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Abstract — The Gabor expansion is a signal decomposition into time-frequency
shifted versions of a window function. Computation of the expansion coefficients re-
quires a “dual” window. This paper discusses fast algorithms for calculating the dual

- window. We consider situations where the Gabor frame operator can be expressed—
either directly or in a transform domain—as a multiplication operator, and hence
the dual window can be calculated by pointwise division. In the cases of critical
sampling and integer oversampling, the Zak transform allows to do this indepen-
dently of the original window. In the general case (including the case of rational
oversampling), one has to make restrictions about the window’s temporal or spectral
support. We furthermore obtain expressions for the eigenfunctions, eigenvalues, and
frame bounds of the Gabor frame operator, and we derive an efficient algorithm for
the construction of tight Gabor-type (Weyl-Heisenberg) frames.

1 Introduction

The Gabor ezpansion [1]-[4] is a decomposition of a signal into time-frequency (TF) shifted ver-
sions of an elementary window function. Since the functions into which the signal is expanded
do not generally form an orthonormal basis, the question of how to obtain the expansion co-
efficients (Gabor coefficients) and related questions concerning the existence and uniqueness
of the Gabor expansion are nontrivial. The theory of Weyl-Heisenberg frames (WHFs) [5]-[8]
yields important results on these questions. Frame theory tells us that the calculation of the
Gabor coefficients can be based on the so-called dual window. The dual window is derived
from the original window via the inversion of a linear operator (the frame operator), which is
a computationally intensive task in general. Therefore, in the last few years there has been
growing interest in fast algorithms for the computation of the dual Gabor window [4],[9]-[12].
This paper studies situations where the (discrete-time) Gabor frame operator can be “di-
agonalized,” i.e., expressed as a multiplication operator, so that the frame operator’s inversion
reduces to a simple pointwise division. We show that two cases have to be distinguished:

e In the cases of critical sampling and integer oversampling, the Zak transform [13]-[15]
allows to express the Gabor frame operator as a multiplication operator, independently
of the particular Gabor window used.

e In the general case (including the case of rational oversampling), the Gabor frame operator
is a multiplication operator if certain restrictions on the temporal or spectral support of
the Gabor window are satisfied.
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The paper is organized as follows. In Section 2, we briefly review the Gabor expansion and
the theory of WHFs. Section 3 considers the diagonalization of the Gabor frame operator in
the cases of critical sampling and integer oversampling. We give explicit expressions for the
eigenfunctions and eigenvalues of the frame operator, and we discuss the efficient construction
of tight WHFs. Section 4 considers the general case (including rational oversampling) and
shows that the Gabor frame operator is a multiplication operator if support restrictions on the
Gabor synthesis window are satisfied. Also for this case, the eigenfunctions and eigenvalues are
calculated and the efficient construction of tight WHFs is discussed. In Section 5, we briefly
address the implementation of the proposed algorithms and present simulation results.

2 Gabor Expansion and Weyl-Heisenberg Frames

2.1 Discrete-Time Gabor Expansion

The discrete-time Gabor ezpansion of a signal z[n] € [%(Z) is defined as’

oo M-1
z[n] = Z Z am 9i,m (7] with gy m[n] = g[n — L] eI M, (1)
l=—00 m=0
where ay,,, are the Gabor coefficients, g[n] is a “synthesis window,” and the parameters L, M €
IN are the grid constants. The Gabor coefficients can be calculated as

oo

am = (T, Ym) = z z[n] ’Yzm[n] with "n,m[n] = v[n — L] eI 2T iEn (2)

n=—0oo
with an “analysis window” 4[n]. In the cases of oversampling (M > L) and critical sampling
(M = L), the Gabor expansion (1), (2) exists for arbitrary z[n] € 12(Z) if the windows g[n]
and ~[n] are chosen properly (see below). Oversampling yields better numerical stability at the
cost of redundant and non-unique Gabor coefficients. In the case of undersampling (M < L),
the Gabor expansion will not exist for arbitrary signals z[n] € I2(Z).

