
Behavioural Requirements Language Definition
Defining the ReDSeeDS Languages

Deliverable D2.1, version 1.00, 30.01.2007

IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide-Matrix S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Behavioural Requirements Language Definition
Defining the ReDSeeDS Languages

Workpackage WP2
Task T2.1
Document number D2.1
Document type Deliverable
Title Behavioural Requirements Language Definition
Subtitle Defining the ReDSeeDS Languages
Author(s) Hermann Kaindl, Michal Smialek, Davor Svetinovic, Albert Am-

broziewicz, Jacek Bojarski, Mohamad Hani el Jamal, Wiktor
Nowakowski, Tomasz Straszak, John Paul Brogan, Hannes Schwarz,
Daniel Bildhauer, Jürgen Falb

Internal Reviewer(s) Daniel Bildhauer, Rober Draber, Hermann Kaindl, Sevan Kavaldjian,
Thorsten Krebs, Roman Popp, Michal Smialek, Radoslaw Ziembinski

Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP2_Re-

quirements_specification_language/D2.1.00/ReDSeeDS_D2.1_Be-
havioural_Requirements_Language_Definition.pdf

Version 1.00
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

30.01.2007

Behavioural Requirements Language Definition – D2.1
History of changes

ver. 1.00
30.01.2007

History of changes

Date Ver. Author(s) Change description
27.12.2006 0.01 Hermann Kaindl (TUW) Proposition of ToC

30.12.2006 0.02 Michal Smialek (WUT) Modified ToC and example of contents

30.12.2006 0.03 Hermann Kaindl (TUW) Modified ToC and task assignment

09.01.2007 0.04 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for UseCaseRelationship
package description

09.01.2007 0.05 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for BasicRepresentations
package description

09.01.2007 0.06 Tomasz Straszak (WUT) Added content for RequirementsRepre-
sentations package description

09.01.2007 0.07 Wiktor Nowakowski
(WUT)

Added content for RequirementRelation-
ships package description

09.01.2007 0.08 Tomasz Straszak (WUT) Added examples for concrete syntax for
NaturalLanguageRepresentations package
description

09.01.2007 0.09 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for SVOSentences package
description

10.01.2007 0.10 Daniel Bildhauer (UKo) Added content for Natural language pack-
age description

10.01.2007 0.11 Daniel Bildhauer (UKo) Added content for RepresentationSen-
tence package description

10.01.2007 0.12 Wiktor Nowakowski,
Tomasz Straszak (WUT)

Added content for ScenarioSentences
package description

10.01.2007 0.13 John Paul Brogan (HWU) Added content for Document Scope

11.01.2007 0.14 Hannes Schwarz (UKo) Added content for ConstrainedLan-
guageRepresentation package description

11.01.2007 0.15 Hannes Schwarz (UKo) Added content for Requirement Represen-
tation Sentences overview

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III

Behavioural Requirements Language Definition – D2.1
History of changes

ver. 1.00
30.01.2007

Date Ver. Author(s) Change description
11.01.2007 0.16 Daniel Bildhauer (UKo) Added content for InteractionScenario

package description and some overviews

11.01.2007 0.17 John Paul Brogan (HWU) Added content for Related work and rela-
tions to other documents

11.01.2007 0.18 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for “Approach to language
definition and notation conventions” sec-
tion

11.01.2007 0.19 Tomasz Straszak (WUT) Added content for “Usage guidelines” sec-
tion

11.01.2007 0.20 John Paul Brogan (HWU) Added content for Requirements represen-
tations Overview

12.01.2007 0.21 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for Activity representations
package description

12.01.2007 0.22 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Added content for Use case representa-
tions package description

12.01.2007 0.23 Wiktor Nowakowski,
Tomasz Straszak (WUT)

Updated content for ScenarioSentences
package description

12.01.2007 0.23 Wiktor Nowakowski
(WUT)

Updated content for RequirementRela-
tionships package description

13.01.2007 0.24 Michał Śmiałek (WUT) Added complete overview for Chapter 6
- Requirements, edited 6.2 Requirements
specifications, corrected and updated cer-
tain Figures and descriptions in Chapter 6,
added overview Figures for Chapters 7 and
8

15.01.2007 0.25 John Paul Brogan (HWU) Added content update for chapter 7.2.1
Requirements representations Basic repre-
sentations Overview

16.01.2007 0.26 John Paul Brogan (HWU) Added content update for chapter 7.3.1
Requirements representations Overview

16.01.2007 0.27 Hermann Kaindl (TUW) Added executive summary

17.01.2007 0.28 Davor Svetinovic (TUW) Added chapters 2, 3, 4, and 5

18.01.2007 0.29 Daniel Bildhauer (UKo) Added example for communication dia-
gram in interaction scenario

18.01.2007 0.30 Hannes Schwarz (UKo) Updated and added content to Require-
ment Representation Sentences overview

18.01.2007 0.31 Mohamad Eljamal (TUW) Added example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV

Behavioural Requirements Language Definition – D2.1
History of changes

ver. 1.00
30.01.2007

Date Ver. Author(s) Change description
18.01.2007 0.32 Hermann Kaindl (TUW) Added conclusion

19.01.2007 0.33 Daniel Bildhauer (UKo) Split metamodel for interaction diagram,
minor changes

20.01.2007 0.34 Michał Śmiałek (WUT) Changes to Chapter 1 made, small correc-
tions and finalisations elsewhere

21.01.2007 0.35 Hermann Kaindl (TUW) Added references

23.01.2007 0.36 John Paul Brogan (HWU) Updated/Corrected English Spelling and
Grammar for Chapters 1-4

24.01.2007 0.37 Daniel Bildhauer (UKo) Updated layout of some figures

24.01.2007 0.38 John Paul Brogan (HWU) Updated/Corrected English Spelling and
Grammar for Chapters 5-9

26.01.2007 0.39 Wiktor Nowakowski
(WUT)

Small corrections in Chapters 6-8

26.01.2007 0.40 Albert Ambroziewicz
(WUT)

Small corrections in Chapters 6&7

26.01.2007 0.41 Albert Ambroziewicz,
Tomasz Straszak (WUT)

Added descriptions for Sec.7.3 and up-
dated appropriate diagrams

28.01.2007 0.42 Michał Śmiałek (WUT) Small corrections made

29.01.2007 0.43 Hermann Kaindl (TUW) Clean-up

30.01.2007 1.00 Hermann Kaindl (TUW) Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Behavioural Requirements Language Definition – D2.1
Summary

ver. 1.00
30.01.2007

Summary

Function and behaviour are mostly confused with one another or mixed up in requirements en-
gineering. In addition, when specifying or handling requirements, it is usually not understood
that actually representations of requirements are dealt with rather than requirements. In par-
ticular, indexing for reuse has to be done with concrete representations. While requirements
are traditionally simply described in practice, mostly in natural language or some subset of it,
requirements modelling as an approach to having accurate requirements capture, is being more
and more introduced and utilised within software engineering methodologies. However, the
conceptual differences between requirements capture approaches are not understood well.

The behavioural part of our requirements specification language distinguishes between Func-
tional and Behavioural Requirements. While the former specify the required effects of some
system, the latter specify required behaviour across the system border, in the form of Envision-
ary Scenarios. Functional Requirements are further specialised into Functional Requirements
on Composite System and Functional Requirements on System to be built. The former are
fulfilled by an Envisionary Scenario, while the functions of the latter will make its execution
possible. Related Envisionary Scenarios together make up a Use Case.

We distinguish strictly between requirements and representations of requirements. Strictly
speaking, only the latter can actually be reused. Requirements representations can be descrip-

tive or model-based, and our RRSL language makes this distinction explicit. The former de-
scribe the needs of certain requirements, while the latter represent models of the system to be
built. A requirement is then to build a system like the one modelled.

This deliverable contains the behavioural part of the requirements specification language, i.e.,
all the parts of the ReDSeeDS meta-model and other descriptions dealing with what happens
over time across the system border. The language is capable of describing the dynamics of
dialogue between the users (human or machine) of the system and that system precisely yet
comprehensibly. This deliverable first gives a conceptual overview of this behavioural require-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Behavioural Requirements Language Definition – D2.1
Summary

ver. 1.00
30.01.2007

ments specification language. In a second part, it provides a comprehensive language reference
including concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII

Behavioural Requirements Language Definition – D2.1
Table of contents

ver. 1.00
30.01.2007

Table of contents

History of changes III

Summary VI

Table of contents VIII

List of figures XI

1 Scope, conventions and guidelines 1
1.1 Document scope . 1
1.2 Approach to language definition and notation conventions 2

1.2.1 Meta-modelling . 2
1.2.2 Defining languages using meta-modelling 3
1.2.3 Structure of the language reference . 5
1.2.4 Notation conventions . 5

1.3 Structure of this Document . 6
1.4 Usage guidelines . 6

I Conceptual Overview of the Behavioural Requirements Language 7

2 Introduction 8

3 Functional and Behavioural Requirements 10
3.1 Requirements Model Overview . 13
3.2 Requirements Model Details . 14
3.3 Why No Goals? . 17

4 Representation of Functional and Behavioural Requirements 19
4.1 Requirements Representation Model Overview 19
4.2 Requirements Representation Model Details 21

5 Discussion 23

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII

Behavioural Requirements Language Definition – D2.1
Table of contents

ver. 1.00
30.01.2007

II Language Reference 25

6 Requirements 26
6.1 Overview . 26
6.2 Requirements specifications . 29

6.2.1 Overview . 29
6.2.2 Abstract syntax and semantics . 29
6.2.3 Concrete syntax and examples . 32

6.3 Requirement relationships . 34
6.3.1 Overview . 34
6.3.2 Abstract syntax and semantics . 34
6.3.3 Concrete syntax and examples . 35

6.4 Use case relationships . 37
6.4.1 Overview . 37
6.4.2 Abstract syntax and semantics . 37
6.4.3 Concrete syntax and examples . 39

7 Requirements representations 40
7.1 Overview . 40
7.2 Basic representations . 43

7.2.1 Overview . 43
7.2.2 Abstract syntax and semantics . 44
7.2.3 Concrete syntax and examples . 46

7.3 Requirement representations . 46
7.3.1 Overview . 46
7.3.2 Abstract syntax and semantics . 47
7.3.3 Concrete syntax and examples . 48

7.4 Natural language representations . 48
7.4.1 Overview . 48
7.4.2 Abstract syntax and semantics . 48
7.4.3 Concrete syntax and examples . 50

7.5 Constrained language representations . 50
7.5.1 Overview . 50
7.5.2 Abstract syntax and semantics . 51
7.5.3 Concrete syntax and examples . 52

7.6 Activity representations . 53
7.6.1 Overview . 53
7.6.2 Abstract syntax and semantics . 53
7.6.3 Concrete syntax and examples . 54

7.7 Interaction representations . 56

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IX

Behavioural Requirements Language Definition – D2.1
Table of contents

ver. 1.00
30.01.2007

7.7.1 Overview . 56
7.7.2 Abstract syntax and semantics . 56
7.7.3 Concrete syntax and examples . 60

7.8 Use case representations . 62
7.8.1 Overview . 62
7.8.2 Abstract syntax and semantics . 62
7.8.3 Concrete syntax and examples . 63

8 Requirement Representation Sentences 65
8.1 Overview . 65
8.2 Representation sentences . 66

8.2.1 Overview . 66
8.2.2 Abstract syntax and semantics . 66
8.2.3 Concrete syntax and examples . 67

8.3 SVO sentences . 68
8.3.1 Overview . 68
8.3.2 Abstract syntax and semantics . 68
8.3.3 Concrete syntax and examples . 70

8.4 Scenario sentences . 71
8.4.1 Overview . 71
8.4.2 Abstract syntax and semantics . 71
8.4.3 Concrete syntax and examples . 75

9 Conclusion 78

Bibliography 79

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page X

Behavioural Requirements Language Definition – D2.1
List of figures

ver. 1.00
30.01.2007

List of figures

1.1 UML meta-modelling example . 3
1.2 ReDSeeDS meta-modelling example . 4

3.1 Conceptual Requirements Model . 13

4.1 Requirements Representation Model . 20

6.1 Overview of packages inside the Requirements part of RSL 27
6.2 Main classes in the Requirements part with traces from the conceptual model . 28
6.3 Requirements specifications . 30
6.4 Requirement example . 32
6.5 RequirementsPackage example . 33
6.6 RequirementsPackage tree example . 33
6.7 RequirementsSpecification example . 34
6.8 RequirementsSpecification tree example . 34
6.9 UseCase example . 34
6.10 UseCase tree example . 35
6.11 Requirement relationships . 36
6.12 Requirements and requirement relationships concrete syntax example 36
6.13 Use case relationships . 38
6.14 Use case relationships concrete syntax example 39

7.1 Overview of packages inside the RequirementRepresentations part of RSL . . . 41
7.2 Main classes in the RequirementRepresentations part with mappings to the con-

ceptual model . 43
7.3 Basic representations . 45
7.4 Hyperlink concrete syntax example . 46
7.5 Requirement representations . 47
7.6 Natural language representations . 49
7.7 NaturalLanguageHypertext example . 50
7.8 Example for NaturalLanguageHypertextSentence 50
7.9 ConstrainedLanguageRepresentations . 51
7.10 Example of a ConstrainedLanguageStatement 53
7.11 Example of a ConstrainedLanguageScenario 53

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XI

Behavioural Requirements Language Definition – D2.1
List of figures

ver. 1.00
30.01.2007

7.12 Activity representations . 54
7.13 ActivityScenario example . 55
7.14 Interaction representation, relation to UML superstructure 56
7.15 Interaction representation, lifelines and messages 57
7.16 Interaction representation with sequence diagram 60
7.17 Interaction representation with communication diagram 61
7.18 UseCase representations . 63
7.19 The same scenario in three different representations: ConstrainedLanguageSce-

nario, ActivityScenario and InteractionScenario 64

8.1 Overview of packages inside the RequirementRepresentationSentences part of
RSL . 66

8.2 Representation Sentences . 67
8.3 SVO Sentences . 68
8.4 SVOSentence concrete syntax example . 70
8.5 ModalSVOSentence concrete syntax example 70
8.6 Scenario Sentences . 72
8.7 Control Sentences . 73
8.8 SVOScenarioSentence example . 75
8.9 ControlFlowSentence example . 75
8.10 PreconditionSentence example . 76
8.11 PostconditionSentence example . 76
8.12 InvocationSentence example . 77

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XII

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document provides a conceptual overview, and defines syntax and semantics for the ReD-
SeeDS Behavioural Requirements Language (BRL). This definition is required to aid the con-
struction of accurate requirements specifications in the form of descriptive or model-based rep-
resentations.

The conceptual overview of the BRL explains the approach taken to allow for describing func-
tional and behavioural requirements as such and how functional and behavioural requirements
can be represented in the language. This document then presents the BRL Reference which
covers definitions for Requirements, Requirements Representations and Requirement Repre-
sentation Sentences. This reference explains the syntax of the language in its abstract form
(using a meta-model) and in its concrete form (using concrete examples of language usage).
The semantics of all the language constructs is also defined.

The definitions for Requirements describe language constructs that allow for depicting individ-
ual requirements as such. This explains how to structure requirements into full requirements
specifications. It also defines possible relationships between requirements. The reference for
Requirements Representations defines all the representations of requirements possible to be
expressed in BRL. These include textual, descriptive representations in natural or constrained
language and schematic, model-based representations mostly derived from UML. Finally, the
Representation Sentences define the smallest “building blocks” of BRL, ie. sentences. These
sentences allow and usually necessitate for extensive use of hyperlinks to the domain vocabu-
lary (as described in the Structural Requirements Language Definition, document D2.2). Apart

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

from natural language sentences, several types of controlled, structured language sentences are
defined. These are mostly based on the Subject-Verb-Objects SVO(O) grammar.

1.2 Approach to language definition and notation conventions

1.2.1 Meta-modelling

The Behavioural Requirements Language (BRL) is defined using a meta-model. The meta-
model is a model of models, where a model of a system is a description or specification of that
system and its environment for some known task. A model is often presented as a combination
of drawings and text. The text may be in a modelling language or in a natural language (adapted
from [MM03]).

