynamic entities.
One dynamic entity can be in several overlapping areas. Only the center point of a dynamic
entity is of interest when matching it against an area. In principle, these areas are strategically
relevant sectors like the two goal areas, each half, and the middle of the game field. A robot
close to the center but in its own half is in the middle area and the own half area. An area
can contain several dynamic entities. This makes querying for all dynamic entities e.g. in the
middle area fast and easy. These areas are not necessarily static. They can also be attached
to dynamic entities. This enables to create an area which contains all robots close to the ball.
In Figure 7.6 these areas are differently colored. The dashed lines are the ground markings.

7.3 Self-Localization

Similarly to the WMR, the self-localization system contains two approaches — a simple
one, and a complex one based upon the Particle filter as described in Section 5.6. Both
return an estimated position based upon the current sensor readings. The first approach can
only process information which leads directly to another absolute position (e.g. odometric
data, sightings of landmarks). The particle filter can process any information which can be
collected by the Tinyphoon robot.

7.3. SELF-LOCALIZATION 77

7.3.1 Simple Self-Localization

The simple self-localization approach is an implementation of the LLSQ (Section 5.3). In
each round, a new absolute position is calculated and fed into the LLSQ. The output is a
smoothed path.

The basic concept of this approach is similar to the localization used for Tinyphoon up
to now. The main enhancement introduced in this section is the post-procession of the data
through the LLSQ.

To estimate a position, the following simple sensor models are used:

Odometric Model The relative movement vector returned from the motion unit is directly
added to the current position.

 x

y

ϕ

 =

 x

y

ϕ


curr

+

 ∆x

∆y

∆ϕ


odo

(7.1)

The innovation perceived from the odometry (∆x ∆y ∆ϕ)T
curr is added to the current

position denoted by the vector (x y ϕ)T
curr (Equation (7.1)). This results in the new

position (x y ϕ)T .

Compass Model The compass is used to set the heading of the robot. Due to the bad
quality of the compass this value cannot be used directly. Two consecutive sensor
readings may have a difference of up to 120◦. Thus, the difference between the actual
sensor reading and the current estimation heading is used only partially. The estimated
direction converges towards the real direction over time.

ϕ = ϕcurr +
ϕcompass − ϕcurr

`
(7.2)

The current heading of the robot ϕcurr is subtracted from the value returned by the
compass ϕcompass (Equation (7.2)). The result is divided by the trust factor `. The
influence of the compass readings is reciprocal to this factor. Finally, the new heading
ϕ is determined by addition of this innovation to the current heading ϕcurr.

Vision Model The vision model provides two types of information:

• The heading of the robot. To estimate the direction of the robot, the angle between
the estimated position and the sighted landmark is calculated. If more than one
landmark is visible, the average angle is used. This heading information overrides
the compass model. The reason why to keep the compass model is the update
frequency. New compass readings are available every localization round, whereas
landmark sightings occur at random points in time. Thus, the compass model fills
the direction information gap between two consecutive landmark sightings.

78 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

• The location of the robot (only x and y axis). The current position of the robot
can be calculated using triangulation when the center landmark of a goal and at
least one of the pole landmarks are visible. In Figure 7.7 the available data when
perceiving the center and one pole of a goal is marked red.

Figure 7.7. Position Triangulation

β = arcsin
(

b sin γ

c

)
(7.3)

Applying the law of sines in Equation (7.3), the value for the angle β can be
calculated. Subsequently, also the third side a and the last angle α can be gained
through the law of sines. With a fully defined triangle and two known positions
(the landmarks), the position of the robot can be determined.

The availability of only two sides and one not enclosed angle results in an ambiguity
[Wik06b]. β can have two values. This ambiguity is bypassed by choosing the β

which results in a robot position closer to the previous one. When dealing with
all three landmarks (center and both poles), this ambiguity does not appear.

7.3.2 Complex Self-Localization

This self-localization approach is based upon the Particle filter. It uses particle re-injection
and re-sampling (see Section 5.6, especially Algorithm 5.5). In the case of a sensor reading
with an error outside the acceptable range, the resulting path would have a peak. This
peak vanishes in the next localization cycle. To level such peaks, the estimated positions are
smoothed using an LLSQ.

Differently to the sensor models used for the simple localization, the following models
return the belief for one particle. This belief reflects if the robot is located at the position
represented by the particle according to the current sensor readings. The only exception to
this is the odometric model. It returns an absolute position.

Distance Measurement Model Using a model of the map, the distance between the par-
ticle and the wall in the line of sight of the distance sensor can be calculated. A
Gaussian noise is applied to this distance. Using a normalizer, the calculated and the
measured distance are put into proportion resulting in the belief. If the values are below

7.3. SELF-LOCALIZATION 79

the minimum range or above the maximum range of the sensor, the belief is set to the
maximum.

Additionally, three fault cases are added to this model:

• The presence of an unexpected object (e.g. robot) between the sensor and the wall.

• The sensor returns the maximum distance, although the next wall is within the
range.

• A random value is measured due to disturbances like reflections.

A detailed explanation of this model can be found in [FT06, pages 153–158].

Compass Model The belief for the compass readings is determined using a Gaussian distri-
bution. Figure 7.8 shows a set of particles after applying the compass model on them.
The darker they are, the more they are directing into the same direction as the robot
(denoted by the red line originating in the center of the robot.).

Figure 7.8. Model Compass

p(ϕcurr|ϕcompass) = (2πσ2)−
1
2 exp

{
−1

2
(ϕcompass − ϕcurr)2

σ2

}
(7.4)

The Gaussian function denoted in Equation 7.4 gives the probability that the heading
of the current particle of interest ϕcurr is correct under the condition that the compass
sensor returned the sensor reading ϕcompass. σ is the standard deviation of the values
returned from the compass.

Map Model Every particle is tested for being inside the playground. To avoid binary
evaluation results, the particle is tested against three convex hulls of the playground—
each one 5% larger than the previous one. Such a hull is rectangularly shaped. The
estimated position is a result of all particles. If the robot is located directly at the
border and if every particle which is outside the playground would be evaluated to be
for sure outside, the position estimated would be systematically biased towards the
center of the playground.

80 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

To reduce the calculation time needed, this model does not use the precise distance
a particle is outside the playground. As shown in Equation (7.5), the particles are
divided into five groups: one inside the playground, one outside all convex hulls, one
between the playground and the smallest hull, and the other two between the three
hulls. The probability that a particle represented by its state vector x is a possible
position estimation is determined by assigning it to one of the five groups.

p(x) =



1 ... if particle is inside the playground
0.95 ... if particle is between the playground and the first hull
0.9 ... if particle is between the first and the second hull
0.75 ... if particle is between the second and the third hull
0.5 ... otherwise

(7.5)

As described above, positions close to the border would not be possible if an particle
that is outside the playground is marked with a probability of 0. To prevent this, even
particles that are far outside are assigned at least a probability of 0.5. The partitioning
and values shown in Equation (7.5) are only examples. The optimal values for a given
application have to be determined by optimization experiments.

Vision Model The vision system returns two different types of sightings. The first one
returns only the direction to the landmark. The second one additionally returns the
distance towards it. Thus, they have to be treated differently.

Figure 7.9(a) shows the outcome of the direction-only-model. All particles which are
targeting towards the upper landmark of the left goal (marked blue), are assigned with
a high belief. Similarly to the compass model, a Gaussian distribution is used to add
system noise. Due to the fact that no distance information is available, the particles
are regarding their x and y axis still distributed uniformly.

