Structural Requirements Language Definition

Defining the ReDSeeDS Languages
Deliverable D2.2, version 1.00, 30.01.2007

IST-2006-033596

ReDSeeDS
Requirements Driven

Software Development System

www.redseeds.eu

Infovide-Matrix S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany
Heriot-Watt University, United Kingdom

Structural Requirements Language Definition

Workpackage
Task

Document number
Document type
Title

Subtitle

Author(s)

Internal Reviewer(s)

Internal Acceptance
Location

Version
Status
Distribution

Defining the ReDSeeDS Languages

WP2

T2.2

D2.2

Deliverable

Structural Requirements Language Definition

Defining the ReDSeeDS Languages

Hermann Kaindl, MichatSmiatek, Albert Ambroziewicz, Davor
Svetinovic, Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak,
Mohamad Hani el Jamal, Lothar Hotz, Katharina Wolter, Thorsten
Krebs, Hannes Schwarz, Daniel Bildhauer, Jirgen Falb, John Paul
Brogan

Daniel Bildhauer, Rober Draber, Hermann Kaindl, Sevan Kavaldjian,
Thorsten Krebs, Roman Popp, Hannes Schwarz, Michal Smialek,
Katharina Wolter, Radoslaw Ziembinski

Project Board
https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP2_Re-
quirements_specification_language/D2.2.00/ReDSeeDS_D2.2_Struc-
tural_Requirements_Language_Definition.pdf

1.00

Final

Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

30.01.2007

Structural Requirements Language Definition — D2.2

History of changes

ver. 1.00

30.01.2007

History of changes

D
o

C

IC_

Date Ver. Author(s) Change description

27.12.2006/ 0.01 | Hermann Kaindl (TUW) | Proposition of ToC

30.12.2006 0.02 | Michal Smialek (WUT) Modified ToC and example of contents

30.12.2006 0.03 | Hermann Kaindl (TUW) | Modified ToC and task assignment

09.01.2007| 0.04 | Albert Ambroziewicz, Added content for "Words" section

Tomasz Straszak (WUT)
10.01.2007| 0.05 | Albert Ambroziewicz, Added content for "Phrases" section
Tomasz Straszak (WUT)

10.01.2007| 0.06 | John Paul Brogan (HWU)| Added content for Document Scope

11.01.2007| 0.07 | Lothar Hotz (UH) Added content for Related work

11.01.2007| 0.08 | Hannes Schwarz (UKo) | Added content for Related work, adde
content for Structure of this document

12.01.2007| 0.09 | Tomasz Straszak (WUT) | Added content for "Usage guidelines” se
tion

12.01.2007| 0.10 | John Paul Brogan (HWU)| Added content for Related work

12.01.2007| 0.11 | Hannes Schwarz (UKo) | Added content for Constraint Requir
ments

15.01.2007| 0.12 | Daniel Bildhauer (UKo) | Added content for actor representation

16.01.2007| 0.13 | Daniel Bildhauer (UKo) | Added section “system representation”
and content

16.01.2007| 0.14 | Daniel Bildhauer (UKo) | Added overview for chapter 7 and secti
7.2, added diagrams

16.01.2007| 0.15 | Tomasz Straszak (WUT) | Added content for "“Basic Domain Ent
ties” section

16.01.2007| 0.16 | Daniel Bildhauer (UKo) | Added content for entity representation

