
 *This work has been funded by Christian Doppler Laboratory for Design
 Methodology of Signal Processing

 Evaluation of Architectural Support for Speech
Codecs Application in Large-Scale Parallel Machines

Naeem Zafar Azeemi
Christian Doppler Laboratory for Design Methodology of Signal Processing Algorithms,

Institute of Communications and Radio Frequency Engineering,
University of Technology Vienna, Gusshausstrasse 25/389, A-1040 Vienna Austria

Email: nzafar@nt.tuwien.ac.at

Abstract— Next generation multimedia mobile phones that
use the high bandwidth 3G cellular radio network consume more
power. Multimedia algorithms such as speech, video transcodecs
have very large instruction foot prints and consequently stalled
due to instruction cache misses. The conflicts in on-chip caches
contribute a large fraction of the CPU cycle penalty and hence
increase in power consumption. Many commercial tools are
developed to minimize such cache misses by adequately placing
the frequently called procedures in an application. Followed by
profile extraction, these tools use cache line coloring and post
compilation techniques for cache hit optimization. The major
impediment in the optimal performance of such tools is their
static layout profile, which does not consider the dynamic
behavior of the application. We propose a methodology called
DCP (dynamic code placement) for positioning code at run time
for good instruction cache performance and have implemented in
high end processors. The dynamic application profile is
completely transparent to the developer’s code. This technique
optimizes the code footprint in memory layout of a program. It
improves i-cache mapping to increase the number of cache hits
and eventually reduce the CPU stalls. Our optimization is
powered with static as well as detail run time profile information
that extracts the relevant, temporal behavior of the applications.
Moreover, while mapping code in instruction cache, the effect of
inter-procedural code positioning is also considered.
Improvement over the Pettis and Hansen approach (PH) is also
shown in results. Though majority of multimedia applications
can be optimized by our framework, application dominated with
the function pointers do not work correctly. The technique incurs
low overheads and enhances the cache hits architecture
correlation. For a range of applications we show that instruction
miss rates can be reduced by 19-68%. Using a simple model this
corresponds to execution time reduction (23-85%), increase in
parallelism (4-53%).

Keywords—Wireless applications, embedded systems, low
energy, cache optimization

I. INTRODUCTION

The next generation wireless will allow mobile computing for
applications such as high speed access to the corporate intranet
and to the public internet. Fueling this trend towards high
speed web browsing with mobile access are the evolution of
cellular systems that will bring multi-folded increases in

transmission speeds, the development of end terminal devices
with human interfaces capable of displaying complex
graphical presentations, and increased dependence and
preference of networked information. To achieve such
universal mobility and flexibility will be necessary. In the
same vein, powering becomes more and more difficult as the
demand on processing power increases at the order of
magnitude. Battery life is now a very strategic feature for
every mobile system.

In mobile devices energy dissipation is directly linked to
battery size, weight, packaging, cooling and operating time.
Multimedia DSP processors are the most lucrative choice to
wireless application domain for their optimal performance and
small form factors at low energy. The energy efficiency of
these systems and subsystems depends heavily on their
software design [1,2,3]. For wireless applications, the software
design complexity inevitably propagates all the way to the
developer. Programs are written to explicitly manage
parallelism and to reorder the computation so that the
instruction and data working sets fit within the cache. Cache
misses make the execution speed of programs slow because
they require extra cycles to transfer code or data between the
cache and the main memory [2,5,7]. Cache misses consume
more energy not only because the main memory is activated
but also off-chip traffic increased. Parameswaran [2, 16]
mentioned that energy for off-chip driving is very dominating
and becoming more dominating, up to 70% of the total chip
energy, along with the progress of transistor scales.

We choose to implement efficient cache management
scheme based on the application run time profile steered by our
energy aware framework, published in [5,9]. , whose add
several implementations of energy efficient techniques for
embedded DSP compiler [5,10,15] to generate high
performance computing applications, they are mentioned
below:

• The dynamic application profile is completely
transparent to the developer’s code. This technique
optimizes the code footprint in memory layout of a
program.

• Improvement over the Pettis and Hansen approach
(PH) is also shown in results.

74

• Our optimization is powered with static as well as
detail run time profile information that extracts the
relevant, temporal behavior of the applications

• We demonstrate how compilers can be used to
optimize the performance of on-chip instruction caches
under compute intensive workloads with DCP.