The meta-model can be treated as a definition of a language in which models can be expressed
properly. Meta-model sets well-formedness rules for models. A model has to comply with the
meta-model of the language it uses. For instance, a UML model [Obj05b] has to comply with
the UML meta-model.

Meta-models and models define two levels of meta-modelling. In fact we can have four levels:
M0 - model instance level, M1 - model level, M2 - meta-model level, M3 - meta-meta-model
level. The model instance level contains all the objects (real time instances or real world ob-
jects) of classifiers (classes) included in the model level. The meta-meta-model level defines
the language to represent a meta-model (a meta-modelling language). In defining the whole
Requirements Specification Language (RSL) we use MOF1 [Obj03a] as a meta-modelling lan-
guage. From the perspective of MOF, UML and RSL both can be viewed as user models based
on MOF as language specification. From the perspective of RSL, requirements specification is
a model of requirements expressed by the RSL.

The most common role of a meta-model is to define the semantics for how language tokens
from a language specification can be used. As an example, consider figure 1.1, where the meta-
classes Classifier, Generalisation and Class are defined as part of the UML meta-model. These
are instantiated in a user model in such a way that the classes Car, Truck and Vehicle are all
instances of the meta-class Class. The generalisation between Car and Vehicle (or Truck and
Vehicle) classes is an instance of the Generalisation meta-class (based on [Obj05a]).

1MOF is similar to UML but it is reduced to simplified class diagrams with embedded OCL [Obj03b] constraint
expressions (expressions in curly brackets “{}”). These special class diagrams have their semantics defined for
language construction.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

Class model consistent with UML2.0 - level M1 (concrete syntax)

class model consistent with UML2.0 - level M1 (abstract syntax)UML2.0 Metamodel (Knowlendge Rep. Language - level M2

Classifier Class

Generalization

vehicle :Class

car :Class truck :Class

v_to_c :

Generalization

v_to_t :

Generalization

Vehicle

- length: int

- width: int

Car

Truck

These "class" objects have other objects associated

with them that denote their name, attributes (e.g.

length, width), operations etc. - all according to the

UML metamodel - not shown for brevity

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

+general

1

+generalization *

+specific 1

Figure 1.1: UML meta-modelling example

1.2.2 Defining languages using meta-modelling

In languages defined with MOF we define tokens of a language, their relationships and meaning.
Every token has to be described in terms of its syntax (abstract, concrete) and semantics.

The abstract syntax defines the tokens of the language and their relationships and integrity
constraints available in the language. Relationships and constraints determine a set of correct
sentences that can be created in the language (its grammar). Note that abstract syntax should be
independent from graphical or textual representation of the language elements it is defining. The
abstract syntax can be perceived as the static semantics of the language. In the RSL, abstract
syntax is expressed by MOF diagrams and natural language descriptions.

The concrete syntax is a description of specific notation used in representing a language’s el-
ements. In other words it is a mapping from notation to the abstract syntax. If an element of
the meta-model is marked as abstract it does not have any concrete syntax (because it cannot be

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

instantiated). In the RSL, its concrete syntax is expressed by natural language descriptions and
illustrated with examples of the language’s usage. The figure 1.2 is an example of a definition
of the abstract and concrete syntax for the RSL.

The semantics of meta-model elements expresses the meaning of properly formulated constructs
of a language (according to its abstract syntax). In the RSL, its semantics are represented by
natural language descriptions.

Requirements model consistent with the ReDSeeDS language - level M1 (concrete syntax)

Requirements model consistent with the ReDSeeDS language - level M1 (instances of meta-classes)ReDSeeDS Metamodel (Knowledge Rep.

Language) level M2 (abstract syntax)

ConstrainedLanguageScenario

ScenarioSentence

SVOScenarioSentence

OrangesScenario :

ConstrainedLanguageScenario

s1 :ScenarioSentence

s2 :SVOScenarioSentence

s3 :SVOScenarioSentence

These links are

instances of the

association in the

ReDSeeDS model

These sentences have

other objects attached that

form their individual parts

(like: "System",

"Computes", "Total numer

of oranges"). These

objects are instances of

appropriate meta-classes

from the ReDSeeDS

metamodel (not shown for

brevity).

1. [[System]] [[counts]] [[number of oranges]] in [[basket1]].
2. [[System]] [[counts]] [[number of oranges]] in [[basket2]].
3. [[System]] [[computes]] [[total number of oranges]].

+scenarioSteps 1..*

1..*

«instantiate»

«instantiate»

«instantiate»

«instantiate»

Figure 1.2: ReDSeeDS meta-modelling example

The RSL is not an extension to UML, though we use certain UML packages (for those parts of
the RSL that derive from UML). Those packages were merged into the RSL definition (using
«merge» or «include») from “UML Superstructure” [Obj05b] packages. This merger is done
on the package level. Inside a package that is part of the RSL’s definition, meta-classes from
the merged UML package are directly specialised.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

1.2.3 Structure of the language reference

Part II of this document contains the BRL definition. It has been divided into sections according
to the logical structure of packages and subpackages of the BRL.

The BRL is divided into three main packages:

• Requirements (requirements as such with their relationships)

• Requirements Representations (definitions of individual requirements in various nota-
tions)

• Requirement Representation Sentences (basic “building blocks”, ie. sentences that form
the representations as above)

Each of theses packages is described briefly with an overview section (including a package
diagram), which is followed by description of its subpackages. Every subpackage is presented in
an overview explaining general ideas behind a package, a meta-model diagram for this package
and two sections which describe the abstract syntax with semantics of language constructs and
the concrete syntax.

1.2.4 Notation conventions

Lowest level package descriptions use the following notation conventions:

• sans-serif font is used for names of classes, attributes and associations, e.g. Requirement

• if a class name is used in description of package other than the one it is included in, it
is preceded with package name and a double colon (“::”), e.g. RequirementsSpecifica-

tions::Requirement

• bold/italics font is used for emphasized text, e.g. Abstract syntax

Class colours used on the diagrams indicate membership of the packages. Introduction of
colours is intended to enhance readability of diagrams which contain classes from different
packages (e.g. blue colour denotes that classes are from Requirement packages, yellow are
from RequirementRepresentation package and green are from DomainElement package).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Behavioural Requirements Language Definition – D2.1
Scope, conventions and guidelines

ver. 1.00
30.01.2007

1.3 Structure of this Document

Part I gives a conceptual overview of the Behavioural Requirements Language. It contains the
chapters 2 to 5. Chapter 2 introduces the requirements language and the representation language
and chapter 3 deals with functional and behavioural requirements and presents their conceptual
model. The next chapter 4 then outlines possible representations of the requirements without
going too deeply into detail. In the last chapter 5 in part I, the newly introduced concepts are
discussed.

Part II defines the metamodel of the RSL’s behavioural part, again dealing with the subject of
requirements itself and different possibilities for requirement representation. It is divided into
four chapters, each of them dealing with a part of the metamodel. Every chapter has a short
overview, defines abstract syntax and semantics and then gives a short example of the concrete
syntax, using the Fitness Club case study as a running example. Chapter 6 defines the part of the
metamodel containing the requirements themselves and their arrangement. Chapter 7 explains
the part of the metamodel that deals with different kinds of representations, especially textual
representations and schematic representations, which can be displayed as UML-like models.
Chapter 8 then defines the grammar for the semi-formal textual representation.

The final chapter 9 sums up the document and draws the conclusion of the previous parts.

1.4 Usage guidelines

The ReDSeeDS Behavioural Requirements Language (BRL) definition should be used as a
book that guides the reader through the structure, syntax and semantics definitions of the BRL,
as part of the complete ReDSeeDS Requirements Specification Language. It should be used
mainly by creators of appropriate software CASE reusabilty tools that would allow handling
of the language by the end users (analysts, etc.) to express behaviour of the system under
development. It can be used by advanced end users of the language as a reference for the
language’s syntax and semantics. Examples of BRL elements’ concrete syntax have illustrative
character and should be treated only as support in understanding of an element’s occurrence.

Users of the BRL Specification are expected to know the basics of metamodelling and MOF
(Meta Object Facility) specification [Obj06]. Knowledge of UML ([Obj05b] and [Obj05a])
could be helpful as some elements of BRL are extensions, constraints or redefinitions of UML
elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Behavioural Requirements Language Definition – D2.1 ver. 1.00
30.01.2007

Part I

Conceptual Overview of the Behavioural
Requirements Language

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Behavioural Requirements Language Definition – D2.1
Introduction

ver. 1.00
30.01.2007

Chapter 2

Introduction

The ReDSeeDS Requirements Specification Language (meta-)model consists of 3 parts, which
are linked to an extra model of the Reuse Domain:

1. Requirements Language

2. Requirements Representation Language

3. Application Domain Language

The primary reason for separation of the overall language model into several parts is the sepa-
ration of concerns. In particular, the main separation is between Requirements Language and
Requirements Representation Language. This is a crucial innovation, which is important since
we are not reusing requirements themselves but rather requirements representations.

The separation of Requirements Language and Requirements Representation Language allows
separation and simplification of the Reuse Domain. Avoiding the separation between the former
two would force integration of the latter and mixing of the different concerns and lead to higher
complexity of the overall language specification. In addition, requirements are not reusable
directly, and this fact should be reflected in the language specification.

It is also important that the representation of the Application Domain is distinct from the Re-
quirements Representation, while they will be linked, of course. The requirements may not
be understood without the links to the Application Domain, but the content of the application
domain is not requirements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Behavioural Requirements Language Definition – D2.1
Introduction

ver. 1.00
30.01.2007

Hyperlinks between Application Domain and Requirement Representation are a crucial element
of our language, and greatly facilitate keeping the specification coherent.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

Chapter 3

Functional and Behavioural Requirements

Requirements engineering (RE) is the essential activity in assuring that one builds computer-
based systems that will satisfy stakeholders’ goals. As the need for a systematic method of
requirements elicitation and specification first became obvious for very large and complex sys-
tems, most RE research focused on discovery and development of requirements techniques and
artefacts that are tailored to support the development of these very large systems in those en-
vironments with relatively large amounts of resources. Developers of a small system, on the
other hand, traditionally used an ad hoc approach to RE due to the system’s small size and
the developers’ unsystematic approach to development. The importance of systematic RE in-
creases dramatically, even for small systems, with the introduction of product-line approaches,
customisable software, etc. So, over time, we have gone from ad hoc approaches to require-
ments management to more formal ways of capturing and managing requirements. This trend
is what led to our project and the goal of building systems based on requirements reuse. That is,
if we are systematically capturing and managing requirements for one project then we should
be able to reuse some of these requirements on other similar projects.

The other important impact on RE techniques is due to the nature of the development of large
systems. Traditionally, the typical CBS is developed in-house, where developers work with rel-
atively stable domains, are responsible for the development of the system from scratch, and have
relatively stable production teams and a large amount of resources. This way of development
has led to the dominance of the requirements specification that focuses mainly on product-level
requirements such as features [Lau02] and subsequently on low-level requirements and design.
Designs of different systems have already been successfully reused either through reuse such
as using design pattern or through larger scale reuse such as using reference architectures for
the specification of the new systems. The reuse of these design elements implied the reuse of
some of the background requirements that led to these designs, but there was no intentional

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

and systematic reuse of the requirements as such. The main contribution of this project will be
in pushing the reuse effort even further, i.e., beyond design reuse — all the way to systematic
requirement reuse. The primary target, for facilitating reuse are product-level and low-level
requirements.

Product-level and low-level requirements are very well studied and widely applied in industrial
settings, but the main difficulty is in ensuring that they fulfil essential business goals. Product-
level requirements form a set of features that, combined, are used to achieve the organisation’s
business goals. The success of the overall goal depends on every single one of the features and
on the particularities of their interactions. The problem of achieving goals is exacerbated as a
result of their frequent changes over time, which cause a chain reaction of changes in product-
level and low-level requirements.

Lauesen has observed that product-level and low-level requirements management is straightfor-
ward and changes to them are relatively easy to deal with in practice [Lau02]. Developers can
usually sense when these requirements are not correct and do not fit with each other. This ability
usually does not work at the higher levels of abstractions, and it is the responsibility of the busi-
ness analyst to deal with these higher level requirements. In an occasional case, it is not even
possible to estimate how changes in the product-level requirements effect overall goals until
the changes are implemented [Lau02]. Therefore, besides attempting to reuse product-level and
low-level requirements, our project is also dealing with the reuse of higher-level requirements
in order to ensure the traceability and the fulfilment of all the requirements at the later design
stages for the system that is built through the requirements reuse.

Requirements are specified either directly or indirectly for many different purposes and as part
of many different engineering activities. One example classification is [Lau02]:

1. Business-level requirements specification — Business-level requirements are most often
specified indirectly as part of business reengineering activities. The most common con-
cepts that appear at this level are business goals, processes, resources, and rules. For
example, for an elevator system, a business-level requirement is: “The elevator shall
transport passengers and goods from any floor to any other floor.”

2. Domain-level requirements specification — Domain-level requirements, as mentioned
previously, are most often indirectly specified in the traditional requirements specifica-
tions [DvLF93]. Newer, more systematic versions of domain-level RE have received a lot
of attention recently [BPG+01, CKM01, MCL+01]. Most explicit domain-level require-
ments are captured and specified for domains, which are becoming increasingly complex
and difficult to adequately support by systems [CKM02, GPS01, GMP01, MC00]. The

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

most common concepts that appear at this specification level are user goals, user tasks,
domain input, and domain output. A more recent trend is the incorporation of agent-based
analysis as part of domain modelling [MKG02, KGM02, MKC01, GPM+01]. For an el-
evator system, an example domain-level requirement is: “The elevator shall be accessible
from each floor.”

3. Product-level requirements specification — Product-level requirement specifications are
the most common type of requirement specifications. There is an extensive body of
knowledge about them, and most previous research focused on improving the different
techniques used to elicit, specify, and validate this type of requirement. The common
artefacts and concepts that occur as parts of product-level specifications are features, use
cases, functional lists, data input, data output, etc. For an elevator system, an example
product-level requirement is: “The elevator shall accept elevator calls only while station-
ary.”

4. Design-level requirements specification — Design-level requirements specification are
the requirements that directly constrain the design of a system. Much effort has been
invested into its standardization through the Unified Modelling Language (UML) [Lar04,
Fow04]. UML artefacts and underlying techniques present the most common types of
concepts and techniques used to capture requirements at this level. This level acts as a
transition phase between product-level specification and code-level requirement specifi-
cations. For an elevator system, an example design-level requirement is: “A queue data
structure shall be used to store the data for elevator calls.”

5. Code-level requirements specification — Code-level requirements are usually specified
as part of the programming activity and describe details of low-level algorithm and data
structures. This type of specification is that with which most programmers are familiar, as
it is inseparable from coding. Code-level requirements focus mainly on implementation-
related issues and constraints and are probably the best understood form of requirements
specification. For an elevator system, an example code-level requirement is: “Due to the
timing constraints, function calls to retrieve elevator call data shall be implemented in the
C programming language rather than in the Python programming language.”

This work and our requirements language is applicable and can be used at all these requirement
and requirement specification levels in order to ensure full reuse and proper development of the
new system.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

Application Domain::Application Domain Object

- Property of Application Domain Object: Object
Requirement

Use Case Envisioned
Scenario

Functional Requirement Constraint
Requirement

Functional Requirement
on Composite System

Functional Requirement on
System to be built

Constraint on
Process

Constraint on
System to be built

Partial Decomposition into

fulfills

constrains

constrains

operationalizes

makes possible

Figure 3.1: Conceptual Requirements Model

3.1 Requirements Model Overview

Our conceptual Requirements Model is presented in Figure 3.1. It shows how we conceptualize
the domain of requirements, influenced by decades of research and practice of requirements
engineering and especially [Kai97, Kai00, EK02, Kai05]. This conceptual model shows what
models of concrete requirements should look like in our applications. This is already in the
spirit of a metamodel, but the formal metamodel of our requirements specification language is
given below.

