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TIME-FREQUENCY REPRESENTATION OF LINEAR TIME-VARYING SYSTEMS

USING THE WEYL SYMBOL
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Abstract. The Weyl Symbol (WS) representation of
linear operators is introduced for the time—frequency
analysis of linear time—varying systems. We show
that, from a joint time—frequency point of view, the
WS and the usual time-varying transfer function as
introduced by Zadeh (ZF) have similar theoretical jus-
tification. Interpretation, estimation, properties, and
relations of both the WS and the usual ZF are elabo-
rated.

1 INTRODUCTION

A general linear time-varying (LTV) system H is
uniquely determined by its impulse response (kernel)
h(t,t'). It establishes a mapping of an input signal
z(t) onto an output signal (Hz) () according to

(Hz) () = / h(t,¢)o(t')dt' . 1)

In a classical work [1], Zadeh introduced the time—
varying transfer function (ZF) of a linear system as

Zu(t, f) = /h(t,t —1)e i qr, (2)

The ZF can be considered as a generalization of the
transfer function of linear time-invariant (LTI) sys-
tems since

Zutt. ) = D)

z(t) :z:(t) =l ft ‘

This relation, however, is only of moderate impor-
tance since the complex sinusoids €727 * are no longer
eigensignals of LTV systems. In the special case of an
LTI system, the ZF reduces to the conventional trans-
fer function H(f) (Fourier transform of the impulse
response).

2 WEYL SYMBOL

The Weyl Symbol (WS) Ly(t, f) of a linear system H
has originally been defined in a quantum mechanical
context for hermitian operators (other designations
are Weyl quantization, Weyl correspondence) [2,3]. It
is based on an invertible one-to—one mapping of the
impulse response h(t,t') of H

Lu(t,f) & /h (t + %,t - %) e—i2miT g,

T

with the inversion formula

7
Bt ) = / Lu (fi;i f) REZICFTS
s

Normal system. A normal system commutes with
its adjoint, 1. e., HHt = H+H. If its impulse re-
sponse is square—integrable, the discrete spectral de-
composition

h(t, ) = Apug ()up(t') (3)
k=0

holds, where A; are the eigenvalues and u(t) are the
respective (unit—energy) eigensignals of H [4]. Then,
the WS is given by

LH(tvf)zzAkWuk(t1f)1 (4)
k=0
where

e = [ (045) s 1= ) e

T

is the Wigner distribution (WD) [5] of the eigensignal
u(t). The WD of a signal can be interpreted as the
signal’s time—frequency energy distribution [5].

3 INTERPRETATION OF THE WEYL
SYMBOL

One of the major goals of linear system theory is to re-
place the general input—output relation (1) by a more
transparent description of the system’s effect on in-
put signals. For LTI systems, the transfer function
H(f) allows to describe the system’s behaviour as
a frequency-selective (complex) weighting. However,
for a general LTV system such an efficient tool does
not exist. Nevertheless, one can split up the output
signal according to

(Hz) (t) = cz(t) + €(2),

where ¢ is a time-independent weighting factor and
€(t) is the remaining ‘error signal’. Minimization of
€(t) in a least square—sense

/le(t)lzdt — min
t



yields the unique solution

¢ = pu(z) = (z,z)

[ [h(t, t)(t' )" (t)dt'dt

o
Jl=()|*dt
)

namely, the Rayleigh quotient (RQ) of H for z(t). If
the input signal z(t) is an eigensignal of the system
H, the error signal ¢(¢) vanishes. We will henceforth
presuppose (z,z) = 1, 1. e, a unit-energy input signal.
Then,

pu(z) = (Hz,z).

The fundamental property of the WS is to represent
a time—frequency weighting characteristic of an LTV
system H by virtue of the relation [3]

prr(e) = (L, W) = //LHa, HWa(t, f)dtdf.  (5)
tf

That is, the RQ pg(z) is expressed as a weighted
integral of the input signal’s WD W, (¢, f); the time-
frequency weighting function is the WS. If there ex-
isted a signal z(¢) with perfect time—frequency con-
centration in a time-frequency point ¢ = t9, f = fo,
such that Wy(t, f) = 6(t — to)6(f — fo), then the
Rayleigh quotient pg(z) would take on the value of
the WS at t = ¢to and f = fo, pa(z) = Lu(to, fo)
We emphasize, however, that a signal z(¢) with per-
fect time—frequency concentration does not exist.