2.2 Weyl-Heisenberg Frames

The theory of Weyl-Heisenberg frames (WHF's) [5]-[8] yields important results about the Gabor
expansion. For M > L, a set of functions g;m,[n] = g[n —IL] 727%™ with —oo < I < oo and
0 < m < M —1 is said to be a WHF for [2(Z) if for all z[n] € I%(Z)

oo M-1
Algl? < Y Y limam’ < Blle|®  with 0 <A< B <o, 3

l=—00 m=0

where ||z[|2 = %2 _ |z[n]|?>. The constants A > 0 and B < oo are called frame bounds. For
synthesis window g[n] such that {g;m[n]} is a WHF, the Gabor expansion (1), (2) exists for all
z[n] € I2(Z), and an analysis window (or “dual” window) can be derived from g[n] as

[n] = (S7g)[n]. (4)

Here, S~! is the inverse of the frame operator S defined as
oo M-1

(Sz)[n] = z z (2, 91,m) gl,m[n] .

l=—0c0 m=0

The frame operator is a linear, positive definite operator (corresponding to a matrix of infinite
size) mapping [2(Z) onto 12(Z).

112(Z) denotes the space of square-summable discrete-time signals, i.e., 3 o _ . |z[n]|* < oo for z[n] € 1*(Z).

n=-—00
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If {gi,m[n]} is a WHF, then {y;,[n]} is a WHF as well (the “dual” frame). The frame
bounds of {7y m[n]} are A’ = 1/B and B’ = 1/A where A, B are the frame bounds of {g; ,[n]}
[6]-[8]. The numerical properties of the Gabor expansion will be better for closer frame bounds
A and B. A WHF is called snug if A ~ B and tight if A = B. For a tlght WHF, S = AI where
I is the identity operator on I2(Z), and hence there is simply v[n] = 5 L gln].

In the case of critical sampling, a WHF {g; ,[n]} is known to be an ezact frame, which
means that the g;,[n] are linearly independent [6]-[8]. As a consequence, both the analysis
window -y[n] and the Gabor coefficients a; , are uniquely determined.

3 Diagonalization of the Gabor Frame Operator using the Zak
Transform

In general, the operator inversion required for calculating the dual window 7[n] according to (4)
is computationally intensive. Therefore, it is of interest to identify situations where the Gabor
frame operator reduces to, or can be converted to, simple pointwise multiplication. In this
section, we consider the cases of critical sampling and integer oversampling, i.e., M = KL > L
with the oversampling factor K = M/L € IN (note that K = 1 for critical sampling). We
shall see that the Zak transform, to be reviewed below, here converts the frame operator to a
multiplication operator or, mathematically speaking, it “diagonalizes” the frame operator.

3.1 Discrete-Time Zak Transform
For any L € IN one can define the discrete-time Zak transform (DTZT) (see [14])

oo
Zy(n,0) = ) z[n+1L)e 72,
l=—0c0
In the sequel we assume that the parameter L is equal to the time-shift parameter L used in the
Gabor expansion (1), (2). The DTZT is quasiperiodic in n and periodic in 8, Z,(n +IL,8) =
%™ Z.(n,6) and Z;(n,0 +1) = Z,(n,0) with [ € Z. Hence, it suffices to calculate the DTZT
on the “fundamental rectangle” (n,6) € [0,L—1] x [0,1). The signal z{n] can be recovered from
its DTZT as

1
zln] = / Z.(n,0)dd. 5)

The DTZT is a umtary mapping and therefore preserves 1nner products and norms, (z,y) =
(22, 2y) = En—o o ! Z.(n,6) Z,(n,0)dod and Iz|? = |1 2|12 = L4 0 !1Z,(n,6)[2d6. In practi-
cal implementations, the DTZT is sampled with respect to the normalized frequency variable

[15]. The sampled version of the DTZT can be expressed as a discrete Fourier transform, which
can be implemented efficiently using FFT algorithms [3, 15].

