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The Wigner Distribution (WD) is a joint time-frequency signal repre-
sentation with very attractive properties. Application of the WD, how-
ever, is often complicated by the occurrence of interference terms. We

first draw a distinction between

"outer" interferences in the case of

multicomponent signals and "inner" interferences that are not based on
signal decomposition. It is demonstrated that both interference mecha-
nisms show very simple geometrical properties. Inner interference geo-
metry is then used to determine the general shape of WD supports, and
finally the energy content of interference terms is investigated.

1. INTRODUCTION

The Wigner Distribution (WD) is a joint
time-frequency signal representation
that can be considered as a distribution
of signal energy over the time-frequency
prlane. Unique properties and superior
time-frequency resolution make it appear
ideally suited for the analysis of non-
stationary signals [1]. Yet interpreta-
tion of the WD is often complicated by
the occurrence of interference terms
which may cause serious difficulties in
applications. In this paper, WD inter-
ference terms are investigated in some
detail. For convenience the continuous-
time WD is considered, but results carry
over to the discrete-time WD, too.

The Cross Wigner Distribution (CWD) of
two signals f,g9e € 1is defined by [1]

Wpptd) = 2 [£6te9)g%e-5) & | o

Taking g=f§ yields the (Auto)Wigner Dis-
tribution (WD) of f,

M(tlw): = ‘A[f,i(tlw) r (2)

which is a real-valued, but not always
nonnegative function that can be repre-
sented as a surface over the time-fre-
guency plane ( (t,w) -plane).

2. BILINEARITY AND "OUTER" INTERFERENCE

We first consider the case of a multi-
component signal: let f be a sum of n
components f, whose WDs we know,

n
fE)= 2 4@ 3)
What results can we expect for the WD of
§? It follows from (1) that the WD is

formed by a bilinear superposition prin-
ciple,

n n
WEw = ZWw+ 2
¥ k1 % k=1
k>
it consists of n "signal terms" (WDs of
components) and (§)"interference terms"
(real parts of CWDs of components). Thus
any signal component yields a signal
term, and any pair of signal components
gives rise to a corresponding interfer-
ence term. This is illustrated by fig.
1.a.
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For reasons of simplicity, we restrict
ourselves to the case of two signal com-
ponents f and g. Is there any relation
between their signal terms W;,W; and
their interference term I;, = 2Re{W,,} 2
Some insight is gained by the "inter-
ference formula" [2]

| W,y )f* IE Wi+ 5, o) Wo (-5, 0-B)deds  (5)

that traces the modulus of the CWD of

f and ¢ back to their WDs. Suppose that
W; and Wy lie in the surroundings of
points (&,ws) and (t;,w3) in the (tw) -
plane. Then (5) states that the inter-
ference term lies near the central point

(6 0n) = (5512, 9573),

interference terms lie midway between
corresponding signal terms. - Apart from
the interferences' position, the inter-
ference formula suggests a modified
interpretation of interference mechanism:
not the signal components #,9, but the
WD signal terms Wy, W¢ themselves inter-
fere and create an interference term
between themselves. Such an interference
of two WDs will be called an outer inter-
ference.
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Further properties of interference terms
can be demonstrated by studying a spe-
cial case: the signal h (which, for rea-
sons of clearness, may be thought to be
concentrated around (0,0) ) is shifted in
time and frequency by (%,ws) and (£g,w,)
and multiplied by complex constants q;b
to yield the signals £,9:

= ahl-t)dY, gW)= bhi-ty) € @)

Then, the WDs of f and g are [1]

W, () = [a] Wlt-t;,0-wy) (
?

W, (tw) = [b]% W, (tty, way) )

and the interference term I o= 2Re{W;s}
can be calculated to be !

T4 t,e) = 2]ableos[wy(t-tn) -t (w-wm) +q] x

x W (t-tm, 0=0m) )
(FHINE (fa' t, Ug"".f)

and (bm,wm ) = (&E—tz, L4 %y Zw )

These results are illustrated in fig.1.b.
In particular we see from (8) that the
interference term is a modulated version
of the WD of the original signal h shif-
ted to the central point (¢m,wm) . The
modulation causes an oscillation in a
direction (-w;,t;) that is orthogonal to
the line that connects the two "signal
points" (&, wy) , (£g,w,) ; the "freguency"

with

of the oscillation is simply the distance

Vti+aﬁ between the signal points (here,
t; and w; must be considered as dimen-
sionless distances). Experiments indi-
cate that in principle these simple geo-
metrical laws hold quite generally, even
if W; and h@ are not of the same form.