This paper is organized in five sections: Section II presents the
motivation and background of our work, Section III describes
the experimental setup and bench mark applications. Case
studies are discussed in Section IV, while Section V concluded
the whole work.

II. MOTIVATION AND BACKGROUND

Various cache mapping scheme have been developed over the
year to improve the cache performance [10,11,12,13,14].
Following two parameters have to be maximized in order to
have good cache performance:

Hit Ratio: It must be increased as much as possible the
likelihood of the cache containing the memory addresses that
the processor wants. Otherwise, the benefit of caching will be
lost, because there will be too many misses.

Search Speed: It is desirable to be as quickly as possible if
scored a hit in the cache is the goal. Otherwise, small amount
of time in every access will be lost during every search.

An unsuccessful attempt to read or write cache is refered as
cache miss, which results in a main memory access with
longer latency [14]. There are three kinds of cache misses. A
cache read miss from an instruction cache generally causes the
most delay, because the processor, or at least the thread of
execution, has to wait (stall) until the instruction is fetched
from main memory. A cache read miss from a data cache
usually causes less delay, because independent cache read
instructions can be issued and continue execution until the
data is returned from main memory, and the dependent
instructions can resume execution. A cache write miss to a
data cache generally cause the least delay, because the write
can be queued and there are few limitations on the execution
of subsequent instructions. The processor can continue until
the queue is full. In order to lower cache miss rate, a great deal
of analysis has been done on cache behavior in an attempt to
find the best combination of size, associativity, block size, and
so on [13]. Sequences of memory references performed by
benchmark programs are saved as address traces. Subsequent
analyses simulate many different possible cache designs on
these long address traces.

Researchers have categorized the cache miss factors in three
broad classes and they are compulsary misses, conflict misses
and capcity misses. Compulsory misses are those misses
caused by the first reference to a datum. Cache size and
associativity make no difference to the number of compulsory
misses. Prefetching can help here, as can larger cache block
sizes (which are a form of prefetching). Capacity misses are
those misses that occur regardless of associativity or block
size, solely due to the finite size of the cache. The curve of

capacity miss rate versus cache size gives some measure of the
temporal locality of a particular reference stream [12, 13, 14].
Note that there is no useful notion of a cache being "full" or
"empty" or "near capacity": CPU caches almost always have
nearly every line filled with a copy of some line in main
memory, and nearly every allocation of a new line requires the
eviction of an old line. Conflict misses are those misses that
could have been avoided, had the cache not evicted an entry
earlier.

In VLIW processors, many of the components in the CPU
are not completely utilized during the program execution.
Primary reason for such slack is the poor architecture-
application correlation [16,17]. This indicate that for an energy
efficient application binary there is a need to gather more
detailed profiles, containing information about system behavior
on various levels. The goal of profiling is to find cause-effect
relations between performance phenomena and finally
generating an architecture efficient code. Our energy-aware
framework [9] embodies a series of profiling stages that enable
the optimization process.

III. EXPERIMENTAL SETUP

This section describes the hardware and software used to
collects our data and the workload selected. The experiment
was conducted on a parallel machine, but outcomes are also
applicable to a uni-processor machine with similar processing
elements. We use profile monitor [9] to capture a large range
of system activity, including dynamic activity.

A. Hardware System

We use a hardware performance monitor to gather
uninterrupted reference traces of applications in real-time
without introducing perturbation. The performance monitors
has one probe connected to the sensing resistor at the core
input current of the processor. The probe collects all the
references issued by the processor except the slave processors.
The trace buffer for each probe can hold up to 10 millions of
references. For each reference, the information stored
includes:

• The address accessed (32 bits)

• Sample time stamp (24 bits)

• Memory access stamp (6 bits)

• Clock shift stamp (1 bit)

• DMA access stamp (3 bits)

• Bus arbiter control stamps (2 bits)

This can record a trace of an unbounded continuous stretch of
the underlying multimedia application.

B. Software System

Table 1, presents our benchmark suite, which consists of a
modified version of the MediaBench suite. Our set of
applications contains computer-intensive DSP kernels as well

75

as applications composed of more complex algorithms and
data structures.

Table 1. Workload Applications for Profile Monitoring
Applications Description

m100 Matrix 100x100 multiplications
m200 Matrix 200x200 multiplications
nlivq Non linear interpolative vector

quantization
MPEG-1 MPEG video transcodec

G.721 ADPCM Speech codec
H.264L Mpeg-4 H.264L Video compression

codec

IV. LOW ENERGY CODE PLACEMENT (LECP)
METHODOLOGY

Code placement can be employed to minimize mutual
instruction replacement and resulting cache misses. We
propose a new code mapping scheme which rearranges
functions of a signal processing application in memory based
on run-time profile so that the mapping of frequently accessed
code parts to same cache lines. In contrast to existing code
placement methods that rely on purely statistical data such as
call graphs; our method exploits the address sequence
information inherent in instruction trace data.

