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Abstract—New classes of quadratic time-frequency representations (QTFRs), such
as the affine, hyperbolic, and power classes, are interesting alternatives to the con-
ventional shift-covariant class (Cohen’s class). This paper studies new QTFR classes
that retain the inner structure of Cohen’s class. These classes are based on a pair of
“conjugate” unitary operators and satisfy covariance and marginal properties. For
each class, we define a “central member” generalizing the Wigner distribution, and
we specify a transformation by which the class can be derived from Cohen’s class.

1 Introduction

Cohen’s class with signal-independent kernels (briefly called Cohen’s class hereafter) is the
classical framework for quadratic time-frequency representations (QTFRs) [1]-[4]. Several re-
cently proposed QTFR classes—such as the affine class [5, 6, 2, 3], the hyperbolic class [7, 8],
and the power classes [9, 10]—provide interesting alternatives to the constant-bandwidth time-
frequency (TF) analysis implemented by Cohen’s class. These new QTFRs satisfy important
covariance properties (e.g., scale covariance), they have specific TF resolution characteristics
(e.g., constant-Q resolution), they are related to unitary signal transforms other than the Fourier
transform (e.g., the Mellin transform), and they favor specific TF geometries (e.g., the hyper-
bolic TF geometry of Doppler-invariant signals and self-similar random processes).

This paper presents a general theory of QTFR classes that retain the inner structure of
Cohen’s class. These QTFR classes are based on pairs of “conjugate” unitary operators related
to each other in a specific manner [11]-[14]. Section 2 introduces the concept of conjugate
operators. Section 3 discusses the “covariance method” for constructing covariant QTFRs [11,
15]. Section 4 reviews the “characteristic function method” for constructing QTFRs satisfying
the marginal properties [16, 17, 13]. Section 5 shows that the two methods coincide in the
case of conjugate operators [11, 12, 18]. For any QTFR class based on conjugate operators,
a “central QTFR” (generalizing the Wigner distribution) is defined in Section 6 [12]. Section
7 shows that any class based on conjugate operators can be derived from Cohen’s class by a
unitary transformation [12, 13], and Section 8 considers an example.

Cohen’s Class. We first review Cohen’s class [1]-[4], which will be generalized subsequently.
Cohen’s class consists of all QTFRs Cy(t, f) that are covariant to TF shifts,

CS-r,u:E(taf) =Cz(t—Taf—V)' (1)
Here, z(t) € L2(IR) is a signal with Fourier transform X (f) = [°°_ x(t) e~72"/t g¢, and S; is the
TF shift operator, i.e., 8, , = F, T, with the time-shift operator T, and the frequency-shift op-
erator F, defined as (T, z)(t) = z(t—) and (F, z)(t) = z(t) e/>™*, respectively. The properties
of the operators T, and F,, entail a characteristic structure of Cohen’s class. In particular, any
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QTFR of Cohen’s class can be written as

=(t, f) = / / z(t1) ¥ (t2) B* (b1 — t, 8y — t) e T27 /=12 gy, g, (2)
where h(t1,%2) is a 2-D kernel function independent of z(t). An equivalent expression is
o0 o0 .
Gt = [ [ Wlr,) dalr,) @I dra, (3)
—00 v —00
where the kernel ¥(7,v) is related to h(ty, t2) as h(t1,t2) = [0 U*(t1—t2,v) ed™M1H2) 4y and
i T T .
Ag(r,v) = / m(t+ —) z* (t— —) eIVt gy (4)
—o0 2 2
is the symmetric ambiguity function of z(t). The QTFR C,(¢, f) satisfies the marginal properties
o0 o0
[_cwpa=ixPF, [ and =poP (5)
- —00

if ¥(7,0) = ¥(0,v) = 1. A central QTFR of Cohen’s class is the Wigner distribution [19]

Walt, f) = /_:m(t + %) z* (t - %) e 2T gr = /_O;X(f + g) X* (f - g) 2 dyy  (6)

for which ¥(r,v) = 1. Any Cohen’s class QTFR can be derived from the Wigner distribution
as

Cutf)= [ [ wie=t,1 - £ Wl 1) atp, (7
with the kernel 9(t, f) = [ [® U(r,v) eI 2*®=I7) dr dy.