System analysis by means of the RQ is consistent with
LTI system theory. Indeed, the RQ of an LTI system
with transfer function H(f) is

pulz) = (,1XP) = [B#OIXNPG, @
f

where |X( f)|2 is the energy density spectrum of the
input signal z(t). Eq. (6) shows that if the input signal
is well concentrated in frequency with center v, i.e.,
X ~ 5(f —v), then the RQ approximately yields
the value of the LTI system’s transfer function H(f)
for f = v. Thus, we can interpret the transfer func-
tion of an LTI system as a frequency—parametrized
RQ, whereas the WS can be interpreted as a time-
frequency—parametrized RQ for an LTV system.

For a time-varying transfer function, the consistency
with the LTI system transfer function is a natural re-
quirement. In view of the consistency of the Eqgs. (5)
and (6) for arbitrary input signals z(t), we can for-
mulate a ‘rule of generalization’ as follows:

If the WD W.(t, f) s regarded as the time-varying
generalization of the energy density spectrum |X(f)|2

of the input signal =(t), then the WS Ly(t, f) repre-
sents the time—varying generalization of the LTI sys-
tem transfer function H(f) in the sense of the RQ,

if |X(HP — Wt f) ™
then H(f) — Ly(t, f).

We emphasize that the WS is uniquely determined
by (5), i.e., Ly(t, f) cannot be replaced by another
function of ¢ and f such that (5) holds for any input
signal z(t). Note, also, that the WS of an LTI system
reduces to the transfer function H(f).

4 NEW INTERPRETATION OF THE ZF

There is a certain amount of freedom in the defi-
nition of a time-varying spectrum [6]. An alterna-
tive to the WD is the Rihaczek distribution (RD) [6]

R.(t, f) z(t)X*(fe IS

= /:z:(t):z:'(t - T)e‘jz”f'”dr_ (8)

r

Replacing the WD by the RD in the discussion of Sec-
tion 3 leads to the ZF Zy (¢, f) as defined by (2). More

explicitly, one can show the fundamental property of
the ZF

pi(z) = (Zu, Rs) ://ZH(t,f)R;(t, £f)dtdf,
tf

which is analogous to (5). For a normal system with
square-integrable impulse response the ZF can be
written as (note the analogy to (4))

ZH(trf) = Z/\kRuk(trf)r (9)

k=0

where Ry, (t, f) is the RD (8) of the eigensignal uy(t)
of the system H. Consequently, the ZF can be re-
garded as a time~frequency weighting characteristic of
an LTV system, with the prerequisite that the input
signal’s time~frequency energy distribution is given by
the RD instead of the WD. Hence, one can formulate
an alternative to (7):

If the RD R.(t,f) is regarded as the time-varying
generalization of the energy density spectrum |X(f)|2
of the input signal x(t), then the ZF Zy(t, f) repre-
sents the time-varying generalization of the LTI sys-
tem’s transfer function H(f) in the sense of the RQ,

if  |X(HP? —  Ru(tf),

then H(f) — Zu(t,f). (10)

From this 'joint time—frequency’ point of view, the ZF
and the WS have equal theoretical justification.

Clearly, for the same system the ZF and the WS yield



different time—frequency characteristics. The relation
between the ZF Zy(t, f) and the WS Ly (¢, f) can be
compactly expressed by (#* denotes double convolu-
tion)

Zu(t, f) =2Lu(t f) #x 7%,

which is equivalent to the relation between RD

R.(t, f) and WD Wy (¢, f)
Ro(t, f) = 2Wi(t, f) * + e~ 7474

It must be emphasized that the freedom in the def-
inition of a time-varying spectrum gives rise to an
infinite number of possible generalizations analogous
to (7) and (10). However, in the present paper we
concentrate on the WS and the ZF since they are dis-
tinguished both by their popularity and mathematical
properties.

5 ESTIMATION

Deterministic approach. As in the foregoing sec-
tions, we recall LTI system theory. Eq. (6) shows
that if a test signal g(t) is a narrowband lowpass sig-
nal, |G(f)|? =~ 8(f), then the RQ pr(g) yields an
estimate of the transfer function H(f) at f = 0. An
estimate H(g)(f) of the LTI system's transfer func-
tion H(f) for any value of f can be achieved by con-
structing a manifold of frequency—shifted test signals
9 (t) = g(t)e’?>™* and evaluating the RQ,

