12th IEEE International Conference on Emerging Technologies and Factory Automation September 25-28 2007, Patras, Greece

000

www.etfa2007.org

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

0

.....

©2007 IEEE IEEE Catalog Number: 07TH8932C ISBN: 1-4244-0826-1 Library of Congress: 2006937986

TECHNICAL PROGRAM

Session: T1.1	Room: I4	Wednesday, Sep. 26,	11:30 - 13:00
Communication in Automation	Systems: Pos		
Chairing: Juergen Jasperneite,	Alexander Fay		
Life-cycle Oriented Data Access for a Andreas Gössling, Martin Wollschlae		ımework	1
OWL Based Information Agent Serv Antti Pakonen, Teppo Pirttioja, Ilkka	•		9
<i>Limits of Increasing the Performance</i> Juergen Jasperneite, Markus Schuma		ernet Protocols	17
Prediction of End-to-End Deadline M Patricia Della Méa Plentz, Carlos Mo	•	•	25
Performance Evaluation and Predict System in Harsh Industrial Environ Uwe Meier, Stefan Witte, Kai Helmig,	nents		
Formalised specification of a test too Mathias Mühlhause, Christian Diedri	• • •		38
Session: T6.1	Room: I 10	Wednesday, Sep. 26,	11:30 - 13:00
Embedded Model Control and			
Chairing: E. Canuto, J. Ospina			
Embedded Model Control: principles Enrico Canuto, Luis David Prieto	and applications.	Part I	45
Embedded Model Control: principles Enrico Canuto, Luis David Prieto	and applications.	Part II	53
Embedded Model Control: sub-micro Enrico Canuto, Fabio Musso, Luca M		ty of the Nanobalance thrust-stan	ad 61
<i>Emerging technologies in the ESA S</i> <i>Luca Massotti, Enrico Canuto</i>	cience and Earth (Observation Programme	69
<i>Multilayer control of an optical refer</i> Enrico Canuto, José Ospina, Angelo I Marco Bisi, Paolo Cordiale			o, 77
Session: T3.1	Room: I 11	Wednesday, Sep. 26,	11:30 - 13:00
Scheduling and Resource Ma			
Chairing: Bjorn Anderson, Lui	gi Sassoli		
Sensitization of Symbolic Runs in Ro Enrico Vicario, Luigi Sassoli, Laura (Jsing the ORIS Tool	85
Virtual Execution Environment for I Claudiu Farcas, Wolfgang Pree	Real-Time TDL Co	mponents	93
Deriving Exact Stochastic Response time Systems		Tasks in Hybrid Priority-driven S	
Giordano Kaczynski, Lucia Lo Bello,	Thomas Nolte		101
Uniprocessor Scheduling Under Tim Fábio Rodrigues de la Rocha, Rômulo			111
Resource Management for Dynamica Muhammad Hasan, Sotirios Ziavras	ally-Challenged Re	configurable Systems	119
Reliable Scheduling of a Distributed Cause Failures Thanikesavan Sivanthi	Real-time Embeda	led Application Considering Com	<i>mon</i> 127
i nanikesuvan sivanini			1 4 /

	Room: I 12 to Enable Integrated	<i>Wednesday, Sep. 26,</i> 11:30 - d Manufacturing and Service Sys	
(IMSS) Chairing: Cab Kiab Mak	Cristian Vacar		
Chairing: Goh Kiah Mok			
A Rapid Configurable Embedd Kiah Mok Goh, Benny Tjahjono			135
<i>The Wireless Sensor Networks</i> L.Q. Zhuang, K.M. Goh, J.B. Zh		Issues and Challenges	141
Service Systems		odeling Integrated Manufacturing and	1.40
Han Yu, Zhiqi Shen, Chunyan N	0 -	0	149
Model-based Monitoring and I Sheng Huang, Kiah Mok Goh, Y		ology for Ball-nose End Milling n Hong, Kah Chuan Shaw	155
Fault Detection Methods for F Lucian Mihet, Octavian Prosted			161
	ntology for Interoperabili	ty in Integration of Design Information	
Systems Qizhen Yang, Chunyan Miao			169
Session: T2.1	Room: I4	Wednesday, Sep. 26, 14:30 -	16:00
Wireless Industrial Com			20000
Chairing: Christos Koula			
Development and Performance Communication based on IEE Andreas Vedral, Thomas Kruse,	E 802.15.4	a Diversity Module for Industrial	177
Reasoning about communicati Claudio Zunino, Gianluca Cenc	ion latencies in real WLA		187
through Remote Virtual Interfe	ace	r <mark>eless Household-Electric Network</mark> mabe, Luiz Ricardo Lima, Bruno	195
Fast Hand Off for Mobile Wire Orazio Mirabella, Lucia Lo Bel		hele Brischetto	202
<i>The Use of Clustered Wireless</i> <i>Urban Bilstrup, Katrin Bilstrup</i>			211
Industry		Network Solutions for the Oil & Gas in Vatland, Trond Michael Andersen, Dag	219
Session: T8	Room: I 10	Wednesday, Sep. 26, 14:30 -	16:00
Computational Intelligen	ce in Automation		
Chairing: E. Man, J. Tar			
<i>Texture Recognition for Frog</i> Flavio Cannavo', Boray Tek, Izz		ri	227
Modeling Supply Chain's Reco Bin Ma, Laura Xu, Roland Lim	onfigurability using Fuzzy	, Logic	234
On the Application of Recurren an Industrial Process	nt Neural Network Techn	iques for Detecting Instability Trends in	
Eva Portillo, Itziar Cabanes, M	larga Marcos, Asier Zubizo	arreta	242

Intelligent Control in Automation Based on Wireless Traffic Analysis Kurt W. Derr, Milos Manic

On-line Identification of Hybrid Systems Using an Adaptive Growing and Pruning RBF Neural
NetworkTohid Alizadeh, Karim Salahshoor, Mohammad Reza Jafari, Abdollah Alizadeh, Mehdi Gholami257Fault diagnosis and fuzzy logic decision for stochastic timed automata
Ghada Beydoun, Zemouri Ryad265

Session: T5.1	Room: I 11	Wednesday, Sep. 20	6, 14:30 - 16:00
Architectures, Methods o	and Technologies for	• Enterprise Integrati	ion
Chairing: Rei Itsuki, Jose L	astra		
Impact of the Delay of Subcontra Approach Mohammed Dahane, Christian Cl	· ·	grated Maintenance: Analy	<i>tical</i> 273
Development of Communications Production Equipment Satoshi Iwatsu, Yuji Watanabe, K.		Ifacturing Execution System	<i>and</i> 280
On Ontology Mapping in Factory Corina Popescu, Jose L. Martinez			288
Integration of SOA-ready Networ Layered Web Service Infrastruct Stamatis Karnouskos, Oliver Baeo	ure		293
An Information Management Sy Kazuhiro Kawashima, Norihisa K		n Supply Chain by Secure R.	FID Tag 301
An Approach for Integrating Rea Service-oriented Architecture Pa Daniel Cachapa, Armando Colom	radigm		<i>ng the</i> 309

Session: SS2.2	Room: I 12	Wednesday, Sep. 26,	14:30 - 16:00
Planning and Integration T	echnologies for Ma	nufacturing and Service	Systems
Chairing: Angle Goh, He We	ei		
Web 2.0 Concepts and Technologi Chong Minsk Goh, Siew Poh Lee, V		egration	315
Composing OWL-S Web Services B.D. Tran, P.S. Tan, A. Goh			322
An Investigative Approach on Imp Enterprise Integration using Web Wei He, Puay Siew Tan, Chong Mi	2.0 Technologies	_	ities for 330
Common Capacity Modelling for <i>I</i> F.Y. Wang, T.J. Chua, T.X. Cai, L.S.		e Studies	336

Session: T1.2Room: I4Wednesday, Sep. 26, 16:30 - 18:00IT in the Design Process of Automation SystemsChairing: Alexander Fay, Juergen JasperneiteIntroducing the Modeling and Verification process in SysML
Marcos Vinicius Linhares, Rômulo Silva de Oliveira, Jean-Marie Farines, François Vernadat344Automated PLC Software Generation Based on Standardized Digital Process Elements
Martin Bergert, Jens Kiefer, Christian Diedrich, Thomas Bär352