2 Conjugate Operators

Cohen’s class is based on the time-shift operator T, and the frequency-shift operator F,.
The characteristic relation existing between these two operators will now be worked out in a
generalized setting. We consider two linear operators A, and Bg indexed by parameters o € G
and B € G with G C IR. These operators are assumed to be unitary on a linear signal space
X C L5(IR), and to satisfy identical composition properties

Ay An = Agjea, and Bg,Bg, = Bg,es;

where (g ,®) is a commutative group [16 11, 20]. The eigenvalues A2 ; and eigenfunctions uf (t)
“of A, are defined by (A, uf)(t) = a 5 uA(t); they a,re indexed by a “dual parameter” @&. The
A-Fourier transform (A-FT) [16, 17, 14] is defined as!

<y 2 a:u‘5 = [z ué*
Xa(@) & (z,uf) /t () ul*(2) dt .

Analogous definitions apply to A2 g (t), and the B-FT Xg(0).

8.8
Conjugate Operators. We now assume that application of one operator to an eigenfunc-
tion of the other operator merely produces a shift of the eigenfunction parameter [11, 12]:

Definition 1. Two operators A, and Bg as described above will be called conjugate
ifaeg, f€g and

(Bpug)(t) = ufup(t),  (Aau)(t) = ub,,(8).

Two conjugate operators A,, Bg can be shown to satisfy several remarkable properties [11, 12].

' All integrals extend over the entire support of the function integrated.



Specifically, their eigenvalues can be written as

A _ Ej2 & B_ _ _Fj2 B) _ (1A
Mg = et T p(a) p(&) and Aﬂ,ﬁ — Fi2mu(B) w(B) _ (Aﬂ,ﬁ)* . (8)
Here, u(g) € IR maps (G, ) onto (IR, +) in the sense that u(g1eg2) = p(g1) + p(g2), u(go) = 0,
and p(g~') = —p(g) where gq is the identity element in G and g~! denotes the group-inverse of
g. Due to (8), we shall simply write )\é,ﬁ = Aq,p and )\g,ﬁ = A4 s in the following. Furthermore,
two conjugate operators can be shown to commute up to a phase factor,

ABs =)o sBsA,.
Their eigenfunctions are related as (ug ,ud) = A ap Jo ug (t) A 5 du(B) = u(t), and Joud(t)

A3 5 du(@&) = uB(2), where du(g) £ |4'(g)|dg. The A-FT and B-FT are related as Xp(3) =

Jo Xal(a) )\E&du(d) and X4(a@) = f; X5(B) Asj du(B) (cf. the equivalent concept of “dual
operators” independently introduced in [13, 14]).

The Operator Dy = BgA,. We now compose two conjugate operators A, Bgs as

A
Dy=D,ys 2 BsA,,

where 6 = (a, B) € D with D = G x G. It is readily shown that Dy is unitary on X and satisfies
the composition property [11, 15]
Dg,Dg, = Aay,8 Do,os, »

where (D, o) is the commutative 2-D group with group operation 6; o 62 = (a1, 41) o (a2, 52) =
(10 02,10 f32), identity element 6y = (go, go), and inverse elements ! = (a~1,5~1). Fur-
thermore, D(,_1 = Aq,g Dg-1 and Dy, = I where I is the identity operator on X.

Examples. The shift operators T, F,, underlying Cohen’s class are conjugate with (G,e) =
(R,+), u(g) = g, eigenvalues XL, = =727/ NI, = 27t  ejgenfunctions uf(t) = ef?rft,
uf (¢) = 6(t'— t), and dual parameters ¥ = f, # = ¢t. The T-FT is the conventional Fourier
transform, X7 (f) = X(f), and the F-FT is the identity transform, Xp(t) = z(t). All relations
claimed to hold for conjugate operators are easily verified: in particular, the operators T, F,
are conjugate since (F, urf) (t) = urf_,_u(t) and (T, uf)(t') = uf},(¥). They commute up to
a phase factor, T,F, = ¢ 72" F,T,, and the TF shift operator S;, = F, T, satisfies the
composition property Sr, ,,S7 ,, = e~ J2mvim S 412, v14va-

The operators underlying the hyperbolic QTFR class [7, 8] are conjugate as well, but the
operators underlying the affine class and the power classes [5, 6, 9, 10] are not conjugate.

In the next two sections, we shall consider two distinct methods for systematically con-
structing QTFRs associated to two operators A, and Bg.

3 Covariance Method

To each pair of conjugate operators A,, Bg, there exists a covariance property? for QTFRs
that generalizes the TF shift covariance property in (1) [11, 15].