3.2 Eigenfunctions and Eigenvalues of the Gabor Frame Operator

For critical sampling and integer oversampling, the DTZT is intimately related to the eigen-
functions and eigenvalues of the Gabor frame operator S. A set of eigenfunctions of S is

un o[n'] = uln’ — nj 2T —n) itk ufn] = Z o[n —IL]. (6)
l=—00

Note that the eigenfunctions are parameterized by time n and normalized frequency §. The
DTZT of a signal z[n] can now be written as

Z4(n,0) = (z,up p)- (7)



Inserting (6) into the eigenequation [16] (Sung)[n'] = Ang un[n'] yields the eigenvalues Ay g =

sz—o lZ (n 60— )l We can see that Zy(n,0), the DTZT of the Gabor synthesis window

g[n], determines the eigenvalues of the Gabor frame operator. The dependence of A, ¢ on g[n]
will be emphasized in what follows by writing the eigenvalues as Ay(n,8), so that

-1
k
Z _
g(n,O K)

We emphasize that the eigenvalues A\g(n,d) (suitably discretized with respect to §) can be
computed efficiently using FFT techniques. In the case of critical sampling where K = 1, the
eigenvalues reduce to

2
Ag(n, 0) =

Ag(n,8) = L|Zy(n,0).

We note that a second set of eigenfunctions of S is @, g[n'] = d[n' — n] 2T L' =n) with
i[n] = TX__ 6[n — mM]. These eigenfunctions lead to the “dual DTZT”

]

Z,(n,0) & (z,iing) = 3. aln+1M]e 2K,

l=—00

which also diagonalizes the Gabor frame operator S. The corresponding eigenvalues are as
before, Ag(n 8) = \g(n,0); they can be expressed in terms of the dual DTZT of g[n] as A¢(n, 0) =
M YKV Z,(n+kL,0)|%. In the case of critical sampling, i[n] = u[n] and Z.(n,0) = Z:(n,0).

3.3 Diagonalization of the Gabor Frame Operator

We are now ready to show that the Gabor frame operator can be diagonalized using the DTZT.
We start from the eigenequation

(Sun,0)[n'] = Ag(n,8) ugen']. (8)

Taking the inner product of some signal z[n] € I*(Z) with both sides of (8), we obtain
(z,Sung) = A3(n,0)(z,une) and further (Sz, Ung) = Ag(n,0)(z,ung), where we have used
the self- ad301ntness of the frame operator S (i.e., §* = S and A\}(n,0) = Ag(n,0) where S*
denotes the adjoint of S [16]). Using (7), this can be rewritten as

ZS;—(TL, 0) = Ag(n, 0) Zz(nv 0) (9)

This shows that the DTZT allows to express S as a pointwise multiplication in the DTZT
domain. In a similar manner, the inverse frame operator S~! can be shown to become a
pointwise division in the DTZT domain,

Z:(n,0)
Ag(n,0)

Zg-14(n,0) = (10)

We shall now summarize two important consequences of (9) and (10).

e The frame condition (3) can be reformulated, using the DTZT of the synthesis window
gln), as A< A\(n,0) < B. (11)
In particular, {g;[n]} is a tight WHF with frame bounds A = B if and only if

A(n,0)=A.



e With (4) and (10), the analysis window y[n] can be computed via the DTZT using

Z,(n,0) = % (12)

and deriving ~[n] according to (5), i.e., v[n] = fj Z,(n,6)do.
We furthermore note that the frame operator corresponding to the dual frame {7, ,[n]} is S~1,
2
and its eigenvalues are Ay(n,0) = L Zfz'ol IZ,, (n, 60— %)I = 1/A4(n,0). Hence, the DTZT of
the synthesis window g[n] can be obtained from the DTZT of the analysis window y[n] as
Zy(n,0)
zZ =127
o(m6) = 3 . 0)
Using a different approach, equations analogous to (9)-(12) have been found for the continuous-
time case in [3]. In the case of critical sampling (K = 1), the above relations simplify to
A< L|Zn,0)? < B

d
an 1 1

LZ;(n,0)’ 24(n,0) = LZ;(n,0)