If, in addition, the distance is known, the marked particles are reduced to a ring around
the middle landmark of the left goal (marked blue) in Figure 7.9(b). The width is
dependent on the system noise added to the distance.

When combining several landmark sightings, only the overlapping particles are marked.
Figure 7.9(c) shows the case where the upper and the lower landmark of the right goal
are visible. Both landmarks are processed by the direction-only-model. The resulting
area of possible positions covers a large area due to the lack of a distance information.

In Figure 7.9(d), the vision system perceives information about all three landmarks
of the left goal. Two of these sightings are the goals poles. For these, only direction
information is returned. Thus, is is a combination of the two cases depicted in the
figures 7.9(c) and 7.9(b)

A detailed explanation of this model can be found in [FT06, pages 176–180].

7.3. SELF-LOCALIZATION 81

(a
)

D
ir

ec
ti

o
n

O
n
ly

(b
)

D
ir

ec
ti

o
n

a
n
d

D
is

ta
n
ce

(c
)

C
o
m

b
in

a
ti

o
n

o
f
T

w
o

D
ir

ec
ti

o
n

O
n
ly

L
a
n
d
m

a
rk

s
(d

)
C

o
m

b
in

a
ti

o
n

o
f
T

h
re

e
L
a
n
d
m

a
rk

s

Fi
gu

re
7.

9.
M

od
el

V
is

io
n

82 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

Odometric Model The relative movement as measured by the odometric sensor is decom-
posed into three values (Figure 7.10):

Figure 7.10. Model Odometry

α1 defines the angle needed to turn the robot towards the target point.

d gives the distance between the starting and the final position.

α2 defines the angle needed to turn the robot towards the final direction.

The true path that the robot traveled to reach the target point, cannot be measured
and is, thus, not of interest. Each of these values is attached a Gaussian noise to model
the imprecisions of the odometric sensor (e.g. drift, slipping). Finally, the new position
of the particle is calculated using these blurred measurements [FT06, pages 132–139].

Figure 7.11 shows a localization based solely on this motion model. In the beginning,
the exact position is known and all particles are at the same position (Figure 7.11(a)).
Movement straight ahead is modeled with only small noise. This can be seen in the
second step (Figure 7.11(b)). The particles have only slightly different positions. The
situation changes after the left turn (Figure 7.11(c)). Due to the assumption that during
a curve drift occurs, all particles have spread to the left and the right. After taking
another turn, the average distance of the particles to the real position is large (Figure
7.11(d)). Without the support of another sensor model, the prediction is of too low
quality. This estimation has to be enhanced by another sensor model. Finally, at step
5 (Figure 7.11(e)), the particles are distributed widely across the field. A trustworthy
position estimation cannot be made upon this sparse particle cloud.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5

Figure 7.11. Odometric Model Example

7.4. IMPLEMENTATION 83

7.4 Implementation

This section shows the OOD diagrams for the approach described above. For the WMR,
two different diagrams are shown— one for the simple and one for the complex solution. The
two self-localizations are shown in a single diagram.

7.4.1 Simple WMR

As described above, the WMR is designed with the façade design pattern as its tem-
plate. The class representing the façade in the UML diagram depicted in Figure 7.12 is
SimpleWMRView. In order not to clutter the diagram, the attributes and operations are not
included.

The simple WMR is designed to be fast and small. Thereafter, the high-level design
(Figure 7.4) is altered. The classes Ball, TeamMate and Opponent are replaced by a
PositionHistory. The associations between the WMR and the dynamic and static enti-
ties of the environment are strengthened to compositions.

Figure 7.12. OOD Class Diagram for the Simple WMR.

When instantiated, the class SimpleWMRView adds for every dynamic entity on the play-
ground an instance of the PositionHistory class. To distinguish between the ball, the team
mates, and the opponents, the instances of PositionHistory for the robots are stored in

84 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

two different queues and the instance of PositionHistory for the ball is stored as a mem-
ber object of SimpleWMRView. The class SimpleWMRView expects an instance of the class
GenericLocalization as parameter for its constructor.

The PositionHistory stores positions in two different queues. One queue is responsible
for observed positions added to the WMR by e.g. the vision sensor. The other takes care of
estimated positions generated by the localization. The positions are of type Position. This
class is a composition of Point and Angle.

Next to the dynamic entities, the SimpleWMRView class contains an instance of the
Playground class. This class composes border line segments, an inner bounding box, and an
outer bounding box. Further, it aggregates a point for each landmark and points of interest.
References to the instances of landmarks and points of interest may be passed to the external
software system. Thus, it is unknown during destruction of the instance of Playground if
these instance can be destroyed or are still needed. Thereafter, the associations between
Playground and Point respectively LandmarkPoint are aggregations and not compositions.
Additionally to providing static world information, the class Playground is able to test if a
point is inside or outside the playground.

The borders of the playground are implemented by a set of instances of the class
LineSegment. The start and the end point of a segment are associated with an instance
of Point each. The class BoundingBox is the implementation of an axis align rectangle. It is
optimized to determine, whether a point or another bounding box resides inside or outside
the box. One instance of BoundingBox is configured to mark the maximum rectangle that fits
into the borders. The other instance is the minimum possible rectangle outside the borders.
The combination of the line segments and the bounding box speeds up the is-point-inside-
playground test. Only if the point is inside the outer, but outside the inner bounding box,
further tests with the line segments have to be performed.

The landmarks of the playground are of type LandmarkPoint which is a specialization of
the Point class. It adds an Id to the point. This Id is used for the communication between the
vision system and the localization. Thus, a vector pointing from the robot to a landmark can
be easily attached to the true position of this landmark. The points of interest are instances
of the class Point. They mark predefined points on the playground like the kick-off point.

Although the OOD class design depicted in this section (Figure 7.12) differs from the OOD
class design in Figure 7.4, the sequence diagram shown above (Figure 7.5) is valid for it. The
instance of Ball and the two instances of TeamMate and Opponent are substituted with the
regarding instances of PositionHistory.

7.4.2 Complex WMR

Figure 7.13 shows the OOD class diagram for a complex WMR. In order not to clutter the
diagram, the attributes and operations are not included. Other than for the simple WMR,
the OOD model for the complex WMR refines the OOD class structure of the high-level
design of the WMR described above.

7.4. IMPLEMENTATION 85

Figure 7.13. OOD Class Diagram for the Complex WMR.

86 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

The façade class ComplexWMRView is a composition of a playground, a ball, team mates,
and opponents. While the simple WMR reduces the dynamic entities to area-less positions,
the complex WMR treats them as objects with a two-dimensional shape.

The classes Point, Angle, BoundingBox, LandmarkPoint, and GenericLocalization are
identical to the ones used for the simple WMR. Position is now a specialization of Point
and uses an instance of Angle for the direction.

The class Polygon is used to formulate the shapes for the dynamic entities and the play-
ground. It is a composition of vertices (the corners of the polygon) and an outer bounding
box. The vertices are instances of the class Vertex which is a specialization of Point for poly-
gon clipping purposes [GH98]. An instance of BoundingBox is used to define the minimum
outer hull of the polygon. Only if two bounding boxes are overlapping, a time-consuming
polygon clipping has to be executed. Using the polygon clipping, precise information about
the intersecting area between two shapes can be given. A further element of a polygon is its
center position. Initially, the center is set to the average of all vertices, but can be replaced
to an arbitrary position. The center is used to move and rotate the shape without necessarily
recalculating the new values for each vertex (which includes also the rotation of them). Only
if a polygon intersection is performed, the updated vertices are needed.