The main entity in the Requirements Language is Requirement. Requirement can be decom-
posed into a number of other requirements or aggregated to composites, thus the granularity
is flexible. There are four specialisations of requirements: Use Case, Envisioned Scenario,
Functional Requirement, and Constraint Requirement:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

• A Use Case consists of a number of Envisioned Scenarios that belong together in terms
of use. E.g., the Use Case for getting cash money has several scenarios of how this is
actually envisioned to be achieved.

• Envisioned Scenarios are the means of achieving high-level functions given as Functional
Requirements on Composite System (e.g., Cash Withdrawal). The composite system
includes the system to be built (e.g., an ATM) and possibly other systems (e.g., a bank
system), including human users (e.g., bank customers).

• Functional Requirements are the generalisation of Functional Requirements on Compos-
ite System and Functional Requirement on System to be built. The latter are functions
needed (e.g., Customer Identification or Cash Provision) that will make possible the en-
actment of Envisioned Scenarios once available. In effect, Functional Requirements on
Composite System are partially decomposed into Functional Requirements on System to
be built.

• Functional Requirements are tightly related to Constraint Requirements. Constraint Re-
quirements are often operationalized by Functional Requirements. E.g., a security re-
quirement will be operationalized by (required) functions for accepting a password, etc.
At the same time, Constraint Requirements constrain other Functional Requirements.
E.g., only solutions for Cash Provision are acceptable (in the overall solution space) that
are reliable. There are two specialisations of Constraint Requirements: Constraint on Pro-
cess and Constraint on System to be built. The former involve, for instance, development
method or tools, the latter, for instance, security or reliability.

3.2 Requirements Model Details

Requirement

IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology defines
requirement as:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

As discussed previously, a requirement can exist at multiple abstraction levels. It is common
to decompose higher-level requirements to lower-level requirements forming some kind of re-
quirement decomposition tree. Each requirement is typically related to a number of other re-
quirements. In addition, each requirement can be represented in multiple views. As such, we
have a number of dimensions that constrain and make it challenging to capture a requirement
properly with all its relationships.

This difficulty was obvious even during our work. It was hard to boil down and to keep in mind
the clear definition of what a requirement is. This was particularly difficult when discussing
different types of requirements. Any deviation from the common definition resulted in a ripple
effect of conflicts with other terms and definitions of other language constructs. This is why we
insisted on strictly following and not modifying the standard definition of what a requirement
is in the early stages our work. Nevertheless, at the end we had to adapt and limit this definition
as discussed in the Discussion section.

Use Case

The official definition for use cases in our project is:

“A collection of possible scenarios between the system under discussion and ex-
ternal actors, characterized by the goal the primary actor has toward the system’s
declared responsibilities, showing how the primary actor’s goal might be delivered
or might fail.” [Coc97]

Envisioned Scenario

The official definition for a scenario in our project is:

“A sequence of interactions happening under certain conditions, to achieve the pri-
mary actor’s goal, and having a particular result with respect to that goal. The
interactions start from the triggering action and continue until the goal is deliv-
ered or abandoned, and the system completes whatever responsibilities it has with
respect to the interaction.” [Coc97]

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

The difference between scenario and envisioned scenario is rather a significant. We use the
term “envisioned” in order to emphasise that the captured scenario is not-yet being performed
as described, i.e., the system that will support this scenario is not yet built.

Although subtle, the difference that the term “envisioned” brings in is the realisation that the
scenario that we have written at the time the requirements are specified may not necessarily
be exactly the same as at the time the system that will support it is finished. Keeping this in
mind helps developers and stakeholders realise that the scenarios and use cases that unify them
are never really fully complete until the system is delivered; and even after the delivery of the
system it makes it easier to modify use cases and scenarios with even less resistance on anyone’s
behalf.

Again, the same as with use cases, our language supports writing scenarios using the language
of different levels of formality; from informal natural language to constrained versions such as
SVO(O). Of course, a more formal representation is to be preferred for any kind of processing
by machine, in our case for finding similar cases facilitating reuse.

Functional Requirement

Taking into account the previously mentioned definition of a requirement, one can define a
functional requirement as:

1. A capability needed by a user to solve a problem or achieve an objective.

2. A capability that must be met by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents.

3. A documented representation of a capability as in (1) or (2).

Compared to the previous definition, the definition of a functional requirement limits the re-
quirements definition to the usage of the term capability.

Functional requirements typically represent the majority of the requirements. A major issue
to resolve with any functional requirement is who is responsible for fulfilling it, i.e., what is
the system that is performing the activity or activities that will satisfy the respective functional
requirement.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

This issue often comes up when a functional requirement is discussed in relationship with a
use case or scenario. Is a use case or scenario a functional requirement? Since fulfilment of
a use case typically involves activities performed by both actors and the system to be built,
we cannot say that a use case is a functional requirement on the system to be built. On the
other hand, if we take into consideration that actors together with a system to be built from
another, composite, system, one can claim that use cases and scenarios are requirements on
that composite system. That is, the name of the use case or scenario can be thought of as a
functional requirement on a composite system, and the actual steps that the system to be built
has to perform in order to satisfy the functional requirement on the composite system can be
thought of either as functional requirements on the system to be built or as activities needed to
fulfil those requirements, depending on the perspective taken.

Therefore, in our model we have two different kinds of functional requirements: functional
requirement on composite system and functional requirement on system to be built.

Functional Requirement on Composite System

Functional Requirement on Composite System is a functional requirement that is supposed to be
fulfilled by the system composed of system to be built and its actors. This type of requirement
is primarily fulfilled through the envisioned scenarios.

Functional Requirement on System To Be Built

Functional Requirement on System To Be Built is a functional requirement that is supposed to
be fulfilled by the system that is being specified. This type of requirement primarily appears as
the steps in envisioned scenarios, i.e., makes envisioned scenarios possible.

3.3 Why No Goals?

Goal-driven requirements engineering is an important area of requirements engineering. In par-
ticular, several researchers proposed goal-driven RE [DvLF93, BI96, Kai95, MCY99, Kai00,
vLL00] as a promising technique for dealing with domain-level requirements for large systems.
Goal-driven RE focuses on ensuring that software actually fulfils business needs and require-
ments. This focus has been achieved by shifting from considering what a system should do to

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Behavioural Requirements Language Definition – D2.1
Functional and Behavioural Requirements

ver. 1.00
30.01.2007

considering why the CBS should provide particular functionality. In other words, requirements

rationale is the main focus.

Although most of the original goal-driven RE techniques concern domain-level requirements,
for example, through analysis of personal and system goals, the main idea of goal-driven RE
techniques has been to enhance certain traditional requirements techniques such as use cases
[Coc00]. Nevertheless, although goal-driven RE techniques are extensively studied, goal-driven
RE remains an immature area. This immaturity is apparent from the many different definitions
of the word “goal” [DvLF93, Ant96, MCY99, Kai00]. The common pattern to all these defini-
tions is that goals capture the intention, i.e., objective, and the target state for the entity under
analysis and at the entity’s own abstraction level. For example, in the case of an elevator sys-
tem, a goal for the elevator system is to deliver passengers to the requested floor. This goal
captures the intention of delivering passengers and also the target state of arriving at the re-

quested floor. This particular goal captures the rationale for the elevator’s responsibility for
carrying passengers from a floor to another.

An interesting point to note is that depending on the abstraction level from which one is ob-
serving a system and the goal decomposition, a goal may or may not become a functional
requirement. For example, for an elevator system, the next level of the goal decomposition
might include goals such as move elevator cab, stop elevator cab, pick up a passenger, and so
on. Now, if we start working at this abstraction level, the higher-level goal of delivering passen-

gers to the requested floor becomes a functional requirement for the lower-level goals such as
moving elevator cab. An advantage of this goal hierarchy is that it provides traceability when
moving from one abstraction level to another and from one goal decomposition level to another.

Overall, one can see that the goals can be ultimately represented or decomposed as regular
requirements. In fact, one can even claim that goals are neither necessary nor sufficient for
the specification of a system. As such, in our project we have decided not to include them as
part of the requirements model. This is not to be interpreted as if goals are not useful for the
specification of a system. Quite contrary, but we had to make this decision in the early stages
of specifying our language in order to make it:

• manageable,

• useful to those who are not using goals as part of their requirements work,

Nevertheless, it will be possible to extend the language and add goals in the future revisions of
the language if deemed necessary or desirable.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Behavioural Requirements Language Definition – D2.1
Representation of Functional and Behavioural Requirements

ver. 1.00
30.01.2007

Chapter 4

Representation of Functional and
Behavioural Requirements

In this section we discuss different requirements specification techniques. Prior to this discus-
sion, it is important to emphasise different aspects of a system to be built from a RE perspective.
The four main aspects of each system from the RE perspective are processes, data, architecture,
and interfaces. Requirements specification techniques focus on modelling one of these four
main aspects. Nevertheless, in many articles in the requirements literature, this division is rep-
resented slightly differently.

4.1 Requirements Representation Model Overview

The Requirements Representation Model is presented in Figure 4.1. The main entity in the
Requirements Representation Language is Requirement Representation, which is used to rep-
resent a Requirement entity from the Requirements Language. The Requirement Representation
Language supports representing requirements in two distinct ways:

1. Through the use of Descriptive Requirement Representation, i.e., through Natural Lan-
guage Requirement Statements and/or Constrained Language Requirement Statements,
and

2. Through the use of Model-Based Requirement Representation, in particular UML-Based
Requirement Representation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Behavioural Requirements Language Definition – D2.1
Representation of Functional and Behavioural Requirements

ver. 1.00
30.01.2007

Requirement
Representation

Descriptive
Requirement

Representation

Model-Based
Requirement

Representation

UML-Based
Requirement

Representation

Activity Diagram
Requirement

Representation

Sequence
Diagram

Requirement
Representation

Natural Language
Requirement

Representation

Constrained
Language

Requirement
Representation

Constrained
Language
Scenario

Representation

Requirements
Model::

Requirement

Requirements
Model

Requirements
Specification

Document

represents

Figure 4.1: Requirements Representation Model

The mapping from the Requirements Domain to the Requirements Representation Language
is not clear cut. For example, a simple Functional Requirement can be captured through the
use of a Natural Language Requirement Statement, while a Use Case can be captured through
the use of both Constrained Language Requirement Statements and UML-Based Requirement
Representations complementing each other.

A self-contained set of Model-Based Requirement Representations makes up a Requirements
Model. A Requirements Specification Document contains instances of Descriptive Requirement
Representation or Model-Based Requirement Representation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Behavioural Requirements Language Definition – D2.1
Representation of Functional and Behavioural Requirements

ver. 1.00
30.01.2007

4.2 Requirements Representation Model Details

Requirement Representation

Requirement Representation is the requirement as specified using a requirements specification
language.

Descriptive Requirement Representation

Descriptive Requirement Representation is the requirement as specified using a descriptive
specification language, e.g., natural language, SVO(O), etc.

Natural Language Requirement Representation

Natural Language Requirement Representation is the requirement as specified using a natural
language, e.g., English, Turkish, Bulgarian, etc. Note, that we technically include also hypertext
links into natural-language text, see below. The use of hypertext for representing requirements
was already proposed long time ago, see [Kai93, Kai96], but it was not yet defined as precisely
as below in a metamodel.

Constrained Language Requirement Representation

Constrained Language Requirement Representation is the requirement as specified using a con-
trolled/constrained natural language, e.g., SVO(O), Attempto Controlled English (ACE), etc.

Constrained Language Scenario Representation

Constrained Language Scenario Representation is the envisionary scenario specified using a
constrained language.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Behavioural Requirements Language Definition – D2.1
Representation of Functional and Behavioural Requirements

ver. 1.00
30.01.2007

Model-Based Requirement Representation

Model-Based Requirement Representation is the requirement as specified using a modelling
language, e.g., UML, etc.

UML-Based Requirement Representation

UML-Based Requirement Representation is the requirement as specified in RSL in parts that
are based on UML.

Activity Diagram Requirement Representation

Activity Diagram Requirement Representation is the requirement as specified using UML-
Based activity diagrams specialised for the requirements specification purposes.

Interaction Diagram Requirement Representation

Interaction Diagram Requirement Representation is the requirement as specified using UML-
Based sequence or communication diagrams specialised for the requirements specification pur-
poses.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Behavioural Requirements Language Definition – D2.1
Discussion

ver. 1.00
30.01.2007

Chapter 5

Discussion

Going back to the original IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engi-
neering Terminology definition of requirement that we used for this project:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

we can see in (3) that it includes the documented representation of the requirement. During
this project we realised that the documented representation of the requirement should not be
considered to be the requirement itself, but a representation. There are several reasons:

• A requirement is something that exists even if it is never documented, i.e., represented.

• A requirement can have multiple representations.

• A requirement can be represented at different abstraction levels.

• Each representation of a requirement is usually not complete from each possible perspec-
tive.

The first issue tackles the fact that requirements and their representations belong to two differ-
ent dimensions. Similar to real world entities and the OOA representations, an orange in the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Behavioural Requirements Language Definition – D2.1
Discussion

ver. 1.00
30.01.2007

real world is different than an orange represented using UML. Besides the fact that it is very
hard to elicit all requirements and represent them properly, even when they are elicited, their
representations are not necessarily the right ones.

The second issue is that each requirement can be represented in multiple ways and some can be
represented in certain ways that others cannot. For example requirements concerning different
sound types and ranges are hard to capture using UML sequence diagrams.

The third issue is that requirements can be represented at different abstraction levels leaving
some part of the actual requirement out. By doing this any single requirement representation
abstraction level represents no full requirement. On the other hand, requirements themselves
are harder to decompose into multiple abstraction levels.

Finally, taking into account that each requirement can be represented in a number of different
ways, and for each way at different abstraction levels, it is obvious that almost any requirements
representation cannot be considered as complete representation of the requirement and as such
different than the requirement itself.

This distinction between requirements and their representations is evident throughout our lan-
guage. As such, it removes the confusion between requirements themselves and their represen-
tations that commonly exists in the requirements engineering community. The removal of this
problem is one of the prerequisites for successful capture of the requirements, proper traceabil-
ity, and quality insurance involved in checking that requirement specification is consistent and
complete. This is one of the major contributions of our language and this project.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24

Behavioural Requirements Language Definition – D2.1 ver. 1.00
30.01.2007

Part II

Language Reference

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

Chapter 6

Requirements

6.1 Overview

The Requirements part defines all the RSL constructs that pertain to Requirements as such
and relationships between them. This part of the language defines only the top level elements
which do not show details of individual representations of Requirements. Language users will
typically use elements from this part to present requirements as such (in diagrams and project
trees) contained in the requirements specifications they create. These diagrams or trees will
generally consist of icons denoting individual Requirements (including UseCases) and lines
denoting appropriate RequirementRelationships (including relationships for UseCases).

The specification in this part contains three packages, as shown in Figure 6.1.

• The RequirementsSpecifications package contains all the general constructs. These con-
structs allow for expressing whole requirements specifications, groups of logically related
requirements (their packages) and individual requirements. It «import»s from the UML ::

Kernel package to allow for specializing the syntax and semantics of UML Packages. It
also «merge»s the UML :: UseCases package as it redefines the UML’s UseCase class.

• The RequirementsRelationships package generally introduces the possibility to relate in-
dividual requirements. These relationships are very general, but their semantics can be
constrained by applying stereotypes (as in UML). In this way, conceptual relationships
between Requirements as specified in Chapter 4 can be expressed. This package also
imports from UML :: Kernel in order to reuse the syntax and semantics of DirectedRela-

tionships.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

RequirementsSpecifications

RequirementRelationships

UseCaseRelationships

Kernel

(from UMLMetaModel)

Actors

(from RSLSyntax:DomainElements)

UseCases

(from UMLMetaModel)

«import»

«merge»

«import» «import»

«import»

«import»

«merge» «import»

«import»

«import»

Figure 6.1: Overview of packages inside the Requirements part of RSL

• The UseCaseRelationships package is a modification of the UML :: UseCases package
with which it «merges» to redefine use case relationship classes. It also relates UseCases
with DomainElements :: Actors :: Actors, which is make such relationships explicit as
opposed to what is defined in UML.

