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Abstract

The smoothed pseudo-Wigner distribution, the Choi—Williams distribution, and the cone-kernel representation are three
time—frequency representations (TFRs) which feature an attenuation of cross (interference) terms as compared with the
Wigner distribution. In this paper, we use an analysis of ambiguity-domain weighting functions for comparing the interference
attenuation and time—frequency concentration properties of the three TFRs. These properties are then further investigated by
studying the results obtained for a set of simple two-component signals. This analysis shows important effects and performance
limitations whose understanding is essential for a practical application of the TFRs.

Zusammenfassung

Die geglittete Pseudo-Wignerverteilung, die Choi-Williams-Verteilung und die Cone-Kernel-Darstellung sind Zeit—
Frequenz-Signaldarstellungen, deren Kreuz- bzw. Interferenzterme i.a. kleiner sind als jene der Wignerverteilung. In der
vorliegenden Arbeit werden mittels einer Analyse im “Ambiguititsbereich” die Interferenzunterdriickungs- und Zeit—
Frequenz-Konzentrationseigenschaften der drei Zeit-Frequenz-Signaldarstellungen verglichen. Zur weiteren Untersuchung
dieser Eigenschaften werden die fiir einfache zweikomponentige Signale erhaltenen Ergebnisse betrachtet. Diese Analyse
zeigt die Existenz wichtiger Effekte und Beschrinkungen der Leistungsfahigkeit, deren Verstindnis fiir eine praktische
Anwendung der Zeit-Frequenz-Signaldarstellungen wesentlich ist.

Résumé

La distribution pseudo-Wigner lissée, la distribution de Choi-Williams, et la représentation par noyau en céne sont trois
représentations temps—fréquence (TFR) caractérisées par une atténuation des termes d’interférence croisée par rapport a
la distribution de Wigner. Dans cet article, nous utilisons une analyse des fonctions de pondération dans le domaine de
’ambiguité pour comparer ’atténuation de ’interférence et les propriétés de concentration temps—fréquence des trois TFR.
Ces propriétés sont ensuite analysées plus en détail par I’étude des résultats obtenus sur un ensemble des signaux simples a
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deux composantes. Cette analyse montre des effets importants ct des limitations de performances dont fa compréhension cst

essentielle pout une application pratique des TFR.
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1. Introduction

Quadratic time—frequency representations (TFRs)
[7.12,4, 11, 1] are powerful tools for the analysis of
signals. Among quadratic TFRs with “energetic” inter-
pretation, the Wigner distribution (WD) 3, 12, 13, 15]

W, f) = /x(H—%)x* (t~%) e 1Mt dr (1)

can be regarded as theoretically optimal in that it
satisfies a maximum number of desirable mathemat-
ical properties and features optimal time-frequency
(TF) concentration.! However, the cross or interfer-
ence terms (ITs) of the WD [13] are often a grave
problem in practical applications, especially if a WD
outcome is to be visually analyzed by a human sig-
nal analyst. Since ITs are oscillatory, they can be at-
tenuated by means of a smoothing operation which
corresponds to the convolution of the WD with a
2-D “smoothing kernel” [7, 12, 13]. Quite generally,
the smoothing tends to produce the following effects:
1. a (desired) partial attenuation of ITs;

2. an (undesired) broadening of signal terms, i.e., a

loss of TF concentration;
3. a (sometimes undesired) loss of some of the nice
mathematical properties of the WD.

The design of a “good” smoothing kernel is hence an
attempt to achieve effect 1 while avoiding, as far as
possible, effect 2 and, if mathematical properties are
important, also effect 3.

The classical spectrogram (squared magnitude of
the short-time Fourier transform) is a smoothed WD
[3,7,12,13]. The spectrogram smoothing is quite
extensive and suffers from an unavoidable tradeoff
between time concentration and frequency concen-
tration. Moreover, the spectrogram does not satisfy
most of the mathematical properties of the WD. This

"In (1) and subsequent equations, x(¢) is the signal to be
analyzed, ¢ and f denote time and frequency. respectively, and
integrations go from --20 to oc.

motivates the interest in other smoothed WDs which
represent an alternative to the spectrogram.