Finally, three specializations of Polygon are implemented: Circle, Rectangle, and
TriangleTail. The class Circle additionally stores the radius. Thus, the special case
of the intersection of two circles can be optimized. Rectangle provides width and height for
the rectangle. Its further specialization— AxisAlignRectangle— suppresses the rotation
ability of the Polygon class. The four edges of the resulting polygon are always parallel to
the axis. Thus, the outer bounding box of the polygon is also its maximum inner bounding
box. Thus, before performing a polygon clipping, the other polygon is tested if it is not inside
and not outside the bounding box. Finally, the class TriangleTail is the realization of an
isosceles triangle. The center of the polygon is set to the vertex defining the corner which is
embedded between the two equal edges.

Similarly to the simple WMR, the complex WMR stores in its Playground points of inter-
est, one point for each landmark, and the maximum inner bounding box. The difference is
that the shape of the playground is now defined as a polygon. Additionally to the aggregated
points of interest and one point for each landmark, areas of interest are aggregated. These
areas are of type Polygon. As described above, they are useful for defining strategically
important regions and to test which dynamic entity is within this region. The specialization
of Playground— PlaygroundMiroSOT— defines the shape and the points of interest accord-
ing to the rules of MiroSOT. Similarly to the simple WMR, references to the instances of
points of interest, landmark points, and areas of interest are passed to the external software
system. During destruction of the instance of the class Playground these instances should
not be destructed. Thereafter, the associations between Playground and Point respectively
LandmarkPoint are aggregations and not compositions.

A DynamicEntity is a composition of a PositionManager and a Polygon. It represents

7.4. IMPLEMENTATION 87

the core of every dynamic entity in the environment. It can be placed to any position, the
position manager stores past information (estimated positions) and can provide predictions
of future positions.

The class Ball is a specialization of DynamicEntity. It defines that the polygon has
to be of type Circle. Further, at least one instance of TriangleTail is attached to the
ball. Triangle tails are used to test whether a dynamic entity is behind the ball or not.
The definition of which direction is behind the ball can be set by the strategy. The default
instance is automatically set to the “goal shooting position”. For this, the ball has to be
between the opponent goal and the robot. Thus, the tail is set to be on the opposite side of
the ball regarding the opponent goal.

The classes TeamMate and Opponent are specializations of the class RobotEntity. This
class adds robot-specific information like maximum speed, id, color. Currently the classes
TeamMate and Opponent provide only the default shapes for the robots. The TeamMate

instantiates a rectangle with the precise shape of the Tinyphoon robot. The shape of the
opponents is set to the maximum allowed shape as defined by the rules. Additionally, these
classes will be used for future extensions. When adding team communication, additional data
like strategic decisions, have to be stored for the team mates. Similarly, data resulting from
threat analysis of opponents may be added. This data may be the assumed role (striker,
defender, etc.) or typical behaviors. Threat analysis and team communication is not in the
scope of this work.

Other than the position history of the simple WMR, the class PositionManager can pre-
dict future positions of a dynamic entity. Thus, next to the associated queues of estimated
positions and observed positions, the manager aggregates a queue of predicted positions.
Every time a new position estimation or observation is received, the prediction queue is
emptied. The class PositionManager itself provides only the interface but no implemen-
tation for a prediction. Instead it returns the last estimated positions. The specializations
PMLinearPrediction and PMSimplePrediction have prediction algorithms implemented.
The simple prediction calculates the average relative movement of the last n steps. The
relative movement is changed according to the step period and the time to predict ahead.
This value is added to the last position. The linear prediction is based upon the LLSQ (Sec-
tion 5.3). Other than the simple predictor, this prediction is less sensitive to faulty position
estimations but reacts later towards direction changes. References to the instances of the
predicted positions are passed to the external software system. Thus, it is not known dur-
ing destruction of the instance of PositionManager if these instances are needed elsewhere.
Thereafter, this association between PositionManager and Position is an aggregation and
not a composition.

The class Polygon provides several potential pitfalls during implementation. Polygon
clipping for arbitrary shapes (e.g. [GH98]) is problematic in the case of overlapping lines or
vertices. Also the test for “point inside polygon” (e.g. [Hec99]) may produce false results
in special cases. For example, if a scan line algorithm with a vertical scan line is used, two

88 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

vertices with exactly the same value for the x-axis as the point of interest are producing
such a fault. Thus, dependent on the used algorithm, a point may be classified as outside,
although it is inside.

The high-level WMR OOD model is refined to the complex WMR OOD model. The core
of the new model is similar to the high-level model. Thus, the sequences of the process
interactions of the new OOD model can be described by the sequence diagram depicted in
Figure 7.5.

7.4.3 Self-Localization

This section describes the OOD class structure of the self-localization of the software sys-
tem. The UML diagram (Figure 7.14) shows the specialization of the generic localization
class (GenericLocalization) into the simple solution (SimpleLocalization) and the com-
plex solution (ComplexLocalization). This abstract class provides the public methods for
input and output of the data. The two concrete solutions provide no additional external
access to their methods and the data. In order not to clutter the diagram, the attributes and
operations are not included.

The SimpleLocalization class contains all its sensor models. To smoothen the estimated
path, an instance of LLSQ is used.

LLSQ is implemented according to Algorithm 5.1. The data needed for the matrix is stored
in an array of positions. The length of this array can be configured.

The complex solution is realized through a particle filter (or Monte Carlo Localization).
The Algorithm 5.5 describes the basic functionality of the class ComplexLocalization. This
class is a composition of particles and sensor models. Other than in the simple solution,
the sensor models for the MCL are placed into their own classes. The base class for the
sensor models is the abstract class GenericSensorModel. It provides functionality to mark
the stored data as processed. The sensor models described in Section 7.3.2 are realized by
the following specializations of the generic sensor model: CompassModel, InfraredModel,
MapModel, OdometryModel, and VisionBearingsOnlyModel. The class VisionFullModel is
a specialization of VisionBearingsOnlyModel. The class VisionBearingsOnlyModel can
only process vectors to landmarks where the distance is unknown. This is extended by
the class VisionFullModel. ComplexLocalization contains one model for the compass,
the map, the odometric sensor, and the vision. For each distance sensor one instance of
InfraredModel is used. This setup is designed to fit the needs of Tinyphoon. The particles
generated by the complex self-localization are of type Particle. This is a specialization of
Position and adds a weight attribute. The values for this attribute range from zero to max
weight. See Section 5.6 for more detailed information about particles.

The classes Angle, Point, and Position are identical to the ones used in the simple WMR
implementation.

The sequence diagram in Figure 7.15 shows interaction of the instantiated main objects of
the simple self-localization for the use case “get current self position”. SimpleLocalization

7.4. IMPLEMENTATION 89

Figure 7.14. OOD Class Diagram for the Self-Localization.

receives the request for the current self position from WMRView. The sensor models described
in Section 7.3.1 are implemented as operations of the class SimpleLocalization. The po-
sition estimation resulting from applying the current sensor readings to thee sensor models
is for further processing passed to LLSQ. The LLSQ smoothes the position estimation (see
Section 5.3). Finally, the position estimation is returned to WMRView. As described above,
the localization is a sub-system of WMR. The dashed line in Figure 7.15 marks the border
between the WMR and the localization system.

Figure 7.15. Sequence Diagram for the Simple Self-Localization.