The scheme is integrated in an energy aware framework,
which have been already discussed in a former publication [9].
Briefly, in this framework we proposed an energy-cycle cost
model together with a source-to-source transformation
methodology, suitable for embedded systems based on VLIW
(very long instruction word) cores. The system level
methodology includes generalized energy models for each
module, composing the system architecture (processing unit,
on-chip/ off-chip memory units, address/ data highway etc.)
and SW application parameters. During methodology flow,
‘C’ source code is successively restructured for a given energy
and cycle performance. Further details can be found in [9].

In this work we focus explicitly on energy-cycle cost
guarded cache performance improvement. The proposed code
mapping approach consists of two steps: trace data processing
and function allocation. Trace data has to be collected while
executing the target application with typical input test vectors.
Address sequence information, however, is essential for cache
behavior optimization since occurrence of cache misses is
related to the sequence of memory accesses rather than to their
mere number. The new method evaluates the address sequence
of memory accesses in order to extract only those accesses
which can actually lead to cache misses during code execution.

V. RESULTS AND DISCUSSION

In this section we evaluate the merits of the proposed dynamic
code placement strategy. We embed this strategy in our energy
aware framework. The cache miss contribution of individual

address block in G-721 codec is depicted in Figure 5.1. G.721
is an ADPCM speech codec. The individual share of each
address block shows the percentage of cumulative cache
misses in that block. The address range corresponds to the
basic code block. The address range 0x001d, 0x032 and 0x029
reflect the major cache misses. A careful look inside the code
reveals the deep branching inside the code. A conditional or
unconditional branching in a code leads to CPU stall.

Figure 5.1. Proportional Cumulative Cache Misses in G.721
ADPCM Speech Codec

The improvement offered by DCP over a full address range
of nlivq (non-linear interpolative vector quantization)
application is more modest for the parallel architecture: 400
averages CPU stalls Figure 5.2. It shown four graphs, top two
graphs show the aggregate CPU stalls before and after the
application of methodology, while two graphs at the bottom are
corresponding power consumption in milliwatts.

Figure 5.2, Comparative Power Performance Evaluation of nlivq
application for DCP strategy.

To better understand the overall impact of DCP, we assess
the individual code block cache performance at the address
scale. The top-left illustrate the cache trace during the

0
100
200
300
400
500
600
700
800
900

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

Before DCP Application

A
gg

re
ga

te
 C

PU
 S

ta
lls

0
100
200
300
400
500
600
700
800
900

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

After DCP Application

A
gg

re
ga

te
 C

PU
 S

ta
lls

0
2
4
6
8
10
12
14

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

Before DCP Application

Po
w

er
 C

on
su

m
pt

io
n

(m
w

)

0
1
2
3
4
5
6
7

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

After DCP Application

Po
w

er
 C

on
su

m
pt

io
n

(m
w

)

76

execution of part of address range. A highest peak at address
range 0x001c show the 802 stalls, it give rise to power peak up
to 12.67 mW. Next three higher power consumption peaks can
be observed at 0x002E, 0x002B, 0x001D, their corresponding
stalls and power consumptions are (790, 5.64 mW), (748, 11.9
mW) and (706, 2.94mW) respectively.

The discrepancy between the number of stalls and
magnitude of power consumption is quite obvious, where 790
stalls lead to 5.64 mW, while 748 stalls lead to 11.9 mW. The
reason is, these results should be observed in conjunction with
the area under the power consumption curve. Hardware needs
time to settle down the input power, the switching capacitance
caused by the instruction activity incurs charge/ discharge time
delays and elongate the area under the power consumption
curve, add an offset to total power eventually.

DCP reduce down the energy consumption of the wireless
speech codec G.721 with a factor of 50% and reduce CPU
stalls 65%.

VI. CONCLUSIONS
This paper addresses the problem of power saving in 3G

wireless systems. Though next generation hardware designers
are using advanced power saving technique to help minimize
integrated circuit and system power consumption. Yet these
techniques do not yield significant power savings without
intelligent energy conservation software to exploit them
effectively. We demonstrate how compilers can be used to
optimize the performance of on-chip instruction caches under
compute intensive workloads with DCP. This paper makes
three contributions.