Localization Function. Let v£(t) denote the instantaneous frequency of the eigenfunction
uZ(t), and let 7'53 (f) denote the group delay of the eigenfunction ug (t). For any 6 = (&, ) € D,
the corresponding functions v£(t) and TBB (f) are assumed? to intersect in a unique TF point

z = (t, f). Hence, z = [(#) where I(0) will be called the localization function (LF) of the operator

>We note that a covariance property exists also in certain cases where Ao and By are not conjugate [11, 15, 18].
3In certain cases, this assumption holds if one uses the group delay of u£(t) and the instantaneous frequency
of ug (t); here, an analogous theory can be formulated.



Dy [11]. The LF is constructed by solving the system of equations v4(t) = f, TﬁB( f) =t for
(t,f) = z [21, 22, 11]. It is assumed to be invertible, i.e. z = [(f) < 6 =1"1(2).

Covariance Property. The LF describes the TF displacements caused by Dy. If a signal
z(t) is localized about a TF point z = (¢, f), then (Dg z)(t) will be localized about a new TF
point 2’ = (¢, f'). Since z is the intersection? of uZ(t) and ug(t) with (&,8) = 6 = 171(=2), 2/

will be the intersection of (Dgu2)(t) and (D ug )(t). Due to the conjugateness of A, and Bg,

(Doug)(t) = Aagufep(t) and  (Dgul)(t) =X ub (2).

Hence, . _
=l(&oﬂ,ﬂoa)=l(000T)=l(l‘1(z)00T) with 67= (8,q).

This motivates the following definition [11]:

Definition 2. A QTFR T,(z) = T,(t, f) will be called covariant to Dy if
Tp,e(2) =T (1(17(z)067T))  with 67T=(6")" =(8La)). (9)

The Class of All Covariant QTFRs. The class of all QTFRs covariant to Dy is charac-
terized as follows (cf. [11, 15]):

Theorem 1. A QTFR Ty(z) = Ty(t, f) is covariant to an operator Dy if and only if

T,(2) = (o, B2x) = [ [ () 2" (t2) h" (01, t2) dtadty (10)

with HZ = D[l 1(1)]THDU 1) Here, H is an arbitrary linear operator with
kernel h(t1,t2), assumed independent of z(t), and the kernel of H? is given by

hD (t1,t) =/ Dy-1(ayr (t1, 1) h(81,89) Dyoiyr (th,t2) dtydty, (1)
ty Ity

where Dy(t1,t2) and Dy (¢1,t2) are the kernels of Dy and D, ! respectively.

For given operator Dy, (10) and (11) define a class of QTFRs parameterized by the 2-D kernel
h(t1,t2). This class consists of all QTFRs satisfying the covariance (9).

Example. For Dy = S;, = F,T;, (9) becomes the TF shift covariance T%, (¢, f) =
Ty(t—7, f —v), and (10) becomes Cohen’s class as expressed in (2) (note that here h?(tl, tg) =
hS(t1,t2) = ht1—t, ta—t) ef27f(t1—t2)),

4 Characteristic Function Method

Besides the covariance (9), other important properties are the marginal properties [16, 17, 11]
70 =1xa@F, [ 10 = 1X5(B). (12
It can be shown that a class of QTFRs satisfying these marginal properties is given by [16, 17, 11]

/ / AUN2),0) dp2(0)  with AG,0) =daa)y;  (13)

42 is the intersection of uZ (t) and uB (t) in the sense that uZ (t) and uB (t) are concentrated, in the TF plane,

along v2(t) and TBB (f), respectively, and z is the intersection of vZ (t) and TB (n-
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where du?(6) = dp(a) du(B), ¥(0) = ¥(a, B) is a 2-D kernel (independent of z(t)) satisfying
¥(a, go) = ¥(g0,8) = 1, and A2 (6) is the “characteristic function” defined as®
42(6) £ (Dy-12,Dpua2) = [ (Dg-uy2)(8) (Dgusa )" (1) dt = X7 4* (. Do)
¢

Example. In the case of T, and F,,, the marginal properties (12) reduce to the conventional
marginal properties in (5), AD(6) becomes the symmetric ambiguity function A,(r,v) in (4),
and the QTFR class (13) becomes Cohen’s class as expressed in (3).