90 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

Figure 7.16 depicts the sequence diagram for the complex self-localization for the use case
“get current self position”. Identically to the sequence of the simple self-localization, the
sequence is initiated by WMRView with the request for the current self position.

Each particle instantiated by ComplexLocalization has to be processed by the sen-
sor models described in Section 7.3.2. First a particle has to be reposition according to
OdometryModel. Next, the probability of the particle is determined by applying the sensor
readings to the sensor models CompassModel, InfraredModel, MapModel, VisionFullModel,
and VisionBearingsOnlyModel. By integration of all position hypotheses — the particles
weighted by their probability— a single position estimation is generated. This estimation is
post-processed by LLSQ and returned to WMRView.

While no common pitfalls are known for the simple localization approach, the pitfalls
known for the complex localization approach are numerous. The most important ones are:

• Due to the low quality of the current estimation, new uniformly distributed particles are
injected. Particle injecting reduces the quality of the estimation. Thus, new particles
are injected ...

• No particle fits to the vector from the robot to the perceived landmark. The weight
of every particle converges against zero. This leads towards numeric problems. After
normalization, the weight of each particle is indistinguishable from random values.

• A badly configured particle filter is almost indistinguishable from a faulty implementa-
tion. Thus, finding the right parameters for the sensor models is crucial. This has to
be done by optimization experiments.

• Calculating the weighted average direction of the particles.

• The delay between the capturing of an image and the actual output of landmark sight-
ings is unknown. The sightings cannot be unbiased by the relative movement made
during this delay.

At the time of this writing, the infrared model determines the distance to the next wall by
comparison of every wall segment with a line symbolizing the infrared beam. A playground
for AMiroSOT consists of 16 wall segments. Thus, for each particle 16 line intersections have
to be calculated in each cycle. To reduce the amount of calculations, all results are cached for
further use. In [FT06] another optimization is suggested. Initially, an image representing the
playground is generated. Using this image, ray-tracing algorithms can be used to calculate
the distance.

7.5 Summary

To be able to store information about the world, the robot needs a WMR. For the ability to
localize itself in this world, it needs a localization system. This solution shows two approaches
for the WMR and the self-localization: a simple, fast one and a complex, powerful one.

7.5. SUMMARY 91

Figure 7.16. Sequence Diagram for the Complex Self-Localization.

92 CHAPTER 7. SOFTWARE SYSTEM DESCRIPTION

The WMR for the simple approach consists of position histories for all dynamic entities
(ball and robots), the borders of the playground, and three landmarks for each goal. Three
types of sensors are used for the simple self-localization: the odometric sensor, the compass,
and the vision system. The sensor models return absolute positions. These positions are
combined into one absolute position. To smoothen the resulting estimation, this value is
post-processed by using an LLSQ.

The complex WMR is realized by using a geometric map. Every dynamic entity (ball,
robots, borders, areas of interest) is stored as a polygon. The advantage of polygons is that
arbitrary shapes can be matched for overlapping. Dynamic entities have a position manager
attached. This manager stores the history of positions and also provides the functionality
of position prediction. The complex self-localization is based upon the particle filter and is
able to process all types of sensors Tinyphoon is equipped with. The odometric model moves
the particles, while the other sensor models calculate the believe that a particle represents
the real robot position. To flatten peaks — which may occur through single faulty sensor
readings — the resulting position estimation is also smoothed by using an LLSQ.

8
Implemented Self-Localization

Systems in Comparison

Maj. Carter: Sir, the simulations we ran anticipated every conceiv-
able scenario.
Col. O’Neill: You know, Carter, it’s the inconceivable ones I’m con-
cerned about.

—Stargate SG-1/Season 6/Redemption Part 1

To show the fitness of the complex self-localization approach, it is compared with the
simple self-localization system (discussed in Chapter 7) and then with a self-localization
method based on extended Kalman filter (EKF) implemented separately.

8.1 Comparison of the Simple and the Complex Self-Localization

This section compares the simple self-localization system with the complex self-localization
system. Both are described in the previous chapter. This comparison was made in a simulated
environment which consists of a robot moving along a predefined path, walls as obstacles for
the infrared sensors, three landmarks for each goal, and an unknown obstacle.

8.1.1 Simulation Setup

The robot in the simulation was designed to be as similar to the Tinyphoon as possible.
It is equipped with an odometric sensor, a compass, three long range infrared sensors (front,
left, and right), and a stereo vision sensor. All these sensors are designed to fit the abilities
and weaknesses of the real sensors as closely as possible: each sensor experiences system noise
and suffers systematical error. The vision sensor takes longer to produce results than the

93

94CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

other sensors. The transmission of the sensor data is grouped into two packets. The first
one consists of the odometric data, the compass, and the infrared distance information. The
second one groups all the landmarks recognized by the vision system. The packet with the
odometric data is transmitted more often than the vision data. A jitter is applied to the delay
between two consecutive transmissions. All parameters for the sensors and the transmission
can be configured to match the real robot best.

Also the real data types are used for transmission. The data may be represented internally
by fixed point types or even by floating point types. Thereafter, each value consumes up
to four bytes of memory. For transmission purposes the internal precision has to be scaled
down to fit smaller types like a two byte integer or even a byte. This down scaling is always
a tradeoff between information quality and the number of packets per second. Nevertheless,
it results in another decline of the quality of the sensor readings.

The path of the robot is cyclic. At the start, a 360◦ counter clockwise turn is executed.
Then the robot moves towards the yellow goal. After a left-right combination, the robot
changes the direction with a 180◦ right turn. After a 90◦ left turn, the robot stops close to
the unknown obstacle. There is a further rotation of 360◦ in clockwise direction. Next, the
robot turns towards the blue goal in a right curve. The loop is closed after a short track
straight ahead with a 180◦ right turn.

This path covers all different types of movement (rotation on a position, straight and turn
movement). From a sensor point of view it covers situations where the distance sensors are
far away from the walls but also close to a corner. Further, the robot has to deal with track
sections where no vision data is available or where three different landmarks are visible at
the same time.

Figure 8.1 shows a snapshot of a typical simulation run. It consists of:

• The black border of the playground (MiroSOT middle league playground, 2.8 by 2.2
meters).

• Six landmarks — three for the yellow goal and three for the blue goal.

• An unmapped obstacle (green box); possibly an opponent robot.

• The sensor readings of the three infrared sensors (red rays).

• A sighted landmark. The upper yellow landmark is inside the vision cone (hinted by
the two grey lines) and, thus, marked as visible.

• The dots mark the covered distance of the robot.

• The robot of interest in the center of the red rays.

This figure also shows some examples for the simulated sensor errors. The right infrared
sensor is the only distance sensor returning a correct and precise result (maximum range
reached). The left sensor returns a slightly too large, but still plausible value. The value

8.1. BETWEEN SIMPLE AND COMPLEX SELF-LOCALIZATION 95

Figure 8.1. Typical Snapshot of a Simulation Run.

reported by the front sensor represents a complete failure. It returns that within the maximum
sensor range no obstacle is present instead of the true value. The circle denoting the sighted
landmark is placed slightly to the left. This results in a vector pointing from the robot to
the landmark which is a little bit to short and points a few degrees too much to the right.

8.1.2 Results

Figure 8.3(a) depicts the real path traveled by the robot. The black dot in the upper left
area marks the starting point and the first 360◦ turn. The second 360◦ turn is executed at
the position marked by the other black dot in the lower right. From the beginning to the
closing of the cycle, 237 odometric packets are transmitted. In 109 of these 237 steps, at least
one landmark was recognized. These recognitions can be grouped into four distinct sightings
of the left goal and six distinct sightings of the right one. During one distinct sighting, the
goal was always visible.

