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Abstract— Next generation multimedia mobile phones that 
use the high bandwidth 3G cellular radio network consume more 
power.  Multimedia algorithms such as speech, video transcodecs 
have very large instruction foot prints and consequently stalled 
due to instruction cache misses. The conflicts in on-chip caches 
contribute a large fraction of the CPU cycle penalty and hence 
increase in power consumption. Many commercial tools are 
developed to minimize such cache misses by adequately placing 
the frequently called procedures in an application.   Followed by 
profile extraction, these tools use cache line coloring and post 
compilation techniques for cache hit optimization. The major 
impediment in the optimal performance of such tools is their 
static layout profile, which does not consider the dynamic 
behavior of the application. We propose a methodology called 
DCP (dynamic code placement) for positioning code at run time 
for good instruction cache performance and have implemented in 
high end processors.  The dynamic application profile is 
completely transparent to the developer’s code. This technique 
optimizes the code footprint in memory layout of a program. It 
improves i-cache mapping to increase the number of cache hits 
and eventually reduce the CPU stalls. Our optimization is 
powered with static as well as detail run time profile information 
that extracts the relevant, temporal behavior of the applications. 
Moreover, while mapping code in instruction cache, the effect of 
inter-procedural code positioning is also considered. 
Improvement over the Pettis and Hansen approach (PH) is also 
shown in results.  Though majority of multimedia applications 
can be optimized by our framework, application dominated with 
the function pointers do not work correctly. The technique incurs 
low overheads and enhances the cache hits architecture 
correlation. For a range of applications we show that instruction 
miss rates can be reduced by 19-68%. Using a simple model this 
corresponds to execution time reduction (23-85%), increase in 
parallelism (4-53%).  

Keywords—Wireless applications, embedded systems, low 
energy,  cache optimization   

I. INTRODUCTION 

The next generation wireless will allow mobile computing for 
applications such as high speed access to the corporate intranet 
and to the public internet. Fueling this trend towards high 
speed web browsing with mobile access are the evolution of 
cellular systems that will bring multi-folded increases in 

transmission speeds, the development of end terminal devices 
with human interfaces capable of displaying complex 
graphical presentations, and increased dependence and 
preference of networked information. To achieve such 
universal mobility and flexibility will be necessary. In the 
same vein, powering becomes more and more difficult as the 
demand on processing power increases at the order of 
magnitude. Battery life is now a very strategic feature for 
every mobile system.  

In mobile devices energy dissipation is directly linked to 
battery size, weight, packaging, cooling and operating time. 
Multimedia DSP processors are the most lucrative choice to 
wireless application domain for their optimal performance and 
small form factors at low energy.  The energy efficiency of 
these systems and subsystems depends heavily on their 
software design [1,2,3]. For wireless applications, the software 
design complexity inevitably propagates all the way to the 
developer. Programs are written to explicitly manage 
parallelism and to reorder the computation so that the 
instruction and data working sets fit within the cache. Cache 
misses make the execution speed of programs slow because 
they require extra cycles to transfer code or data between the 
cache and the main memory [2,5,7].  Cache misses consume 
more energy not only because the main memory is activated 
but also off-chip traffic increased. Parameswaran [2, 16] 
mentioned that energy for off-chip driving is very dominating 
and becoming more dominating, up to 70% of the total chip 
energy, along with the progress of transistor scales.  

We choose to implement efficient cache management 
scheme based on the application run time profile steered by our 
energy aware framework, published in [5,9]. , whose add 
several implementations of energy efficient techniques for 
embedded DSP compiler [5,10,15] to generate high 
performance computing applications, they are mentioned 
below: 

• The dynamic application profile is completely 
transparent to the developer’s code. This technique 
optimizes the code footprint in memory layout of a 
program. 

• Improvement over the Pettis and Hansen approach 
(PH) is also shown in results.  
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• Our optimization is powered with static as well as 
detail run time profile information that extracts the 
relevant, temporal behavior of the applications  

• We demonstrate how compilers can be used to 
optimize the performance of on-chip instruction caches 
under compute intensive workloads with DCP. 

This paper is organized in five sections: Section II presents the 
motivation and background of our work, Section III describes 
the experimental setup and bench mark applications. Case 
studies are discussed in Section IV, while Section V concluded 
the whole work. 

II. MOTIVATION AND BACKGROUND  

Various cache mapping scheme have been developed over the 
year to improve the cache performance [10,11,12,13,14].  
Following two parameters have to be maximized in order to 
have good cache performance:  

Hit Ratio: It must be increased as much as possible the 
likelihood of the cache containing the memory addresses that 
the processor wants. Otherwise, the benefit of caching will be 
lost, because there will be too many misses.  

Search Speed:  It is desirable to be as quickly as possible if 
scored a hit in the cache is the goal. Otherwise, small amount 
of time in every access will be lost during every search.  