Individual classes in the above packages can be traced from the conceptual model described in
Chapter 3. These traces are shown in Figure 6.2. The main class in this part is the Requirement

class. This class allows for expressing requirements as such without going into details of the
requirement’s representation. Its source is the Requirements Model :: Requirement class from
the conceptual model. Different specialisations of Requirement in the conceptual model are
expressed through ReqTypes «enumeration». This enumeration defines values for the ‘type‘ of
Requirement. UseCase class is introduced due to a specific syntax for relationships between
UseCases. This class directly traces from the Requirements Model :: UseCase class from the
conceptual model. In addition, RequirementRelationship class allows for connecting Require-

ments with different relations defined in the conceptual model: ‘constrains’, ‘operationalises’,
‘fulfills’ and ‘partial decomposition into’. Other relationships in this part include relationships
that pertain to the UseCase class and are not directly described in the conceptual model. How-
ever, these relationships directly specialise and modify appropriate relationships from the UML
model.

All the elements contained in the Requirements part can be shown on Requirements Diagrams
or Use Case Diagrams. Requirements Diagrams show Requirement icons with relevant Require-

mentRelationships between them. Use Case diagrams show UseCases with DomainElements ::

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

RepresentableElement

RequirementsSpecifications::

Requirement

ID: String

type: ReqTypes

UseCase

RequirementsSpecifications::

UseCase

Requirements

Model::Use Case

«enumeration»

RequirementsSpecifications::

ReqTypes

«enum»

functionalOnSystem

functionalOnComposite

constraintOnProcess

constraintOnSystem

Requirements

Model::

Requirement

Constraint Requirement

Requirements Model::

Constraint on Process

Constraint Requirement

Requirements Model::

Constraint on System

to be built

Functional Requirement

Requirements Model::

Functional

Requirement on

Composite System

Functional Requirement

Requirements Model::

Functional

Requirement on

System to be built

DirectedRelationship

RequirementRelationships::

RequirementRelationship

Traces from conceptual associations:

* constrains

* operationalizes

* fulfills

* partial decomposition into

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Figure 6.2: Main classes in the Requirements part with traces from the conceptual model

Actors :: Actors, also with appropriate relationships between them. These diagrams do not show
the details of individual elements. These details can be shown using diagrams or text as defined
in the RequirementRepresentations part.

Requirements can be also logically grouped into larger containers - RequirementPackages.
These containers can be shown on Package Diagrams as derived from UML. Containment
of Requirements in RequirementPackages can be shown in Project Trees. These trees show
containment hierarchies of RequirementsSpecifications with RequirementsPackages and Re-

quirements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

6.2 Requirements specifications

6.2.1 Overview

This package describes the general structure of requirements specifications. This structure is
similar to the structure of Models in UML. So, by analogy, we have the RequirementsSpecifi-

cation class that defines the top level element holding a complete specification of requirements
for a specific system. Every such specification has to have a DomainElements :: DomainVo-

cabulary and can be divided into many RequirementsPackages. RequirementsPackages can be
nested and contain Requirements (including UseCases). Different types of Requirements are
distinguished by ReqTypes «enumeraion».

Requirements are presented on Requirements Diagrams as simple rectangle icons with their
‘name’, ‘ID’ and ‘type’ appropriately expressed. This notation is modified for UseCases by
substituting rectangles with ovals (for consistency with UML)on Use Case Diagrams. Require-

mentsSpecifications and RequirementsPackages can be presented on Package Diagrams that
have their syntax derived from UML Package Diagrams. Requirements and UseCases can be
placed in Project Trees under appropriate Packages and a RequirementSpecification. These
trees are presented as any browser tree with appropriate small icons expressing all the above
elements.

6.2.2 Abstract syntax and semantics

Abstract syntax for the RequirementsSpecifications package is described in Figure 6.3.

Requirement

Semantics. Requirement is understood as a placeholder for one or more BasicRepresentations

:: RequirementRepresentations. It is treated as a concise way to symbolize this representation.
Type of a Requirement is restricted by ReqTypes enumeration.
Abstract syntax. Requirement is a kind of ElementRepresentations :: RepresentableElement

Requirement has a ‘name’ which is a BasicRepresentations :: HyperlinkedSentence. It is de-
tailed with one or more ‘representations’ in the form of BasicRepresentations :: Requiremen-

tRepresentation. Requirements can be grouped into RequirementsSpecifications :: Require-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

RequirementsSpecification

RequirementsPackage

NamedElement

Kernel::Package

RepresentableElement

Requirement

ID: String

type: ReqTypes

UseCase

UseCase

BasicDomainElements::

DomainVocabulary

«enumeration»

ReqTypes

«enum»

functionalOnSystem

functionalOnComposite

constraintOnProcess

constraintOnSystem

nestedPackage *

{redefines nestedPackage}

0..1

requirementsPackages

*

{redefines

ownedMember}

0..1

requirements

*

{redefines

ownedMember}

1

Figure 6.3: Requirements specifications

mentsPackages. Requirement has an attribute type with value range determined by ReqTypes

enumeration.

ReqTypes

Semantics. ReqTypes is is an enumeration type that defines literals to determine the kind of
Requirements in a RequirementSpecification. ReqTypes specifies the following types of re-
quirements:

• functionalRequirementOnSystem – a functional requirement of a software system

• functionalRequirementOnComposite – a functional requirement of a part of the system
(for instance a component)

• constraintOnProcess – a requirement constraining development process of the software
system

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

• constraintOnSystem – a non-functional requirement of the software system

Abstract syntax. ReqTypes is an enumeration of the following literal values:

• functionalRequirementOnSystem

• functionalRequirementOnComposite

• constraintOnProcess

• constraintOnSystem

RequirementsPackage

Semantics. RequirementsPackage is a type of UML Package, i.e. a structure that groups el-
ements and constitutes a container for these elements. It can contain only Requirements and
their specialisations.
Abstract syntax. RequirementsPackage is a specialisation of UML :: Kernel :: Package ([Obj05b]).
It redefines ownedMember. Owned members for the RequirementsPackage must be Require-

ments. It also redefines nestedPackage, which can only be another RequirementsPackage.
Every RequirementsPackage can be part of a RequirementsSpecification.

RequirementsSpecification

Semantics. RequirementsSpecification is a type of UML Package, i.e. a structure that groups
elements and constitutes a container for these elements. It can contain all elements of a require-
ments specification for a given project - Requirements grouped in RequirementsPackages and
BasicDomainElements :: DomainElements grouped in BasicDomainElements :: DomainVocab-

ulary. RequirementsSpecification is a root package for the whole requirements specification. It
can be treated as equivalent of Model from UML.
Abstract syntax. RequirementsSpecification is a specialisation of UML :: Kernel :: Package

([Obj05b]). It can contain many RequirementsPackages and one DomainVocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

UseCase

Semantics. UseCase has the same meaning as described in the UML Superstructure: “A use
case is the specification of a set of actions performed by a system, which yields an observable
result that is, typically, of value for one or more actors or other stakeholders of the system.”
([Obj05b]) This definition is analogous to one specified in section 3.2 of Chapter 4. In accor-
dance with the classification in Chapter 4, this semantics is extended by stating that UseCase is
a special kind of Requirement. It is also a placeholder for its Representations which might be
of various kinds, as specified in the Representations and UseCaseRepresentations packages.
These representations describe the behaviour (set of actions) for the UseCase.
Abstract syntax. UseCase is a specialization of UML :: UseCases :: UseCase and Require-

ment. Instances of UseCase can be related with each other by UseCaseRelationships :: In-

vocationRelationships. This relationship redefines UML’s extend and include. UseCase can
contain several UseCaseRelationship :: Participation relationships and can be pointed to by
UseCaseRelationship :: Usage relationships. These relationships relate it with Actors :: Actors.
It can contain InteractionRepresentations :: InteractionScenarios, ConstrainedLanguageRepre-

sentations :: ConstrainedLanguageScenarios and an ActivityRepresentations :: ActivityScenario

as its representations.

6.2.3 Concrete syntax and examples

Requirement. It is depicted as a rectangle with two additional vertical lines on its left. Require-

ment’s ‘ID’ is written in the top left corner of the box. Requirement’s ’name’ is written inside the
rectangle centred horizontally and vertically. See Figure 6.4 for illustration of this, and Figure
6.12 for an example of usage of these icons in a Requirement Diagram.

Optionally Requirement can have its type shown in form of text indicating this type surrounded
by double angle brackets (“« »”, an “angle quote”).

Figure 6.4: Requirement example

ReqTypes. It can be represented by the following values:

• for functionalRequirementOnSystem – “functional”

• for functionalRequirementOnComposite – “functional”

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

• for constraintOnProcess – “constraint”

• for constraintOnSystem – “constraint”

RequirementsPackage. Concrete syntax is almost the same as for Kernel :: Package, described
in UML Superstructure (in [Obj05b], paragraph 7.3.37, page 104): “A package is shown as a
large rectangle with a small rectangle (a ’tab’) attached to the left side of the top of the large
rectangle. The members of the package may be shown within the large rectangle. Members
may also be shown by branching lines to member elements, drawn outside the package. A
plus sign (+) within a circle is drawn at the end attached to the namespace (package). If the
members of the package are not shown within the large rectangle, then the name of the package
should be placed within the large rectangle. If the members of the package are shown within
the large rectangle, then the name of the package should be placed within the tab. In addition
to the above Kernel :: Package description, RequirementsPackage has two vertical lines to the
left of the “rectangle with a tab” icon. It can also be presented in a tree structure. See Figures
6.5, 6.6 for examples of concrete syntax in a Package Diagram and in a Project Tree structure,
respectively.

Figure 6.5: RequirementsPackage example

Figure 6.6: RequirementsPackage tree example

RequirementsSpecification. Concrete syntax is almost the same as for Kernel :: Package, de-
scribed in UML Superstructure (in [Obj05b]); for this description see concrete syntax for Re-

quirementsPackage. In addition to concrete syntax for plain Packages, RequirementsSpecifi-

cation has one thick vertical line on its left. It can also be presented in a Project Tree structure
with a minimized icon. See Figures 6.7, 6.8 for illustration of RequirementSpecification icon
on a Package Diagram and in a Project Tree.

UseCase. Concrete syntax is an extension of concrete syntax for UML :: UseCases :: UseCase,
as described in UML Superstructure ([Obj05b], paragraph 16.3.6, page 579). “A use case is
shown as an ellipse, either containing the name of the use case or with the name of the use

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

Figure 6.7: RequirementsSpecification example

Figure 6.8: RequirementsSpecification tree example

case placed below the ellipse.” As for any Requirement, every UseCase icon can present the
‘ID’ (see concrete syntax for Requirement). Additionally, UseCase can be presented with a
minimised icon on a tree structure. See Figures 6.9, 6.10 for illustration of the above on a Use
Case Diagram and Project Tree structure, respectively. See also 6.14 for example of usage of
UseCases on Use Case Diagrams.

Sign up for

exercises

Figure 6.9: UseCase example

6.3 Requirement relationships

6.3.1 Overview

This package describes relationships between requirements. It is assumed that these relation-
ships are extensible through stereotyping mechanisms. Specific standard stereotypes, that derive
from the conceptual model are defined.

6.3.2 Abstract syntax and semantics

Abstract syntax for the RequirementRelationships package is described in Figure 6.11.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

Figure 6.10: UseCase tree example

RequirementRelationship

Semantics. RequirementRelationship denotes a relationship between two requirements. The
type of a relationship (e.g. similarity, conflict) is specified by a stereotype defined in an appro-
priate Profile.
Abstract syntax. RequirementRelationship is a kind of DirectedRelationship from the UML ::

Kernel package [Obj05b]. RequirementRelationship is a component of RequirementsSpecifica-

tions :: Requirement (source of the relationship) and it points to another RequirementsSpecifi-

cations :: Requirement (target of the relationship). Source of the relationship should be different
than its target – RequirementsSpecifications :: Requirement cannot be associated with itself.

6.3.3 Concrete syntax and examples

RequirementRelationship is drawn as a dashed line connecting two RequirementsSpecifica-

tions :: Requirements. An open arrowhead may be drawn on the end of the line indicating the
target of the relationship. The line is labeled with an appropriate stereotype determining the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

RepresentableElement

RequirementsSpecifications::

Requirement

ID: String

type: ReqTypes

RequirementRelationship Relationship

Kernel::

DirectedRelationship

«Invariant»

{source of

RequirementRelationship

should be different than it's

target (Requirement cannot be

associated with itself)}

*

1

*

1

Figure 6.11: Requirement relationships

type of a relationship (see Figure 6.12). The line may consist of many orthogonal or oblique
segments.

«confl ict»

«sim i lar»

R002

R003

R001

Requirement 1 Requirement 2

Requirement 3

Figure 6.12: Requirements and requirement relationships concrete syntax example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

6.4 Use case relationships

6.4.1 Overview

This package describes relations between UseCases and Classifiers (mainly Actors) or between
two UseCases. The UseCaseRelationships package redefines parts of the UseCases package
from the current UML specification [Obj05b].

6.4.2 Abstract syntax and semantics

Abstract syntax for the UseCaseRelationships package is described in Figure 6.13.

InvocationRelationship

Semantics. InvocationRelationship substitutes «include» and «extend» relationships from UML
and unifies their disadvantageous semantics ([Sim99], [MOW01]). InvocationRelationship de-
notes that another use case (actually, one of its scenarios) can be invoked from within currently
performed use case. After performing one of the final actions in the invoked use case, the flow
of control returns to the invoking use case right after the point of invocation to perform the re-
maining part of the base use case. There are two types of invocation: a use case can be invoked
conditionally – only when requested by an actor, or unconditionally – every time the appropriate
scenario of the base use case is performed. The type of the invocation, the name of a use case
to be invoked and the exact point of invocation in the invoking use case scenario is defined by
a special kind of scenario sentence (see ScenarioSentences :: InvocationSentences in Chapter
8.4).
Abstract syntax. InvocationRelationship is a kind of DirectedRelationship from the UML :: Ker-

nel package [Obj05b]. It redefines the Include and Extend relationships from the current UML
meta-model ([Obj05b], p.570). It is part of an ‘invoking’ RequirementSpecifications :: UseCase

pointing to an ‘invoked’ UseCase. It also points to an ScenarioSentences :: InvocationSentence,
which must be contained in a RequirementRepresentation of the ‘invoked’ UseCase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

Requirement

RequirementsSpecifications::

UseCase

Participation

InvocationRelationship

Usage

ControlSentence

ScenarioSentences::

InvocationSentence

type: InclusionType

RepresentableElement

Actors::Actor

Relationship

Kernel::

DirectedRelationship

RedefinableElement

Kernel::Classifier

{'invokedSentence' must be

contained in a

RequirementRepresentation of the

'invoked' UseCase}

BehavioredClassifier

UseCases::UseCase

observableBehavior 0..*

owner 1

0..*

1

1
1

*

invoked

1

{redefines target}

invoke

*

{redefines include,

redefines extend}

invokingCase

1

{redefines source}

0..*

invokedSentence
1

1

1

0..* 1

Figure 6.13: Use case relationships

Usage

Semantics. Usage indicates possibility for an Actors :: Actor to initiate a particular UseCase

performance directly as a primary actor (the one that expects to reach the use case’s goal).
Abstract syntax. Usage is a kind of DirectedRelationship from the UML :: Kernel package
[Obj05b]. It is a component of an Actor and points to a RequirementSpecifications :: UseCase.

Participation

Semantics. Participation indicates possibility for an Actor to participate as a secondary actor in
the execution of a particular UseCase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Behavioural Requirements Language Definition – D2.1
Requirements

ver. 1.00
30.01.2007

Abstract syntax. Participation is a kind of DirectedRelationship from the UML :: Kernel package
[Obj05b]. It is a component of a RequirementSpecifications :: UseCase and points to an Actor.