1.1. Smoothed pseudo-WD, Choi-Williams
distribution, and cone-kernel representation

The pseudo-Wigner distribution [3] has been de-
fined as a short-time WD using a running analysis
window. The pseudo-WD is a smoothed WD which,
however, implements only a smoothing in the fre-
quency direction. Thus, the WD’s time concentration
is preserved but ITs oscillating in the time direction
are not attenuated. This restriction is removed in
the smoothed pseudo-Wigner distribution (SPWD)
[8, 6, 13] which is a pseudo-WD with an additional
smoothing in the time direction. The SPWD is con-
ceptually simple, and it allows both an easy and
flexible choice of the smoothing characteristics and
an efficient implementation. However, like the spec-
trogram, it does not satisfy most of the mathematical
properties satisfied by the WD (see Table 1).

A TFR which retains many desirable mathematical
properties and yet attains a partial attenuation of ITs
is the Choi—Williams distribution (CWD) [2, 16]. In
particular, the CWD satisfies the marginal properties
and is thus an “energy distribution”. On the other hand,
it has been shown that the validity of the marginal
properties places a limit on the IT attenuation of any
TFR [13]. A generalization of the CWD, the family of
“reduced interference distributions” [16], satisfies also
the finite-support properties. Other extensions of the
CWD (e.g., the generalized exponential distribution
and the Butterworth distribution) are introduced in
[20, 5].

The cone-kernel representation (CKR) [21, 19] has
been designed specifically to achieve good TF concen-
tration and good IT attenuation in the case of multiple
sinusoidal bursts with quasi-stationary instantaneous
frequencies, as encountered in voiced speech signals.
The CKR satisfies the temporal finite-support prop-
erty (see Table 1) and is yet capable of attenuating ITs
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Table 1

Mathematical properties of the smoothed pseudo-WD (SPWD), the Choi~Williams distribution (CWD), and the
cone-kernel representation (CKR). The properties are defined in [12, Table 1]

Property SPWD CWD CKR
P;: real-valuedness Voif g)eR Vv Voif g(—1) = g(1)
P;: time-shift invariance Vv Vv Vv
P3:  frequency-shift invariance Vv Vv Vv
P4:  time marginal Vv

Ps: frequency marginal V4

Ps: time moments V4

P;:  frequency moments Vv

Pg: time—frequency scaling V4

Py: instantaneous frequency V4

Pjg: group delay V4

Py;: finite time support V4

Py2: finite frequency support
Py3: Moyal’s formula/unitarity
P14: convolution

Pys: multiplication

Pyg: Fourier transform

Py7: chirp convolution

Pg: chirp multiplication

oscillating in the time direction. Most other proper-
ties are not satisfied; in particular, the CKR is not an
“energy distribution” since its integral over the entire
TF plane is always zero.

1.2. Motivation and outline of paper

This paper provides a comparative discussion of the
SPWD, CWD, and CKR with regard to TF concen-
tration and interference geometry/attenuation. It also
provides an objective experimental comparison of the
three TFRs by contrasting their results for simple but
fundamental, two-component signals.

Since the CWD and CKR have been the subject of
a number of interesting papers that have yielded valu-
able results and insights (2, 5,9, 10, 13, 14, 16-21] it
is worthwhile to point out in which respects this paper
is different from previous work, which new aspects
are discussed in the paper, and why these aspects are
relevant:

— Perhaps most important, this paper seems to be the
first discussion that compares the CWD and CKR
with the SPWD. While the CWD and CKR have
been introduced some years after the SPWD, and
have been claimed to achieve a performance im-
provement over existing techniques, a detailed com-

parison with the SPWD has not been given so far
(except for very brief and limited comparisons in
[12,9]). Instead, the CWD and CKR have been
compared with the WD, pseudo-WD, and spectro-
gram [2, 16-19, 21]. However, such a comparison
is not too meaningful since the WD and pseudo-
WD are well known to implement too little smooth-
ing (the WD has no smoothing at all whereas the
pseudo-WD smooths only in the frequency direc-
tion), and the spectrogram generally implements too
much smoothing. Hence, it is very easy to outper-
form the WD and pseudo-WD with respect to IT
attenuation, and the spectrogram with respect to TF
concentration.