Firstly, it characterized the spatial locality pattern in the
multimedia applications. It is shown that substantial loop
locality can open the opportunities to save CPU stall cycles.

Secondly, application expression profiling at all levels is
considered, for capturing and correlating performance
problems across multiple execution layers.

Thirdly, our scheme consistently outperform existing PH
algorithm by a significant amount.

In addition, our framework offers an out-of-the-box
solution, which is a simple and faster design environment,
because designers do not have to engineer so aggressively for
reduced power consumption.

ACKNOWLEDGMENT

This work is supported by ÖAD-Pakistan scholarship program
initiated by Prof. Dr. Atta-ur-Rahman chairman HEC and
Federal Minister Pakistan.

The author would like to thank Prof. Dr. Markus Rupp, Prof.
Dr. Arpad Scholtz and Christian Doppler Laboratory at
Institute of Communication and Radio-Frequency

Engineering, Vienna University of Technology for their
support and kind input during this work.

REFERENCES

[1] J. B. Chen and B. D. D. Leupen. “Improving Instruction
Locality with Just-In-Time Code Layout,” Proc. of the
USENIX Windows NT Workshop, Aug. 1997.

[2] N. Zafar Azeemi, “A Framework for Architecture Based
Energy-Aware Code Transformations in VLIW
Processors," Proc. of the IEEE International Symposium
on Telecommunications (IST 2005) pp.393-398. Sep.
2005.

[3] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin,
“Spike: An Optimizer for Alpha/NT Executables,” Proc.
of the USENIX Windows NT Workshop, Aug. 1997.

[4] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder,
“Procedure Placement Using Temporal Ordering
Information,” Proc. of the 30th International Symposium
on Microarchitecture, pages 303–313, Dec. 1997.

[5] N. Zafar Azeemi, “Power Aware Framework for Dense
Matrix Operations in Multimedia Processors,” Proc. of the
IEEE 9th International Multi-topic Conference, Dec.
2005.

[6] E.A. Lee, "Embedded Software," Advances in Computers,
E. Zelkowitz, ed., Academic Press, 2002.

[7] A. Hashemi, D. Kaeli, and B. Calder , “Efficient
Procedure Mapping Using Cache Line Coloring,” Proc. of
the ACM SIGPLAN'97 Conference on Programming
Language Design and Implementation, pages 171–182,
June 1997.

[8] J. Kalamatianos and D. Kaeli, “Temporal-Based
Procedure Reordering for Improved Instruction Cache
Performance,” Proc. of the Fourth International
Symposium on High-Performance Computer Architecture,
pages 244–253, Feb. 1998.

[9] N. Zafar, M. Rupp, “Energy-aware source-to-source
transformations for a VLIW DSP processor,” Proc. of the
IEEE 17th ICM 2005, pp. 133-138, Dec. 2005.

[10] S. McFarling. Program, “Optimization for Instruction
Caches,” Proc. of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 183–191, 1989.

[11] K. Pettis and R. Hansen, “Profile Guided Code
Positioning,” Proc. of the ACM SIGPLAN'90 Conference
on Programming Language Design and Implementation,
pages 16– 27, June 1990.

[12] M. Rosenblum, E. Bugnion, S. A. Herrod, and S. Devine,
“Using the SimOS Machine Simulator to Study Complex
Computer Systems,” ACM Transactions on Modeling
and Computer Simulation, 7(1):78–103, Jan. 1997.

[13] A. D. Samples and P. N. Hilfinger, “Code Reorganization
for Instruction Caches,” Technical Report UCB/CSD
88/447 University of California, Berkeley, Oct. 1988.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. of the 22nd
International Symposium on Computer Architecture,
pages 24–36, June 1995.

[15] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D.
Smith. , “System Support for Automatic Profiling and
Optimization,” Proc. of the 16th ACM Symposium on
Operating Systems Principles, Oct. 1997.

[16] Parameswaran, S. “Code placement in hardware/software
co-synthesis to improve performance and reduce cost,”
Proc. of the Conference on Design, Automation and Test.
pp 626-632, 2001.

77

[17] N. Z. Azeemi, M. Rupp, “Muticriteria Low Energy
Source Level Optimization of Embedded Programs,”
Proc. of the IEEE Informationstagung Mikroelektronik
2006, pp. 150-158, Oct. 2006.

78