17.01.2007| 0.17 | Davor Svetinovic (TUW) | Added content for chapters 2 and 3

18.01.2007| 0.18 | Hermann Kaindl (TUW) | Added executive summary

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System

page Il

Structural Requirements Language Definition — D2.2

History of changes

30.01.200

ver. 1.00

7

Date Ver. Author(s) Change description
18.01.2007| 0.19 | Albert Ambroziewicz, Added content for Domain vocabulary |n
Jacek Bojarski (WUT) RSL section
18.01.2007| 0.20 | Wiktor Nowakowski| Added content for section 4.2
(WUT)
18.01.2007| 0.21 | Hermann Kaindl (TUW) | Added conclusion
19.01.2007| 0.21 | Katharina Wolter (UH) Added content for Section 7.7
20.01.2007 0.22 | Michat Smiatek (WUT) Added and modified content to Chapter|1,
corrected minor errors
21.01.2007| 0.23 | Hermann Kaindl (TUW) | Added references
23.01.2007| 0.24 | Katharina Wolter (UH) Modified content for Section 7.7
24.01.2007| 0.25 | John Paul Brogan (HWU)| Updated/Corrected English Spelling and
Grammer for Chapters 1-4
26.01.2007| 0.26 | Daniel Bildhauer (UKo) | Updated/Corrected some figures
26.01.2007| 0.27 | Katharina Wolter (UH) Corrections in Section 7.7
26.01.2007| 0.28 | John Paul Brogan (HWU)| Updated/Corrected English Spelling and
Grammer for Chapters 4-6
26.01.2007| 0.29 | Wiktor Nowakowski| Small corrections in Chapters 4
(WUT)
28.01.2007 0.30 | Michat Smiatek (WUT) Small corrections in the whole document
29.01.2007| 0.31 | John Paul Brogan (HWU)| Updated/Corrected English Spelling and
Grammer for Chapters 6-7
29.01.2007| 0.32 | Katharina Wolter (UH) Updated Section 1.3
29.01.2007| 0.33 | Hermann Kaindl (TUW) | Clean-up
29.01.2007| 0.34 | Katharina Wolter (UH) Small corrections
30.01.2007 0.35| Michat Smiatel Small updates in Chapter 3
30.01.2007| 1.00 | Hermann Kaindl (TUW) | Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System

page IV

Structural Requirements Language Definition — D2.2 ver. 1.00
Summary 30.01.2007

Summary

Existing approaches to object-oriented software development mostly foadtarare objects
I.e., somethingvithin the software. Referring to such objects in a Requirements Specification
would blur the distinction between Requirements Specification and SoftwareDesign, however.

The structural part of our requirements specification language deals with models and descrip-
tions of objects existing in the domain (environment) of the software system to be built —
domain objectsThese objects are part of a Domain Model (to-be) and/or described in a defined
vocabulary. This facilitates a better understanding of the requirements.

This deliverable contains the structural part of the requirements specification language, i.e.,
all the parts of the meta-model and other descriptions dealing with abstractions of important
objects existing in the environment of the software system to be built, as well as their attributes
and relations, including their relationships to the software system. Note, that this is a structural
requirements language definition, but inist about “structural requirements”. This deliverable
first gives a conceptual overview of this structural requirements specification language. In the
second patrt, it provides a comprehensive language reference including concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Structural Requirements Language Definition — D2.2 ver. 1.00
Table of contents 30.01.2007

Table of contents

[History of changes 1

v

LIable of contents Vi

[List of Tigures| VI

(L Scope, conventions and guidelines 1
(1.1 Documentscope e e 1
[I.2" Approach to language definition and notation converjtions 2

[I.2.17 Defining languages using meta-modelling 2

[1.2.2 Structure of the language reference 2
(1.3 Related work and relation to other documents 2
1.4 Sfructure of thisdocumeént 4
(1.5 Usageguidelines e 4

[Conceptual Overview of the Structural Requirements Language 5

l2__Introduction| 6
2.1 Typical OOAD methad 6
[2.1.1 Requirements modelling 7
.................................... 7
2.1.53 00D e e e 9
[2.2 OurlLanguade e e e 10

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Structural Requirements Language Definition — D2.2 ver. 1.00
Table of contents 30.01.2007
4.3 DomainvocabularyintheRSL o000 16
__Discussion 19
[[I" Language Reference 20
6 _Domalin entities 21
B.1 Overview e 21
6.2 Basicdomainelements 23
621 Overview 23
[6.2.2 Abstract syntax and semantics 24
[6.2.3 Concrete syntaxandexamples 26
6.3 ACIOIS e 28
631 Overview e 28
[6.3.2 Abstract syntaxand semantics 29
[6.3.3 Concretesyntax e 30
[6.4 Systemrepresentations e 31
B471 Overview e 31
[6.4.2 Abstract syntax and semantics 31
[0.4.3 Concretesyntax 33
[6.5 Elementrepresentations Lo o 34
B51 Overview e 34
[6.5.2 Abstract syntax and semantics 34
[6.5.5 Concretesyntax L 35
6.6 PNrases e e e e 36
6.6.1 Overview 36
[6.6.2 Abstract syntax and semantics 36
[6.6.3 Concrete syntaxandexamples 39
6.7 Termb e 40
B.71 Overview e 40
[6.7.2 Abstract syntax and semantics 40
[6.7.3 Concrete syntaxandexamples 47
/ nclusi 50
Bibliograp 51

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System

page VIl

Structural Requirements Language Definition — D2.2 ver. 1.00
List of figures 30.01.2007