The resulting estimated path for the simple localization approach is shown in Figure 8.3(b).
In the beginning (green dot), the global position is unknown. Thus, the estimation starts
at the position 0/0. After a view steps, vision data is available and the estimated position
changes. The path jumps back and forth until it reaches the last estimation (red dot). The
low quality of the shape has two sources: the bad odometric sensor readings in combination
with a low number of analyzable sightings of a landmark. Only one third of the sightings
can be used for the vision sensor model of the simple approach. At least two landmarks have
to be visible for the simple approach (see Section 7.3.1). The standard deviation between
the real and the estimated position is close to 15 centimeters (Figure 8.2). This precision is
sufficient for a rough position estimation.

Figure 8.3(c) shows the estimated path by the complex self-localization which is based
on the Monte Carlo localization (MCL) without the post-processing of the LLSQ. Also in
this case, the starting position is unknown (green dot). The ability to process all recognized
landmarks results in continuous approximation towards the real position during the 360◦

96CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

Figure 8.2. Standard Deviation for the Distance Between the Real and the Estimated Po-

sition.

turn. The estimation reached a good quality (all particles are located close to one position)
after the turn. Additionally, sensor data updates the estimation. The resulting path has
only minor peaks. After applying an LLSQ to this path (Figure 8.3(d)), the result is a good
approximation of the real path.

This comparison has been executed with different numbers of particles (Figure 8.2). The
results show that for particle numbers smaller than 2,000, the quality is unpredictable. It is
dependent on the initial distribution of the particles and the values generated by the random
number generator. For numbers of 2,000 and higher, the standard deviation ranges from 4.5
to 6.3 centimeters. The graph shows the results up to a maximum number of particles of
20,000. Additionally runs with up to 200,000 particles have been carried out with the same
resulting standard deviation. Thus, the quality of the path approximation is bounded by the
number of particles and the quality of sensor data. The blue line denotes the quality reached
by the simple self-localization for comparison purposes. This algorithm uses no particles and
no probabilistic model.

8.1.3 Multi-Hypothesis Resolving

The simulation runs with the MCL have shown that situations are quite common where
several— equally plausible —possible position estimates appear. Figure 8.4(a) shows such
a distribution of the particles with two centers. The estimated position is determined by
a weighted average of all particles. The result is located on the half way between the two
centers. Due to the fact that no particle is close to this position, the hypothesis is wrong. To
overcome this problem, the particles have to be clustered to groups. Each cluster represents
a hypothesis for the position. This results in the presence of multiple hypothesis. Using
additional selecting mechanisms, the appropriate hypothesis is selected. Multi-hypothesis

8.1. BETWEEN SIMPLE AND COMPLEX SELF-LOCALIZATION 97

(a
)

R
ea

l
R

o
b
o
t

P
a
th

(b
)

S
im

p
le

P
a
th

E
st

im
a
ti

o
n

(c
)

M
C

L
P
a
th

E
st

im
a
ti

o
n

(d
)

M
C

L
/
L
L
S
Q

P
a
th

E
st

im
a
ti

o
n

Fi
gu

re
8.

3.
S

im
ul

at
io

n
R

es
ul

ts

98CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

(a) Ambiguous Situation (b) Landmark Recognition Restores Single Hypothe-

sis

Figure 8.4. Multi-Hypothesis

resolving is not in the scope of this work.
In the next step (Figure 8.4(b)), a landmark is sighted. The ambiguity is resolved imme-

diately. The estimated position returns to the first hypothesis. The second hypothesis has
disappeared.

8.2 Comparison of the Complex and an EKF Based Self-Localization

A comparison between the complex self-localization and an extended Kalman filter (EKF)
is conducted in [BDN07]. The EKF is described in [BSGK07]. The setup of this comparison
is slightly different to the one described in Section 8.1. The size of the playground is smaller
(1.5 m by 1.2 m compared with 2.8 m by 2.2 m) and there are different landmarks available.
In the previous comparison, there are three landmarks for each goal defined. The left and
the right post and the center of the goal. While the left and the right landmarks provide
only the direction, the center landmark also provides the distance between the robot and the
landmark. In this comparison, there are only two landmarks for each goal. Each one provides
the direction and the distance between the robot and the landmark.

Only the vision sensor and the odometry are used for localization. The vision system used
for this comparison is described in [BSN05, BS06, BSGM06]. It differs from the one used
in this thesis (see Section 6.2.3). The external interface is identical— it returns a vector
corresponding to landmarks recognized by vision system together with the quality of this
recognition.

Figure 8.5 shows the elements of the playground in this comparison. The playground is
the one used for the MiroSOT small league. The robot is the Tinyphoon. The path traveled
by the robot is a circle around the center with a radius of 50 cm. The starting position is
next to the right goal. Four landmarks (two for each goal) are used. The gray circle beneath
the robot is the area within which an estimation is acceptable (a circle with a radius of 12.5

8.2. BETWEEN COMPLEX AND EKF-BASED SELF-LOCALIZATION 99

cm). If the estimated position is within this range for at least three succeeding steps, it
is assumed that the estimation algorithm successfully performed a global self-localization.
The localization algorithms (EKF and MCL) are not given the starting position of the robot
(bootstrap problem). The robot travels along the circle and reaches the starting position
after 100 steps. During each step the robot receives data from the odometry. The vision
system returns data only when landmarks are visible.

Figure 8.5. Environment of the Comparison [BDN07]

Five different sets of sensor data are used. The sets differ in the error added to the sensor
data. All of them are collected while traveling the precise circle as described above. For each
set, 25 runs for the algorithms are performed. A primary and a secondary quality feature are
defined for this comparison. The primary feature is the number of steps with a successful
self-localization within the last 20 steps. The secondary feature is the average distance to the
true position within these last 20 steps.

The number of particles used for the MCL is 500. Table 8.1 gives the results of the
simulation for the MCL with ten different numbers of particles. It shows the average distance
between the estimated and the true position and the standard deviation. The row “primary
feature” marks how often the primary comparison feature is fulfilled. Thus, a value of 0.9
means that in 18 out of 20 steps the primary feature was matched. The first number of
particles that matched this feature in all 20 steps is used for the comparison with the EKF
(column written in bold). The average distance settles around 9.0 for 3,000 particles and
more.

A single run for one of the data sets is shown in Figure 8.6. The dashed line depicts the
true path traveled by the robot. While the blue line marks the estimated path by the EKF,
the estimation done by MCL is marked green.

The EKF starts at a random position and uses odometric data until the first landmark
sighting is available (marked with ’A’) in step 33. The estimation is updated to this new data.
The perceived vector to the landmark does not fit to the current estimate. Due to the low

100CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

Table 8.1. Simulation Results for Different Number of Particles
particles 100 150 250 500 1000 2000 3000 5000 7500 10000

average 18.4 14.6 11.3 10.5 9.6 9.4 9.0 9.1 8.9 9.1
deviation 27.4 16.1 8.5 7.1 5.7 4.2 3.3 2.7 2.7 2.0
primary feature 0 0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

quality of the sighting together with the low quality of the previous estimation, the resulting
estimated position is still outside the acceptable area defined above. This continues until
the first sighting for the opposite goal is done (marked with ’C’). This recognized landmark
shifts the estimated position close towards to the true position. Until the final position is
reached, the estimation of the EKF is reaching the true position within a range of less than
one centimeter.