5 Equivalence of Methods

So far, we have discussed two distinct approaches to the systematic construction of QTFR
classes corresponding to two operators A,, Bg: the covariance method results in the QTFR
class T = {T;(z)} in (10) that consists of all QTFRs satisfying the covariance property (9),
while the characteristic function method results in the QTFR class 7 = {T;(z)} in (13) that is
related to the marginal properties (12). Although we have considered only the case of conjugate
operators, these two methods are in fact more generally valid [11, 13, 15, 16, 18]. However, the
conjugate case is an important special case since here the two methods are equivalent [11, 12]:

Theorem 2. For conjugate operators A, and Bg, there is
T=T  orequivalently Ty(z) = Ty(z)
where the kernel h(t1,t2) of T;(2) and the kernel ¥(6) of T;(z) are related as

h(t1, t2) /q/ (6) Do(t1, £2) A2 dui?(6) (14)

Examples. In the case of the conjugate operators T, and F,, both the covariance method
and the characteristic function method result in Cohen’s class (see (2) and (3), respectively). In
the case of T, and the TF scaling operator C, defined as (C,z)(t) = ve® z(e®t), which are not
conjugate, the covariance method results in the affine class [5, 6, 2, 3] whereas the characteristic
function method results in a different class [17].

6 The Central Member

In what follows, we consider the QTFR class 7 = T corresponding to conjugate operators A,
and Bg. We define the “central member” of this QTFR class, denoted W.P(z), via its kernel
T(0) =1 [12]. Inserting in (13) the central member is obtained as

2= [[ 426) A7), 0) du?(6). (15)

This can be expressed in terms of the A-FT X4(&) and the B-FT Xp(0) as
WE () = [ Xa(ae8"2) X; (a0717%) Xy 5du(B) = [ X5 (Beal’?) X3 (Bea™?) Naa du(a)
where (&, §) = ~(2). Furthermore, any QTFR Ty(z) of T = T can be derived from W2 (z) as
/ / $(17(2) 0 67) WP (16)) du?(6) (16)

where (6) = [f, ¥(6) A(6,6) du?(0

Example. In the case of the conjugate operators T, and F,, the central member becomes
the Wigner distribution in (6), and relation (16) reduces to the convolution relation (7).

5We note that '/2 is defined by 6'/%0 8'/2 = 0, and that )\;,1‘,/2 = (eFI2mH@) u(B))=1/2 — Fimu(e) u(B),



7 Transformation of Cohen’s Class

The QTFR class 7 = T can be constructed using a transformation approach, a fact linking
our theory to the “warping” theory in [21, 22]. Let A, and Bg be conjugate operators on

a signal space A, with group (G,e), and consider the operators C, £ VAS(,Y)V‘1 and

D £ VBS(J)V_I- Here, V is an isometric isomorphism (i.e., a norm-preserving one-to-one
transformation) mapping A’ onto some other space ), and s(-) is a one-to-one function mapping
some other commutative group (#,*) onto (G,e), in the sense that s(hy * ha) = s(hy) ® s(h3)
for all hy,hy € H. Assuming suitable choice of the dual parameters 4 and 8, it can be shown
that the eigenvalues and eigenfunctions of C,, and Dj are )\,?, 5= )\;‘(7),8(,7), ug (t)= (Vuf(,.y)) (t)
and Afg = )\ﬁ 5),5(6)" uf (t) = (Vuﬁg))(t), respectively. Furthermore, C, and D are conjugate
operators on ), with group (#,*). Thus, isometric isomorphisms V and one-to-one group
transformations s(-) preserve the conjugateness property of two operators.

The following theorem [12] states that any arbitrary pair of conjugate operators A, and
By can be derived from the shift operators underlying Cohen’s class, T; and F,, using such
a transformation, and furthermore, that the QTFR class 7 = T corresponding to A,, Bg
can be derived from Cohen’s class using a transformation. Similar results have been derived
independently in [13, 14].

Theorem 3. Let A,, Bg be conjugate with group (G, e) corresponding to function
B L
1u‘()7 so that Aé,& = e:t]27fu(a) u(a).

Case 1. If \j 5 = e~I2m @) &) (_ sign), then
Ay=VT, V' and Bg=VF,4, V!
where ¢, > 0 is an arbitrary reference time constant and the kernel of V is
1
Vi(t,t) = 7 w1, (®)

with p~1(-) denoting the function inverse to u(-). Furthermore, any QTFR T} (z) =
Tx(t, f) of the QTFR class 7 = T associated to A,, Bg can be derived from a
corresponding QTFR C,(t, f) of Cohen’s class as

T(2) = Cv-1¢ (t“u(ﬁ)’ NS)) L}:z—l(z) .