List of figures

[4.1 Scenario with separated domain vocabllary 16
[6.1 Overview of packages inside tbemainEntites partof RS 22
6.2 Basicdomainelements 24
[6.3 DomainVocabulary example, normaland tree view 26
[6.4 DomainElementtreeviewexample 27
[6.5 DomainElement's diagramexample 27
[6.6 DomainElement’'s diagramexamiple 28
[6.7 DomainElementRepresentation’s concrete syntax example 28
[6.8 DomainStatementexample 28
[6.9 Actormetamodelpart 29
[6.10 The concrete syntaxofanadtor.. 30
[6.11 Systemrepresentations e 32
[6.12 The concrete syntax of an system compohent. 33
[6.13 Entity representations e 34
0.14 PRrases e e e 37
[6.15 Phrase concrete syntaxexamples 0. 39
[6.16 SimpleVerbPhrase concrete syntaxexamples 39
[6.17 ComplexVerbPhrase concrete syntaxexamples 39
[6.18 Thesaurus, Term and Its specialisations. 41
[6.19 Specialisation Relations of terms from the samefjtype. 42
[6.20 Part of a Thesaurus in abstract syntax with organisation-specific extension (only

| Nouns are presented inthisfiguie.) 43
[6.21 Partof a I'hesaurus In abstract syntax with organisation-specific extension (only

[Verbs are presented inthisfigude.) 44
[6.22 Package view: thesaurus's concrete syntax. 48
[6.23 Thesaurustreeviewexaniple 48

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIl

Structural Requirements Language Definition — D2.2 ver. 1.00
Scope, conventions and guidelines 30.01.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document provides a conceptual overview, and defines syntax and semantics for the ReD-
SeeDS Structural Requirements Language (SRL). This definition is required to aid the construc-
tion of accurate requirements specifications in the form of descriptive or model-based represen-
tations.

The conceptual overview of the SRL explains the approach taken to allow for describing struc-
tural requirements meant as vocabularies and thesauruses or ontologies containing domain ele-
ments, including terms used in the domain and their descriptions. This document then presents
the SRL Reference which covers definitions for Domain elements. This reference explains the
syntax of the language in its abstract form (using a meta-model) and in its concrete form (using
concrete examples of language usage). The semantics of all the language constructs is also
defined.

The definitions for Domain elements describe language constructs that allow for depicting el-
ements of the domain vocabulary. This explains how to structure domain elements into full
vocabularies. It also defines possible relationships between domain elements, including the
system under development and actors. The reference for Domain elements defines top-level,
general representations for all the constructs of the language, including its behavioural and Ul
part (see deliverables D2.1, D2.3). It also defines how to express phrases and terms that can be
used for representing Domain elements. Within its definition, the SRL uses hyperlinks as basic
facilitators of coherence. This allows for building a requirements specification where behav-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Structural Requirements Language Definition — D2.2 ver. 1.00
Scope, conventions and guidelines 30.01.2007

ioural and quality requirements are based on the domain vocabulary, thus greatly enhancing the
possibility to reuse it in the future.

1.2 Approach to language definition and notation conventions

1.2.1 Defining languages using meta-modelling

The Structural Requirements Language (SRL) is defined using a meta-model. A meta-model
can be treated as a definition of a language in which models can be expressed properly. A meta-
model sets well-formedness rules for models. A model has to comply with the meta-model of
the language it uses. In defining the whole Requirements Specification Language (RSL) we use
MOF [ODbj03] as a meta-modelling language. More details on the meta-modelling approach and
notation conventions are given in D2.1, section 1.2.

1.2.2 Structure of the language reference

Part Il of this document contains the SRL definition. It has been divided into sections according
to logical structure of packages of the BRL.

SRL is contained in a single main package “Domain elements” which starts with an overview
of division into subpackages. Every subpackage is presented in an overview explaining general
ideas behind a package, a meta-model diagram for this package and two sections which describe
the abstract syntax with the semantics of language constructs and their concrete syntax.