An unsuccessful attempt to read or write cache is refered as 
cache miss, which results in a main memory access with 
longer latency [14]. There are three kinds of cache misses. A 
cache read miss from an instruction cache generally causes the 
most delay, because the processor, or at least the thread of 
execution, has to wait (stall) until the instruction is fetched 
from main memory. A cache read miss from a data cache 
usually causes less delay, because independent cache read 
instructions can be issued and continue execution until the 
data is returned from main memory, and the dependent 
instructions can resume execution. A cache write miss to a 
data cache generally cause the least delay, because the write 
can be queued and there are few limitations on the execution 
of subsequent instructions. The processor can continue until 
the queue is full. In order to lower cache miss rate, a great deal 
of analysis has been done on cache behavior in an attempt to 
find the best combination of size, associativity, block size, and 
so on [13]. Sequences of memory references performed by 
benchmark programs are saved as address traces. Subsequent 
analyses simulate many different possible cache designs on 
these long address traces.  

Researchers have categorized the cache miss factors in three 
broad classes and they are compulsary misses, conflict misses 
and capcity misses. Compulsory misses are those misses 
caused by the first reference to a datum. Cache size and 
associativity make no difference to the number of compulsory 
misses. Prefetching can help here, as can larger cache block 
sizes (which are a form of prefetching).  Capacity misses are 
those misses that occur regardless of associativity or block 
size, solely due to the finite size of the cache. The curve of 

capacity miss rate versus cache size gives some measure of the 
temporal locality of a particular reference stream [12, 13, 14]. 
Note that there is no useful notion of a cache being "full" or 
"empty" or "near capacity": CPU caches almost always have 
nearly every line filled with a copy of some line in main 
memory, and nearly every allocation of a new line requires the 
eviction of an old line. Conflict misses are those misses that 
could have been avoided, had the cache not evicted an entry 
earlier.  

In VLIW processors, many of the components in the CPU 
are not completely utilized during the program execution. 
Primary reason for such slack is the poor architecture-
application correlation [16,17]. This indicate that for an energy 
efficient  application binary there is a need to gather more 
detailed profiles, containing information about system behavior 
on various levels.  The goal of profiling is to find cause-effect 
relations between performance phenomena and finally 
generating an architecture efficient code. Our energy-aware 
framework [9] embodies a series of profiling stages that enable 
the optimization process.  

III. EXPERIMENTAL SETUP 

This section describes the hardware and software used to 
collects our data and the workload selected. The experiment 
was conducted on a parallel machine, but outcomes are also 
applicable to a uni-processor machine with similar processing 
elements. We use profile monitor [9] to capture a large range 
of system activity, including dynamic activity.  

A. Hardware System 

We use a hardware performance monitor to gather 
uninterrupted reference traces of applications in real-time 
without introducing perturbation.  The performance monitors 
has one probe connected to the sensing resistor at the core 
input current of the processor. The probe collects all the 
references issued by the processor except the slave processors. 
The trace buffer for each probe can hold up to 10 millions of 
references. For each reference, the information stored 
includes: 

• The address accessed (32 bits) 

• Sample time stamp (24 bits) 

• Memory access stamp (6 bits) 

• Clock shift stamp (1 bit) 

• DMA access stamp (3 bits) 

• Bus arbiter control stamps (2 bits) 

This can record a trace of an unbounded continuous stretch of 
the underlying multimedia application.  

B. Software System 

Table 1, presents our benchmark suite, which consists of a 
modified version of the MediaBench suite. Our set of 
applications contains computer-intensive DSP kernels as well 
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as applications composed of more complex algorithms and 
data structures.  

 
Table 1. Workload Applications for Profile Monitoring
Applications Description 

m100 Matrix 100x100 multiplications 
m200 Matrix 200x200 multiplications 
nlivq Non linear interpolative vector 

quantization 
MPEG-1 MPEG video transcodec 

G.721 ADPCM Speech codec 
H.264L Mpeg-4 H.264L Video compression 

codec 
 

IV. LOW ENERGY CODE PLACEMENT (LECP) 
METHODOLOGY 

 

Code placement can be employed to minimize mutual 
instruction replacement and resulting cache misses. We 
propose a new code mapping scheme which rearranges 
functions of a signal processing application in memory based 
on run-time profile so that the mapping of frequently accessed 
code parts to same cache lines.  In contrast to existing code 
placement methods that rely on purely statistical data such as 
call graphs; our method exploits the address sequence 
information inherent in instruction trace data. 

The scheme is integrated in an energy aware framework, 
which have been already discussed in a former publication [9].  
Briefly, in this framework we proposed an energy-cycle cost 
model together with a source-to-source transformation 
methodology, suitable for embedded systems based on VLIW 
(very long instruction word) cores.  The system level 
methodology includes generalized energy models for each 
module, composing the system architecture (processing unit, 
on-chip/ off-chip memory units, address/ data highway etc.) 
and SW application parameters.  During methodology flow, 
‘C’ source code is successively restructured for a given energy 
and cycle performance. Further details can be found in [9]. 