We provide a systematic discussion of two impor-
tant performance aspects, namely, TF concentration
and IT attenuation. Our analysis of the properties of
TF concentration and IT attenuation will be based
on the “ambiguity domain” [6, 2, 11, 13] where the
WD smoothing is characterized by a simple kernel
multiplication, whose effects on signal terms and
ITs are easily understood. Again, it seems that a de-
tailed ambiguity-domain comparison of the SPWD,
CWD, and CKR has not been performed so far.
We give an objective and detailed comparison of
the SPWD, CWD, and CKR results obtained for
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a set of simple two-component signals. These sig-
nals comprise constant-frequency components, im-
pulsive components, Gaussians, chirp components,
and quadratic FM components. While many papers
have concentrated on specific signal types where the
advantages of a given TFR are most pronounced,
we have attempted to select signals that are diverse
enough to minimize any undesired bias. Also, we
have purposely used simple synthetic signals since
only these allow an easy analysis in the ambiguity
domain and thus yield insights into the basic be-
havior of a TFR regarding TF concentration and IT
geometry/attenuation. These insights are absolutely
necessary for correctly interpreting the TFR results
obtained for more complicated real-world signals.

2. Ambiguity-domain analysis of IT attenuation
and TF concentration

In this section, we discuss and compare the IT
attenuation and TF concentration properties of the
SPWD, CWD, and CKR by means of an analysis in the
“ambiguity domain”.

2.1. The ambiguity domain

The smoothed WDs considered in this paper can be
written as a convolution of the WD with a real-valued
smoothing kernel yr(¢, f) [3, 7, 12, 13],

)= / / Yr(t =t f— W, fdedf".
el )
Introducing the ambiguity function (AF)

A(t,v) = /x (t + %) x* (t - %) eI gy,
t

which is essentially the Fourier transform of the WD,
the smoothed WD T(¢, /) defined in (2) can also be
written as [2,4, 6,7, 11-13]

T(t, f) = / / [¥r(t, v)A(1,v)] 2D d1dy,
T v (3)

i.e., as the inverse Fourier transform of the signal’s
AF multiplied (weighted) by a weighting function

! WD signal terms

(1 f)
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Fig. 1. (a) Basic interference term geometry of the WD.
(b) Ambiguity-domain analysis of IT attenuation.

¥ (7, v). This weighting function is the Fourier trans-
form of the smoothing function ¥ 7(¢, f) in (2),

¥r(1,v) = / // Yo, e N drd £

In the ambiguity domain defined by (3), the convo-
lution in (2) is replaced by a simple multiplication.
Consequently, many properties of the smoothed WD
T(t, f) can now be discussed very easily in terms
of the shape of the weighting function ¥r(t,v). Evi-
dently, the smoothness of Yr(z, f) implies that the
weighting function ¥r(t,v) is concentrated around
the origin of the (t,v)-plane. Indeed, the weighting
function can be interpreted as the transfer function of
a two-dimensional lowpass filter.

Let us consider the basic situation of a signal that
has energy around two points (¢, 1) and (£, f2) in
the TF plane. The WD of such a signal will contain two
“signal terms” around (#, 1) and (%, f2) and an IT
around the center point (12, f12) With 12 = (4 +£)/2
and f12 = (f1 + f2)/2. The IT is oscillatory and
partly negative; the direction of fastest oscillation is
perpendicular to the line connecting the two “signal
points” (¢, f1) and (&, f2) [13]. This geometry is
illustrated in Fig. 1(a).

Just as the WD, the AF contains two “signal terms”
and an IT. The AF’s signal terms are located around
the origin of the (7, v)-plane. In contrast, the AF’s
IT can be shown to be located around the two “lag
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points” (73, viz) and (—13, —vi2), where 1y = t) — b
and vj; = f| — f are the time and frequency differ-
ences, respectively, of the signal points (¢, ) and
(t2, f2). Hence, it follows with (3) that the attenuation
of the IT depends on the value of |¥7(z,v)| around
(712, v12). This is illustrated in Fig. 1(b). Good IT at-
tenuation, even for signal components closely spaced
in the TF plane (i.e., involving small lags 73 and v|2),
is achieved if ¥7(z,v) is very narrow around the ori-
gin of the (7, v)-plane. On the other hand, if ¥7(z,v)
is too narrow, the AF signal terms will in many cases
be truncated by the weighting function ¥r(z, v). This
truncation in the ambiguity domain corresponds to a
broadening of the WD signal terms and, hence, a loss
of TF concentration in the smoothed WD. It is thus
clear that the two goals of good IT attenuation and
good TF concentration are essentially contradictory.