1.3 Related work and relation to other documents

External research work conducted in compliance with formulating a good understanding of
the Structural Requirements Language included researching and reasoning about such areas
as software case representations, query procedure pragmatics, Domain representation, Do-
main mapping with or without hyperlinking, Domain access methods via taxonomies and sim-
ilarity measures concerning domain constructs (vocabulary items) and requirement dependen-
cies/interdependencies leading to possible upgrades of the domain or industry specific dictio-
nary of terms.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Structural Requirements Language Definition — D2.2 ver. 1.00
Scope, conventions and guidelines 30.01.2007

In Chapters [3] 4 anld 6 means for modelling domain entities are introduced, such as domain
entity types, vocabulary, phrases, and terms. Terms are organized in a thesaurus. Domain enti-
ties are used for representing requirementsamfhnew software development project forming

a requirement model of the developed software case. For performing case retrieval on the basis
of similarity measures, this requirement model is mapped and included in a soswiwdre
knowledge modelThis software knowledge model contains the knowledge knowalf@oft-

ware cases of an organisation i.e. the software vendor that implements the different software
cases.

For reuse purposes, we strive in this project for finding software cases based on similarity mea-
sures. In principle, this can be done by text-based approaches, where our thesaurus as defined
in the language will be very useful. For including more semantics into similarity measures, an
ontologyof the given application domain should be available. While our requirements language
does not yet include any means for knowledge representation and reasoning, the user may still
use it to represent a domain model using object-oriented means (in the form of a domain ele-
ment diagram, as derived from a UML class diagram). Such models can be used as a simple
form of ontology. These issues will be worked out in Workpackages 3 and 4 of ReDSeeDS and
discussed in the related deliverables.

One form of representing requirements in ReDSeeDS is to write them down in constrained
language. This constrained language uses the so-@&eqO)-Grammarrecently researched

at WUT [SBNSO5b| SBNSO5a]. Other significant work concerning some kind of restriction
to natural language was and is still done in thigemptoresearch project conducted by the
Department of Informatics and the Institute of Computational Linguistics at the University of
Zurich [FHK™05].

The Attempto Controlled English (ACHxnguage developed in the course of thigempto
project is currently available in its fifth version. Although ACE closely resembles natural Eng-
lish, the syntax of a text written in ACE is based on a defined abstract grammar which avoids
ambiguity in language constructs [Hoeﬁ%urthermore, ACE can be automatically translated
into first-order logic and consequently be read by humans as well as by machines.

1The cited article contains abstract grammar for ACE 4.0. The grammar for version 5.0 has not been published
yet.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Structural Requirements Language Definition — D2.2 ver. 1.00
Scope, conventions and guidelines 30.01.2007

1.4 Structure of this document

Part] of this document, covering chaptg}s Zjto 4, gives a conceptual overview of the Structural
Requirements Language. While chapter 2 serves as an introduction, the following chhpters 3
and[4 describe different types of entities existing in a domain and the conceptual model of the
domain’s vocabulary, respectively.

PartT], after discussing the benefits and consequences of using a domain vocabulary in its first
chaptef b, defines six major packages of the language meta-model in its second[¢hapter 6. The
first four of these packages are related to the basic domain entities, the actors in the system’s
environment and the representations of the system and the entities. The fourth package contains
phrases and other, more fine-grained elements which compose phrases. Phrases constitute the
names of the entities as well as the parts of a sentence in constrained language. The last package
comprises the individual terms which can occur in a phrase. Each section concerning one of
the packages has an overview, defines abstract syntax and semantics, and then gives a short
explanation of the concrete syntax using the Fitness Club case study as a running example.

The final Chaptef |7, sums up the document and draws conclusions from the previous parts.

1.5 Usage guidelines

ReDSeeDS Structural Requirements Language (SRL) definition should be used as a book that
guides the reader through the structure, syntax and semantics of the SRL, as part of the complete
ReDSeeDS Requirements Specification Language. It should be used mainly by creators of
appropriate CASE tools that would allow handling of the language by end users (analysts, etc.)

to express descriptions of static elements (domain elements) of the system under development.
It can be used by advanced end users of the language as a reference to the language’s syntax and
semantics. Examples of SRL elements’ concrete syntax have illustrative character and should
be treated only as support in understanding of each element’s occurrence.

Users of the SRL Specification are expected to know the basics of metamodelling and MOF
(Meta Object Facility) specification [ObjD6]. Knowledge of UML ([Obj05b] and [Obj05a])
could be helpful as some elements of SRL are extensions, constraints or redefinitions of UML
elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Structural Requirements Language Definition — D2.2 ver. 1.00
30.01.2007

Part |

Conceptual Overview of the Structural
Requirements Language

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Structural Requirements Language Definition — D2.2 ver. 1.00
Introduction 30.01.2007

Chapter 2

Introduction

The Structural Requirements Language Definition is primarily concerned with the specification
of entities or concepts in an application domain. Referring explicitly to entities of an application
domain from requirements was proposed in [Kai97].