In this work we focus explicitly on energy-cycle cost 
guarded cache performance improvement. The proposed code 
mapping approach consists of two steps: trace data processing 
and function allocation. Trace data has to be collected while 
executing the target application with typical input test vectors. 
Address sequence information, however, is essential for cache 
behavior optimization since occurrence of cache misses is 
related to the sequence of memory accesses rather than to their 
mere number. The new method evaluates the address sequence 
of memory accesses in order to extract only those accesses 
which can actually lead to cache misses during code execution. 

V. RESULTS AND DISCUSSION 

In this section we evaluate the merits of the proposed dynamic 
code placement strategy. We embed this strategy in our energy 
aware framework. The cache miss contribution of individual 

address block in G-721 codec is depicted in Figure 5.1. G.721 
is an ADPCM speech codec. The individual share of each 
address block shows the percentage of cumulative cache 
misses in that block. The address range corresponds to the 
basic code block. The address range 0x001d, 0x032 and 0x029 
reflect the major cache misses. A careful look inside the code 
reveals the deep branching inside the code. A conditional or 
unconditional branching in a code leads to CPU stall.  

 

 
 

Figure 5.1.  Proportional Cumulative Cache Misses in G.721 
ADPCM Speech Codec  

The improvement offered by DCP over a full address range 
of nlivq (non-linear interpolative vector quantization) 
application is more modest for the parallel architecture: 400 
averages CPU stalls Figure 5.2. It shown four graphs, top two 
graphs show the aggregate CPU stalls before and after the 
application of methodology, while two graphs at the bottom are 
corresponding power consumption in milliwatts.  

 

Figure 5.2, Comparative Power Performance Evaluation of nlivq 
application for DCP strategy. 

To better understand the overall impact of DCP, we assess 
the individual code block cache performance at the address 
scale. The top-left illustrate the cache trace during the 

 

0
100
200
300
400
500
600
700
800
900

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

Before DCP Application

A
gg

re
ga

te
 C

PU
 S

ta
lls

 

0
100
200
300
400
500
600
700
800
900

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

After DCP Application

A
gg

re
ga

te
 C

PU
 S

ta
lls

 

0
2
4
6
8
10
12
14

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

Before DCP Application

Po
w

er
 C

on
su

m
pt

io
n 

(m
w

)

0
1
2
3
4
5
6
7

0x
00
14

0x
00
17

0x
00
1A

0x
00
1D

0x
00
20

0x
00
25

0x
00
28

0x
00
2B

0x
00
2E

0x
00
32

After DCP Application

Po
w

er
 C

on
su

m
pt

io
n 

(m
w

)

76



         

execution of part of address range.  A highest peak at address 
range 0x001c show the 802 stalls, it give rise to power peak up 
to 12.67 mW. Next three higher power consumption peaks can 
be observed at 0x002E, 0x002B, 0x001D, their corresponding 
stalls and power consumptions are (790, 5.64 mW),  (748, 11.9 
mW) and (706, 2.94mW) respectively.  

The discrepancy between the number of stalls and 
magnitude of power consumption is quite obvious, where 790 
stalls lead to 5.64 mW, while 748 stalls lead to 11.9 mW. The 
reason is, these results should be observed in conjunction with 
the area under the power consumption curve. Hardware needs 
time to settle down the input power, the switching capacitance 
caused by the instruction activity incurs charge/ discharge time 
delays and elongate the area under the power consumption 
curve, add an offset to total power eventually.  

DCP reduce down the energy consumption of the wireless 
speech codec G.721 with a factor of 50% and reduce CPU 
stalls 65%.  

 

VI. CONCLUSIONS 
This paper addresses the problem of power saving in 3G 

wireless systems. Though next generation hardware designers 
are using advanced power saving technique to help minimize 
integrated circuit and system power consumption. Yet these 
techniques do not yield significant power savings without 
intelligent energy conservation software to exploit them 
effectively. We demonstrate how compilers can be used to 
optimize the performance of on-chip instruction caches under 
compute intensive workloads with DCP. This paper makes 
three contributions.  

Firstly, it characterized the spatial locality pattern in the 
multimedia applications. It is shown that substantial loop 
locality can open the opportunities to save CPU stall cycles.  

Secondly, application expression profiling at all levels is 
considered, for capturing and correlating performance 
problems across multiple execution layers. 

Thirdly, our scheme consistently outperform existing PH 
algorithm by a significant amount. 

In addition, our framework offers an out-of-the-box 
solution, which is a simple and faster design environment, 
because designers do not have to engineer so aggressively for 
reduced power consumption.   
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