While there exists a fundamental general trade-
off between IT attenuation and TF concentration,
the weighting function ¥Yr(t,v) can be designed
to achieve good overall performance for specific
classes of signals, In the following, we shall take a
closer look at the weighting functions of the SPWD,
CWD, and CKR, and we shall attempt to find out for
which situations these weighting functions are best
suited, and what performance limitations are to be
expected. In Section 3, these theoretical results will
be illustrated by means of computer simulations. As
stated before, our main interest is in the shape of the
ambiguity-domain weighting function ¥7(z,v) and
its implications with respect to IT attenuation and TF
concentration characteristics. These characteristics
are the most important ones if the application is the
visual analysis of TFR results by a human anatyst.
Here, mathematical properties are of secondary or no
importance,? and the main requirement is that ITs
are sufficiently attenuated with only moderate loss of
the TF concentration of the desired signal terms.

2.2. The smoothed pseudo-WD

The smoothed pseudo- Wigner distribution (SPWD)
is defined as a time-smoothed short-time version of
the WD employing a running analysis window A(t)

2 For completeness, the mathematical properties of the SPWD,
CWD, and CKR are compared in Table 1.

and a time-smoothing window g(¢) [8, 6, 13, 12]. The
SPWD’s ambiguity-domain weighting function is

¥Yspwp(7,v) = ¢p()G(V),

where ¢u(t) = h(37) h*(—17) and G(v) is the
Fourier transform of g(t). An example is given in
Fig. 2(a). The weighting function is a separable func-
tion whose factors ¢(7) and G(v) depend on the
analysis window A(t) and the time-smoothing win-
dow g(t), respectively. The amounts of time smooth-
ing and frequency smoothing can be controlled very
easily and independently by suitably choosing the
lengths of the windows g(¢) and h(¢), respectively: a
longer ¢(t) yields more time smoothing and a longer
h(t) yields less frequency smoothing.

For usual windows g(¢) and A(z), the SPWD
smoothing corresponds to a very simple two-
dimensional lowpass filter. The weighting func-
tion Wspwp(7,v) will typically be similar to a 2-D
Gaussian function. Because of the simple shape of
the weighting function, the IT attenuation and TF
concentration of the SPWD will not depend too
much on the detailed TF structure of the signal
under analysis. However, the SPWD does not satisfy
most of the mathematical properties of the WD (see
Table 1). The CWD and the CKR, to be discussed
next, implement a more sophisticated WD filtering.

2.3. The Choi-Williams distribution

The  Choi-Williams  distribution  (CWD)
[2,5,9,10, 1214, 16, 20] is a smoothed WD that re-
tains a large number of desirable mathematical prop-
erties (see Table 1). In particular, the CWD satisfies
the marginal properties and is thus an “energy distri-
bution”. It is characterized by a weighting function

(2nTv)?
o ] ’

¥Yewn(T,v) = exp [—

where ¢ is a positive parameter controlling the concen-
tration of Wcwp(7,v) around the origin of the (7, v)-
plane and, hence, the overall amount of smoothing.
A larger o yields a broader Ycwp(z,v), correspond-
ing to less smoothing. An independent choice of the
amounts of time smoothing and frequency smoothing
is not possible.



154 F. Hlawatsch et al. / Signal Processing 43 (1995) 149-168

Uspwp (T, V) Yowp(T,v)

o frequency lag v

0 time lag t Y time lag t

0 frequency lag v

time lag t

Fig. 2. Ambiguity-domain weighting functions ¥r(t,v) of (a) the SPWD, (b) the CWD, and (c) the CKR.
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IT of AF

(@) (b)

Fig. 3. Ambiguity-domain analysis of the IT attenuation in the
CWD. (a) Case 112 # 0 and vj2 # 0, (b) case 73 # 0 and
vip =0.

Since the weighting function Wewp(t,v) depends
only on the product of t and v, it has a characteristic
cross shape (see Fig. 2(b)). Specifically,

'PCWD(’L’,O) = 'PCWD(O, V) =1 N

i.e., the CWD weighting function does not decay on
the 7- or v-axis. This behavior (which is necessary
for the marginal properties to be satisfied) entails a
characteristic limitation of IT attenuation. In fact, the
CWD must be expected to yield poor IT attenuation if
the interfering “signal points™ occur at the same time
or at the same frequency. In the first case, there is
t; = t; or 113 = 0, which means that the AF’s IT falls
on the v-axis where Ycwp(0,v) = 1. In the second
case, we have f| = f5 or vi3 = 0 so that the AF’s IT
falls on the t-axis where ¥cwp(7,0) = 1.