360

368

A rule format for industrial plant information reasoning Till Schmidberger, Alexander Fay

Software Quality Measures to determine the Diagnosability of PLC Applications Mohammed Bani Younis, Georg Frey

Control Systems Sandro Andrade, Raimundo M	<i>lacêdo</i>		376
Interactively Configurable Fi Sebastian Theiss, Joern Ploen		<mark>ents</mark> yy, Jens Naake, Klaus Kabitzsch	384
4 Linear Programming Base Ewa Figielska	d Heuristic for Solving a T	vo-Stage Flowshop Scheduling Problem	392
Session: T6.2	Room: I 10	Wednesday, Sep. 26, 16:30	- 18:(
<mark>Industry/Bank Automa</mark> Chairing: R. Vilanova, F			
	Methods for Modelling and	d Simulation of Industrial Systems	398
On the automatic generation Luiz Paulo Barbosa, Kyller G		f rom ISA 5.2 diagrams ma, Angelo Perkusich, Leandro Silva	406
Bank Note Classification Usi Sigeru Omatu, Michifumi Yosi			413
F eedforward Control for unc Ramon Vilanova	ertain systems. Internal Mo	odel Control approach	418
Session: T4 Intelligent Sensors and Chairing: Pedro M. Ruiz		<i>Wednesday, Sep. 26,</i> 16:30 vinga	- 18:(
U tilising Noise Effects on Inj Nikos Petrellis, Nikos Konofae		r Position Estimation on a Grid Plane	426
<mark>4 Tight Lower Bound for Art</mark> Andrea Bottino, Aldo Laurent		lgorithms	434
Implementation and Evaluati Ethernet Angelos Anastasopoulos, Dim		lizing TinyOS-based systems and noulis. Stavros Koubias	441
0 1	n Management Automation	using Wireless Sensor Networks	448
METATRO: A Real Time RF George Asimakopoulos, Spiro		o <mark>ring system for perishable comestibles</mark> illou	456
Performance Evaluation of I Reconciliation Technique Ba Karim Salahshoor, Mohamma	sed on the Unscented Kalm	an Filter	460
50 Ways to Build your Applic Networks Toannis Chatzigiannakis, Geor		v <mark>are and Systems for Wireless Sensor</mark> etseas	466
Session: SS1.1	Room: I 12		
Chairing: Kleanthis Thr	on Block Model in Coi		- 10:(
Benchmarking of IEC 61499	runtime environments	Strasser, Jeroen Brunnenkreef	474
Educational Approaches for a Seppo A Sierla, James H Chri			482
noonnonating Industrial Exp	ariance to IFC 61/00 Rase	d Development Methodologies and	

Incorporating Industrial Experience to IEC 61499 Based Development Methodologies and Toolsets Mika P. Strömman, Kleanthis C. Thramboulidis, Seppo A. Sierla, Nikolaos Papakonstantinou, Kari

490 O. Koskinen

Implementing IEC 61499 Communication with the CIP Protocol Frans Weehuizen, Aidan Brown, Christoph Sünder, Oliver Hummer	498
Deployment of IEC 61499 Compliant Distributed Control Applications Tanvir Hussain, Georg Frey	502
Integrating CNet and IEC 61499 function blocks Nils Hagge	506

Session: SS3	Room: I4	Thursday, Sep. 27,	11:00 - 12:30
Methods and Instrumer	ntation for Performanc	e Measurement in Rec	ul-time
Networks			
Chairing: Alessandra Fla	mmini, José A. Fonseca		
Precision of Ethernet Measur Iwan Schafer, Max Felser	ements based on Software To	ols	510
Delay Measurement System fo Paulo Bartolomeu, Valter Silvo		ams	516
A new distributed instrument characterization		•	
Paolo Ferrari, Alessandra Fla	mmini, Daniele Marioli, Andr	ea Taroni	524
Measuring the impact of verti Bruno Denis, Silvain Ruel, Jea			532
Measuring Real Time Perform Micaela Caserza Magro, Paolo		l Control Systems	540

Session: T6.3	Room: I 10	<i>Thursday, Sep. 27,</i> 11:00 - 12:30
Control Theory and A	pplications	
Chairing: A. Tzes, L. N	lassotti	
Stability margins character Orlando Arrieta, Ramón Vil		egulation tuning for PID controllers 548
<i>I/O Decoupling And Distur</i> <i>Measurement Output Feed</i> <i>Fotis N. Koumboulis, Georg</i>	back	Linear Time Delay Systems Via 555
	Technique for the Suppressio nes with Hoisting Mechanism y Tzes	n of Payload Swing in Three- 565
membrane humidity	o <mark>n Exchange Membrane Fuel</mark> (vyekhf, Abdellah El Moudni, Ma	Cell: The effect of temperature andaxime Wack569
<i>Automation of diagnosis of</i> <i>Fuzzy Expert System</i> <i>Jovelino Falqueto, Matheus</i>		e Itaipu Hydroelectric Plant with a 577

Session: T5.2	Room: I 11	Thursday, Sep. 27,	11:00 - 12:30
Emerging Issues and S	olutions		
Chairing: Masanori Akiy	oshi, Jose Lastra		
Towards Biologically Inspired Dania A. El Kebbe, Nils Kretz.		nufacturing Systems	585
An Alert Management System Jason C.S. Chung, Dickson K.	•	nt	591
Electric power service selection Shigeyuki Tani, Masaharu Aka		9ntract	599
Enforcing Transition Deadlin Haisheng Wang, Liviu Grigore		bi	604

Controlling Residential Co-Generation System Based on Hierarchical Decentralized Model Takuya Matsumoto, Hisashi Tamaki, Hajime Murao	612
Construction of Traceability Sysmem by using Simple and Handy type RFID reader Rei Itsuki	619

Session: SS5	Room: I 12	<u>Thursday, Sep. 27, 11</u>	:00 - 12:30
Embedded Systems Security	Y		
Chairing: D.N. Serpanos, W.H	I. Wolf		
Implementation of HSSec: a High-S Athanasios Kakarountas, Haralambo		•	625
Using Value Locality to Reduce Met George Keramidas, Pavlos Petoumet Serpanos			ios 632
An Integrated Security Model for C Nimal Nissanke	omponent–Based System	8	638
Security - Lifetime Tradeoffs for Wi Zdravko Karakehayov	reless Sensor Networks		646
Security and DRM in Indoor/Outdo Centric Frameworks Tasos Fragopoulos, Antonios Athanc Gialelis, Stavros Koubias	U U		651
Session: T7 Distributed Intelligent Cont	Room: I 13	Thursday, Sep. 27, 11	:00 - 12:30
Cisil ibuleu Intelligent Cont	TOT TOT TEXIBLE MU		

Chairing: George Chryssolouris, Nidhal Rezg	
Hierarchical Distributed Controllers - Design and Verification Dirk Missal, Martin Hirsch, Hans-Michael Hanisch	657
Dynamic Workflow Priorization Based on Block Finite Position Machines Jesus Trujillo, Zbigniew Pasek, Enrique Baeyens	665
Analytical Method for Generating Feasible Control Sequences in Controller Development Jesus Trujillo, Zbigniew Pasek, Enrique Baeyens	673
Structural Reasoning in Proving System Correctness Andrei Lobov, Jose Luis Martinez Lastra	681
Application Of The Supervisory Control Theory To Automated Systems Of Multi-Product Manufacturing Daniel Balieiro, Eduardo Portela, Agnelo Vieira, Marco Busetti	689
Management and manipulation of products using RFID-IMS in chain of production and distribution Antonio Abarca, Julio Encinas, Andres Garcia	697

Session: WIP 1	Room: I4	Thursday, Sep. 27, 1	6:00 - 17:00		
Industrial Networks an	Industrial Networks and Factory Automation				
Chairing: Thilo Sauter					
Topology Discovery in PROF Iwan Schafer, Max Felser	INET		704		
Retrieval of Diagnostic Inform Tim Keane, Hassan Kaghazchi	•	etworks	708		
Uniform Engineering of Distr Martin Hoffmann, Mathias Mu		**	712		
Context-aware infrastructure Loubna Ali, Mayyad Jaber, So			716		