6.4.3 Concrete syntax and examples

InvocationRelationship. It can be shown similarly to a UML Dependency relationship between
RequirementSpecifications :: UseCases with an «invoke» stereotype and an open arrowhead
denoting navigability on the end of the ‘invoked’ RequirementSpecifications :: UseCase (see
Figure 6.14).

Usage. It’s concrete syntax is a solid line between an Actor and a RequirementSpecifications ::

UseCase and an arrowhead on the side of the UseCase (see Figure 6.14). This arrow can be
appended with a «use» UML-like stereotype.

Participation’s concrete syntax is a solid line between a RequirementSpecifications :: UseCase

and an Actors :: Actor and an arrowhead on the side of the Actor (see Figure 6.14). This arrow
can be appended with a «participate» UML-like stereotype.

Actor

Use Case 1 Use Case 2

Use Case 3

external system

 Invocation Relationship

Participation

Usage

«use»

«participate»

«invoke»

«use»

Figure 6.14: Use case relationships concrete syntax example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Chapter 7

Requirements representations

7.1 Overview

In the RequirementsRepresentations part we describe how our language defines requirement
representations and present differences between various requirement representations. As stated
in Part I, requirements can have descriptive representations (natural or constrained language) or
schematic representations (model-based). Language users will typically use elements from this
part to describe the contents of individual requirements using the notations chosen from those
available in the language. Requirement representations are tightly bound to the appropriate
requirements they represents. Particular representation depends highly on the requirement type,
as specified in the Requirements part.

The specification in this part contains five packages, as shown in Figure 7.1.

• The BasicRepresentations package contains all the general constructs needed to poly-
morphically represent differing requirement representations. It «import»s from the Re-

quirementsSpecifications package to relate representations with appropriate requirements
defied there. It also «import»s the Phrases package and the Terms package. This allows
for using a uniform vocabulary of domain notions which makes all the representations
within a requirements specification - coherent. In this manner the differing requirement
representations can be specified as being specialisations of elements from the BasicRep-

resentations package. As such the BasicRepresentations package gives access to the Re-

quirementsSpecifications package, the Terms package and the Phrases package for any
kind of requirement representation being utilised within a requirements specification. The

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

BasicRepresentations

RequirementsSpecifications

(from RSLSyntax:Requirements)

Phrases

(from RSLSyntax:DomainElements)

Terms

(from RSLSyntax:DomainElements)

NaturalLanguageRepresentations

ConstrainedLanguageRepresentations ActivityRepresentations

BasicActivities

(from UMLMetaModel)

Interactions

(from UMLMetaModel)

InteractionRepresentations

«import» «import»
«import»

«import»

«import»
«import»

«import»

«import»

«import»

Figure 7.1: Overview of packages inside the RequirementRepresentations part of RSL

BasicRepresentations package describes a general way of representing Requirements:
every Requirement is a component for it’s RequirementRepresentations, which contain
sentences (specialisations of HyperlinkedSentence).

• The Natural LanguageRepresentations package contains all the constructs needed to ex-
press requirements in natural language. It «import»s from the BasicRepresentations

package. In this manner, natural language representations are specialisations of elements
in BasicRepresentations. As such the Natural LanguageRepresentations package gives
access to the Basic Representations package, the Requirements Specifications package,
the Terms package and the Phrases package for any variant of natural language require-
ment representation being utilised within a requirements specification.

• The ConstrainedLanguageRepresentations package contains all the constructs needed to
express requirements in constrained language. It «import»s from the BasicRepresenta-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

tions package. In this manner constrained language representations can be specified as
being specialisations of elements in BasicRepresentations. As such the ConstrainedLan-

guageRepresentations package gives access to the Basic Representations package, the
Requirements Specifications package, the Terms package and the Phrases package for
any variant of constrained language requirement representation being utilised within a
requirements specification.

• The ActivityRepresentations package contains all the constructs needed to express re-
quirements with diagrams that specialise from UML activity diagrams. It «import»s from
the BasicRepresentations package and the UML :: BasicActivities package. In this man-
ner activity requirement representations are specialisations of UML Activity and elements
from BasicRepresentations. As such, the ActivityRepresentations package gives access
to the BasicRepresentations package, the RequirementsSpecifications package, the Terms

package, the Phrases package and the BasicActivities package for any variant of activity
diagram based requirement representation being utilised within a requirements specifica-
tion.

• The InteractionRepresentations package contains all the constructs needed to represent
UML 2.0 interaction diagram based requirement representations. It «import»s from the
BasicRepresentations package and the UML :: Interactions package. In this manner inter-
action requirement representations are specialisations of UML Interaction and elements
from the BasicRepresentations package. As such the InteractionRepresentations pack-
age gives access to the BasicRepresentations package, the Requirements Specifications

package, the Terms package, the Phrases package and the Interactions package for any
variant of interaction diagram based requirement representation being utilised within a
requirements specification.

Individual classes in the above packages can be mapped from1 conceptual model described in
Chapter 4. These mappings are shown in Figure 7.2. The most general class in this part is
the RequirementRepresentation class. This class allows for expressing details of requirement
representations. Its source is the Requirements Model :: RequirementRepresentation class from
the conceptual model. Different specialisations of RequirementRepresentation also trace from
relevant classes of the conceptual model, and particularly, the representation hierarchy as shown
in Figure 4.1.

Representations found in this package can be expressed through diagrams or in text. Diagrams
include Activity Diagrams where ActivityRepresentations can be shown and Sequence Diagrams

1«mappedFrom» specifies a relationship between RSL model elements that represent corresponding ideas in
the conceptual model.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Activi ty
ModelBasedRequirementRepresentation

ActivityRepresentations::
Activ ityScenario

In teraction
ModelBasedRequirementRepresentation

InteractionRepresentations::
InteractionScenario

Constra inedLanguageRepresentation
ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

DescriptiveRequi rementRepresentation
NaturalLanguageRepresentations::

NaturalLanguageHypertext

ConstrainedLanguageRepresentation
ConstrainedLanguageRepresentations::

ConstrainedLanguageStatement

ElementRepresentation
BasicRepresentations::

RequirementRepresentation

Requirement Representations Model::
Activ ity Diagram Requirement

Representation

Descriptive Requirement Representation
Requirement Representations Model::

Natural Language Requirement
Representation

Requirement Representations Model::Constrained
Language Scenario Representation

Descriptive Requi rement Representation
Requirement Representations Model::
Constrained Language Requirement

Representation

Requirement Representations Model::
Sequence Diagram Requirement

Representation

Requirement Representations
Model::Requirement

Representation

Model-Based Requi rement Representation
Requirement Representations Model::

UML-Based Requirement Representation

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

Figure 7.2: Main classes in the RequirementRepresentations part with mappings to the concep-
tual model

where InteractionRepresentations can be shown. Concrete syntax of these diagrams derives
from the syntax of appropriate UML diagrams. Concrete syntax for textual representations
is composed of “source” and “preview” syntax. The first variant allows to represent various
elements of representation in purely textual way. The second variant uses also font variations
(underlining, bolding, etc.).

7.2 Basic representations

7.2.1 Overview

The BasicRepresentations package contains the most general and abstract constructs of the
representation language. On this structure, all the concrete representations are built. Gener-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

ally, every RequirementRepresentation is part of an appropriate Requirements :: Requirement.
It is kind of an ElementRepresentation which contains several ‘sentence’s in the form of Hy-

perlinkedSentences. Such HyperlinkedSentences can also form ‘name’s for RepresentableEle-

ments (where Requirements are one of them). HyperlinkedSentences may contain Hyperlinks
which point to Terms :: Terms or Phrases :: Phrases to be found in the BasicDomainElements

:: DomainVocabulary.

7.2.2 Abstract syntax and semantics

Abstract syntax for the BasicRepresentations package is described in Figure 7.3.

RequirementRepresentation

Semantics. Defines the content of a RequirementsSpecifications :: Requirement which should,
according to IEEE definition, generally constitute a condition or capability needed by a user to
solve a problem or achieve an objective. It also contains a condition or capability that must be
met or possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed documents. This content depends on the concrete representation type
that specialises RequirementRepresentation.
Abstract syntax. It is part of every RequirementsSpecifications :: Requirement and forms its
‘representations’. It consists of one or more ‘sentences’ in the form of HyperlinkedSentences
derived from ElementRepresentations :: ElementRepresentation. This class is abstract and has
several concrete specialisations. This is a kind of BasicRepresentations :: RepresentableEle-

ment and it redefines representations for RequirementsSpecifications :: Requirement.

HyperlinkedSentence

Semantics. A single sentence that forms part of a requirement’s representation or its name. This
sentence might (or might not) reference elements of the domain vocabulary through hyperlinks.
The sentence might contain only text or can also be expressed with certain graphical elements.
Abstract syntax. HyperlinkedSentences can be Requirement’s ‘name’ or part of a Requiremen-

tRepresentation as its ‘sentence’. HyperlinkedSentences contain Hyperlinks.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

RequirementsSpecifications::
Requirement

ID: S tring
type: ReqT ypes

HyperlinkedSentence

StructuredLanguageSentence
Phrases::Phrase

RequirementRepresentation

Hyperlink

Terms::Term

«invariant»
{Hyperl ink is a ttached e i ther to
a Phrase or to a T erm }

{Hyperl inkedSentence m ust be e i ther a
'nam e' for a Requi rem ent or a 'sentence ' in
a Requi rem entRepresentation }

ElementRepresentations::
ElementRepresentation

ElementRepresentations::
RepresentableElement

nam e

1

0..1

sentences

1..*
{ordered}

0..1

representations

1..*
{redefines

representations}

hyperl inks 0..*

l inkedPhrase0..1l inkedT erm0..1

rep resentations

1..*

Figure 7.3: Basic representations

Hyperlink

Semantics. Hyperlink expresses a reference from a requirement representation to an element of
the domain vocabulary. By using Hyperlinks, domain vocabulary elements can be used in the
content of requirement representations without copying their names, but by pointing to their
definitions.
Abstract syntax. Hyperlink can reference either a single Terms :: Term or a single Phrases ::

Phrase. It can be part of a HyperlinkedSentence.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

7.2.3 Concrete syntax and examples

RequirementRepresentation. As an abstract meta-class, this meta-model element has no con-
crete syntax. It can be formulated in any of representations of meta-classes that derive from
it.

HyperlinkedSentence. As an abstract meta-class, this meta-model element has no concrete
syntax. It can be formulated in any of representations of meta-classes that derive from it.

Hyperlink. Its concrete syntax depends on the context in which Hyperlink is presented to the
user. It can be represented in the form of a purely textual “source”, or in a “preview” form
of underlined wiki-like links. In source, Hyperlink consists of a double pair of square brackets
(“[[]]”) surrounding the hyperlinked text. In preview, Hyperlink is represented as coloured and
underlined text (see Figure 7.4).

Source: Preview:

[[customer]] c ustomer

Figure 7.4: Hyperlink concrete syntax example

7.3 Requirement representations

7.3.1 Overview

The RequirementRepresentations package describes a way to represent generic requirements
for legitimate requirements specifications as specified under traditional software engineering
practices. Requirements under a generic context of software development can be represented
as RequirementRepresentation (kind of ElementRepresentation) which is a base class for all
generic requirement representation types and which is extended by the hierarchical structure of
sub-classes as shown in Figure 7.5.

This Figure shows a simple hierarchy of requirements representations that are allowed by the
current language. These all specialise the RequirementRepresentation as described in the Basi-

cRepresentations package.

Requirements can be presented in a textual form (DescriptiveRequirementRepresentation). Nat-

uralLanguageRepresentations allow requirements to be represented as NaturalLanguageHyper-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

BasicRepresentations::
RequirementRepresentation

ConstrainedLanguageRepresentations::
ConstrainedLanguageRepresentation

Activi ty
ActivityRepresentations::

Activ ityScenario

In teraction
InteractionRepresentations::

InteractionScenario

ConstrainedLanguageRepresentations::
ConstrainedLanguageScenario

NaturalLanguageRepresentations::
NaturalLanguageHypertext

ConstrainedLanguageRepresentations::
ConstrainedLanguageStatement

ElementRepresentations::
ElementRepresentation

DescriptiveRequirementRepresentation ModelBasedRequirementRepresentation

Figure 7.5: Requirement representations

text. ConstrainedLanguageRepresentations allow requirements to be represented as either a
ConstrainedLanguageStatement or a ConstrainedLanguageScenario.

Another representation of requirements is a model-based form (ModelBasedRequirementRepre-

sentation). ActivityRepresentations allow a requirement to be represented as an ActivityScenario.
InteractionRepresentations allow a requirement to be represented as an InteractionScenario.

7.3.2 Abstract syntax and semantics

Abstract syntax for the RequirementRepresentations package is described in Figure 7.5.

DescriptiveRequirementRepresentation

Semantics. This meta-class allows for representing requirements in textual way in form of free
text or structured text.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Abstract syntax. It is a kind of BasicRepresentations :: RequirementRepresentation. Descrip-

tiveRequirementRepresentation is an abstract class.

ModelBasedRequirementRepresentation

Semantics. This meta-class allows for representing requirements in schematic form.
Abstract syntax. It is a kind of BasicRepresentations :: RequirementRepresentation. Model-

BasedRequirementRepresentation is an abstract class.

7.3.3 Concrete syntax and examples

DescriptiveRequirementRepresentation. As an abstract meta-class, this meta-model element
has no concrete syntax. However any of meta-classes that specialise from it may have capital
letter “D” in their concrete syntaxes, indicating their descriptive character.

ModelBasedRequirementRepresentation. As an abstract meta-class, this meta-model element
has no concrete syntax. However any of meta-classes that specialise from it may have capital
letter “M” in their concrete syntaxes, indicating their model-based character.

7.4 Natural language representations

7.4.1 Overview

The Natural language representations package describes a way to represent requirements in
plain natural language without any formal structure. Sentences in natural language may contain
Hyperlinks to build a connection to the domain knowledge in the vocabulary.

7.4.2 Abstract syntax and semantics

The diagram in Figure 7.6 shows the abstract syntax of the NaturalLanguageRepresentations

package. The following subsections will describe the classes in this diagram.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

RepresentableElement
RequirementsSpecifications::

Requirement

ID: String
type: ReqT ypes

DescriptiveRequirementRepresentation
NaturalLanguageHypertext

NaturalLanguageHypertextSentence

sentenceT ext: String

BasicRepresentations::
HyperlinkedSentence

BasicRepresentations::
Hyperlink

T extualHyperl inkedSentence
wi thout any hyperl inks is sim ply
free text; hyperl inks are wiki -l i ke

representationT ext

1
{subsets

representations}

textualSentences
1..*
{redefines sentences}

hyperl inks 0..*

Figure 7.6: Natural language representations

NaturalLanguageHypertext

Semantics. A NaturalLanguageHypertext is the simplest possible representation of a single re-
quirement. The text is written in natural language.
Abstract syntax. A NaturalLanguageHypertext is derived from RequirementRepresentations ::

DescriptiveRequirementRepresentation. If it represents a Requirement, its role is representa-

tionText. The text consists of one or more NaturalLanguageHypertextSentences.

NaturalLanguageHypertextSentence

Semantics. A NaturalLanguageHypertextSentence is used in a natural language description of
a requirement. Using wiki-like hyperlinks in the sentence, a connection to the domain knowl-
edge in the vocabulary is possible. If the sentence does not contain any Hyperlink, it is simply
free text.
Abstract syntax. A NaturalLanguageHypertextSentence is part of a NaturalLanguageHypertext,
its role is textualSentence. Since NaturalLanguageHypertextSentence is derived from Hyper-

linkedSentence, it may contain zero or more Hyperlinks. Each of those wiki-like hyperlinks
links to a Term or Phrase in the vocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

7.4.3 Concrete syntax and examples

Source:

Every [[customer]] may [[sign up for exercises]] at the [[terminals]] or online over [[the
Internet]]. After the registration, the [[customer]] must [[recieve sign­up confirmation]].

Preview:

Every customer may sign up for exercises at the terminals or online over the Internet. After
the registration, the customer must recieve sign­up confirmation.