Fig. 3 contrasts the case of 712 # 0 and v, # 0
resulting in good IT attenuation and the case vi; =
0 resulting in poor IT attenuation. In the latter case,
the AF’s IT is truncated by the weighting function,
which causes a broadening of the CWD’s IT in the
time direction. In fact, while the height of the CWD’s
IT is reduced (as compared to the WD’s IT), the time
spread of the CWD’s IT is increased in proportion.
This behavior is consistent with the second marginal
property which implies that the CWD’s integral with
respect to time equals the corresponding integral of
the WD. Hence, a reduction of IT height is paid for
by an increase of the IT’s time spread, such that the
IT’s time integral remains unchanged. Of course, an
analogous discussion applies to the case 71, = 0: here,
the IT oscillates in the time direction, and it is spread
out in the frequency direction.

From this ambiguity-domain analysis, it follows
that the CWD will feature residual ITs whenever the

signal components overlap either with respect to time
or with respect to frequency. These residual ITs are
constrained to the overlap intervals; they are reduced
in height but increased in width (as compared to the
ITs of the WD). We emphasize that similar resid-
ual ITs will be observed in any TFR that satisfies
the marginal properties. This is especially true for the
“reduced interference distributions” [16] which have
cross-shaped weighting functions as well.

The CWD’s TF concentration depends heavily on
the specific signal. For good TF concentration, the AF
signal terms must fall essentially into the “pass region”
of the cross-shaped weighting function Wewp(t,v).
Consequently, the TF concentration will be very good
for either an impulsive signal or a constant-frequency
signal since here the AF is concentrated along the
t-axis and the v-axis, respectively where Ycwp(t,v)
= 1. For most other signals, however, the weighting
function will produce a truncation of the signal’s AF
which corresponds to a broadening in the CWD.

2.4. The cone-kernel representation

The weighting function of the cone-kernel repre-
sentation® (CKR) [21,19, 18] is

¥ckr(7, v) = g(7)|t|sinc(nrv), Cy

where g(7) is a window function and sinc(a) =
sin(x)/a. The shape of the weighting function
¥cxr (7, v) (see Fig. 2(c)) has some interesting char-
acteristics which correspond to a very specific behav-
ior regarding IT attenuation and TF concentration. In
particular, ¥ckgr(7,v) is zero on the entire v-axis,

Yexr(0,v) =0,

which corresponds to the fact that the CKR’s integral
with respect to frequency, and thus also the CKR’s
integral over the entire TF plane, is zero:

/fCKRx(t,f)de 0, /t/f CKRx(t,f)dtdfz(zs.)

3 We use the term representation instead of distribution since
the cone-kernel representation is not an “energy distribution” that
distributes the signal’s energy over the TF plane. In fact, the TF
integral is always zero (cf. Eq. (5)). This is a marked difference
from the SPWD or the CWD.
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Thus, the CKR is not an “energy distribution”. It fol-
lows from (5) that the CKR must contain significant
negative components even in those cases where the
WD is (nearly) positive. Indeed, the CKR weighting
function is (nearly) zero around the v-axis, i.e., pre-
cisely where at least a part of the AF signal terms is
usually located. Hence, we must expect the CKR sig-
nal terms to contain severe distortion as compared to
the WD signal terms. In the case of constant-frequency
signals, this distortion will be seen to be essentially
a narrowing of the frequency width, accompanied by
noticeable negative components. In other cases (espe-
cially chirp signals), the effects of this distortion are
more troublesome (see Section 3).

It follows from (4) (specifically, from the decay of
the sinc function) that the CKR will feature reason-
able IT attenuation whenever vy, is not near 0, i.e.,
whenever the interfering signal components do not oc-
cur around the same frequency. However, the oppo-
site case vi; = 0 presents some unique features. For
vi; = 0, we obtain

lIICK.R(T’ 0) = g(‘[)ltla

which is zero for t = 0 and for |¢| > 37, (where T,
denotes the length of the window g(z)), and will as-
sume a maximum for t = £ty where g is some time
lag with 0 < 79 < %Tg (see Fig. 2(c)). Note that the
two points (—1¢,0) and (7¢,0) on the t-axis are the
global maxima of |¥ckr(z,v)|. Thus, whenever two
signal components occur around the same frequency,
vi2 = 0, and their time distance is near 7o, |712] & 7,
the IT will be large. If, on the other hand, the time dis-
tance is T, or larger, then the IT will be totally sup-
pressed. Since Wckr(t,v) is not concentrated around
the origin of the (t, v)-plane but rather around the two
points (—17¢,0) and (7¢,0) on the z-axis, Yckr(z,Vv)
is the transfer function of a directional bandpass fil-
ter rather than that of a lowpass filter. This is a basic
difference from the SPWD and the CWD.