Development of Web-Based Software for a Multi-Fieldbus Diagnosis Tool Scott Warner, Hassan Kaghazchi	720
Assessment of the Ontological Approach in Factory Automation from the Perspectives of Connectionism Aleksandra Dvorynachikova, Jose Lastra	724
OPC server implementation with MMS over Ethernet Hubert Kirrmann, Sébastien Chatelanat, Michael Obrist	728
Modeling Logical and Temporal Conditions to Formally Validate Factory Automation Web Services Corina Popescu, Jose L. Martinez Lastra	732
Message-Oriented Middleware for Automated Piezomotor Manufacturing Patrick Otto, Bernd Lindner, Martin Wollschlaeger	736
A Simulation Study of Ethernet Powerlink Networks Stefano Vitturi, Lucia Seno	740
Using a Packet Manipulaton Tool for Security Analysis of Industrial Network Protocols Tiago H. Kobayashi, Aguinaldo B. Batista Jr., Agostinho M. Brito Jr., Paulo S. Motta Pires	744

Session: WIP 2 Embedded Systems and	Room: I 10	Thursday, Sep. 27,	16:00 - 17:00
Chairing: Thilo Sauter			
A Power Manager for Deeply Geovani R. Wiedenhoft, Arlion	•	röhlich	748
Coprime factorization based s Salva Alcántara, Carles Pedre			752
A Constraint Logic Programm Distributed Embedded System Kåre Harbo Poulsen, Paul Pop	S	thesis of Fault-Tolerant Sche	edules for 756
Embedded linux scheduler m o Zdenek Slanina, Vilem Srovna			760
Enhanced Engineering of Do Descriptions within the eCED Christoph Sünder, Oliver Hum	AC Approach	n by use of Hardware Capabi	<i>lity</i> 764
Security in Agent-based Autor Basit Ahmed Khan, Jörgen Ma			768
Automating Security Tests Fo Joao Paulo S. Medeiros, Alliso			<i>es</i> 772
New Developments in EPOS Rafael Luiz Cancian, Marcelo			776
Genetic Algorithms Multiobje Dan Stan, Vistrian Maties, Rad		OF Micro Parallel Robot	780
A Hidden Markov Models Too Fotios Sotiropoulos, Panayioti			sformer 784
A Graphical Editor for the In Ricardo Nunes, Luis Gomes, Jo		Petri Net Class	788
Feasibility Conditions with Ke Priority Ceiling Protocol on a Franck Bimbard, Laurent Geo	n Event Driven OSEK Syste		ling with 792

Session: SS9	Room: I 11	Thursday, Sep. 27,	16:00 - 17:30
Business Intelligence an	d its Applications in	Industrial Ecosystems	
Chairing: Elizabeth Chan	g, Tharam Dillon		
An FCA-based mapping gener Paolo Ceravolo, Zhan Cui, Alex			796
Addressing The Challenges Of Miheala Ulieru, Mohsin Sohail	Enetwork Cyberengineerin	ng	804
Trust based Decision Making Amandeep Sidhu, Farookh Hus			810
Application of SPARQL in Sen Hai Dong, Farookh Hussain, El			816
Quantifying the Level of Failu Omar Hussain, Elizabeth Chang			820
An Overview of the interpretati Omar Hussain	ons of trust and reputation	!	826
Ontology Engineering and (Di Peter Spyns, Robert Meersman	gital) Business Ecosystems.	: a case for a Pragmatic Web	831

Session: SS6.1	Room: I 12	Thursday, Sep. 27,	16:00 - 17:30
Interoperability Issues			
Chairing: Vincent Chapt	ırlat, Athanasios Kaloş	geras	
	fication approach for chard	icterizing and checking organi	zational
interoperability Vallespir Bruno, Chapurlat Vin	acent		839
Enterprise Semantic Modellin Nacer Boudjlida, Hervé Paneti			847
An Ontology-based Interopera Daniel Diep, Christos Alexako	•	ibuted Manufacturing Control	855
Interoperable Language Fam Thomas Wagner, Albert Treytl,		on in Industrial Applications	863
Multilevel Order Decompositi Daniela Wuensch, Aleksey Bra		n	872

Session: WIP 3	Room: I 13	Thursday, Sep. 27, 16	:00 - 17:00
Sensors and Actuators			
Chairing: Thilo Sauter			
Accuracy analysis of a 3D mea industrial robot with a turntabl Mohamed Rahayem, J.A.P Kjeld	le	a laser profile scanner mounted o	n an 880
Group Management System of Yuichi Kobayashi, Toshiyuki Ku			884
Service Oriented Architecture J Camilo Christo, Carlos Cardein		ion	888
Active Beacon System with the Byoung-hoon Kim, Jong-suk Ch		re for Indoor Localization	892
Line based robot localization u Danilo Navarro, Ginés Benet, N	•		896
Surveillance of Mobile Objects Tony Larsson	using Coordinated Wirele	ss Sensor Nodes	900

RAVEN: A Maritime Surveillance Project Using Small UAV Siu O'Young, Paul Hubbard	904
Intelligent Multisensorsystem for In-line Process- and Quality Monitoring of Welding Seams using Methods of Pattern Recognition Michael Kuhl, Reimund Neugebauer, Paul-Michael Mickel	908
Sensor Enabled Rule Based Alarm System for the Agricultural Industry Christos Gogos, Panayiotis Alefragis, Efthymios Housos	912
Matching Images of Imprinted Tablets Ziga Spiclin, Marko Bukovec, Franjo Pernus, Bostjan Likar	916
Wireless Vibrating Monitoring (WiVib) An industrial case study Jonas Neander, Stefan Svensson, Tomas Lennvall, Mats Björkman, Mikael Nolin	920

Session: T3.2	Room: I 10	<i>Thursday, Sep. 27,</i> 17:00 - 18:	:00
Real-Time and Control			
Chairing: José A. Fonseca			
Optimal Flow Routing in Multi-h Linear Programming Jiri Trdlicka, Zdenek Hanzalek, M		Real-Time Constraints through 92	24
Simple PID Control Algorithm ad Volodymyr Vasyutynskyy, Klaus K	· · · · · · · · · · · · · · · · · · ·	pling 93	32
Second order sliding mode real-ti Luca Capisani, Tullio Facchinetti,		<i>robotic manipulator</i> 94	41
<i>On the practical issues of implem</i> <i>controllers</i> <i>Jose Fonseca, Paulo Bartolomeu,</i>		protocol in small processing power Varreiro 94	19

Session: T9.1	Room: I4	<i>Friday, Sep. 28,</i> 10:00 - 11:30	
Intelligent Robots I			
Chairing: Josep M. Mira	its, Yolanda Bolea		
A New Time-Independent Im Gabriel J. García, Jorge Pom	a <mark>ge Path Tracker to Guide Ro</mark> ares, Fernando Torres	obots Using Visual Servoing 957	
Real-Time Architecture for N Pedro Sousa, Rui Araújo, Url	Aobile Assistant Robots bano Nunes, Luís Alves, Ana Lo	opes 965	
Hierarchical Distributed Arc Jose Azevedo, Bernardo Cunl	hitectures for Autonomous M aa, Luis Almeida	<i>Sobile Robots: a Case Study</i> 973	
Camera Localization and Ma Parametrization Rodrigo Munguia, Antoni Gra		P Initialization and Inverse Depth 981	
An Outdoor Guidepath Navig Markers Ana Lopes, Fernando Moita,		d on Robust Detection of Magnetic 989	
Decision Making among Alte	e <mark>rnative Routes for UAVs in D</mark> lo, Gonzalo Pajares, Jesus M.		