Z‘y(n, 0) =

3.4 Frame Bounds

The frame bounds in (3) are important since they characterize the numerical properties of the
Gabor expansion [6]. From (11) it follows that the frame bounds A and B are given by the

2
infimum and supremum, respectively, of the eigenvalues Ag(n,0) = L Z,‘:{:'Ol IZ_,, (n, 0— %)I ,

A =inf{)\(n,0)}, B = sup{)\y(n,0)}.

3.5 Construction of Tight Weyl-Heisenberg Frames

Next we describe the construction of a tight WHF in the case of critical sampling or integer
oversampling. The procedure outlined below extends the procedure in [6] to the case of integer
oversampling.

If {gi,m[n]} is a WHF for I?(Z), then it can be shown that {h m[n]} with h[n] = (S~1/2g)[n]
is a tight WHF for 1?(Z) with frame bound A = 1. It can furthermore be shown that S—1/2

corresponds to a pointwise division by 4/A¢(n,8) in the DTZT domain, i.e.
Z4(n,6)

Zg-1/24(n,0) =
s : )\g(n, 6)

Hence, if a synthesis window g[n] gives rise to a WHF, then a synthesis window h[n] corre-
sponding to a tight WHF with frame bound A =1 can be constructed by calculating

Zy(n,0)
)\9 (n, 0)

and h[n] = [y Z4(n,0) df. Since this procedure can be implemented using the FFT, it is much
more efficient than taking the inverse square root of a general matrix.

In the case of an ezact WHF {g;[n]}, the set {h;n[n]} with A[n] = (S~/2g)[n] is an or-
thonormal basis for 12(Z) [8]. Since a WHF with critical sampling is exact, the above procedure
applied to a WHF with critical sampling will result in an orthonormal basis for {?(Z). In the
case of critical sampling, (13) simplifies to

__Z(m0) 1 ag(zme)
VL|Zy(n,0)l VL

Zh(n, 0) = (13)

Zh (n, 0)



4 Diagonalization of the Gabor Frame Operator by Imposing
Support Restrictions on the Synthesis Window

In the general case (specifically, the case of rational oversampling where % = g > 1is a rational
number larger than 1), the DTZT does not diagonalize the Gabor frame operator for general
Gabor windows. However, the Gabor frame operator itself will reduce to a simple multiplication
operator (without any intermediate transformation) if certain support restrictions on the Gabor
synthesis window g[n] or its Fourier transform are imposed [5], [9]-[11].

The starting point for this type of diagonalization is the following general expression for the
Gabor frame operator, derived in [3] for the continuous-time case:

[e o]

(Sz)[n]= Y zln—mM]|\M > gln—IL)g*[n—IL—mM]| .

m=—00 l=—00

If the support of the synthesis window g[n] is restricted to an interval of length < M, this
expression simplifies to

(Sz)[n] = Ag[n]z[n]  with Agn]=M > lgin - 1L)|?.
l=—00

As our notation indicates, the Ag[n] are in fact the eigenvalues of the frame operator S in the
case that g[n] has length < M; the corresponding eigenfunctions are un[n'] = §[n' — n] with
0 < n < M — 1. The following conclusions can now be shown to hold:

e The frame condition can be rewritten as A < Ag[n] < B.

The set {g;m[n]} is a tight WHF for I2(Z) with frame bound A4 if and only if Ag[n] = A.

The dual Gabor window ~[n] is obtained as y[n] = ;\39%1].