3. Experimental comparison

In the previous section, the analysis of the
ambiguity-domain  weighting function ¥r(t,v)
yielded valuable insights into the IT attenuation and
TF concentration characteristics of the SPWD, CWD,

and CKR. We shall now illustrate, verify, and supple-
ment these insights by looking at specific TFR results.

A natural question that arises in many practical ap-
plications of TFRs is, “what will a given TFR look like
for a given signal under analysis?” Often, this aspect
is far more immediate and important than the aspect
of mathematical properties or a detailed quantitative
analysis of specific effects. Therefore, in this section,
we systematically compare the results of the SPWD,
CWD, and CKR for some simple two-component sig-
nals. The signal components used are complex Gaus-
sians, sinusoidal bursts, chirp (linear FM) signals, and
quadratic FM signals. The signals are selected with
the aim of illustrating the effects discussed in the
previous section, and to highlight the strengths and
weaknesses of the various TFRs. The diversity of the
signals used helps to minimize any undesired bias in
favor or against a specific TFR.

We have restricted our analysis to simple synthetic
signals whose TF structure is known beforehand, so as
to permit an assessment of the “truthfulness” of TFR
results, the easy identification of specific effects, and
an analysis of the TFRs’ interference geometries. The
insights gained from the study of these simple sig-
nals are necessary for correctly interpreting the TFR
results obtained for the (usually much more com-
plicated) real-world signals encountered in practial
applications.

3.1. Experimental setup

The TFRs are displayed graphically by means of
contour-line plots showing the positive TFR parts. We
use 10 contour lines linearly spaced between the max-
imum height of the TFR surface and 0.03 times the
maximum height. Compared to 3-D plots, contour-
line plots are advantageous in that they clearly show
the locations and spreads of signal terms and ITs in
the TF plane, and thus permit an easy evaluation of
a TFR’s TF concentration and IT geometry. On the
other hand, a disadvantage of contour-line plots is that
they tend to over-emphasize components with small
heights, such as small ITs. To compensate for this dis-
advantage, we supplement our contour-line plots by
cross sections (cuts) along the time direction. Some
5 local cuts are taken around frequencies which are
marked in the contour-line plots by lines labeled A, B,
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and C. These cross sections give a precise indication
of the IT amplitudes relative to the signal term ampli-
tudes, i.e., of a TFR’s IT attenuation. They also show
negative components which are not (directly) visible
in the contour-line plots.

The duration of all signals is 128 samples. The fre-
quency band shown in the contour-line plots is one
half of the sampling frequency. All signals are syn-
thetic and were created directly in discrete-time for-
mat; however, in order to be closer to a real-world
scenario, the time and frequency axes are labelled in
ms and Hz, respectively, assuming a (hypothetical)
sampling rate of | kHz. Thus, the TFR plots show a
time interval of length 128 ms and a frequency band
of 500 Hz.

The TFR parameters were chosen as follows. The
SPWD windows ¢g(¢) and A(¢) were implemented in
discrete-time format using Hamming windows. To a
certain extent, the window lengths L; and L, (con-
trolling the amounts of time smoothing and frequency
smoothing, respectively) were adapted to the respec-
tive signal. For example, a small amount of frequency
smoothing was chosen in the case of an IT oscillating
in the time direction only. A similar adaptation is not
possible for the other two TFRs. Therefore, we used
a CWD with a fixed parameter ¢ = 30 and a CKR
with a Hamming window with fixed length (length of
the discrete-time version of the window g(t)) of 41.
Since these specific choices are of course questionable
due to their arbitrariness, the effect of varying these
parameters is studied in Section 3.7.

3.2. Two Gaussians

The closest approximation to two “TF point sig-
nals” that is permitted by the uncertainty principle is
given by two Gaussian signals suitably TF-shifted to
two TF points (¢, f1) and (#, f>). Fig. 4 considers the
case where the two Gaussians occur at different times
(112 = f1—1t2 # 0) and different frequencies (vi; =
Sf1—/f2 # 0). In all three TFRs, the IT is effectively
suppressed. Note, however, that the CKR shows a dis-
tortion of the signal terms involving negative parts as
predicted in Section 2.4. This results in an incorrect
representation of bandwidth in the CKR signal terms.