Thus in general interference terms can
be recognized by their oscillations, and
there exist simple relations between the
positions of signal terms and the direc-
tion and "frequency" of the correspond-
ing interference term's oscillation. It
should be remarked, however, that inter-
ference terms oscillate only if the in-
terfering signal terms are to some ex-
tent disjoint in the (¢t,w) -plane. Indeed
a meaningful distinction between signal
terms and interference terms is possible
only in this case. To demonstrate this,
let us consider a trivial signal decom-
position into components occupying the
same region in the (f,w) -plane:

where

h=f+rg f=ah, g=@-a)h. (9)

Of course, the interference term is

Isg= 2-Refat-al} W(tw) : (10)

it does not show any oscillation; even
more, being the WD of h, it may be
equally regarded as a signal term. This
demonstrates how the WD distinguishes
between a signal decomposition that is
physically meaningful and one that is
not.
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fig.1.a. WD of superposition of two gaussian
signals shifted in time and frequency.

fig.l.b. Contour plot to fig.l.a.

3. "INNER" INTERFERENCE

In the above discussion, we started from
a multicomponent signal: the WD's decom-
position into signal terms and outer in-
terference terms was based on a decompo-
sition of the signal itself. Instead of
starting from the signal and trying to
determine its WD, let us now start from a
given WD. We try to decide in what re-
gions of the (¢,w)-plane signal energy
is located, without any knowledge about
signal components. It is an empirical
fact that, even in those cases where a
natural signal decomposition is not



possible (monocomponent signals), the WD
consists of "robust" (i.e. non-negative
and smooth) terms and oscillatory regi-
ons. Thus a distinction between signal
terms and interference terms again seems
to be appropriate. Experiments indicate
that the geometrical interference laws
formulated above are still valid.

If in (5) we set g=f, we obtain [3]

2 = o
Wyt @) = [ WesE,wrf) Wylt-F,0-F) oedr . (1)

—gg =00

This relation describes the WD's inter-
nal interference structure: for any
point (t,w), Wi(t,w) is made up by
"interference" of all pairs of points
that lie symmetrically to ({,w) ; at the
same time, W;(t,w) itself causes "inter-
ferences" at other points. In particular,

fig.2. WD (windowed version) of sinusoidal FM
signal. The signal term is located along the
instantaneous-frequency curve. Concave parts
of this curve are filled by (inner) inter-
ference terms.

if W; shows robust terms in the vicinity
of two points (f,ws) , (t;,02) it may
again be concluded that near the central

point “mlwm)z(giig gu&&h) there
must be a further term. Experiments show
that this term oscillates in exactly the
same manner as the outer interference
terms mentioned in the previous section.
It can thus be considered to be an
"inner" interference term. Note that
this distinction between signal terms
and interference terms is not based on
signal decomposition but starts from the
WD itself.

Fig.2 and fig.3 demonstrate the geome-
trical interference laws in the case of
inner interferences in the WDs of mono-
component signals, In theory, signal
terms interfere no matter how distant
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fig.3. WD of tone burst (frequency W, ; switched
on (off) at t1(t2))- The signal term consists
of a "spectral line" at w, and two broad-band
"clicks" at ti,to.



they are from each other, which renders
WD results quite complicated. Yet in
practice a windowed version of the WD
[1] is employed, and then the time dis-
tance of interfering signal terms is
limited by the window length.

4. SHAPE OF WD SUPPORTS

Let us denote by the support of a given
WD the smallest closed region (where part
of its boundary, or all of it, may lie
at infinity) outside of which the WD
vanishes. Inner interference gecometry
gives some insight into the possible
shapes of WD supports. Consider, for
example, the region shown in fig.4. Such
a finite WD support is not possible, for
it would postulate a signal with finite
support both in time and frequency. This
impossibility of a finite WD support can
also be made plausible by the WD's in-
ternal interference structure described
by (11): a marginal point (P) in a con-
vex part of the boundary does not pos-
sess any pair of points that would make
it up by interference. On the other hang,
a concave boundary as in f£ig.5 is not
possible either, for there would be inter-
ference points (e.g. Q).

It is thus made plausible that, if the
WD vanishes at all outside a region,
this region must be an (infinite) strip
or a half plane. What does the boundary
look like? Let us for the moment assume
a W; that is a strip with arbitrary
boundaries. This strip can again be
bounded by two parallel lines [, 1,

as is shown in fig.6. Now the WD's
"rotation property" [3] is used: rota-
ting W; until [,,l; are parallel to the
w—-axlis again yields the WD of some other
signal § (fig.7). Obviously, § is con-
strained to a finite time interval [t t,]:

f®=0, télt.t] (1)

Let us investigate Wy in the vicinity
of, say, t, . We want to evaluate
Wz(t;-€, w) for a small positive ¢ .
From (1) we have

W;'(fz‘ £w) = £ 7€§~ (re)+3) F(tro-%) &
-2¢

= 5 Flere)Mere) be . (13)