Session: T5.3	Room: I 11	Friday, Sep. 28, 10:00 - 11:30			
Automated Manufactu	Automated Manufacturing Systems				
Chairing: Toshiya Kaih	ara, Jose Lastra				
Development of a holistic Gu Machining Operations Ulrich Berger, Ralf Kretzschr		ocess Chain for benchmarking 1005			
Design and Realization of a Francesco Calabrese, Giovan		mbedded Controller 1010			

A Study on Automated Scheduling Methodology for Machining Job Shop Yoshihiro Yao, Toshiya Kaihara, Kentaro Sashio, Susumu Fujii	1018
A Heuristic Approach For Scheduling Multi-Chip Packages For Semiconductor Backend Assembly Tay Jin Chua, Tian Xiang Cai, Xiao Feng Yin	1024
A Formal Approach for the Specification, Verification and Control of Flexible Manufacturing Systems Sajeh Zairi, Belhassen Zouari, Laurent Piétrac	1031
Design and Implementation of Petrinet Based Distributed Control Architecture for Robotic Manufacturing Systems G. Yasuda	1039

Session: SS8	Room: I 12	Friday, Sep. 28, 1	0:00 - 11:30
Design and Analysis of	Distributed Automatio	n Systems	
Chairing: Georg Frey, A	lexander Fay		
Formal verification of redund Steve Limal, Bruno Denis, Jea			1045
DesLaNAS – a language for Jürgen Greifeneder, Georg Fr	-	ution Systems	1053
Simulation Approach for Eva Liu Liu, Georg Frey	luating Response Times in No	etworked Automation Systems	5 1061
UML-based safety analysis oj Sebastian Schreiber, Till Schn Schnieder			d 1069
Incremental design of distrib Arndt Lüder, Jörn Peschke	uted control systems using GA	IA-UML	1076
Distributed control programm Michael Heinze, Joern Peschk		vstem	1084

Session: T3.3	Room: I 13	Friday, Sep. 28, 10:00 - 11:30
Distributed Real-time Sy	vstems	
Chairing: Thomas Nolte, C	Drazio Mirabella	
Simulation for end-to-end delay Jean-Luc Scharbarg, Christian F		Ethernet 1092
Exploiting a Prioritized MAC P Björn Andersson, Nuno Pereira,		ute Interpolations 1100
<i>Master Replication and Bus Err</i> Valter Silva, Joaquim Ferreira, .		with Multiple Buses 1107
Embedded Web Services for Ind Francisco Maciá-Pérez, Diego N		

Session: T10	Room: 14	Friday, Sep. 28, 12:00	- 13:30
Emerging Issues			
Chairing: Gianluca Cena, Da	cfey Dzung		
The Effect of Quartz Drift on Conv. Eric Armengaud, Andreas Steininger	0	Clock Synchronization	1123
Supply Chain Performance Evaluate Zhengping Li, Arun Kumar, Xiaoxia	•	d Operational Levels	1131
Common Approach to Functional S Control Systems Thomas Novak, Albert Treytl, Peter		ity in Building Automation and	1141

A Development Process for Mechatronic Products: Integrating Software Engineering and Product Engineering Ana Patrícia Magalhães, Aline Andrade, Leila Silva, Herman Lepikson	1149
<i>A Novel Class of Multi-Agent Algorithms for Highly Dynamic Transport Planning Inspired by</i> <i>Honey Bee Behavior</i> Horst F. Wedde, Sebastian Lehnhoff, Bernhard van Bonn	1157
Introducing and Evaluating a Relaying Concept for the IEEE 802.16 Wireless Metropolitan Networks Christos Antonopoulos, Kostas Stamatis	1165

Session: SS4	Room: I 10	Friday, Sep. 28, 12:00 -	- 13:00
Innovative E-Learnin Chairing: Luis Gomes	-		
Synchronous Multipoint E Unicast Networks: Design	- -Learning Realized on an Intel and Performance Issues	l <mark>igent Software-Router Platform over</mark> cesco Licandro, Alessandra Russo,	1172
	o <mark>ratory for Distance Training</mark> in , Herminio Martinez, Joan Dom		1180
Remote Laboratory for Co Yolanda Bolea, Antoni Gra			1188
Session: SS7	Room: I 10	Friday, Sep. 28, 13:00 ·	- 13:30
Grouping and Coopera	ating of Services		
Chairing: Carsten Bus	chmann, Reinhardt Karna	pke	
In-network Processing and Maik Krüger, Reinhardt Ka	Collective Operations using th rnapke, Jörg Nolte	e Cocos-Framework	1194

Lean and Robust Phenomenon Boundary Approximation Carsten Buschmann, Daniela Krueger, Stefan Fischer

Session: T5.4 Multi-agent Systems f Chairing: Masanori Akiy		<i>Friday, Sep. 28,</i> 12:00 - trol	13:30
utilizing a relevant Meta-Onto	ology	g ontology to a multi-agent system geras, John Gialelis, Stavros Koubias	1210
Agent-based Control of Rapid Jani Jokinen, Jose L. Martinez		Handling System	1217
Agent Based Prototype for Int Manufacturing Automation Rui M. Lima, Rui M. Sousa	eroperation of Production I	Planning and Control and	1225
Agent-Based Control Model f Omar López, Jose Lastra	or Reconfigurable Manufac	turing Systems	1233
A holonic approach for manu Blanc Pascal, Demongodin Isa		design: an industrial application et Jean-Claude	1239

Session: T2.2	Room: I 12	Friday, Sep. 28, 12:00 - 13:30
Scheduling, Safety and	Response Times of	Industrial Communication Networks
Chairing: Julian Proenza,	, Thomas Nolte	

Network Recovery Time Measurements of RSTP in an Ethernet Ring Topology Gunnar Prytz 1202

Evaluation of timing characteristics of a prototype system based on PROFINET IO RT_Class 3 Paolo Ferrari, Alessandra Flammini, Daniele Marioli, Andrea Taroni, Francesco Venturini	1254
Hyperperiod Bus Scheduling and Optimizations for TDL Components Emilia Farcas, Wolfgang Pree	1262
Testing Approach for Online Hardware Self Tests in Embedded Safety Related Systems Thomas Tamandl, Peter Preininger, Thomas Novak, Peter Palensky	1270
BuST: Budget Sharing Token Protocol for Hard Real-Time Communication Gianluca Franchino, Giorgio C. Buttazzo, Tullio Facchinetti	1278

Session: SS6.2	Room: I 13	Friday, Sep. 28, 12:00) - 13:30
Interoperability Applica			
Chairing: Athanasios Ka	logeras, Ioannis Gialeli	S	
Semantically-Enabled Inter-E Christos Alexakos, Panagiotis			1286
Interoperability Issues in Virt Taivo Kangilaski	ual Organization – How to F	roceed?	1293
Towards an ontology-based sy statements	estem for intelligent prediction	n of firms with fraudulent financia	ıl
Dimitris Kanellopoulos, Sotiri.	s Kotsiantis, Vasilis Tampaka	S	1300
AHP Based Supply Chain Per Laura Xiao Xia Xu	formance Measurement Sys	tem	1308

Session: T9.2	Room: I4	Friday, Sep. 28, 13:30 - 15:00
Intelligent Robots II		
Chairing: Antoni Grau, G	abriel J. Garcia	
Accurate Range Image Registr Yonghuai Liu, Honghai Liu, Lo	0	ling Outliers 1316
A Two Stage Robot Control for Maria P. Tzamtzi, Fotis N. Kou		<i>kas</i> 1324
Dynamic equations of motion J Josep M. Mirats Tur, Sergi Her		
Onto computing the Uncertain Josep M. Mirats Tur	ty for the Odometry Pose Est	<i>timate of a mobile robot</i> 1340
Solving the Inverse Kinematics Algebra-Based Methods Michael Wenz, Heinz Wörn	F Problem Symbolically by M	leans of Knowledge-Based and Linear 1346
·		
<i>Multivariable Iterative Feedba</i> Fotis N. Koumboulis, Maria P.	· · ·	· · · ·
Fuzzy Cooperative Control of Francesco M. Raimondi, Mauri		r Vehicles 1364

Session: WIP 4	Room: I 10	Friday, Sep. 28, 13:30 - 14:30
Wireless and Dependable	Networks	
Chairing: Thilo Sauter		