Case 2. If )\g,& = /2" m@) &) (4 sign), then the relations valid in Case 1
have to be replaced by A, = VFu(a)/trV_l a,Pd Bs = VTtT”(ﬁ)V‘l, V(t,t) =

i Uit 1) (8), and To(2) = Oy, (trii(a), 4E20) ’5=z—1(z)'

8 An Example

We shall finally illustrate the application of our theory by considering a specific example. Let
the operators A, and Bg be defined on the space X = L3(IR,) as

(Aag)(t) = SR () and Bpo)t) = za(5),  tas>0,
where ¢, > 0 is a fixed reference time constant. The operators satisfy the identical composition
properties Ay, Aq, = Ag e, and Bg,Bg, = Bg,3,, so that the underlying group is the multi-
plicative group, (G,e) = (R4, ), with identity element gy = 1 and inverse elements g~! = 1/g.
The eigenvalues/functions of A, and By are \j ; = ef?mInalné ,d() — % o(In % —Iné) and



Ag,ﬁ _ e—j21rln,31n,5, ug(t) = —\}_—tej%rln,é In(t/tr)  Note that p(g) = Ilng and du(g) = %‘l_ The A-
FT and B-FT are X4(&) = V1,6 z(t,&) and Xp(B) = [5° z(t) e~927InA In(t/tr) _d\/_it, respectively.

The operators A, and By are conjugate since (Bgud)(t) = udﬂ(t) and (A, ug)(t) = uga(t).

They commute up to a phase factor, A,Bg = gf2rinaln g BgA,. The combined operator
Dy = D,,5 = BgA,, satisfies the composition property Dg, g,Dq, 5, = e/27no21n b Dajaz,p182-
The localization function and inverse localization function of Dy = BgA, are obtained as

60 =18 = (45 28) @) =111 - (L)

t@ ¢

The covariance property (9) associated to Dy reads
Ina
Tog.(t, 1) =T (5, 8(£ - 57))
and the class of all covariant QTFRs is obtained from (10) as
* t2 g—j2mtf In(ts/ta)
// 2(t1) 2* (t2) B* (8 ttT) 19 gtidty, t>0.

The marginal properties (12) associated to Dy read (after simplification where possible)

oo B 0 00 by dt [ —j2mb In(t/t,) dt |?
[Lrena=eor,  [Tn(])F=|[ =0 Vi

The characteristic function method (see (13)), with the simplifying substitution a = Ina, b =
In g, yields the QTFRs

To(t, ) / / & (a,b) Az(a,b) 2/ t)a~tT go gy 150

with a
fiz(a, b) :/ IL‘(t eb/2) (L‘*(t e—b/2) e—j21raln(t/t,‘) dt
0

(note that ¥(a,b) = ¥(e® e’) and A(a,b) = AD(e?,eb) where U(a, B) and AD(a, B) are the
quantities used in (13)). It is readily verified that the QTFRs Ty(t, f) and T, (t, f) are identical

with the kernels related as h(t1,t3) = \/Tll__tszo ¥*(a,In —1)672"(1n 2)a 4o (see (14)). The
central member (15) is obtained as
Wf(t,f) _ /oo /oo fi,,;(a,b) ei2rlin(t/t:) a—tfb] 4 1p
—00
_ t/oox(t eb/2) :L‘*(t e—b/2) e—j21rtfb db =/°°XB(etf+a/2) Xl*a(etf—a/2) ej21rln(t/t,‘)a da
—o0 —00

where Xp(8) = [ x(t) e92m 0B In(t/tr) —d\/-it. Any QTFR Ty (t, f) = Ty(t, f) can be derived from
WP (¢ f) as (see (16))
o0 o0 1t
Tt )= [ [ (G ) WP £ ded, 1>,
t'=0Jf t

(N

where ¢(&, B) = [, [, U(a,b) ef2rl(n&)a—(nh¥ go dp. Finally, any QTFR Ty(t, f) = Tult, f)
can be derived from a corresponding Cohen’s class QTFR C, (¢, f) as (see Theorem 3, Case 2)
T:(t, f) = Cy-1z (tr In tt if) with (V7'2)(t) = Vellt a(t, e'l*r) .

T

We note that the QTFR class constructed above is the time-domain counterpart of the
hyperbolic class [7, 8], and Az(a,b) and WP(t, f) are the time-domain counterparts of the
hyperbolic ambiguity function and the Q-distribution, respectively [7, 8].

7
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