Traditionally, we use object-oriented analysis and design methods to discover these entities in
a domain and then use them for design purposes. However, several misunderstandings existed
about which entities are to be represented in the course of object-oriented analysis. For a dis-
cussion and clarification sele [Kai99]. A clear separation between analysis and design artefacts
in a meta-model can be found in [EK02].

In this chapter we describe a common approach to OOAD, i.e., how the domain entities are
discovered and used, and in the next chapter we discuss what is typically captured using these
types of methods and how our language documents it.

2.1 Typical OOAD method

This section describes the parts of a typical object-oriented analysis and design (OOAD) method.
Full details about OOAD methods can be found in many OOAD books and articles (e.g./[Lar01,
GomO01/Dou989, Kai99]).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Structural Requirements Language Definition — D2.2 ver. 1.00
Introduction 30.01.2007

2.1.1 Requirements modelling

Input: Business tasks, use cases, and other business engineering artifacts.

Goal: Break down business-level artifacts in order to capture and define the scope and respon-
sibilities of a system to be built that meets the requirements embodied in the input.

Activities: The main requirements modelling activities are:

¢ Identify mainbusiness goalgprocessegesourcesandfeatures

e Write use case descriptions with a clear identification ofatt®rsand thedataex-
changed between the system and the environment, acdtibextexpressed through
pre-conditions, post-conditions and invariants.

e Draw a use case diagram with all the use cases in order to depict the relationships
among use cases.

2.1.2 OOA

Input: All Requirements Modelling artifacts.
Goal: Decompose requirements artifacts and build a domain model.

Activities: The main OOA activities are:

e Relate use cases to each other with respect to their main concerns. This produces
the first level of the domain’s decomposition into related functionality domains, that
is, the domain subsystems. Show the decomposition of the use case diagrams using
the UML package notation. Repeat this step for any identified domain subsystem.

e For each domain subsystem, from its task and use case descriptions, extract its
classes, attributes, and the relationships among them. Show the decomposition us-
ing UML-like class notation in what is known as a domain model (DM). This step
is present in most OOA methods. Our opinion is that use case conceptual analysis
is not an effective way for developing the DM. Analysts should have good prior do-
main knowledge, which should be the main source for domain concepts. Of course,
in the absence of knowledge of the domain, use case conceptual analysis at least
represents a good starting point.

e Extract common concepts from different domain subsystems and allocate them to
common domain subsystems.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Structural Requirements Language Definition — D2.2 ver. 1.00
Introduction 30.01.2007

e Emphasise relationships among data concepts in the DM. Data concepts represent
external data with a high probability of having to be used and preserved within
the system. These data concepts and their relationships constitute the traditional
relational part of the DM.

e With use cases, develop the domain-level interaction diagram. The main goal of this
step is to define the domain’s external interface.

e With use cases, DMs, and the domain-level interaction diagram, for each domain
subsystem, develop the domain subsystem interaction diagrams. The main goal of
this step is to define the domain subsystems’ interfaces. Use higher-level domain
subsystem interaction diagrams to develop the lower-level domain subsystem inter-
action diagrams. This activity is recursive.

e With use cases, DMs, and the domain subsystem interaction diagrams, develop the
low-level object interaction diagrams. The main goal of this step is to capture:

— how objects collaborate to accomplish the functionality described in use cases
— note, these objects are the objects from the domain and not the software
objects,

— definitions of object interfaces,

— object associations and interactions, and

— the sequence of the objects’ interactions.

¢ With all interaction diagrams, build a unified collaboration diagram (UCD) without
message numbering, multiple objects of the same type, or object names. Indicate:

— Controller andcoordinator objects— the main sources for the definitions of
active objectsn the design phase.

— Entity and service objects— the main sources for the definitions passive
objectsin the design phase.

— External objects— the main sources for the definitions iterfacesin the
design phase. These objects include devices and business resources.

e With the UCD, record each message as a method in the DM.

e For each controller and coordinator object in the UCD, develop a state diagram.
The messages from the UCD are the main sources of events; the mapping is not
necessarily one to one.

e Develop state diagrams for any additional objects that have non-trivial state transi-
tions. The messages from the UCD are the main sources of events; the mapping is
not necessarily one to one due to the possible presence of internal events.

Additional Notes: Itis usually recommended that one should capture invariants, pre-conditions,
and post-conditions for each entity in the OOA artifacts. Each entity or artifact has to be

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Structural Requirements Language Definition — D2.2 ver. 1.00
Introduction 30.01.2007

taken into account and to be related by its constraints, business goals, business rules,
non-functional requirements, to other artifacts captured during the requirements model-
ing phase.