This is constant and positive and there-
fore does not vanish for any w. Hence it
follows that the lines I,lz are them-
selves the boundaries of Wy (£ig.8), and
after rotating back we obtain the origi-
nal W; according to f£ig.9. We can thus
formulate the following basic WD pro-
perty: WD supports are strips that are
bounded by two parallel lines {(where one
line or both may be located at infinity).
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5. ENERGY CONTENT OF INTERFERENCE TERMS

In this section we will be concerned
with outer interferences. For a super-
position h=f+g, signal energy is

Eh.= E_f+Eg+Cf,9 (44)
with (;9 being an energy cross-term,
Cﬁ = Q'Rz{EM} , E!,S =_°.£2°(t‘-)9'(t)df . (15)
For the WD we find

Wh(t/w) = W}G,w) + Wj (f,w) + Ifﬁ(f' bJ) (16)

where L;3 is the interference term of
f and g:

g (t) = 2:Re{ Wykd} . 7)

A connection is established by the WD's
energy property [11:

80 oo ( 1 ly £
E; =[] Wte)dtde gana ), )
EJ‘:? =_°_J;_.£° M{(,S (f,w) dtdﬂd / (4?)
o 0o
Ceg=. i [T, tw)dedo. (0)



Thus the integral of a WD signal- or
interference term may be called its
energy content. According to (14), signal
energy is made up by the energy contents
of the various WD terms. While in prin-
ciple both signal- and interference
terms contribute to signal energy, the
interference terms' oscillations suggest
that their energy content is small com-
pared to the energy content of the ro-
bust signal terms. In particular we may
ask whether there are cases in which the
enerdgy content of an interference term
is exactly zero.

Let us call two signals disjoint if their
WD supports do not overlap. (Time dis-
jointness and frequency disjointness are
just two special cases of disjointness).
We want to show that the interference
term of disjoint signals has zero energy
content.

We start by noting that, according to
the previous section, the WDs of two
disjoint signals f,g can be bounded
sonly by two parallel lines [, , [, as
is shown in fig.10. Then again a suit-
able rotation can be employed so that
li, l; are parallel to the w-axis (fig.
11.) This rotation transforms f,g into

signals ;f;g without altering the energy
contents of signal- and interference
terms:

E;'=E , E§=E9; E;;§=E}', i C;:Ig = Cf,? . (21)

But now § and § are disjoint in time,
and thus it follows from (15) that
E;§==O and, because of (21), also

Epg = L HOGE) et = O (22

(which shows that two disjoint signals
are orthogonal), and finally
L]

Cf:? =O ’ Eh=Ef'+E\7' (23)

We remark that another, more general and
formal proof may be given by using the
relation [1]

IE§,9,2 = h:f_z%(tlw) V\/g(f:w)dfdw ’ (2‘1')

which states that two signals are ortho-
gonal if and only if their WDs are or-

" thogonal. Thus orthogonality of Wy and

Wy is a sufficient condition for an
energyless interference term, and dis-
jointness is just a special case of
orthogonality.

6. CONCLUSION

The WD interference principle was shown
to be a basic WD property and important
for the prediction and- interpretation of
WD results. Two interference mechanisms
have been discussed, "outer" interferen-
ces in the case of multicomponent sig-
nals, and "inner" interferences that can
be found in any WD. In both cases inter-
ference terms are oscillatory if corres-
ponding signal terms are to some extent
disjoint, and in principle oscillation
obeys simple geometrical laws. These geo-
metrical laws were found to be useful
for determining possible shapes of WD
supports and for investigating the energy
content of interference terms.

While interference terms tend to obscure
the WD itself, they help to form a very
clear signal representation if a win-
dowed WD version (Pseudo Wigner Distri-
bution {1]) is used. Yet there are
applications in which an isolation or
suppression of interference terms is
desirable. An approach to this problem
that is based on the interference terms'
oscillations is time-frequency smoothing

[4].

7. REFERENCES

{1] T.A.C.M. Claasen,W.F.G. Meck lenbriuker:
The Wigner pDistribution - a Tool for
Time-Frequency Signal Analysis.

Part I: Continuous-Time Signals.
Philips J. Res. 35, 217-250, 1980.

[2] A.J.E.M. Janssen: Application of the
Wigner Distribution to Harmonic Ana-
lysis of Generalized Stochastic Pro-
cesses. Mathematical Centre Tracts
114, Mathematisch Centrum, Amsterdam
1979.

[31A.3.E.M. Janssen: On the Locus and
Spread of Pseudo-Density Functions
in the Time-Frequency Plane. Philips
J. Res. 37, 79-110,1982.

[4] P. Flandrin: Some Features of Time-
Frequency Representations of Multi-
component Signals, ICASSP '84,

San Diego.