Figure 7.7: NaturalLanguageHypertext example

NaturalLanguageHypertext. Figure 7.7 shows an example for the concrete syntax of Natu-

ralLanguageHypertext. The text is composed of several NaturalLanguageHypertextSentences
which contain zero or more hyperlinks. The upper sentence shown in the example is the syntax
as the requirements engineer will write it down, the lower sentence shows the presentation in
the requirements document.

Source:

Every [[customer]] may [[sign up for exercises]] at the [[terminals]] or online over [[the
Internet]].

Preview:

Every customer may sign up for exercises at the terminals or online over the Internet.

Figure 7.8: Example for NaturalLanguageHypertextSentence

TextualHypertextSentence. Figure 7.8 shows an example for the concrete syntax of NaturalLan-

guageHypertextSentence. The second line shows the source of such an sentence a requirements
engineer would write. The brackets indicate the hyperlinks, as used in common wiki engines,
and this sourcecode will later be displayed as shown in the last line of Figure 7.8. The hyper-
links are highlighted and refer to the phrases “customer”, “sign up for exercises”, “terminal”,
and “the internet” in the vocabulary.

7.5 Constrained language representations

7.5.1 Overview

The package ConstrainedLanguageRepresentations allows for representing requirements by
using constrained language, i.e. a subset of natural language whose sentences are limited to a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

certain structure. Refer to chapter 8 and document D2.2 – Structural Requirements Language

Definition for details on this structure.

7.5.2 Abstract syntax and semantics

Figure 7.9 shows the three classes contained in the package ConstrainedLanguageRepresenta-

tions: ConstrainedLanguageRepresentation, ConstrainedLanguageStatement and Constrained-

LanguageScenario.

ConstrainedLanguageScenario

ScenarioSentences::
ScenarioSentence

seqNum ber: in t

DescriptiveRequirementRepresentation
ConstrainedLanguageRepresentation

ConstrainedLanguageStatement

SVOSentence
SVOSentences::

ModalSVOSentence

scenarioSteps
1..*
{redefines sentences}

1..*

m odalSentence
1
{redefines sentences}

1

Figure 7.9: ConstrainedLanguageRepresentations

ConstrainedLanguageRepresentation

Semantics. ConstrainedLanguageRepresentation constitutes the description of a requirement
by one or more sentences in a constrained language.
Abstract syntax. ConstrainedLanguageRepresentation is a kind of RequirementRepresenta-

tions :: DescriptiveRequirementRepresentation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

ConstrainedLanguageStatement

Semantics. This class represents a requirement by a single sentence in a constrained language.
This sentence has to contain a modal verb expressing the liability of the requirement. The sen-
tence may contain hyperlinks to phrases or terms in the vocabulary.
Abstract syntax. ConstrainedLanguageStatement is a kind of ConstrainedLanguageRepresen-

tation. It is composed of exactly one single SVOSentences :: ModalSVOSentence in the role of
‘modalSentence’.

ConstrainedLanguageScenario

Semantics. ConstrainedLanguageScenario represents a requirement as a scenario and is part of
a use case. This scenario consists of a sequence of sentences in constrained language constitut-
ing its individual steps.
Abstract syntax. ConstrainedLanguageScenario is a kind of ConstrainedLanguageRepresenta-

tion. It is composed of one or more RepresentationSentences :: ScenarioSentences taking the
role of ‘scenarioSteps’. ConstrainedLanguageScenario is part of a RequirementsSpecifications

:: UseCase.

7.5.3 Concrete syntax and examples

ConstrainedLanguageRepresentation. As an abstract meta-class, ConstrainedLanguageRep-

resentation does not have a concrete syntax. It can be formulated in any of the representations
of its subclasses.

ConstrainedLanguageStatement. Figure 7.10 shows an example of the concrete syntax of
a ConstrainedLanguageStatement. The Source part shows the statement as it is entered by
the requirements engineer. The words enclosed in double square brackets denote a hyperlink.
The Preview part below depicts the statement’s presentation in the requirements document.
Hyperlinks appear coloured and underlined.

ConstrainedLanguageScenario. An example for a ConstrainedLanguageScenario can be taken
from Figure 7.11. The left hand side, the Source side, displays the sequence of ScenarioSen-

tences as it is entered by the requirements engineer. The words enclosed in double square
brackets denote a hyperlink. On the right hand side, the result in the requirements document is
shown. Hyperlinks appear coloured and underlined.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Source:

[[Fitness Club]] should [[provide]] [[bracelets]].

Preview:

Fitness Club should provide bracelets.

Figure 7.10: Example of a ConstrainedLanguageStatement

Source Preview

1. pre: [[Customer]] is not [[registered]].
2. [[Customer]] [[submits]] [[personal information]].
3. ==> cond: [[Receptionist]] is [[logged in]].
4. [[Receptionist]] [[registers]] [[customer]].
5. [[Receptionist]] [[verifies]] [[personal information]].
6. [[Receptionist]] [[issues]] [[customer card]].
7. [[Receptionist]] [[prints]] [[personal information]].
8. [[Receptionist]] [[gives]] [[customer card]] to

[[customer]].
9. post: [[Customer]] is [[registered]].

1. pre: Customer is not registered.
2. Customer submits personal information.
3. →cond: Receptionist is logged in.
4. Receptionist registers customer.
5. Receptionist verifies personal information.
6. Receptionist issues customer card.
7. Receptionist prints personal information.
8. Receptionist gives customer card to customer.

9. post: Customer is registered.

Figure 7.11: Example of a ConstrainedLanguageScenario

The above example also includes ScenarioSentences :: ControlSentences (see lines one and
nine) and ScenarioSentence :: ConditionSentence (line three). They are described in more
detail in section 8.4.

7.6 Activity representations

7.6.1 Overview

Activity representations package describes ActivityScenario as an alternative way of represent-
ing UseCase scenarios. Such representation emphasises flow of control between scenarios
within a UseCase in the form of an Activity.

7.6.2 Abstract syntax and semantics

Abstract syntax for this package is shown in Figure 7.12.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 53

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

ActivityScenario

BasicActivities::
Activity

ScenarioSentences::
ScenarioSentence

seqNum ber: in t

Contro lFlow
StructuredLanguageSentence

ScenarioSentences::
ConditionSentence

Requi rementRepresentation
RequirementRepresentations::

ModelBasedRequirementRepresentation

activi tySentences
1..*
{subsets node; redefines
sentences}condi tionSentences

0..*
{subsets sentences,

subsets edge}

Figure 7.12: Activity representations

ActivityScenario

Semantics. An ActivityScenario is an alternative to ConstrainedLanguageScenario as a way of
representing a UseCase’s content. In this representation, UseCase scenarios are represented in
the form activities. Beside showing the sequence of ScenarioSentence (a scenario), it also rep-
resents in a graphical way the flow of control between different scenarios within one UseCase.
Abstract syntax. An ActivityScenario is a kind of RequirementsRepresentations :: ModelBase-

dRequirementRepresentation. It also specialises BasicActivities :: Activity out of the UML2.0 su-
perstructure. ActivityScenario contains zero or more ConditionSentences’s which subsets ‘edge’

from Activity superclass and one or more activitySentences (kind of ScenarioSentence) which
subset ‘node’. Both classes redefine and subset sentences from the BasicRepresentations :: Re-

quirementRepresentation superclass.

7.6.3 Concrete syntax and examples

ActivityScenario. Figure 7.13 shows an example of the concrete syntax of an ActivityScenario.
The notation for an activity is a combination of the notations of the nodes and edges it contains
(just like the notation of UML’s BasicActivities :: Activity). For more details please refer to
section 8.4.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 54

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Customer wants to
sign up for exercises

<<invoke/insert>>
Choose exercise type

System checks
availability of exercise

System shows error
message dialog

System shows time
schedules

<<invoke/request>>
Change location

Customer chooses time
from time schedule

System shows sign-up
summary dialog

Customer cancels
sign-up for exercises

Customer submits
sign-up for exercises

System signs-up
customer for excercises

Failure

Success

Failure

System shows
time schedule for
default location

InvocationSentence

SVOScenarioSentence

[exercises unavailable]
[exercises available]

Figure 7.13: ActivityScenario example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 55

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

7.7 Interaction representations

7.7.1 Overview

This section introduces the language elements used to describe scenarios with interaction di-
agrams. The InteractionScenario is a representation for scenarios based upon the UML 2.0
interaction diagram.

7.7.2 Abstract syntax and semantics

The diagrams in Figure 7.14 and 7.15 describe the abstract syntax of the interaction diagrams
that can be used to describe requirements in ReDSeeDS. The following subsections explain the
several classes displayed in this diagrams.

Interactions::

Interaction

NamedElement

Interactions::

Lifeline

ActorLifeline SystemComponentLifeline

InteractionRepresentationLifeline

NamedElement

Interactions::Message Interactions::

MessageEnd

ActorMessageEndSystemComponentMessageEnd

InteractionFragment

Interactions::

OccurenceSpecification

Interactions::

MessageOccurrenceSpecification
ElementRepresentations::

ElementRepresentation

0..1

+sendEvent

0..1

0..1

+recieveEvent

0..1

+message

*

{subsets

ownedMember}

+interaction

1

{subsets

namespace}

+messageEnd+covered {redefines covered} +messageEnd+covered {redefines covered}

*

+covered

1

{redefines covered}

Figure 7.14: Interaction representation, relation to UML superstructure

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 56

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

In teraction
ModelBasedRequi rementRepresenta tion

InteractionScenario

In teractionRepresenta tionL i fe l ine
ActorLifeline

In teractionRepresenta tionL i fe l ine
SystemComponentLifeline

Classi fie r
Representab leE lement
Actors::Actor

Classi fie r
Representab leE lement

SystemUnderDevelopment::
SystemComponent

ScenarioMessage

NamedElement
Interactions::Message

MessageOccurrenceSpeci fica tion
ActorMessageEnd

MessageOccurrenceSpeci fica tion
SystemComponentMessageEnd

{<<invariant>>T he m ust be exactly
one sendEvent ro le and one
recieveEvent ro le connected wi th a
concre te ScenarioM essage}

Hyperl ink
SVOSentences::

Predicate

+l i fe l ine

1..*
{redefines
l i fe l ine}

0 ..*

0 ..*

+represents
0..1
{redefines
represents}

+l i fe l ine

1..*
{redefines
l i fe l ine} 0 ..*

+represents

0..1
{redefines
represents}

0 ..1

+recieveEvent

0 ..1
{redefines

recieveEvent}

0 ..1

+sendEvent

0 ..1
{redefines

sendEvent}

0 ..1

+sendEvent

0 ..1
{redefines
sendEvent}

+m essage

0..*
{redefines m essage}

0..1

+recieveEvent

0 ..1
{redefines
recieveEvent}

+m essageEnd

+covered {redefines covered}

+m essageEnd

+covered{redefines covered}

Figure 7.15: Interaction representation, lifelines and messages

InteractionScenario

Semantics. An InteractionScenario is one possible way to describe a scenario in a use case that
represents a requirement. It contains at least one actor and at least one component of the system
under development. Those are modeled as lifelines. Messages between different lifelines may
contain hyperlinks that refer to phrases and terms in the vocabulary.
Abstract syntax. The base classes of InteractionScenario are the classes Interaction out of
the UML2.0 superstructure and ModelBasedRequirementRepresentations. While interaction
may contain Lifelines, a InteractionScenario may contain only ActorLifelines and SystemCom-

ponentLifelines. Since a InteractionScenario is used to describe scenarios in use cases, which
consist of interactions between actors and system components, at least one ActorLifeline and and

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 57

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

least one SystemComponentLifeline must be present. The example in section 7.7.3 shows why
it is not sufficient to restrict the number of possible SystemComponentLifelines to one. The ag-
gregations to these lifelines redefine the original aggregation between Interaction and Lifeline. In
the same way the aggregation between Interaction and Message from the UML superstructure is
redefined through the aggregation between InteractionScenario and ScenarioMessage, because
an InteractionScenario may not contain any kind of Messages but only ScenarioMessages.

InteractionRepresentationLifeline

Semantics. Lifelines in an InteractionScenario are always InteractionScenarioLifelines. They
represent actors or components of the system under development. Communication between
lifelines can be modeled with ScenarioMessages.
Abstract syntax. An InteractionRepresentationLifeline is the abstract base class for ActorLifeline

and SystemComponentLifeline. It is derived from the class Lifeline out of the UML2.0 super-
structure and the class ElementRepresentation out of the package ElementRepresentations.

ActorLifeline

Semantics. Every actor who participates in a scenario described by a InteractionScenario is
represented by an ActorLifeline. Since the scenario models an interaction between an actor and
parts of the system, every ActorLifeline can have some outgoing and incoming messages.
Abstract syntax. The base class of ActorLifeline is the abstract class InteractionRepresentation-

Lifeline. An ActorLifeline may cover zero or more ActorMessageEnds, this association redefines
the inherited association between Lifeline and MessageEnd. Every ActorLifeline belongs to a
InteractionScenario, as the aggregation between these two classes indicates.

SystemComponentLifeline

Semantics. While ActorLifelines represent actors who participate in a scenario described by an
InteractionScenario, a SystemComponentLifeline represents a component of the system under
development which participates in a scenario. Depending on the level of granularity the re-
quirements engineer chose, the whole system can be modeled as one single component. Also
communications between different system components or between a system component and an
actor are represented as outgoing and incoming messages.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 58

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Abstract syntax. SystemComponentLifeline is derived from the abstract class InteractionRepre-

sentationLifeline. It may cover SystemComponentMessageEnds, the association describing this
fact redefines the inherited association between Lifeline and MessageEnd in almost the same
manner as it is for ActorLifeline.

ActorMessageEnd

Semantics. A ActorMessageEnd models the connection between a ScenarioMessage and a Ac-

torLifeline. Every ScenarioMessage may contain zero to two ActorMessageEnds, depending on
what kind of communication is modelled with that message.
Abstract syntax. The base class of ActorMessageEnd is the class MessageEnd out of the
UML2.0 Superstructure. From this class the associations to Message are inherited, but be-
cause ActorMessageEnds may only be endpoints of ScenarioMessages, the associations with
the roles sendEvent and recieveEvent are redefined. The constraint which holds for ActorMes-

sageEnd, that also affects SystemComponentMessage, is described later in context of the class
ScenarioMessage. The last class associated to ActorMessageEnd is ActorLifeline, the associa-
tion between these two classes is inherited from Message and Lifeline, but since ActorLifelines

should be the only lifelines that may cover an ActorMessageEnd the association is redefined in
the metamodel.

SystemComponentMessageEnd

Semantics. Analogous to ActorMessageEnd, SystemComponentMessageEnd models the con-
nection between a ScenarioMessage and a SystemComponentLifeline. In contrast to ActorMes-

sageEnd, it is also possible to have two SystemComponentMessageEnds at one ScenarioMes-

sage, because it should be possible to model communications between different system com-
ponents in a scenario description. An example for this is shown in section 7.7.3.
Abstract syntax. The base class of SystemComponentMessageEnd is the class MessageEnd

out of the UML2.0 superstructure. Again analogous to ActorMessageEnd, the associations
to Message are inherited from this class. Since SystemComponentMessageEnds may only be
endpoints of ScenarioMessages, the associations with the roles sendEvent and recieveEvent are
redefined here also. The same holds for the association to SystemComponentLifeline, these asso-
ciations are inherited from MessageEnd but must be redefined so that SystemComponentMes-

sageEnds may be covered only by SystemComponentLifelines.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 59

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

ScenarioMessage

Semantics. A ScenarioMessage represents an interaction between an actors and components
of the system under development. It may contain a hyperlink which refers to elements in the
vocabulary. As common in UML2.0, ScenarioMessages are verbal phrases.
Abstract syntax. A ScenarioMessage is derived from the class Predicate and from the class
Message out of the UML 2.0 metamodel. Every ScenarioMessage belongs to a InteractionSce-

nario, as the redefined aggregation with rolename message indicates.
ScenarioMessage has associations to SystemComponentMessageEnd and ActorMessageEnd,
these are described in detail at the class descriptions of SystemComponentMessageEnd and
ActorMessageEnd. To ensure that ScenarioMessage is associated to exactly one message end
with rolename sendEvent and exactly one with rolename recieveEvent a constraint is added.