BOf) = pa(g)) =

= [0

fl

nlEa = =)+ l6(-pP. D

The generalization to LTV systems is straightforward:
we obtain an estimate L(g)(t f) of the WS Ly(t, f)
by constructing a manifold of time-frequency shifted
test signals g(tf)(¢') = g(t' — t)e’2"/* and evaluating
the RQ,

LY, £) = pu(g™D). (12)
Indeed, ﬁg)(t, f) can be shown to be the double con-

volution of the WS of H and the WD of the elemen-
tary test signal g(2),

LR F) = Lu(t, f) #+ Wy(~t,—f).  (13)

Alternatively, fz(}?)(t, f) is also the convolution of the
ZF and the RD of the elementary test signal g(t),

LD, 1) = Zu(t, f) ++ R)(=t,—-f). (14)

The LTI transfer function estimation (11) can be en-
hanced arbitrarily by increasing the frequency con-
centration of the test signal ¢g(¢). In contrast, the ac-
curacy of the time—frequency estimate (12) is limited

by Heisenberg's uncertainty principle, i. e., the choice
of the elementary test signal g(t) is governed by a
time-frequency resolution tradeoff as follows: a sharp
time concentration of g(t) yields good time resolution
but deteriorates the frequency resolution; conversely,
a sharp frequency concentration of g(t) yields good
frequency resolution but deteriorates the time resolu-
tion.

This resolution tradeoff is analogous to the resolution
tradeoff encountered in signal analysis via the spec-
trogram [6]. The spectrogram S )(t, f) of a signal
z(t) (using an analysis window g(¢)) is defined as the
squared magnitude of the short—time Fourier trans-

form (STFT),

2

SO, f) = I/z(t’)g‘(t’ — t)e~i2mIY gy
t/

It is a smoothed version of either the WD W, (¢, f) or
the RD R (¢, f) (6]

SOt f) = Walt, f) %+ Wy(~t,~f)
= Rm(tyf) **R;(_ty—f)y

where the smoothing kernels are essentially the re-
spective distributions of the window function g(t).
Using (4) and (15) in (13), we can write the WS es-
timate f}g)(t, f) of a normal system (with square-
integrable kernel, cf. (3)) as

(15)

£, ) = Z M S (¢,

l.e., an eigenvalue-weighted sum of the spectrograms
of the eigensignals (analogous to (4) and (9)).

Stochastic approach. Let n(t) be white noise with
autocorrelation function R,(t,t') = E{n(t)n*(¢')} =
6(t —t'). Then, the WS can be written as

LH(tv f) =F {WHn,n(tv f)} ’ (16)

1. e., as the expectation of the cross WD

— Z * _ Z —jenfr
Wit n(t, f) = /(Hn) (t43)n" (5= ) eiimar
of the output process (Hn) (¢) and the input (white—

noise) process n(t). For LTI systemis, (16) reduces to
the well-known relation

H(f) = SHn,n(f)y

where Synn(f) is the cross—power spectral density
of the output process (Hn) (¢) and the input process

n(t).
In analogy to (16), the ZF satisfies



ZH(tr f) = E{RHn.n(tr f)} )

with Ryn (2, f) denoting the cross-RD of the pro-
cesses (Hn) (t) and n(t). In practice, the expectation
value of (16) must be estimated based on a single or
several realizations of the processes n(t) and (Hn) (¢).

6 PROPERTIES AND EXAMPLES

The foregoing discussion has mathematically cor-
roborated the interpretation of the WS as a time—
frequency weighting characteristic that is strongly re-
lated to the ZF. We now turn to the question of how
the WS and the ZF actually behave for specific linear
systems.

LTI system. The WS and the ZF of an LTI sys-
tem H are equal, independent of time, and identical
with the LTI system’s transfer function H(f) (Fourier
transform of the impulse response A(t)),

Lu(t, f)=Zu(t,f) = H(f).

Multiplication—type system. The WS and the
ZF of a multiplication—-type system H (modulator,
windowing system) with impulse response h(t,#') =
m(t)8(t —t') are equal, independent of frequency, and
identical with the multiplier signal m(t),

Lu(t, f)=Zu(t, f) = m(t).