Figure 8.6. Path Estimations for a Single Run [BDN07]

Like the EKF, the MCL is not informed about the start position of the robot. Thus, the
particles are distributed uniformly on the playground. This results in an estimated starting
position in the center. Although odometric data is used, this estimate stays close to its origin.
Due to the nature of the movement of the robot— a circular shaped path— the particles are
moving in circles around the center. Thus, they are usually not far outside the borders of the
playground. Particles that are outside are marked as unlikely and tend to disappear. As a
result, the particles stay uniformly distributed until the availability of the vision data which
then allows a global localization. The first sighting results in a position estimate close to
the true position. Due to the fact that the particles were still uniformly distributed, enough

8.2. BETWEEN COMPLEX AND EKF-BASED SELF-LOCALIZATION 101

fitting particles are available. Thus, the resulting estimate is close to the true position.
The other particles are replaced with particles close to the estimated position (Sequential
Importance Re-injection —SIR). The estimated path stays close to the true path, until the
position marked with ’B’ is reached. Now, for 15 steps no landmark has been visible to the
camera system. Therefore, the cloud of particles has widened (compare with Figure 7.11 in
Section 7.3.2). The right-hand side of this cloud is far outside the playground and marked
as unlikely. Thus, the estimated path shifts towards left and travels parallel to the border.
This is corrected with the first landmark sighting of the opponent goal (marked with ’C’).
The final position is within the defined range of acceptance.

Figure 8.7 depicts the distances between the true path and the estimates shown in Figure
8.6 for each of the 100 steps. Additionally, the three steps ’A’, ’B’, and ’C’ are above marked.
The dashed gray line marks the maximum acceptable distance to the true position as defined
above. Both algorithms — EKF and MCL— fulfil the primary quality feature (within the
acceptable area for at least three consecutive steps) for all of the last 20 steps. EKF is better
than MCL regarding the secondary quality feature (average distance to the true position) in
the last 20 steps.

Figure 8.7. Distances between the Estimated Positions and the True Positions for a Single

Run [BDN07]

The results for all 125 simulation runs are shown in Figure 8.8 for the EKF and in Figure
8.9 for the MCL. Both figures show the average value, the upper and the lower bound, and
average ± the deviation. Further, a border is given below which the estimation performed
successfully a global localization. The values before the 33rd step are strongly dependant on
the randomly picked start position. Thus, the comparison focuses on values from the 34th

to the 100th step. The average values are almost equal during the steps 40 to 80. Both
algorithms meet the primary quality feature in the last 20 steps with at least their average
values. The EKF meets it also with its worst case estimates (maximum values). Further,
the estimates converge towards the true positions. A different result is shown for the MCL.

102CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

Although the average is below the threshold, almost half of the estimates are outside the
acceptable distance. Hence, in this comparison EKF is superior to MCL.

Figure 8.8. Comparison Results for the EKF for all Runs [BDN07]

Figure 8.9. Comparison Results for the MCL for all Runs [BDN07]

8.3 Summary

The two self-localization approaches described in Chapter 7 are compared in a simulation.
The simple approach should be used when only a rough position estimation is needed. The
standard deviation of the estimated position to the real position is about 15 cm. The shape
of the path is disturbed by many peaks and the robot appears to move back and forth. Thus,
the estimated path can give no further information for threat analysis. The path estimated
by the complex localization is of higher quality. The standard deviation of around 5 cm. The
shape of the estimated path looks similar to the real one.

Further, tests to determine the optimal number of particles for the complex localization

8.3. SUMMARY 103

approach have been performed. 2,000 particles mark the point above which no additional
quality can be gained and below which the result is varying. These variations are caused by
the initial distribution of the particles and values generated by the random number generator.

A comparison between MCL and EKF implemented by another project shows results sim-
ilar to the localization algorithm comparison of Section 5.7. Both algorithms perform well
for their average estimates. If the worst estimates are taken into account, EKF is better than
MCL.

For this comparison the determined optimal number of particles for MCL is 500. The
reasons for the difference between 2,000 in the previous simulation and 500 in this simulation
can be found in a smaller playground, a better vision system, a simpler path, and four instead
of two fully featured landmarks.

104CHAPTER 8. IMPLEMENTED SELF-LOCALIZATION SYSTEMS IN COMPARISON

9
Conclusion and Further Work

Alas!

—Alley Cat

To enable a robot to fulfill tasks autonomously, it has to have knowledge about its location.
This knowledge consists of two parts: a map of the environment and the estimation of its
position on this map.

In AMiroSOT, the environment consists of a playground and an a priori known number of
moving objects. These objects are the ball, the team mates, and the opponents. The shape
of all the entities is static during game play. What is changing is the position and the heading
of the moving objects. A geometric map (see Section 4.2.1) has been chosen for the software
system described in Chapter 7. All entities of this map are represented by either a geometric
primitive or by a polygon. Such geometric figures can be replaced without much effort.

The world model repository (WMR) administrates this geometric map and provides a
history of the positions of the moving objects (Chapter 4 and Section 7.2). The design of the
map, the ball, the robots, and the history depends on the requirements of the applications
using the WMR. This work has shown two approaches: a simple one and a complex one.
The simple WMR is designed with a special focus on systems with little available resources.
During the design of the complex WMR, resource considerations were of no relevance. It
provides detailed information about all of the dynamic entities. Not only a position history
for each one is available, furthermore, a prediction of future positions is provided.

The position estimation —or localization— is done by combining all available sensor data
and the previously estimated position into a new position. This process is repeated each time
new data is available. The results from the comparison in Section 5.7 have shown that there
is no such thing as the perfect multipurpose localization algorithm. The particle filter has

105

106 CHAPTER 9. CONCLUSION AND FURTHER WORK

been chosen in this concept due to its good abilities to integrate different types of sensor data
(see Section 5.6). This design decision is also supported by the comparison tests carried out
in Chapter 8.

Open issues raised by this work are:

• Multi-hypothesis handling. Data from relative sensors like infrared distance sensors
lead to particle distributions with more than one center. This results in ambiguity — if
not cleared by sensor readings from the vision system — in having more than one valid
position estimation. — see Section 8.1.3.

• Enhancement of the complex WMR by using a grid map. The distance information
between a given point and the next wall in a certain direction can then be determined
using a ray-tracing algorithm — see at the end of Section 7.4.3.

• An automatic calibration for the sensors and the Particle filter’s parameters. This can
be done by comparing the estimated position with a position determined by an external
data source like a camera attached to a PC — see Section 7.4.3.

• More sophisticated prediction modules for the complex WMR. Currently, only steady
movement can be predicted (e.g. the ball). Robots may change their direction without
any external force. Thus, prediction for future robot positions has to include behavior
analysis — see Section 7.4.2.

In robot soccer a team of robots has to cooperate to win the game. This cooperation has
not necessarily to be restricted to a cooperation on a strategic level. Each robot perceives the
playground only partly. The combination of this information increases the knowledge about
the current situation. Thus, a cooperation by exchanging information stored in the WMR
is desirable. This cooperative exchange of information accounts to the field of information
fusion. A possible future work is to implement this information fusion based upon the results
of this thesis.

Bibliography

[Bad07] Markus Bader. Feature based real-time stereo vision on a dual core dsp with
an object detection algorithm. Master’s thesis, Pattern Recognition and Image
Processing Group (PRIP), Institute of Computer Aided Automation, Vienna
University of Technology, February 2007. to be published.