Fig. 5 again considers the case of two Gaussians,
but now the Gaussians occur at the same frequency

(f1 = f2orv; =0). The SPWD’s TF concentration
of the signal terms is as before, but the IT is attenuated
less due to the smaller distance of the interfering signal
components in the TF plane. The IT attenuation could
easily be improved by decreasing the window length
Ly (i.e., more frequency smoothing), but this would
result in poorer frequency concentration.

The CWD contains an IT with large amplitude and
time spread, and thus shows a dramatic difference
from the CWD result in Fig. 4. Note that this result
is in perfect agreement with the theoretical discussion
of Section 2.3: in the ambiguity domain, the IT falls
onto the t-axis where the CWD’s weighting function
Yewn(t,v) is 1 so that the IT is poorly attenuated.
In the CKR, as in the previous example, the IT is
effectively suppressed. Similar results (not shown) are
obtained for two Gaussians located at the same time
(t12 = 0).

Fig. 6 shows the case where the two Gaussians occur
around different times and frequencies (7;; # 0 and
vi2 # 0) but, due to the Gaussians’ large bandwidth,
there is some overlap with respect to frequency. The
CWD features good TF concentration but contains a
noticeable residual IT in the frequency interval where
the two Gaussians overlap (i.e., for all pairs of “sig-
nal points” which occur at the same frequency — cf.
Section 2.3). The CKR features effective IT suppres-
sion but some distortion of the Gaussian signal terms.
In particular, the bandwidth of the CKR signal terms
is too small, so that the frequency overlap of the
Gaussians is not shown in the CKR.

3.3. Two sinusoidal bursts

A signal consisting of two sinusoidal bursts (com-
plex sinusoids multiplied by a rectangular window)
is studied in Fig. 7. The signal components are effec-
tively frequency-disjoint but they overlap with respect
to time. In the SPWD and the CKR, the IT is effec-
tively suppressed. The CWD, however, shows notice-
able ITs in the time interval where the bursts overlap.
The SPWD and CWD signal terms clearly show the
local broadband characteristic of the sinusoidal bursts
at the instants where the bursts are switched on or off.
This (desirable) feature is much less pronounced in
the CKR.
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3.4. Gaussian and chirp signal

The case of a Gaussian and a chirp signal (linear
FM signal) considered in Fig. 8 is interesting since
in the WD the various IT parts would oscillate in all
possible directions. The SPWD shows reasonable TF
concentration and good IT attenuation. Both the CWD
and the CKR display the chirp signal with poorer TF
concentration (as compared to the SPWD). The chirp
signal term’s TF concentration is especially poor in the
CKR, which shows positive and negative “sidelobes”.
The CWD contains noticeable residual ITs between
signal points located at the same time or at the same
frequency.

3.5. Sinusoid and chirp signal

Fig. 9 shows the case of a sinusoidal burst and a
chirp burst. The two signal components are effectively
disjoint with respect to frequency but the chirp signal
falls entirely into the time support of the sinusoid. The
SPWD shows good overall performance, with some
residual ITs in the TF region where the two signal
components are closest. In the CWD, the frequency
concentration of the sinusoid is excellent, which con-
forms to the theoretical result that the CWD’s concen-
tration is best for impulse-like signals or sinusoids (see
Section 2.3). However, the residual ITs of the CWD
exist over the entire time support of the chirp signal
(i.e., all time points where the two signal components
overlap in time). Both the CWD and the CKR display
the chirp signal with poor concentration and with too
small heights. Especially in the CKR, the chirp signal
is grossly underrepresented. The IT attenuation in the
CKR is quite good, due to the fact that the two signal
components are effectively frequency-disjoint.

3.6. Gaussian and quadratic FM

Our last example, shown in Fig. 10, is that of a
Gaussian and a (windowed) quadratic-FM* signal. In
the SPWD, ITs are well attenuated and the TF concen-
tration of the quadratic-FM component is better than
in the other two TFRs. The CWD shows noticeable
ITs corresponding to signal points occurring around

4 The name “quadratic FM” refers to the signal’s instantaneous
frequency which is a quadratic function of time.

the same time or around the same frequency; the asso-
ciated ITs oscillate in the time direction and frequency
direction, respectively. Finally, the CKR displays
the quadratic-FM signal very poorly, except for the
central time interval where the signal’s frequency is
locally stationary. This underlines the fact that the
CKR is primarily suited for signals with quasi-
constant frequency.