The frame bounds are given by A = inf{)\s[n]} and B = sup {\¢[n]}.
If {g;m[n]} is an arbitrary WHF for I>(Z), then a tight WHF {h;m[n]} with A =1 can

n

be constructed according to h[n] = —Q\/X[—%—n—]
g

A similar diagonalization is valid for band-limited Gabor windows [11]. The key observation
is that the frequency-domain counterpart S of the Gabor frame operator S can be expressed as

($X)(6) =ng(o— %) [%;ga(o— ;”_4) G*(o— o= %)] :

where X(0) = % _ z[n] €2 and G(8) = T02 _o g[n] € 727" are the Fourier transforms

of z[n] and g[n), respectively. If, within the frequency-domain period 6] < %, the window g[n]
is bandlimited according to G(8) = 0 for || > 1, we obtain
m
G (o - M)

The Ay(f) are the eigenvalues of both § and S; the eigenfunctions of S are ug(8’) = 5(¢' — 6)
and those of S are ug[n] = 727", The following conclusions can be shown to hold:

(8X)(8) = Xg(6) X(6)  with Xg(6) =7 >_
m=0

2

e The frame condition can be rewritten as A< Ag(8) < B.

6



The set {g;,m[n]} is a tight WHF for 1>(Z) with frame bound A4 if and only if A,(6) = A.

The Fourier transform of the dual Gabor window «[n] is given by I'(9) = %((%.

e The frame bounds are given by A = inf{);(#)} and B = sup {},(6)}.

If {gim[n]} is an arbitrary WHF for 1?(Z), then a tight WHF {hy,[n]} with A =1 can
be constructed by calculating H(6) = \/G% and h[n] = [} H(0) e/2™ do.

We note that the dual window 7[n] and the “tight” window h[n] obtained by the above
methods will have the same finite time or frequency supports as the original window g[n].

The diagonalization discussed in Section 3 (valid for critical sampling and integer oversam-
pling) is consistent with the diagonalization discussed above (valid for synthesis windows with
suitably restricted time or frequency supports). In fact, in the case of critical sampling and

integer oversampling it can be shown that a window g[n] with finite time length < M yields
Ag(n,6) = XAg[n], and a window g[n] with G(6) = 0 for |6] > } satisfies Ay(n,8) = \y(8/L).

5 Implementation and Simulation Results

For the implementation of the Gabor expansion using the FFT, we used the cyclic definition
of the discrete Gabor expansion proposed in [2]. In this setting the signal z[n] to be expanded
and the Gabor windows g[n] and <[n| are periodic signals with the same period N, where N
has to be an integer multiple of both L and M. The Gabor frame operator S here reduces to a
matrix of size N x N. Hence, straightforward calculation of the dual window <y[n] requires the
inversion of an N x N matrix, which is on the order of N3. In contrast, the DTZT-based method
discussed in Section 3 can be implemented using the FFT, which is on the order of N log2—1{—,
and the methods using finite-support windows (i.e., windows with finite support within the
fundamental time or frequency period) are even of order N.

Fig. 1 illustrates the DTZT-based calculation of a “tight” window for the case of integer
oversampling by a factor of 2. Fig. 2 illustrates the calculation of the dual window for a finite-
length synthesis window in the case of rational oversampling.

1 08 Fig. 1: a) Gaussian g[n] with
0.8 0.6 period N = 4096, b) corre-
0.6 04 sponding tight Gabor window
04 02 h[n] for oversampling by 2 and

' ' L =256,M = 512.

0.2 0
% 1000 2000 3000 4000 0 1000 2000 3000 4000
@ (b)

1 02 Fig. 2: a) Finite-length Gabor
0.8 015 window g[n] with period N =
0.6 144 and length 16, b) corre-
04 01 sponding dual Gabor window

' 0.05 v[n] for oversampling by 4/3
02 and L =12, M =16.

% 50 100 % 50 100
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