Implementation of Power Aware Features in AODV for Ad Hoc Sensor Networks. A Simulation	
Study	
Konstantina Pappa, Antonis Athanasopoulos, Evangelos Topalis, Stavros Koubias	1372
Integrating Building Automation Systems and Wireless Sensor Networks	
Erik Pramsten, Daniel Roberthson, Fredrik ÖSterlind, Joakim Eriksson, Niclas Finne, Thiemo	1376
Voigt	

<i>Multicast Communication in Wireless Home and Building Automation: ZigBee and DCMP</i> <i>Christian Reinisch, Wolfgang Kastner, Georg Neugschwandtner</i>	1380
Using Time-Triggered Communications over IEEE 802.15.4 Nuno Ferreira, José A. Fonseca	1384
On a IEEE 802.15.4/ZigBee to IEEE 802.11 Gateway for the ART-WiSe Architecture João Leal, André Cunha, Mário Alves, Anis Koubâa	1388
Performance measurements of 802.11 WLANs with burst background traffic Claudio Zunino	1392
IEC 62439 PRP: Bumpless Recovery for Highly Available, Hard Real-Time Industrial Networks Hubert Kirrmann, Mats Hansson, Peter Müri	1396
A Two-Competitive Approximate Schedulability Analysis of CAN Björn Andersson, Nuno Pereira, Eduardo Tovar	1400
<i>Modelling MajorCAN with UPPAAL</i> Matias Bonet, Gabriel Donaire, Julian Proenza	1404
A Decentralized Intrusion Detection System for Increasing Security of Wireless Sensor Networks Ioannis Chatzigiannakis, Andreas Strikos	1408
Energy Efficient Authentication in Wireless Sensor Networks - An industrial case Rickard Soderlund, Stefan Svensson, Tomas Lennvall	1412

Session: WIP 5	Room: I 11	Friday, Sep. 28,	13:30 - 14:30
Control Chairing: Thilo Sauter			
	r a Humanlike Shape Memor nthony Tzes, Efthymios Kolyvas	• •	1417
Optimization rules for mill c algorithm Luis Rubio, Manuel De la Se	utter and cutting parameters s	selection incorporating a co	ntrol
Ontology-driven Control Ap	olication Design Methodology Ferrarini, Arndt Lueder, John		
A Metaheuristic Approach f Fotis N. Koumboulis, Maria I	o <mark>r Controller Design of Multi</mark> v P. Tzamtzi	variable Processes	1429
0.0	<mark>r Active Hydraulic Suspension</mark> J. Koumboulis, Achilleas S. Nte		1433
Robust Lane Keeping for a T Michael G. Skarpetis, Fotis N	Fractor-Trailer J. Koumboulis, Achilleas S. Nte	ellis, Thomas E. Tsimos	1437
Fuzzy Control of Sparing in Guillermo Navarro, Milos M			1441
	ext-Sensitive Architecture for Daniel Käslin, Alexander Klapp	· ·	ontrol 1445
.	Variable Structure Control Lo korta, Izaskun Garrido, Aitor C		1449
	rol with real-time Java and E Roger Henriksson, Anders Blon		1453
Session: T2.3	Room: I 12	Friday, Sep. 28.	13:30 - 14:30

Session: T2.3Room: T12Friday, Sep. 28, 13:30 - 14:30Clock Synchronization and Multimedia Real-time CommunicationsChairing: Thomas Nolte, Christos Koulamas

A PLL-Based Approach to Clock Synchronization for Trajectory Rebuilding in Event-Triggered Communication Systems Carlo Rossi, Manuel Spera

A Simulation Framework for Fau Networks	ult-Tolerant Clock Synchron	nization in Industrial Automation	
Fritz Praus, Wolfgang Granzer, G	eorg Gaderer, Thilo Sauter		1465
Dynamic QoS Management for Multimedia Real-Time Transmission in Industrial Environments Javier Silvestre, Luis Almeida, Ricardo Marau, Paulo Pedreiras			1473
Integration of a flexible time trigg framework Biogrado Margu, Paulo Padroiras		C OR resource contracting our, Daniel Sangorrín, Julio Medina	1481
Kicuruo Maruu, 1 uuto 1 eureirus,	Luis Aimeiaa, michael Harb	our, Daniei Sangorrin, Julio Mealna	1401
Session: SS1.2	Room: I 13	Friday, Sep. 28, 13:30 - 15	5:00
IEC61499 Implementation	IS		

Chairing: Kleanthis Thramboulidis, Georg Frey

RTAI-based Execution Environments for Function Block Based Control Applications George Doukas, Alessandro Brusaferri, Marco Colla, Kleanthis Thramboulidis

1489

Testing Approach for Online Hardware Self Tests in Embedded Safety Related Systems

Thomas Tamandl, Peter Preininger, Thomas Novak, Peter Palensky

Vienna University of Technology, Institute of Computer Technology Gusshausstrasse 27-29 1040 Vienna, Austria {tamandl, preininger, novakt, palensky}@ict.tuwien.ac.at

Abstract

In safety related systems online hardware self tests are integrated to reach a defined level of hardware integrity. These tests comprise testing of the static and volatile memory and the CPU internals. The higher the level of integrity should be, the more efficient tests must be used. Additionally, the effort to verify the correctness of the tests is rising. Hence, designing the test, and the validation and verification of the tests, is a critical part in the development process of safety related systems.

The verification of the correct behavior requires sophisticated methods for stimulating errors that must be detected by the tests. The document describes an environment based on boundary scan technology for testing the online hardware self tests automatically.

1. Introduction

Today's functional safety related systems (short safety related systems) are mostly accomplished with microcontrollers. They are created to reduce the inherent risk of a device or system, for example a node in a fieldbus system, to a tolerable level.

The international standard IEC 61508 [1] defines requirements for designing safety related systems. It specifies a life cycle model including all activities required to avoid systematic failures and to handle stochastic failures.

IEC 61508 defines functional safety as "part of the overall safety that depends on a system or equipment operating correctly in response to its inputs" [1]. A safety related system is a system that executes safety functions and cares for the required safety integrity of the safety functions. A safety function is responsible for reaching or keeping a safe state of a device. The safety integrity of a safety related system includes the hardware integrity and the systematic integrity.

Systematic integrity means applying measures to reduce the risk coming from systematic failure during

the design or operation phase of the system. Typical measures are on the one hand management tools and on the other hand functions to monitor the program flow or the supply voltage. To grant a designated level of hardware integrity a defined amount of stochastic hardware failures must be detected.

A method to detect stochastic hardware failures is to test the hardware components with online hardware self tests (short hardware tests) implemented in software. Normally hardware tests are periodically inspecting the volatile and non volatile memory as well as the central processing unit (CPU) including its registers, flags and arithmetic logic unit (ALU) for hardware failures.

There are different hardware test algorithms available capable of checking the volatile memory and registers of the CPU. Examples for RAM test methods are the walking pattern test [2], Abraham test [3] or galloping pattern test [2]. Classically static or invariant memory is tested for failures by means of parity bits, checksums or cyclic redundancy checks (CRC). Flags and the ALU are tested by inserting bit patterns and comparing the output with the specification [2]. The algorithms and methods to ensure hardware integrity differ in performance and diagnostic coverage (DC) (= ratio of detected failures to the total amount of failures).

The safety integrity of hardware is categorized by four safety integrity levels (SIL) [1]. Each SIL specifies an error probability per hour, i.e. the tolerable number of dangerous errors per hour. SIL 1 defines the highest value of error probability, whereas SIL 4 specifies the lowest level. The higher the SIL the more rigorous are the safety integrity requirements. A way to meet these requirements is to implement hardware tests with a high diagnostic coverage.

Unfortunately, complete avoidance of human mistakes during implementation of hardware tests is not realistic. For example, even a well-trained and experienced programmer makes an error in every 100 statements [4]. Thus the standard IEC 61508 specifies a great amount of requirements for the testing process too. These requirements shall ensure a high level of software

quality and therefore reduce the probability of malfunctions.

2. Software Testing

Generally, software can be tested code-based or requirements-based. Test cases derived from the source code are white box test cases, others derived from the software requirements are black box test cases. Black box test cases are specified using methods such as equivalence class partitioning or boundary value analysis [5]. On the contrary, white box test cases are defined depending on the code coverage, e.g. statement, branch or path coverage. The coverage is always the fraction of total number of statements, branches or paths having been executed by different test cases.