Chirped LTI system. A less trivial, but interesting
system is the 'chirped LTI system’ (see Fig. 1) con-
sisting of a down-chirp modulator with chirp rate —a;,
an inner LTI system with transfer function & (f), and
an up-chirp modulator with chirp rate «.

e—j21r%t’ H(f) ej21r%t’

(t) ——é——» LTI —*é»——~(Hm)(t)

Chirped LTI system

Figure 1

The impulse response of the overall system is given
by

h(t,t,) - ej21r%(t3_t’2)7z(t _ t/) )
The WS is
Lu(t,f) = H(f - at),

1. e., the result of ‘shearing’ I-:f(f) along the chirp’s
instantaneous-frequency line f;(t) = at. The ZF
yields the more complicated result

Zatt, )= [B) « [ #]

fl=f—at

Periodically time-varying system. The impulse
response h(t,t') of a periodically time-varying sys-
tem is periodic with respect to ¢t and ¢/, A(t,t') =
h(t + To,t' 4+ Tp). The WS and the ZF are both peri-
odic with respect to time,

Lu(t, f) Ly(t+ 1Ty, f),
Zu(t, f) = Zu(t+T,f).

Hermitian system. A hermitian system H can be
considered as a real weighting system since its RQ
pu(z) is real for any input signal z(t). As may be
expected, the WS of a hermitian system is real (this
is one of the reasons for its popularity in quantum
mechanics) and the WS of an antihermitian system is
purely imaginary. As a further consequence, one can
easily show that the real part of the WS of any sys-
tem H corresponds to the hermitian part of H, and
the imaginary part corresponds to the antihermitian
part of H,

Re{LH(trf)} = LHj:H+ (t,f)’
Im{Lu(t,f)} = Lyg_g+(tf).
25

This property of the WS does not hold for the ZF. In-
deed, the ZF of a hermitian system is generally com-
plez. This is an important disadvantage of the ZF
that can be traced back to a respective disadvantage
of the RD, the fact that it is generally complex—valued
even for real signals.

Projection filter. A projection filter Ps (orthogo-
nal projection operator of a linear signal space S [4])
1s a linear system that yields the orthogonal projec-
tion z5(t) of the input signal z(¢) onto a linear signal
space S,

(Psz) (t) =zs(t) €S.

Given an orthonormal basis {u(2)} of the signal space
S, the WS Ly(t, f) and the ZF Zg(t, f) of the pro-
Jection filter Ps can be written as (cf. (4),(9))

N
> Wt ),

k=0

LPs(tr f)

M=

ZPs(trf) = Rll-u(trf)x

z
1]

0

where N is the dimension of S. The WS and the
ZF of the projection filter can be regarded as time-
frequency representations of the corresponding signal
space & and, in fact, equal the recently defined WD
and RD (respectively) of a linear signal space [7).

Multiplicative modification of the STFT. Multi-
plicative modification of the short—time Fourier trans-
form (STFT) is a well-known concept for the design



of linear systems [8]. The overall system consists of
three parts:

1. STFT analysis with analysis window (¢),

XM, f) = /:c(t’)'y'(t’ — t)e~I I gyt
tl
2. multiplicative modification of the STFT outcome
X(")(t,f) by a time-frequency weighting func-
tion M(t, f),

X, £) = M(¢, £) XD, ),

3. STFT synthesis applied to the modified STFT
outcome X(")(t,f), using a "synthesis window”
g(t); this yields the output signal (Mz) (t)

(Mz) () = / /

tf

This concept allows a direct definition of a time—

frequency transmission characteristic M(¢, f). How-

ever, the actual overall system M also depends on the

choice of the window functions (¢) and g(¢). This be-
comes apparent in the impulse response of M

X, gt — t)el 2™ "t qp df’.

mM9 (¢, ¢) =

//M(t/, f/),rt (t// _ t/)g(t _ t’)ejz”f,(t't”)dt’df’.
tl e
In this expression for the impulse response, the in-
fluence of the window functions v(t) and g(t) on the
actual behaviour of the overall system M is quite non-
transparent. The WS Ly(t, f) or the ZF Zp(t, f)

yield a more lucid characterization of the overall sys-
tem M :

LM(tvf) = M(t,f)**ny'g(t,f),
ZM(tvf) = M(tvf)**R’Yyy(tvf)'

The WS and the ZF of the overall system are equal to
the two-dimensional convolution of the modification
function M(t, f) with the cross WD and the cross RD
(respectively) of the window functions y(t) and g(t).
In the special case g(t) = y(t) and M(t, f) € R, the
overall system M is hermitian and (17) shows how the
choice of the window function g(t) affects the weight-
ing behaviour of M. Specifically, the STFT-based sys-
tem design discussed above entails a time-frequency
resolution tradeoff analogous to the analysis resolu-
tion tradeoff discussed in Section 5, Eqs. (12)—(14).