3.7. Variation of parameters

The effects of varying the spread parameter ¢ in the
CWD and the length of the window g(t) in the CKR
are studied in Fig. 11 and 12, respectively. Fig. 11
shows that, as expected, a larger (smaller) ¢ in the
CWD causes less (more) TF smoothing, which pro-
duces better (poorer) TF concentration of the signal
terms but poorer (better) IT attenuation as far as the
ITs’ heights are concerned. For o very large, the CWD
becomes similar to the WD, which means that the
signal terms are very sharp but also that the IT heights
are large. For ¢ very small, on the other hand, the TF
concentration of “chirp-like” signal components (i.e.,
signal components that are slanted in the TF plane)
becomes very poor. Even for small g, the CWD is still
seen to contain noticeable residual ITs between signal
points located around the same time or the same fre-
quency. For small g, the ITs’ heights are reduced but
their spreads are often increased.

Fig. 12 shows that the CKR results are strongly
dependent on the CKR’s window length L,. A very
small window length L, yields good IT attenuation
and an overall result that is somewhat similar to the
SPWD result in Fig. 10. With L, growing, the chirp-
like (slanted) structures are increasingly underrepre-
sented, and ITs between signal points located around
the same frequency are appearing. In the last figure
(showing the case L, = 127), almost all signal terms
are covered by oscillatory ITs. The mechanism of
these ITs has been described in Section 2.4: as L, is
increased, the locations (+7,0) of the global max-
ima of the CKR’s weighting function | ¥cxr (7, v)| are
closer to the IT locations in the (z,v)-plane. On the
other hand, it is also seen that the frequency concen-
tration of constant-frequency signal terms (the cen-
tral part of the quadratic FM signal) improves with
growing L.
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CWD with o = 10
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Fig. 11. Effects of varying the spread parameter ¢ in the CWD. The plots show CWDs of the signal previously considered in Fig. 10,
with CWD spread parameter ¢ = 10, ¢ = 30, 0 = 150, and ¢ = 500, respectively.

4. Conclusion

We have compared the time—frequency (TF) con-
centration and interference-term (IT) attenuation
characteristics of three TF representations known as
the smoothed pseudo-Wigner distribution (SPWD),
the Choi—Williams distribution (CWD), and the cone-
kernel representation (CKR). Our discussion of these
characteristics was based on an analysis of the shape
of the ambiguity-domain weighting function and on
the results obtained for some simple but representa-
tive, two-component signals.

It was found that the “simple” smoothing employed
by the SPWD leads to a reliable and stable IT atten-
uation as well as reasonably good TF concentration.

“Stability” of the IT attenuation means that, excluding
extreme choices of the two window lengths control-
ling the SPWD smoothing, the SPWD’s IT attenuation
does not depend too much on the type of the signal,
besides the unavoidable dependence on the TF dis-
tance between the interfering signal components. On
the other hand, the SPWD does not satisfy most of the
desirable mathematical properties like the marginal or
finite-support properties.

The CWD satisfies a large number of mathematical
properties. It achieves potentially better TF concentra-
tion than the SPWD for impulsive signals or sinusoids
with quasi-constant frequency (signals which, in the
TF plane, are parallel to the time or frequency axis),
but not for “chirp-like” signals (which are slanted in
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CKR with L, = 21

CKR with L, = 41
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Fig. 12. Effects of varying the window length parameter L; in the CKR. The plots show the CKR of the signal previously considered in
Fig. 10, with CKR window length L; = 21, Ly =41, L; = 71, and L; = 127, respectively.

the TF plane). The CWD’s IT attenuation exhibits
a strong dependence on the signal’s TF structure. It
is potentially poor if the signal components overlap
in time or in frequency: in the overlap intervals, any
reduction of IT amplitude comes at the cost of a
proportional increase of IT spread. Such a behavior is
necessary for the marginal properties to be satisfied.
The CKR yields good results for signals consist-
ing of sinusoidal bursts with quasi-constant frequency.
However, if the CKR’s window is not small enough,
the CKR’s IT attenuation is potentially poor for signal
components overlapping in frequency. On the other
hand, a smaller window entails poorer frequency con-
centration for signals with quasi-constant frequency.
Like the CWD, the CKR is less suited for chirp-like

signals. The negative parts of CKR signal terms are
often significant and may cause signals to be repres-
ented with too small bandwidths if only the positive
CKR parts are plotted.
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