[Bai02] Tim Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor En-
vironments. PhD thesis, Australian Centre for Field Robotics, Department of
Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,
Australia, 2002.

[BAS+06] Markus Bader, Miguel Albero, Robert Sablatnig, Jose E. Simo, Gines Benet,
Gregor Novak, and Francisco Blanes. Embedded real-time ball detection unit
for the yabiro biped robot. Proceedings of the 4th Workshop on Intelligent
Solutions in Embedded Systems, 2006.

[BDN07] Abdul Bais, Tobias Deutsch, and Gregor Novak. Comparison of self-localization
methods for soccer robots. Sumitted to 5th International IEEE Conference on
Industrial Informatics (INDIN’07), July 2007.

[BFHS96] Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating
the absolute position of a mobile robot using position probability grids. In
AAAI/IAAI, Vol. 2, pages 896–901, 1996.

[BM03] Hans-Dieter Burkhard and Hans-Arthur Marsiske. Endspiel 2050. Telepolis,
HEISE, 2003. ISBN 393693102X.

[Bro91] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
47:139–159, 1991.

[BS06] A. Bais and R. Sablatnig. Landmark based global self-localization of mobile
soccer robots. In Computer Vision ACCV 2006: 7th Asian Conference on
Computer Vision, 2006.

[BSGK07] Abdul Bais, Robert Sablatnig, Jason Gu, and Yahya M. Khawaja. Location
tracker for a mobile robot. Sumitted to 5th International IEEE Conference on
Industrial Informatics (INDIN’07), July 2007.

107

108 BIBLIOGRAPHY

[BSGM06] A. Bais, R. Sablatnig, J. Gu, and S. Mahlknecht. Active single landmark based
global localization of autonomous mobile robots. In Proceedings of 2nd Inter-
national Conference on Visual Computing (ISVC 2006), 2006.

[BSN05] A. Bais, R. Sablatnig, and G. Novak. Line-based landmark recognition for self-
localization of soccer robots. In IEEE International Conference on Emerging
Technologies (ICET ’05), pages 132–137, Islamabad, Pakistan, September 2005.

[CLH+05] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A Kantor, Wolfram
Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, June 2005. ISBN 0-262-
03327-5.

[CWEAB00] Howie Choset, Sean Walker, Kunnayut Eiamsa-Ard, and Joel Burdick. Sensor-
based exploration: Incremental construction of the hierarchical generalized
voronoi graph. The International Journal of Robotics Research, 19(2):126–148,
February 2000.

[DLP+06] Tobias Deutsch, Roland Lang, Gerhard Pratl, Elisabeth Brainin, and Samy
Teicher. Applying psychoanalytic and neuro-scientific models to automation.
The 2nd IET International Conference on Intelligent Environments, pages 111–
118, 2006.

[EI03] Wilfried Elmenreich and Richard Ipp. Introduction to ttp/c and ttp/a. Pro-
ceedings of the Workshop on Time-Triggered and Real-Time Communication
Systems, 2003.

[EM92] S.P. Engelson and D.V. McDermott. Error correction in mobile robot map
learning. Robotics and Automation, 3:2555–2560, 1992.

[ENW05] Uwe Egly, Gregor Novak, and Daniel Weber. Decision making for mirosot
soccer playing robots. Decision Making for MiroSOT Soccer Playing Robots,
pages 69–72, 2005.

[FBT99] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for
mobile robots in dynamic environments. Journal of Artificial Intelligence Re-
search, 11:391–427, 1999.

[FG97] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In ECAI ’96: Proceedings of the Workshop on Intel-
ligent Agents III, Agent Theories, Architectures, and Languages, pages 21–35,
London, UK, 1997. Springer-Verlag.

[FIR06] FIRA. Fira small league mirosot game rules, 2006. [Online http://www.fira.

net/soccer/mirosot/rules_slm.html; accessed 2-December-2006].

http://www.fira.net/soccer/mirosot/rules_slm.html
http://www.fira.net/soccer/mirosot/rules_slm.html

BIBLIOGRAPHY 109

[Fox98] Dieter Fox. Markov Localization: A Probabilistic Framework for Mobile Robot
Localization and Navigation. PhD thesis, Institute of Computer Science III,
University of Bonn, Germany, 1998.

[FT06] Dieter Fox and Sebastian Thrun. Probabilistic Robotics. MIT Press, 2006. ISBN
0-262-20162-3.

[Gat97] Erann Gat. On three-layer architectures. Artificial Intelligence and Mobile
Robot, 1997.

[GBFK98] Jochen S. Gutmann, Wolfram Burgard, Dieter Fox, and Kurt Konolige. An
experimental comparison of localization methods. In Proc. of the IEEE/RSJ
InternationalConference on Intelligent Robots and Systems, 1998.

[GF02] Jochen S. Gutmann and Dieter Fox. An experimental comparison of localization
methods continued. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002.

[GH98] Guenther Greiner and Kai Hormann. Efficient clipping of arbitrary polygons.
ACM Transactions on Graphics, 17(2):71–83, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1995. ISBN 0201633612.

[Hec99] Paul Heckbert, editor. Graphics Gems IV. Academic Press Inc.,U.S., 1999.
ISBN 0123361559.

[Hsu06] Feng-Hsiung Hsu. Chess hardware in deep blue. Computing in Science &
Engineering, 8(1):50–60, 2006.

[Kai99] Hermann Kaindl. Difficulties in the transition from OO analysis to design.
IEEE Software, 16(5):94–102, 1999.

[Kal60] Emil Kalman, Rudolph. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[KDB+06] Stefan Krywult, Tobias Deutsch, Markus Bader, Gregor Novak, and Abel Gon-
zales Onrubia. Autonomous mirosot - the autonomous way of playing mirosot.
Proceedings of the FIRA RoboWorld Congress 2006, pages 163–167, 2006.

[KFM02] Cody Kwok, Dieter Fox, and Marina Meil. Real-time particle filters. Advances
in Neural Information Processing Systems 15, 2002.

110 BIBLIOGRAPHY

[Kry06] Stefan Krywult. Real-time communication systems for small autonomous
robots. Master’s thesis, Technische Universität Wien, Institut für Comput-
ertechnik, 2006.

[Mac93] Alan K. Mackworth. On seeing robots. Technical Report TR-93-05, Department
of Computer Science, University of British Columbia, 1993.

[May79] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141 of
Mathematics in Science and Engineering. 1979. ISBN 0124807038.

[MON05] Stefan Mahlknecht, Roland Oberhammer, and Gregor Novak. A real-time image
recognition system for tiny autonomous mobile robots. Real-Time Systems,
29:247–261, 2005.

[Neg03] Rudy Negenborn. Robot localization and kalman filters. on finding your posi-
tion in a noisy world. Master’s thesis, UTRECHT UNIVERSITY, Institute of
Information and Computing Sciences, 2003.

[NM04] Gregor Novak and Stefan Mahlknecht. Tinyphoon - a tiny autonomous mo-
bile robot. Proceedings of the IEEE International Symposium on Industrial
Electronics 2005, 2004.

[Nov02] Gregor Novak. Multi Agent Systems Robot Soccer. PhD thesis, Technische
Universität Wien, Institut für Handhabungsgeräte und Robotertechnik, 2002.

[NRB+06] Gregor Novak, Charlotte Roesener, Markus Bader, Tobias Deutsch, Stefan
Jakubek, Stefan Krywult, and Martin Seyr. The tinyphoons control concept.
Proceedings of ICM 2006, IEEE 3rd International Conference on Mechatronics,
3.-5. Juli 2006, Budapest, Ungarn, 2006., pages 625–630, 2006.