Test cases are used to perform different types of testing such as function testing (verification of functionality) or performance testing. These test types are carried out at various steps of the software testing process.

The first step of software testing is unit testing. The software unit, e.g. a function, is examined if it can perform its specified functionality properly. This type of testing is described here. The second step is integration testing where the units are integrated to form a subsystem. At this point attention is paid to the interfaces between the units. The final step is system testing where the software has to run on the target platform and interacts with external software.

3. Overview of Test Approach

As already mentioned in section 1 safety integrity is specified by 4 safety integrity levels (SIL). A higher SIL not only results in more rigorous safety integrity requirements, but also in a higher testing effort. The higher the SIL the more comprehensive test cases with white and black box test cases have to be performed on the software. Thus automatic tests tools are desirable to keep the test effort moderate.

The test approach for hardware tests presented in the following sections allows checking the functionality of the hardware tests automatically. It enables the tester to execute white box and black box test cases during the unit, integration and system testing.

The test approach was elaborated during the development process of a safety related system in the project SafetyLon. The European collective research project SafetyLon supported by the European Union within the sixth framework program has the goal to make the LON technology [6] safe. It is foreseen to meet safety requirements as CANopen-safety [7] or PROFISafe [8] does.

Within the project standard LON nodes are enhanced with additional safety related hardware and special embedded safe software. Parts of the safe software comprise the hardware tests for the central processing unit, the volatile- and non volatile memory. The correct behavior of these must be verified. As a result testing techniques to verify the hardware test were developed that are presented in the following.

4. Technical Overview

Hardware tests must be performed to guarantee the correct functionality of the system. The implementation of these tests is described in [9]. In the following the methodology how to verify the behavior of these tests is introduced.

For hardware test verification fault injection technologies are necessary to insert faults that must be detected by the hardware tests. Standard fault injection technologies use direct pin level injection, additional software modules, and external electromagnetic fields or similar to provoke a fault. [10] provides a good overview on some technologies already used.

The microcontrollers used to run the hardware tests are based on a standard ARM7TDMI core with internal RAM and FLASH memory. As all components are located within one package, there are no external data- or address-busses. Due to the lack of accessibility of the internal data busses direct pin level fault injection is impossible. As there was the requirement not to change the software running on the target hardware, software fault injection, regardless of runtime or compile time injection could not be chosen. Hence, approaches chosen from [11], [12] or [13] are not suitable.

The problem, how to manipulate data without any access to internal signals, can be addressed by means of debugging features offered by the ARM core. [14] discusses pin level fault injection in opposite to using fault injection boundary scan. This technology, enhanced with the internal scan chains offered by the ARM7 controller, allows the simulation of internal faults without changing the software running on the target hardware.

For debugging purposes the ARM7 core provides a Joint Test Action Group (JTAG) conform debugging interface. The international standard IEEE 1149.1 [15] Standard Test Access Port and Boundary-Scan Architecture describes this interface that was initially intended for testing printed circuits. In case of the ARM7 core it grants the access to the core internals via the test access port (TAP) controller. Hence mostly all processor internals are accessible from the outside. The JTAG interface allows controlling the ARM7 core from outside, Figure 1 shows a typical debugging environment.

A debug host computer using a high level debugging language is communicating with the debug target. Communication is handled a protocol converter which

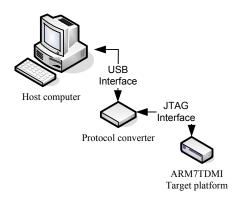


Figure 1. Typical debug environment

converts the high level language into the JTAG compliant commands.

As already mentioned the debugger on the host computer is communicating with the TAP controller. This device is controlling three internal scan chains connected to the main processor logic and the EmbeddedICE-RT logic described later, see Figure 2 for details. Scan chain 0 and 1 interfaces the processor core and the data bus and scan chain 2 grants the access to the EmbeddedICE-RT registers. Using this scan chains all processor internals can be accessed, examined and modified.

The ARM7 core itself offers the following debug features. The program execution can be halted, the state of the system can be examined, as described before, and the program execution can be resumed.

The EmbeddedICE-RT logic provides additional features. It can be accessed and configured by means of scan chain 2.

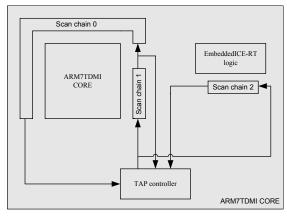


Figure 2. ARM7TDMI scan chains [16]

The EmbeddedICE-RT logic monitors processor internal signals such as data- and address-bus. Beside others this logic provides two configurable break or watchpoints. The breakpoints can be configured to force a halt of the processor if the appropriate address is reached. Watchpoints can be configured to halt the processor when specified memory cells are addressed. Refer to [16] for details on the ARM7TDMI internals. The aforementioned features permit to halt the processor without having direct access to the signals of the core logic when accessing specified memory addresses. In halt mode modifications can be done and the program can be resumed. These features allow automatic testing of the hardware tests presented in [9].

For setting up an automatic test environment a high level language is useful for the communication with the TAP controller. Therefore a programming interface was developed by the company Segger Microcontroller Systems [17]. Its purpose is to provide third party applications the whole functionality of the J-Link interface.

Segger Microcontroller Systeme GmbH offers a set of tools for developing applications running on ARM7 cores. A protocol converter named J-Link – see Figure 1 – is used to connect the host PC via USB to the JTAG port of the processor. Normally a debugger is communicating with the J-Link. For automatic fault injection a debugger is not suitable so an adequate application was developed. Therefore direct control – without using a debugger – over the J-Link interface is required.

The J-Link Software Development Kit, including the J-Link application program interface, is satisfying these requirements. The communication itself is performed like a standard communication resource. After opening and configuring the JTAG connection the ARM7 core can be controlled by running the appropriate commands. The automatic test tool described in the next chapter is based on the J-Link application program interface.

5. Test Tool Design Basics

Based on the information provided in the previous chapter the J-Link application program interface can be used to set up an automated test tool. In the following the principles the automated test tool is based on are explained.

5.1. Testing Principles

A test tool for safety related systems has to be able to perform a huge number of different test cases. The best solution is a tool which can perform the tests automatically. Such a tool needs information on how to perform a test and how a test is considered as successful or failed. Therefore it must be able to accept defined test cases which are stored in an input file. Details on the input file are presented in section 6.3. The necessary functions of a software test tool are on the whole similar debugging functions. The most important to representatives are:

- Reset ARM7 core
- Start and halt ARM7 core

- Set and reset breakpoint
- Single stepping
- Manipulation of memory contents
- Read and store memory contents
- Manipulation of registers
- Read registers contents
- Manipulation of register flags

In order to set up an automatic test environment additionally the following functions are necessary:

- Read and compare memory contents to specifiable values
- Read and compare register contents to specifiable values
- Read and compare flag values to specifiable contents
- Specification of test case fail/success depending on the result of the comparisons

Beside the functionality of an automated test tool, the ability to generate reports must be taken into account. In order to detect erroneous memory contents, functions for comparing memory cells or registers to specific values are available. The result of the comparison can be used to define the failing or passing of a test case.

5.2. White Box Testing

The presented functions allow performing white box tests for hardware tests. Obviously performing white box test cases is only possible on assembler level. If C-code has to be tested, this can only be done with the underlying compiler generated assembler code.

Figure 3 shows the standard program flow of the test tool. The flow does not include the more complicated black box testing implementations. Line per line of the input file is interpreted by the JLink interface. According to the interpretation the appropriate JLink operation is executed and logged to a report file. If the operation sets the ARM7 core into a run mode, the program waits until the ARM7 core is halted due to reaching a breakpoint or watchpoint. As soon as the ARM7 core is halted a log line is written and the results of the operation are evaluated and logged (if applicable). If the operation is a test operation, the tool evaluates whether the test is considered to be successful. If the test is successful, the complete process is executed again until either a failed test occurred or a test is considered as failed. If a test is considered as failed the program is stopped.