7.7.3 Concrete syntax and examples

The Figures 7.16 and 7.17 describe the concrete syntax of the interaction diagram that can be
used to describe requirements in the RSL. The first Figure shows a sequence diagram as one
possible form of interaction diagram, the second Figure shows the other possible form, the
communication diagram. The following sections explain the concrete syntax of the different
classes mentioned in the section above.

Terminal :

SystemComponent

Reception :

SystemComponent

Customer :Actor
Employee :Actor

asksForHelp

sendHelpRequest

showHelpRequest

acceptHelpRequest

sendRequestAccepted

informCustomer

Figure 7.16: Interaction representation with sequence diagram

InteractionScenario. Both diagrams shown in the Figures 7.16 and 7.17 show the same In-

teractionScenario. Concrete syntax of specific elements of InteractionScenario are described
below.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 60

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Customer :Actor

Reception :

SystemComponent

Terminal :

SystemComponent

Employee :Actor

1: askForHelp

2: sendHelpRequest

3: showHelpRequest

4: acceptHelpRequest

5: sendRequestAccepted

6: informCustomer

Figure 7.17: Interaction representation with communication diagram

InteractionRepresentationLifeline. Since this class is abstract, it has no concrete syntax.

ActorLifeline. The outer left and the outer right lifelines in Figure 7.16 are examples for Ac-

torLifelines. As common in UML, they are modelled as dotted lines. Each of them starts at an
Actor, which is represented as it is common in UML sequence and use case diagrams. In Figure
7.17 the lifelines are not explicitly modelled. Here the actors itself takes over the role of their
lifeline.

SystemComponentLifeline. The two lines in the sequence diagram’s centre are SystemCompo-

nentLifelines. They start at an instance of SystemComponent and are modelled as dotted lines.
Again, in the communication diagram the lifelines are not explicitly modelled.

ActorMessageEnd. The connections between the ScenarioMessages and the ActorLifelines are
ActorMessageEnds. As it is common in UML sequence diagrams, the message whose end is
modelled just starts or ends at the appropriate lifeline. If the ActorMessageEnd has the role
of sendEvent, no additional graphical element is needed, if it has the role of receiveEvent the
connection to the lifeline is modelled as a black arrow, as it is common in UML. By analogy to
this, the messages in the communication diagram are represented as it is common in UML.

SystemComponentMessageEnd. The graphical representation of SystemComponentMessage-

End is analogous to ActorMessageEnd, just it connects not to ActorLifelines but to SystemCom-

ponentLifelines.

ScenarioMessage. All messages in the diagrams are instances of ScenarioMessage. They are
modelled as black lines between two different InteractionRepresentationLifelines. The messages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 61

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

in the centre of Figure 7.16, which connect the SystemComponents Terminal and Reception,
are ScenarioMessages but do not contain a Hyperlink. In this diagram, all messages between
an Actor and a SystemComponent contain a Hyperlink, as the blue font colour indicated. The
whole blue part in the message name is the Hyperlink, it refers to the appropriate Phrase in the
vocabulary. The points where a ScenarioMessage and a InteractionRepresentationLifeline meet
are ActorMessageEnds or SystemComponentMessageEnds, their notation is explained at the
description of the appropriate classes.

The distribution of Hyperlinks in this example is not representative, there is no general restric-
tion for a message between an Actor and a SystemComponent to contain a Hyperlink neither a
restriction for other messages to contain no Hyperlinks.

7.8 Use case representations

7.8.1 Overview

This package does not contain any meta-classes. However, it introduces several meta-associations
defining the structure of representations of content for RequirementsSpecifications :: UseCases.

RequirementsSpecifications :: UseCase meta-class is a kind of RequirementsSpecifications ::

Requirement and also inherits from UML’s UseCase :: UseCase. It’s content can be expressed
through three different perspectives:

• ConstraintLanguageRepresentation :: ConstraintLanguageScenario – textual representa-
tion of UseCase’s scenarios

• ActivityRepresentation :: ActivityScenario – adds graphical representation of control flow
between different scenarios of a single UseCase

• InteractionRepresentation :: InteractionScenario – emphasises the aspect of interaction
between a system and its users by showing a sequence of messages sent between them

7.8.2 Abstract syntax and semantics

The abstract syntax in this package is presented in Figure 7.18. UseCase is a special kind of
Requirement that can have its content represented through three RequirementRepresentations.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 62

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

UseCase
RequirementsSpecifications::

UseCase

Activi ty
ModelBasedRequirementRepresenta tion

ActivityRepresentations::
ActivityScenario

ScenarioSentences::ScenarioSentence

seqNum ber: in t

Constra inedLanguageRepresenta tion
ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

Representab leElement
RequirementsSpecifications::

Requirement

ID: String
type: ReqT ypes

Interaction
ModelBasedRequirementRepresentation

InteractionRepresentations::
InteractionScenario

ControlFlow
StructuredLanguageSentence

ScenarioSentences::
ConditionSentence

activi ty
0..1
{subsets representa tions}

scenarioSteps

1..*
{redefines

sentences}

1..*

activi tySentences

1..*
{subsets node;

redefines
sentences}

scenarios
0..*
{subsets representations}

in teraction

0..*
{subsets representa tions}

condi tionSentences

0..*
{subsets

sentences,
subsets edge}

Figure 7.18: UseCase representations

Two of them are ModelBasedRequirementRepresentations and one of them is a Constrained-

LanguageRequirementRepresentation. All the three representations of the UseCase content
(ConstrainedLanguageScenario,ActivityScenario and InteractionScenario) are described in de-
tail in sections 7.5, 7.6 and 7.7 respectively. It has to be noted that ActivityScenarios and Con-

strainedLanguageScenarios share the same ScenarioSentences including ConditionSentences.

7.8.3 Concrete syntax and examples

Figure 7.19 shows three different representations of content of a UseCase. This diagram com-
pares alternative notations for the contents of UseCases. Details of concrete syntax for the three
alternative notations is given in sections 7.5, 7.6 and 7.7.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 63

Behavioural Requirements Language Definition – D2.1
Requirements representations

ver. 1.00
30.01.2007

Figure 7.19: The same scenario in three different representations: ConstrainedLanguageSce-
nario, ActivityScenario and InteractionScenario

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 64

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

Chapter 8

Requirement Representation Sentences

8.1 Overview

This chapter covers the different types of sentences in constrained language which can be used
to represent requirements. Figure 8.1 gives an overview of the three packages (marked in yel-
low) inside this part of the Requirements Specification Language.

• The RepresentationSentences package only contains the abstract class StructuredLan-

guageSentence representing a single sentence in constrained language. In order to dis-
tinguish between different types of sentences, this class is further specialized in the other
two packages described below.

• Inside the SVOSentences1 package, there exist constructs for representing sentences and
their breakdown into more fine-granular elements, such as Subject or Predicate.

• The contents of the ScenarioSentences package which imports SVOSentences are used
for describing a sentence of a scenario. They differ from an “ordinary” SVOSentence by
containing a sequence number denoting their position inside the scenario. The subtypes of
a ScenarioSentence allow for describing a single scenario step as well as for expressing
the control flow of a scenario’s execution.

1SVO stands for subject – verb – object. The identifier refers to the SVO(O) (subject – verb – object – (object))
grammar used for the constrained language.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 65

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

RepresentationSentences

SVOSentencesScenarioSentences

BasicRepresentations

(from RSLSyntax:RequirementRepresentations)

BasicActivities

(from UMLMetaModel)

Kernel

(from UMLMetaModel)

Phrases

(from RSLSyntax:DomainElements)

Terms

(from RSLSyntax:DomainElements)

«import»

«import»

«import» «import»

«import»

«import»

«import»«import»

Figure 8.1: Overview of packages inside the RequirementRepresentationSentences part of RSL

8.2 Representation sentences

8.2.1 Overview

This section introduces sentences written in structured language which may be used to describe
requirements.

8.2.2 Abstract syntax and semantics

Figure 8.2 shows the abstract syntax of the RepresentationSentences package. Specific meta-
classes are described in the sections below.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 66

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

BasicRepresentations::

HyperlinkedSentence

NaturalLanguageRepresentations::

NaturalLanguageHypertextSentence

- sentenceText: String

StructuredLanguageSentence

Phrases::PhraseSVOSentences::SVOSentence

Figure 8.2: Representation Sentences

StructuredLanguageSentence

Semantics. Structured language is a natural language which is structured by some restrictions.
Every type of structured language sentence which is used in the RSL meta-model is a special-
isation of this class. A more detailed explanation of the different kinds of structured language
sentences used in the RSL can be found in the sections below. In addition to its specific struc-
ture, the StructuredLanguageSentence contains zero or more Hyperlinks.
Abstract syntax. The StructuredLanguageSentence is an abstract base class for all other sen-
tences that use structured language. These are SVOSentence (see section 8.3) and Phrase,
which are stored in the vocabulary. StructuredLanguageSentene itself is derived from Hyper-

textSentence, so it may contain Hyperlinks.

8.2.3 Concrete syntax and examples

StructuredLanguageSentence. Since StructuredLanguageSentence is an abstract meta-class,
there is no concrete syntax for this specific class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 67

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

8.3 SVO sentences

8.3.1 Overview

This package describes meta-models for two kinds of simple grammar sentences used for ex-
pressing individual requirements.

8.3.2 Abstract syntax and semantics

ModalSVOSentence

Term
Terms::ModalVerb

SVOSentence

Phrases::Phrase Phrases::VerbPhrase

Hyperl ink
Subject

Hyperl ink
Predicate

Hyperl ink
ModalVerb«invariant»

{Subject is associated
wi th a Phrase object
only - not an object of
one of Phrase's
subclasses.}

Hyperl inkedSentence
RepresentationSentences::
StructuredLanguageSentence

subject

1
{subsets
hyperl inks}

1

*

1

verbWi thObjects

1
{subsets
hyperl inks}

1

*

1

m odalVerb

1
{subsets
hyperl inks}

*

1

Figure 8.3: SVO Sentences

Figure 8.3 shows the part of the RSL meta-model which deals with the content of the SVOSen-

tences package. The meta-classes in this package are described in detail below.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 68

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

SVOSentence

Semantics. Represents a sentence in simple SVO(O) 2 grammar, where VO(O) part is repre-
sented by Predicate pointing to a Phrases :: VerbPhrase.
Abstract syntax. SVOSentence is a kind of RepresentationSentences :: StructuredLanguage-

Sentence. It has one Subject and one Predicate (in the role of a verb with objects). Both are
Hyperlinks.

ModalSVOSentence

Semantics. ModalSVOSentence is a SVOSentence extended with ModalVerb allowing to ex-
press: 1) priority of the described activity, 2) modality of the described activity, 3) obligation or
possibility of the subject to perform an action (described by a Predicate)
Abstract syntax. It is a kind of SVOSentence with an additional Hyperlink being a ModalVerb.

Subject

Semantics. Subject denotes the part of an SVOSentence being its subject from the point of view
of natural language grammar. Subject points to a Phrases :: Phrase that is associated with an
Actors :: Actor or SystemRepresentations :: SystemUnderDevelopment (see document D2.2).
This element can perform an action described by the predicate of the SVOSentence.
Abstract syntax. Subject is kind of BasicRepresentations :: Hyperlink that in a context of an
SVOSentence subsets the ‘hyperlink’ being part of a BasicRepresentations :: HyperlinkedSen-

tence. It is thus part of an SVOSentence and points to a Phrases :: Phrase. The Phrase that is
associated with the Subject cannot be one of Phrase’s subclasses. The Phrases :: Phrase has to
belong to an Actors :: Actor or SystemReprsentations :: SystemUnderDevelopment.

Predicate

Semantics. Predicate hyperlinks an action performed by a Subject and all the words governed
by this action’s Phrases :: VerbPhrase or modifying it in a given SVOSentence.
Abstract syntax. Predicate is kind of BasicRepresentations :: Hyperlink that in a context of
SVOSentence subsets ‘hyperlink’ being part of BasicRepresentations :: HyperlinkedSentence.

2Subject – Verb – Object – (Object)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 69

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

It is thus part of an SVOSentence and points to a Phrases :: VerbPhrase. The VerbPhrase

that is associated with the Predicate must be either Phrases :: SimpleVerbPhrase or Phrases ::

ComplexVerbPhrase.

ModalVerb

Semantics. ModalVerb is an additional element of ModalSVOSentence. It allows for express-
ing modality, priority, obligation and/or possibility of action performed by the Subject of the
sentence.
Abstract syntax. ModalVerb is kind of BasicRepresentations :: Hyperlink that in a context of
ModalSVOSentence subsets ‘hyperlink’ being part of BasicRepresentations :: HyperlinkedSen-

tence. It points to a Words :: ModalVerb (see document D2.2).

8.3.3 Concrete syntax and examples

Figure 8.4: SVOSentence concrete syntax example

SVOSentence. Its concrete syntax depends on the context in which the particular SVOSentence

is presented to the user. It can be represented in a source form or preview form, where hyperlinks
are presented as in a Wiki. In the source form, SVOSentence consists of a hyperlink to a
Phrases :: Phrase (the Subject), a colon (“:”) and a hyperlink to a Phrases :: VerbPhrase (the
Predicate). In the preview form, the SVOSentence is represented as a set of coloured hyperlinks
separated with colons (see Figure 8.4).

Figure 8.5: ModalSVOSentence concrete syntax example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 70

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

ModalSVOSentence. Its concrete syntax is analogous to the SVOSentence’s concrete syntax,
with addition of a ModalVerb between a Subject and a Predicate (see Figure 8.5).

Subject. Predicate. ModalVerb. Their concrete syntax is not changed in respect to that of the
BasicRepresentations :: Hyperlink meta-class.

8.4 Scenario sentences

8.4.1 Overview

This package describes scenario sentences. It contains SVOScenarioSentence as a sentence
in the SVO grammar and ControlFlowSentence determining the flow of control in a scenario.
ControlFlowSentence has three specialised concrete classes: InvocationSentence, Precondition-

Sentence, PostconditionSentence.

8.4.2 Abstract syntax and semantics

Figure 8.6 shows part of the RSL meta-model which deals with the content of the ScenarioSen-

tences package. The classes in this package are described in detail below.

ScenarioSentence

Semantics. A ScenarioSentence is a sentence which can be used in a scenario. To use sentence
types which do not specialise from the ScenarioSentence in a scenario description is not pos-
sible since the sentences in a scenario description must have an order. Since the sentences in
a scenario description may have different purposes, the ScenarioSentence is just the base for
several more specialised sentence types.
Abstract syntax. ScenarioSentence is an abstract class and is a base for all the scenario sen-
tences. It includes an attribute called seqNumber and type int. This attribute defines the sen-
tence’s position in the scenario description. ScenarioSentences form scenarioSteps of Con-

strainedLanguageRepresentations :: ConstrainedLanguageScenarios. They are also activity-

Sentences of ActivityRepresentations :: ActivityScenarios which are alternative forms of rep-
resenting ConstrainedLanguageRepresentations :: ConstrainedLanguageScenarios. Scenar-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 71

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

ScenarioSentence

seqNumber: int

ControlSentence

HyperlinkedSentence

RepresentationSentences::

StructuredLanguageSentence

SVOSentence

SVOScenarioSentence

BasicActivities::

ActivityNode

«invariant»

{The Subject Phrase of this sentence has

to belong to an Actor.}

RedefinableElement

BasicActivities::

ActivityEdge

BasicActivities::

ControlFlow

ConditionSentence

Figure 8.6: Scenario Sentences

ioSentence’s subclasses are SVOScenarioSentence, ControlSentence and ConditionSentence,
which are described in detail in the sections below.