(17)

7 SPREADING FUNCTIONS

An ideal time-frequency shifting system S(™*) con-
sists of a delay element with lag 7 and a complex
modulator with frequency v. The input-output rela-
tion of S{™¥) is then given by

(S("'”):z:> (t) = z(t — T)ei 2™, (18)

A time-frequency shifting characteristic of a linear
system H can be specified by the asymmetrical spread-
ing function (ASF) [9]

Sg)(ﬂ v)= / h(t,t — r)e~i2" gt

t

The ASF establishes an infinitesimal decomposition of
H into ideal time—frequency shifting systems S(7*),

H :// S&(r,v)SUM)drdy . (19)

The ASF is essentially the double Fourier transform
of the ZF,

S (r,v)

It

/ / Zu(t, fe~I2* (=71 g1 4f
tf

= Flon-w-n{Zat, N} .

However, in the definition of a time—frequency shift of
z(t) by time T and frequency v, there is a considerable
amount of freedom that leads to a manifold of signals
which are equal up to constant phase factors. This
comes from the fact that time and frequency shift op-
erators are not commutable. ‘

The shifting operator S(™¥) of (18) corresponds to
first time-shifting and then frequency-shifting. Al-
ternatively, we may split up time shifts and frequency
shifts into fractional shifts and interchange these frac-
tional shifts arbitrarily. Each version of the shift oper-
ator leads to a corresponding version of the spreading
function defined by the decomposition relation (19).
In particular, if the splitting—up of time and frequency
shifts is done alternatingly and infinitesimally, then
we obtain the shift operator S(™¥) as

(S(‘r,v)m) (t) — :l:(t _ T)ej21rvte—j21r"—;:'

The corresponding spreading function is

(s) — _7: — _7: —-j2mvt
Sy (T,V)—/h(t+2,t 2)6 dt
t
and will be called symmetrical spreading function
(SSF). Analogously to (19), we have the decompo-
sition

H :// Sy (m,v)S)drdy .

The SSF is essentially the double Fourier transform
of the WS,

S3(r,v)

It

/ / Ly(t, fle i t=7H) digf
tf

= Flpy—w,-n) 1Lu(t, 1)}

The spreading functions are closely related with



two correlative time~frequency signal representations
known as (symmetrical and asymmetrical) ambigu-
ity functions [6]. For a normal system H with
square—integrable impulse response (3), the symmet-
rical spreading function can be written as

Z/\LA

S(’ (r,v)

where

Af"h)(‘r, v) :/uk (t + %) uj, (t - %) e~imfrgy

t

is the symmetrical ambiguity function of the signal
ur(t). Similarly, the asymmetrical spreading function

is
Sg)(T, v) Z /\LA("‘) (r,v)

where

As‘t)(‘r, v) = /uk(t)ui(t — T)e—j21rftdt
t

is the asymmetrical ambiguity function of the signal
ui(t). The relation between the symmetrical spread-

ing function Sg;)('r, v) and its asymmetrical counter-

part Sg)(r, v) is given by

Sg)(T,l/) = Sg)(r,u)e‘jz"yz_'. (20)

In particular, it follows from (20) that |S(a)('r v)| =

|S(s (r,v)|. If H is a stochastic system corresponding
to wide-sense stationary uncorrelated scattering [10],

then it can be shown that
2
{Is9enl}

E {IS}(;)(T,V)F} =E

equals the well-known scattering function of H.

8 CONCLUSION

The Weyl symbol (WS) represents a time-frequency
weighting characteristic of an LTV system that is con-
sistent with the conventional transfer function of an
LTI system. Formally, the WS is largely analogous to
Zadeh's time-varying transfer function (ZF). In fact,
it has been shown that both WS and ZF are closely
related to a corresponding time-frequency signal rep-
resentation, namely, the Wigner distribution (WD) in
the case of WS and the Rihaczek distribution (RD)
in the case of ZF. The difference between WS and ZF
can thus be attributed to the differences between WD
and RD.

The Fourier transforms of WS and ZF can both be
interpreted as the system’s time~frequency spreading

functions (based on different definitions of the under-
lying time—frequency shift operators). These spread-
ing functions are closely related to two correlative
time~frequency signal representations known as sym-
metrical and asymmetrical ambiguity functions, re-
spectively.

The application of the WS to a joint time-frequency
design of LTV systems has been considered in [11].

After completion of this manuscript we became aware
of the paper [12], where the Weyl correspondence is
introduced as a time-frequency signal analysis tool.
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