White box tests require the user to alter register and memory contents in order to guide the program into the different program paths. For doing that, the user can run the program to a certain point specified by a breakpoint and modify the memory or register contents (and therefore change the path of program execution). A second breakpoint can be defined for testing if the path

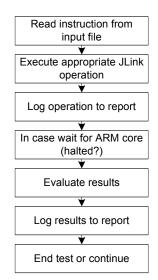


Figure 3. Standard program flow of test tool

had been executed properly. E.g., the user can query if a memory cell or a register contains the expected results. A wrong value can cause the test to fail.

All these actions are logged to the report in order to keep track of the program proceedings. In case of a failure, the logged data can be used to check if the test itself had been set up wrongly or the program produced a failure.

It is the main task of the tester to define tests which cover all possible program paths in order to detect possible errors in the program flow.

5.3. Black Box Testing

For testing the hardware tests of volatile or non volatile memory black box testing methods are required. In opposite to white box testing these kinds of tests are independent from the programming language used for designing the hardware test.

The test of the hardware tests are based on simulating stuck at faults and coupling faults. A stuck-at fault means that a memory cell delivers only a 1 or 0 when accessed. The value is independent of the content that the cell should have. A coupling fault on the other hand concerns two different memory cells. One memory cell, which is accessed, causes the other memory cell to be influenced. This behavior is called a coupling fault. It can depend on the access mode (read or write) of the influencing cell as well as on the contents of the memory cells.

For the simulation it is necessary to specify which bits of a memory cell are stuck-at 1 and which ones are stuck-at 0 (or coupled to 1 or 0).

The simulation of both faults uses the watchpoint functionality offered by the EmbeddedICE-RT unit of the ARM7 core. This feature halts the ARM7 core as soon as the specified memory address is accessed. The possibilities for the watchpoint configuration are numerous. Read/write access can be specified as well as the halt on one specific memory address or a masked memory address. In order to keep the tool user-friendly only one specific memory address can be specified for the watchpoints.

The difficulty of using watchpoints is that the ARM7 core is halted after an instruction occurred. This means that in case of a write access the ARM7 core is halted after the memory cell has been written – in case of a read access the registers already contain the appropriate values.

In order to be able to simulate a stuck-at or coupling failure the previously executed instruction has to be identified and evaluated. For doing this the program counter is read via the JLink and the instruction at the appropriate address is read.

In case of a write to memory instruction the simulation is straight forward. The appropriate memory cell is modified. After performing a read instruction the register which contains the memory data has to be identified. This can be more complicated in the case of a multiple read access.

In fact the difficulty is that the executed instruction which led to the halt has to be identified, translated and the effects of the instruction on the memory cells and CPU registers has to be made undone.

As an example Figure 4 shows the implementation of the stuck-at simulation. The implementation is only shown for a single run, after the execution of the run, the ARM7 core is restarted. As shown in the diagram the OP_Code of the instruction which led to the watchpoint is evaluated using a case instruction. The appropriate concerned register is extracted out of the opcode.

The simulation of the coupling failures is very similar to the implementation presented in Figure 4. The only difference is that the watchpoint is set to the original

Check if ARM core is halted due to reaching a breakpoint			
Read	code word CODE WOF	RD=[ReadProgramCour	nter-4]
REGIS	Extract appropriate re TER NUMBER = getRe		WORD)
Re	ead base address (for mu BASE ADDRESS=[R		ls)
Read m	emory content DATA =	WATCHPOINT ADI	DRESS]
DATA =	Manipulate content acc f(DATA,STUCK-AT-		
		OP_C	CODE
STM	LSM	STR	LDR
Write manipulated watchpoint content [WATCHPOINT_ ADDRESS = DATA]	Calculate number of register containing watchpoint memory contents [REG_NR_WP] = DATA	Write manipulated watchpoint content [WATCHPOINT_ ADDRESS = DATA]	Write manipulated data into register with REGISTER_ NUMBER

Figure 4. Nassi-Schneidermann diagram of simulation of a stuck at failure

memory cell (which changes the coupled cell if accessed). The main difficulty is the behavior of the multiple load and store commands. If both – the original and the coupled cell – are accessed within a multiple load or store command this issue has to be taken into account.

Based on the two failure models, the stuck-at and the coupling fault model, the correct behavior of the hardware tests for volatile and non volatile memory can be verified. Also the performance of the tests, regarding their capability of detecting different failures can be tested.

6. Performing Tests

As presented in section 5 there are a lot of possible configurations for the automated test tool. For performing tests on hardware tests only a few instructions are necessary to configure the test tool according to the specified test. In the following the test tool is presented on a more detailed level. Later, on behalf of a white box test case for a test of the arithmetic logic unit, it is shown exemplarily how to set up a concrete test. Following this model all test mentioned above can be implemented.

6.1. Tool Configuration

At the beginning an input file, designed according to the comma-separated value (csv) file format, is defined. The csv-format is used for storing tabular data, where the columns are separated by a delimiter. It allows editing the file with a simple text editor or a spreadsheet calculator. Hence, simple test cases can be designed very quickly.

In order to gain the required breakpoints the map files generated by the linker have to be examined. These map files contain the information on the addresses which are used for setting the breakpoints. Every time the source code or the placement of the object file changes, it is likely that the addresses of the breakpoints are changed too. Depending on the changes done, a spreadsheet calculator may help to address the problem of changing addresses. E.g. the addresses of the breakpoints then can be defined as the sum of the module address and an offset. Hence, as long as the module internals do not change, only the module addresses must be updated. This does not help if the tested module itself is changed. Of course the specification of the test procedure and its breakpoints has to be done very carefully, as the number of tests usually is rather numerous (for example, there are specified more than 270 test cases to test the online RAM test).

To avoid failures during the creation process of the input file a very clearly arranged format is used. First a command is given specifying the appropriate action. The other values are depending on the specified command. The test tool simply interprets the command together with the specified data and performs the appropriate action of the Segger interface. Also comments can be specified in the input file in order to make it maintainable more easily. Lines within the input file are considered as comments which are logged directly to the report file. Additionally a line number referring to the input line number is written into the output file.

Table 1 shows the instructions which can be used within the csv input file.

Instruction	Description
RESET	Reset ARM7 core
HALT	Stop ARM7 core
RUN	Start program execution
STEP	Singlestep ARM7 core
STEPN	Execute n instructions
RUNS	RUN Specific - Run
	ARM7core to a specific
	address using single
	stepping, no breakpoints
	are used in this case.
BPS/BPD	Breakpoint Set/Delete -
	Set/delete a breakpoint
WPS/WPD	Watchpoint Set/Delete -
	Set/delete a watchpoint
SIMSTUCKAT	SIMulate STUCKAT -
	Simulate stuck-at fault at a
	specified memory address.
	Both possible stuck-at faults
	can be simulated.
SIMCROSSTALK	SIMulate CROSSTALK
	Simulate a coupling fault for
	two specified addresses
	(uni-directional). The
	crosstalk simulation is
	similar to the stuck-at
	simulation. The only
	difference is that the stuck-
	at is injected into the
	influenced memory cell.
RM	Read Memory cell - 1, 2 or 4
	byte can be read
CM	Compare Memory cell to
	given data. It can be
	specified that the test has to
	be aborted, if the data do or
	do not match.
WM	Write Memory content - 1, 2
	or 4 bytes can be written.
READMEMIMG	READ MEMory IMaGe
	Read the complete memory
22	and write it to a file.
RR	Read Register
CR	Compare Register content
	to a given value, if the data
	do or do not match, the test
	can be aborted.
WR	Write Register content – a
	value is written to the
	specified register

Table 1. Instruction	on set of the	test interface
----------------------	---------------	----------------

RAR	Read All processor
	Registers
RCF	Read Condition Flags
WCF	Write Condition Flags
OCF/ACF/XCF	Or Condition Flags
	And Condition Flags
	Xor Condition Flags
	Use mask to modify the
	flags, using OR/AND/XOR
Other phrases	Other phrases are
	interpreted as comments
	which are also written into
	the test report.