SVOScenarioSentence

Semantics. SVOScenarioSentence describes a single scenario step (an action) in the form of a
sentence in the SVO(O) grammar. This action can be performed by an actor or by the system.
Abstract syntax. SVOScenarioSentence is a kind of RepresentationSentences :: ScenarioSen-

tence and has the whole syntax of SVOSentence :: SVOSentence. It also derives from BasicAc-

tivities :: ActivityNode. Because the action described in SVOScenarioSentence can be performed
only by an actor or by the system, there is a constraint that the Phrases :: Phrase associated
with this sentence as a subject (see SVOSentences :: SVOSentence) has to belong to an Actors

:: Actor or SystemRepresentations :: SystemUnderDevelopmet.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 72

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

InvocationSentence

- type: InclusionType

PostconditionSentence

+ isSuccess: boolean

PreconditionSentence

- type: InclusionType

«enumeration»

InclusionType

«enum»

 insert

 request

ActivityNode

ScenarioSentence

StructuredLanguageSentence

ControlSentence

Kernel::Constraint
+condition

Figure 8.7: Control Sentences

ConditionSentence

Semantics. ConditionSentence is a special kind of scenario sentence that controls the flow of
scenario execution. It is a point of conditional control flow: the following scenario step can be
executed only when the condition expressed by the ConditionSentence is true.
Abstract syntax. ConditionSentence is a kind of RepresentationSentences :: ScenarioSentence

It also derives from BasicActivities :: ControlFlow and RepresentationSentences :: Structured-

LanguageSentence. In ActivityRepresentations :: ActivityScenario it subsets ‘edge’.

ControlSentence

Semantics. ControlSentence is a general type of scenario sentences that control the flow of
scenario execution. Depending on the concrete kind of ControlSentence, the flow of execution
can be initiated, stopped or moved to another use case. ControlSentence can have an associated
condition which must be met in order to perform this sentence.
Abstract syntax. ControlSentence is a kind of RepresentationSentences :: ScenarioSentence.
It also derives from BasicActivities :: ActivityNode and RepresentationSentences :: Structured-

LanguageSentence. ControlSentences can have an associated Kernel :: Constraint. This ab-
stract class is a generalisation of concrete classes: InvocationSentence, PreconditionSentence

and PostconditionSentence.

InvocationSentence

Semantics. InvocationSentence denotes the invocation of another use case scenario from within
the currently performed use case scenario. There are two types of InvocationSentence: insert

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 73

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

and request. Insert means that the system invokes another use case by inserting its scenario
sentences. Request means that the Actor requests invoking another UseCaseRelationships ::

UseCase – it depends on the actor decision whether scenario sentences of invoked use case
will be inserted or not. After performing all scenario steps of the invoked use case, the flow of
execution returns to the invoking use case scenario to execute the remaining sentences. Invoca-

tionSentence is semantically related to PreconditionSentence (see below).
Abstract syntax. PreconditionSentence is a kind of ControlFlowSentence. It has the ‘type’

attribute determining the type of InvocationSentence, which can have one of the values enumer-
ated in InclusionType.

PreconditionSentence

Semantics. PreconditionSentence is an initial sentence of every use case scenario. It indicates
where the flow of control of every use case scenario starts. There are two types of Invocation-

Sentence: insert and request. PreconditionSentence of type request is always performed when
the actor triggers a use case directly or requests invoking a use case (see InvocationSentence

above) from another use case scenario through initial actor action (first SVO(O) sentence in
the scenario). When use case is invoked by inserting its scenario into the flow of invoking use
case, the initial action is omitted. In this case PreconditionSentence of type insert is performed.
PreconditionSentence may contain an associated condition which must be fulfilled before exe-
cuting the sentence.
Abstract syntax. PreconditionSentence is a kind of ControlFlowSentence. It has the ‘type’

attribute determining the type of PreconditionSentence, which can have one of the values enu-
merated in InclusionType.

PostconditionSentence

Semantics. PostconditionSentence is a final sentence of every use case scenario. It indicates if
the goal of a use case has been reached or not. It may contain an associated condition which
must be fulfilled before executing the sentence.
Abstract syntax. PostconditionSentence is a kind of ControlFlowSentence. Its isSuccess at-
tribute can have value ‘true’ or ‘false’.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 74

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

InclusionType

Semantics. InclusionType specifies the type of InvocationSentence and PreconditionSentence

scenario sentences.
Abstract syntax. InclusionType is an enumerator which defines values: insert and request.

8.4.3 Concrete syntax and examples

ScenarioSentence. As an abstract meta-class, this meta-model element has no concrete syntax.
It can be formulated in any of the representations of meta-classes that specialise from it.

ControlSentence. As an abstract meta-class, this meta-model element has no concrete syntax.
It can be formulated in any of the representations of meta-classes that specialise from it.

Figure 8.8: SVOScenarioSentence example

SVOScenarioSentence. This class has two kinds of concrete syntax. It depends on the context
where the SVOScenarioSentence is presented to the user. In scenario view, the SVOScenar-

ioSentence is an ordered list of words. It has structure similar to SVOSenteces :: SVOSen-

tence. In addition to SVOsentence, SVOScenarioSentence has its sequence number in a sce-
nario placed at its front. See Figure 8.8 for an example. In activity diagram view, SVOSce-

narioSentence is presented as an Activities :: Action (([Obj05b], paragraph 12.3.2, page 303):
“Actions are notated as round-cornered rectangles. The name of the action or other description
of it may appear in the symbol.” In our case, the ‘name’ is a SVOScenarioSentence without
Hyperlinks. See Figure 7.13 for an example.

Figure 8.9: ControlFlowSentence example

ConditionSentence. Concrete syntax of ConditionSentence depends on the context where it
is presented to the user. In scenario view it contains a ‘condition’ (instance of Kernel :: Con-

straint). It is presented with a special sign ’==>’, key word ’cond:’ and a set of words forming a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 75

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

NaturalLanguageHypertextSentence. See Figure 8.9 for an example. In activity diagram view
ConditionSentence is presented as an arrowed line connecting two ordered SVOScenarioSen-

tences. In addition, it contains a NaturalLanguageHypertextSentence in square brackets put
near the arrow. See Figure 7.13 for an example.

Figure 8.10: PreconditionSentence example

PreconditionSentence. This class has two kinds of concrete syntax. It depends on context
where the PreconditionSentence is presented to the user. In scenario view it is notated by a
keyword ’pre:’ and a set of words forming a NaturalLanguageHypertextSentence. Precondi-

tionSentence can occur only before the first sentence in the scenario. See Figure 8.10 for an
example In activity diagram view this element is shown as a note attached to the Activities ::

InitialNode. See Figure 7.13 for an example.

Figure 8.11: PostconditionSentence example

PostconditionSentence. PostconditionSentence’s concrete syntax depends on the context where
it is presented to the user. In scenario view it is notated by a keyword ’post:’ and a set of words
forming a NaturalLanguageHypertextSentence. PostconditionSentence can occur only after the
last sentence in the scenario. See Figure 8.11 for an example. In activity diagram view this
element is shown as a note attached to the Activities :: FinalNode. See Figure 7.13 for and
example.

InvocationSentence. Concrete syntax of InvocationSentence depends on the context where it
is presented to the user. In scenario view it is notated by a special sign ’==>’, one of two
keywords: ’invoke/request:’ or’invoke/insert:’ and a set of words forming a NaturalLanguage-

HypertextSentence (this constitutes the name of invoked use case). See Figure 8.12 for an
example. In activity diagram view, InvocationSentence is presented as a round-cornered rect-
angle with stereotype ’invoke/request’ or ’invoke/insert’. The name of the InvocationSentence

appears in the symbol. InvocationSentence is connected with SVOScenarioSentences with two
arrowed lines. See Figure 7.13 for an example.

InclusionType. Concrete syntax of this element is one of two expressions: ’invoke/request:’,
’invoke/insert:’. See Figures 8.12, 7.13.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 76

Behavioural Requirements Language Definition – D2.1
Requirement Representation Sentences

ver. 1.00
30.01.2007

Figure 8.12: InvocationSentence example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 77

Behavioural Requirements Language Definition – D2.1
Conclusion

ver. 1.00
30.01.2007

Chapter 9

Conclusion

This deliverable presents a novel requirements specification language, more precisely its be-
havioural part. This language is special because of its clear distinction between Functional and
Behavioural Requirements as well as its precise definition of their relationships. Its conceptual
definition is new in its clear distinction between requirements and representations of require-
ments. This distinction is important for the use of this language as a basis for reuse based on
requirements, since only representations can actually be reused. This language is also unique
through its explicit distinction between descriptive and model-based requirements representa-
tions. Our language is the first requirements specification language intimately integrated with
UML and defined using the same metamodelling approach as used for UML itself (using MOF).
This deliverable also presents and explains the behavioural part of this language definition, from
abstract down to concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 78

Behavioural Requirements Language Definition – D2.1
Bibliography

ver. 1.00
30.01.2007

Bibliography

[Ant96] Annie I. Antón. Goal-based requirements analysis. In ICRE ’96: Proceedings of

the 2nd International Conference on Requirements Engineering (ICRE ’96), page
136, Washington, DC, USA, 1996. IEEE Computer Society.

[BI96] Barry Boehm and Hoh In. Identifying quality-requirement conflicts. IEEE Soft-

ware, 13(2):25–35, 1996.

[BPG+01] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Modeling early requirements in tropos: A transformation based ap-
proach. In AOSE, pages 151–168, 2001.

[CKM01] Jaelson Castro, Manuel Kolp, and John Mylopoulos. A requirements-driven devel-
opment methodology. Lecture Notes in Computer Science, 2068, 2001.

[CKM02] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven
information systems engineering: The tropos project. To Appear in Information

Systems, Elsevier, Amsterdam, The Netherlands, 2002.

[Coc97] Alistair Cockburn. Structuring use cases with goals. Journal of Object-Oriented

Programming, 5(10):56–62, 1997.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. In 6IWSSD: Selected Papers of the Sixth International Workshop

on Software Specification and Design, pages 3–50, Amsterdam, The Netherlands,
The Netherlands, 1993. Elsevier Science Publishers B. V.

[EK02] Gerald Ebner and Hermann Kaindl. Tracing all around in reengineering. IEEE

Software, 19(3):70–77, 2002.

[Fow04] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Addison-Wesley, Boston, Massachusetts, third edition, 2004.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 79

Behavioural Requirements Language Definition – D2.1
Bibliography

ver. 1.00
30.01.2007

[GMP01] Fausto Giunchiglia, John Mylopoulos, and Anna Perini. The tropos software de-
velopment methodology. Technical Report No. 0111-20, ITC - IRST. Submitted to

AAMAS ’02. A Knowledge Level Software Engineering 15, 2001.

[GPM+01] Paolo Giorgini, Anna Perini, John Mylopoulos, Fausto Giunchiglia, and Paolo
Bresciani. Agent-oriented software development: A case study. In Proceedings

of the Thirteenth International Conference on Software Engineering & Knowledge

Engineering (SEKE01), 2001.

[GPS01] Fausto Giunchiglia, Anna Perini, and Fabrizio Sannicolo. Knowledge level soft-
ware engineering. In Springer Verlag, Editor, In Proceedings of ATAL 2001, Seattle,

USA. Also IRST TR 011222, Istituto Trentino Di Cultura, Trento, Italy, 2001.

[Kai93] H. Kaindl. The missing link in requirements engineering. ACM Software Engineer-

ing Notes (SEN), 18(2):30–39, 1993.

[Kai95] H. Kaindl. An integration of scenarios with their purposes in task modeling. In
Proceedings of the Symposium on Designing Interactive Systems: Processes, Prac-

tices, Methods, & Techniques (DIS ’95), pages 227–235, Ann Arbor, MI, August
1995. ACM.

[Kai96] H. Kaindl. Using hypertext for semiformal representation in requirements engi-
neering practice. The New Review of Hypermedia and Multimedia, 2:149–173,
1996.

[Kai97] H. Kaindl. A practical approach to combining requirements definition and object-
oriented analysis. Annals of Software Engineering, 3:319–343, 1997.

[Kai00] H. Kaindl. A design process based on a model combining scenarios with goals and
functions. IEEE Transactions on Systems, Man, and Cybernetics (SMC) Part A,
30(5):537–551, Sept. 2000.

[Kai05] Hermann Kaindl. A scenario-based approach for requirements engineering: Expe-
rience in a telecommunication software development project. Systems Engineering,
8(3):197–209, 2005.

[KGM02] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. A goal-based organizational
perspective on multi-agent architectures. In ATAL ’01: Revised Papers from the 8th

International Workshop on Intelligent Agents VIII, LNCS 2333, pages 128–140.
Springer, 2002.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Prentice Hall, Englewood Cliffs,
NJ, second edition, 2004.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 80

Behavioural Requirements Language Definition – D2.1
Bibliography

ver. 1.00
30.01.2007

[Lau02] Søren Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley,
Reading, MA, 2002.

[MC00] John Mylopoulos and Jaelson Castro. Tropos: A framework for requirements-
driven software development. In J. Brinkkemper and A. Solvberg, Editors, Informa-

tion Systems Engineering: State of the Art and Research Themes. SpringerVerlag,
2000.

[MCL+01] John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric Yu.
Exploring alternatives during requirements analysis. IEEE Software, 18(1):92–96,
/2001.

[MCY99] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–37, 1999.

[MKC01] John Mylopoulos, Manuel Kolp, and Jaelson Castro. UML for agent-oriented soft-
ware development: The tropos proposal. In UML 2001 - The Unified Modeling

Language.Modeling Languages, Concepts, and Tools: Fourth International Con-

ference, LNCS 2185, pages 422–441. Springer, 2001.

[MKG02] John Mylopoulos, Manuel Kolp, and Paolo Giorgini. Agent-oriented software de-
velopment. In Methods and Applications of Artificial Intelligence: Second Hellenic

Conference on AI, SETN, LNCS 2308, pages 3–17. Springer, 2002.

[MM03] Joaquin Miller and Jishnu Mukerji, editors. MDA Guide Version 1.0.1, omg/03-06-

01. Object Management Group, 2003.

[MOW01] Pierre Metz, John O’Brien, and Wolfgang Weber. Against use case interleaving.
Lecture Notes in Computer Science, 2185:472–486, 2001.

[Obj03a] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,

Final Adopted Specification, ptc/03-10-04, 2003.

[Obj03b] Object Management Group. OCL 2.0, Final Adopted Specification, ptc/03-10-14,
2003.

[Obj05a] Object Management Group. Unified Modeling Language: Infrastructure, version

2.0, formal/05-07-05, 2005.

[Obj05b] Object Management Group. Unified Modeling Language: Superstructure, version

2.0, formal/05-07-04, 2005.

[Obj06] Object Management Group. Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01, 2006.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 81

Behavioural Requirements Language Definition – D2.1
Bibliography

ver. 1.00
30.01.2007

[Sim99] A J H Simons. Use cases considered harmful. In Proceedings of the 29th Con-

ference on Technology of Object-Oriented Languages and Systems-TOOLS Eu-

rope’99, pages 194–203, Nancy, France, June 1999. IEEE Computer Society Press.

[vLL00] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engineering,
26(10):978–1005, 2000.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 82

	History of changes
	Summary
	Table of contents
	List of figures
	Scope, conventions and guidelines
	Document scope
	Approach to language definition and notation conventions
	Meta-modelling
	Defining languages using meta-modelling
	Structure of the language reference
	Notation conventions

	Structure of this Document
	Usage guidelines

	I Conceptual Overview of the Behavioural Requirements Language
	Introduction
	Functional and Behavioural Requirements
	Requirements Model Overview
	Requirements Model Details
	Why No Goals?

	Representation of Functional and Behavioural Requirements
	Requirements Representation Model Overview
	Requirements Representation Model Details

	Discussion

	II Language Reference
	Requirements
	Overview
	Requirements specifications
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement relationships
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Use case relationships
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirements representations
	Overview
	Basic representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Natural language representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Constrained language representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Activity representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Interaction representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Use case representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement Representation Sentences
	Overview
	Representation sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	SVO sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Scenario sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Conclusion
	Bibliography