[NS04] Gregor Novak and Martin Seyr. Simple path planning algorithm for two-wheeled
differentially driven (2wdd) soccer robots. Proceedings of the second workshop
on intelligent solutions in embedded systems, 2004.

[NWB+03] Issa Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, Tara Estlin, and
Won Soo Kim. Claraty: An architecture for reusable robotic software. SPIE
Aerosense Conference, Orlando, Florida, 2003.

[Pat05] David A. Patterson. Robots in the desert: a research parable for our times.
Commun. ACM, 48(12):31–33, 2005.

[RBD+05] Thomas Röfer, Ronnie Brunn, Ingo Dahm, Matthias Hebbel, Jan Hoffmann,
Matthias Jüngel, Tim Laue, Martin Lötzsch, Walter Nistico, and Michael
Spranger. Germanteam 2004: The german national robocup team. In RoboCup

BIBLIOGRAPHY 111

2004: Robot Soccer World Cup VIII, Lecture Notes in Artificial Intelligence, Lis-
bon, Portugal, 2005. Springer. more detailed in GermanTeam RoboCup 2004.
Technical Report (299 pages, http://www.germanteam.org/GT2004.pdf).

[SHP+03] Paul S. Schenker, Terrance L. Huntsberger, Paolo Pirjanian, Eric T. Baumgart-
ner, and Edward Tunstel. Planetary rover developments supporting mars ex-
ploration, sample return and future human-robotic colonization. Auton. Robots,
14(2-3):103–126, 2003.

[SJ05] Martin Seyr and Stefan Jakubek. Mobile robot predictive trajectory tracking.
In ICINCO, pages 112–119, 2005.

[Thr02a] Sebastian Thrun. Particle filters in robotics. Proceedings of the 17th Annual
Conference on Uncertainty in AI (UAI), 2002.

[Thr02b] Sebastian Thrun. Robotic mapping: A survey. Exploring Artificial Intelligence
in the New Millenium, 2002.

[VNE+01] Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard Petras, and
Hari Das. The claraty architecture for robotic autonomy. Proceedings of the
IEEE Aerospace Conference, Montana, March 2001, 2001.

[WB95] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical
report, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,
1995.

[Web05] Daniel Weber. Decision making in the robot soccer domain. Master’s thesis,
Technische Universität Wien, Institut für Informationssysteme, 2005.

[Wen00a] Lothar Wenzel. Kalman-filter, teil 1. Elektronik, 6:64–75, 2000.

[Wen00b] Lothar Wenzel. Kalman-filter, teil 2. Elektronik, 8:50–55, 2000.

[Wen00c] Lothar Wenzel. Kalman-filter, teil 3. Elektronik, 11:52–58, 2000.

[Wen00d] Lothar Wenzel. Kalman-filter, teil 4. Elektronik, 13:74–78, 2000.

[Wik06a] Wikipedia. Kalman filter — wikipedia, the free encyclopedia, 2006. [On-
line http://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=
36157405; accessed 25-January-2006].

[Wik06b] Wikipedia. Law of sines — wikipedia, the free encyclopedia, 2006. [On-
line http://en.wikipedia.org/w/index.php?title=Law_of_sines&oldid=

91597800; accessed 2-December-2006].

http://www.germanteam.org/GT2004.pdf
http://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=36157405
http://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=36157405
http://en.wikipedia.org/w/index.php?title=Law_of_sines&oldid=91597800
http://en.wikipedia.org/w/index.php?title=Law_of_sines&oldid=91597800

112 BIBLIOGRAPHY

[Wik06c] Wikipedia. Odometry — wikipedia, the free encyclopedia, 2006. [Online http:
//en.wikipedia.org/w/index.php?title=Odometry&oldid=64505378; ac-
cessed 28-August-2006].

[Wik06d] Wikipedia. Voronoi diagram — wikipedia, the free encyclopedia,
2006. [Online http://en.wikipedia.org/w/index.php?title=Voronoi_

diagram&oldid=38445806; accessed 12-February-2006].

[WPF98] W. Vetterling W. Press, S. Teukolsky and B. Flannery. Numerical Recipes in
C. Cambridge University Press, New York, 1998. ISBN 0-521-43108-5.

[YJ99] Wai K. Yeap and Margaret E. Jefferies. Computing a representation of the local
environment. Artif. Intell., 107(2):265–301, 1999.

http://en.wikipedia.org/w/index.php?title=Odometry&oldid=64505378
http://en.wikipedia.org/w/index.php?title=Odometry&oldid=64505378
http://en.wikipedia.org/w/index.php?title=Voronoi_diagram&oldid=38445806
http://en.wikipedia.org/w/index.php?title=Voronoi_diagram&oldid=38445806

A
Acronyms

AI Artificial intelligence
AMiroSOT Autonomous Micro Robot World Cup Soccer Tournament

DARPA Department of Defense Advanced Research Project Agency
EKF Extended Kalman filter

FIRA Federation of International Robot-soccer Association
GVD Generalized Voronoi graph

IR Infared
KF Kalman filter

LLSQ Linear least squares filter
MCL Monte Carlo Localization / Particle filter

MiroSOT Micro Robot World Cup Soccer Tournament
ML Markov localization

OOA Object-oriented analysis
OOD Object-oriented design
SIR Sequential Importance Resampling
SIS Sequential Importance Sampling

UML Unified modeling language
WMR World model repository

113

114 APPENDIX A. ACRONYMS

“To be is to do”— Socrates
“To do is to be”— Jean-Paul Sartre
“Do be do be do” —Frank Sinatra

—Kurt Vonnegut, Jr.

	List of Figures
	List of Tables
	List of Algorithms
	Contents
	Introduction
	Problem Statement and Methodology
	Outline

	Robot Soccer
	RoboCup
	Leagues

	FIRA
	Leagues

	AMiroSOT
	Summary

	Autonomous Mobile Robots for AMiroSOT
	Hardware
	Sensors
	Communication
	Software Architectures
	Overview
	Three-Layer Architecture
	CLARAty

	Summary

	World Model Repository
	Static vs. Dynamic Data
	Categories of Data
	Environment Maps

	Summary

	Localization
	Problems
	Taxonomy of Position Estimation Approaches
	Linear Least Squares Filter
	Kalman Filter
	Kalman Model
	Kalman Iteration Process
	Example
	Non-Linear Kalman Filters

	Markov Localization
	Example

	Particle Filter
	Example

	Comparison Experiment
	Configuration
	Results and Interpretation

	Summary

	Tinyphoon
	Hardware
	Sensors
	Odometry
	Infrared
	Vision

	Software Architecture Used for Tinyphoon
	Five Step Pipeline
	Joint Communication Architecture
	Hardware Tools
	Software Tools
	Simulators
	Summary

	Software System Description
	High-Level System Design
	Geometric World Model Repository
	Simple WMR
	Complex WMR

	Self-Localization
	Simple Self-Localization
	Complex Self-Localization

	Implementation
	Simple WMR
	Complex WMR
	Self-Localization

	Summary

	Implemented Self-Localization Systems in Comparison
	Between Simple and Complex Self-Localization
	Simulation Setup
	Results
	Multi-Hypothesis Resolving

	Between Complex and EKF-Based Self-Localization
	Summary

	Conclusion and Further Work
	Bibliography
	Acronyms