As soon as the simulation is executed it receives its tasks from the input file, a message is logged to the report file and the core is set into run mode until either a watchpoint or a breakpoint is reached. In case of a watchpoint, they are used to simulate a coupling- or stuck-at-fault, the processor performs the necessary data manipulation and is set to run mode again.

After stopping the program execution at a breakpoint the test tool refers to the next line of the input file in order to get new instructions.

6.2. Standard Workflow

The standard workflow for the execution of a test case is shown in Figure 5. First the program has to be downloaded linked and compiled. into the microcontrollers FLASH storage using the development tools of the project (e.g. an integrated development environment). The second important step is to specify the possible and necessary breakpoints for the test respectively. In order to recognize misbehaving parts of a program, one breakpoint is set where the memory contents can be manipulated. A second breakpoint is set to the return instruction of a function which returns an OK value or a failure value. This return value (which is usually stored in register R0) is compared to the expected value. The position of the breakpoints within the program flow can be found in the MAP file, which is generated by the linker.

After downloading the hardware test to the microcontroller, the test tool is started gaining its commands from the file. The first instructions within the csv-file must contain the specification of the breakpoints, followed by a reset and a run instruction. At some point within the program execution the configured break- or watchpoint is hit. Once the processor stops, the actions defined in the input file are performed. Afterwards a breakpoint is set to an instruction, e.g. to a return command, where the effects of the performed actions can be evaluated. Based on this evaluation the test of the hardware test can be considered as failed or passed.

Using this methodology allows to perform various tests. Within one input file several test cases can be placed consecutively. For starting a new test case the former must be performed successfully.

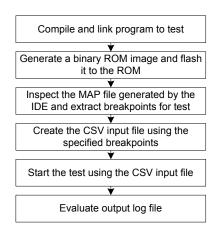


Figure 5. Work flow of a test case execution

6.3. Sample Test Input File

The following lines show an example of an input file written in csv-format:

```
TEST30-1;;;;
HALT;;;;;
BPD;0;;;;
BPS;0;14476;;;
BPS;1;15252;;;
RESET;;;;;
RUN;;;;;
WR;2;0xFFFFFFE;;;
RUN;;;;
CR;0;0;NORES;PONM;Error -> test failed
```

First the test is named. The name of the test case is written to the output log file. At the beginning the ARM7 core is halted and the breakpoints 0 and 1 of previous test cases are deleted. Afterwards the breakpoints which are necessary for the test are set. Breakpoint 0 is set to a position within the code where a calculation result is compared to a special value. The second breakpoint - breakpoint 1 is set to the return of the function in order to be able to check the return value of the function. The ARM7 core is then reset and started. After the RUN statement the test tool waits until the ARM7 core is halted. This happens at breakpoint 0. At this position the register R3 which contains the calculation result, is manipulated in order to contain a wrong value. The ARM7 core is set into run state again and is halted at breakpoint 1. At this position in the source code, register R0 should contain a value (return value) different to 0. No reset has to be done after the comparison - the test is passed, if the value of R0 is not equal to 0 (PONM - pass on no match). If failed, the message "Error -> test failed" is written to the log file.

```
O Automatic Test log using JLINK
Start of logging at Mon Jun 26 21:28:51 2006
DLL Version: 3.20a
JLINK Compilation Date: Apr 27 2006 23:07:04
Firmware: J-Link compiled Apr 27 2006
12:55:19 ARM Rev.5
```

```
J-Link speed = 30
  ARM core ID: 0x3F0F0F0F
   *****
  TEST30-1
           *******
81 ARM Core halted
82 Breakpoint number 0 deleted
83 Breakpoint number 0 set at address 14476
84 ARM Core reset
85 ARM core started
  ARM core halted
   Current position: 0x0000388C
86 Value 0xFFFFFFFE (-2) written to ARM_REG_R2
87 ARM core started
   ARM core halted
   Current position: 0x00003B94
88 ARM REG \overline{R0} = FFFFFFF
                              0xFFFFFFF
       Register
                  content
                                            of
       ARM REG RO
                  does
                        not
                             match
                                         value
                                    to
       (null)
```

********** TEST PASSED *********

The sample above shows the output of the automated test presented at the beginning of the section. The header of the output file presents information on the hardware and software versions used and the test start time. Afterwards the test identifier is shown and the information on the test results is logged. In the end of the test case the test condition is verified and the test case is logged as passed.

7. Conclusion

Using boundary scan technology paired with the debugging features offered from the ARM7 core allows the simulation of faults without having direct access to the internal components. For the presented method no expensive hardware or complex software is required.

It was shown that a relatively limited tool is able to perform the necessary fault injection in order to verify the correct behavior of hardware tests. Due to the high degree of adaptation the test tool may not be suitable for performing tests within a comprehensive project. The advantage of the presented method is that no adapted software running on the device under test is required. Instead of adapted software extensive study of the linker generated map files is necessary to set the appropriate breakpoints and parameters. An additional drawback is the changed timing behavior. Every time a hardware fault is simulated the target processor is halted and the appropriate tasks to simulate a hardware fault take place.

By means of the J-Link application program it is possible to controll the ARM7 core internals via a high level programming language. Hence the test tool can easily be adapted to new requirements without knowing details about the underlying communication from the development host and the target hardware.

Results after performing tests show that white box tests as well as black box tests can be performed very efficiently. To enhance the usability of the test tool a more convenient method to extract and set the required break points might be useful.

References

- "IEC 61508 Functional safety of electric/electronic/programmable electronic safetyrelated systems", 1999.
- [2] H. Hölscher, J. Rader, *Microcomputers in Safety Technique*, TÜV Rheinland, 1986.
- [3] Ravindra Nair, Satish M. Thatte, Jacob A. Abraham, "Efficient Algorithms for Testing Semiconductor Random-Access Memories", *IEEE Transactions on Computers*, Volume 27, pp. 572-576, 1978.
- [4] L. Wang, K. Ch. Tan, "Software Testing for Safety-Critical Applications", *IEEE Instrumentation & Measurement Magazine*, pp.38-47, 2005.
- [5] W. Zuser, S. Biffl, T. Grechnig, M. Köhle, Software-Engineering mit UML und dem Unified Process, Pearson Studium, München, Germany, 2001.
- [6] "EN 14908 Open data communication in building automation, controls and building management – control network protocol", 2006.
- [7] "CANopen Framework for Safety-Related Communication", *CiA work Draft 304*, CAN in Automation e.V., 2000.
- [8] "PROFISafe, Profile for Failsafe Technology," *PROFIBUS-Nutzorganisation Karlsruhe*, v1.0, 1999.
- [9] P. Preininger, "Hardware Selftests For Safety Critical Fieldbus Nodes", *M.S.thesis*, Institute of Computer Technology, Vienna University of Technology, Austria, 2006.

- [10] M.C. Hsueh, T.K. Tsai, R.K. Iyer, "Fault Injection Techniques and Tools", *Computer*, Volume 30, pp. 75-82, 1997.
- [11] G.A. Kanawati, N. A. Kanawati. J.A. Abraham, "FERRARI: A Tool for The Validation of System Dependability Properties", *Twenty-Second International Symposium on fault-Tolerant Computing, FTCS-22. Digest of Papers*, pp.336-344, 1992.
- [12] J. Carreira, H. Madeira, J.G. Silva, "Xception: A Technique for the Experimental Evaluation of Dependability in Modern Computers", *IEEE Transactions on Software Engineering*, Volume 24, pp. 125-136, 1998.
- [13] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R.Dancey, A. Robinson, T. Lin, "FIAT-Fault Injection Based Automated Testing Environment", *Eighteenth International Symposium on fault-Tolerant Computing*, *FTCS-18. Digest of Papers*, pp. 102-107, 1998.
- [14] S. Chau, "Fault Injection Boundary Scan Design for Verification of Fault Tolerant Systems", *Proceedings of International Test Conference*, pp. 677-682, 1994.
- [15] "IEEE Standard Test Access Port and Boundary-Scan Architecture", IEEE Std 1149.1-2001.
- [16] ARM7TDMI (Rev 4) Technical Reference Manual, ARM.
- [17] Segger, J-Link ARM API, "Users guide of the J-Link application program interface (API)", Version 3.20, Manual Rev. 1.