2.1.3 0OO0D

Input: All requirements and domain model artifacts, with special emphasis on the DM, the
UCD, and the state diagrams.

Goal: Map the domain model into an OOD model [Kai99] taking into account internal system
requirements and development resources.

Activities: The main OOD activities are:

e Using the domain subsystem information from the DM and internal architectural
requirements, design the initial high-level non-run-time architecture of the system.
Define the interfaces of the system and its subsystem.

e Using the DM and the UCD, in addition to internal system requirements, map do-
main concepts into software classes. This mapping should be performed taking into
account reusability, maintainability and other design goals. Take into account the
internal system requirements such as persistence, security, performance, and so on.
Augment and refine the class interfaces.

¢ Define the run-time architecture of the system. Define run-time components, processes,
and processing node allocations.

¢ Define the run-time communication channels, interfaces, and protocols.
e For each run-time entity, i.e., component, process, or communication channel:

— make its decomposition explicit, i.e., define out of which objects it is con-
structed, and

— make a clear distinction between active objects, i.e., controllers and coordina-
tors, and passive objects, i.e., data concepts, computation and logic providers.

o Refine all class interfaces.

e Foreach class, design its internals, i.e., its algorithms, additional classes, data types,
internal attributes, and so on.

There are many different OOAD methods, but common to all of them is an early conceptuali-
sation of the domain into concepts. These concepts drive specification and have an impact on
all the produced OOAD artifacts and, in some cases, propagate all the way to the code. This

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Structural Requirements Language Definition — D2.2 ver. 1.00
Introduction 30.01.2007

propagation of the concepts and the concepts’ influence on the other produced artifacts might
have both positive and negative effects.

2.2 Our Language

A typical approach to OOAD is described above. Our language can be useful for the early
stages of such an approach. Nevertheless, our language introduces a number of changes and
enhancements. Namely, we do not use UML class diagrams with attributes and methods. We
use “domain entity diagrams”, where domain elements have Phrases. Our language describes
these domain entities. Our language also allows for linking the vocabulary precisely with the
behavioural and quality requirements. However, we are also not limited to use cases only.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Chapter 3

Domain entities

The main purpose of a domain model (DM) is to capture the entities that exist in a system’s
domain. The domain can be seen as consisting of:

e business entities, and

e computer entities, including hardware and software.

In the sections below we discuss these two main groups.

3.1 Business entities

A software system is part of a larger business system, and serves as a resource to accomplish
business goals. To build a useful DM, we need to study and discover different business entities
of the domain. The possible sources of business entities are presented below:

1. Business Resources All entities, both physical and abstract, that exist inside the en-
vironment of the business are business resources. They include people, information,
different systems, and business supplies and products. They participate in the business
processes. A subset of these resources is a source of modelling entities for the system to
be built. The value of tracking and preserving knowledge about these entities is that these
entities are used to perform analysis of the system’s architecture, to track changes to the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

domain and the system from the beginning, and to evaluate how well the system reflects
current business needs. For an elevator system, an example business resounadle the
used to pull up the elevator cab.

2. Business Processes- A system to be built may participate later in several business
processes in order to help achieve several business goals. Use cases (UCs) describe sub-
processes of larger business processes that are automated by the software system. It is
important to understand a business process as it relates its UCs, which in turn relate soft-
ware requirements that the system has to satisfy. For an elevator system, an example
business process @spassenger’s riding of an elevator cab

3. Business Rules- Business rules are a major source of constraints on a software system.
Many constraints directly influence the system’s architecture. Therefore, it is important
to understand these constraints and to keep track of them, for example, to be able to
remove architectural limitations imposed by constraints that do not hold any more. For
an elevator system, an example business rulledslevator will not change its direction
until it services all previously received calls that lie in the current travelling direction

The main source of business domain objects are Business Resources, but they are very tightly

interlinked with Business Processes and Business Rules. In some cases, they cannot exist sep-
arately. Therefore, we need to seek for domain objects inside business process or business
rule descriptions. These are not intended to be described using our Structural Requirements

Language (SRL), but can be sources to elements expressed in the SRL.

3.2 System entities

It is often a case that we are building a new system for which domain consists of an already
existing computer-based system that includes both software and hardware. For such a system,
domain entities are not some “natural” objects but rather software and hardware components
and other building blocks. For such domains, the main aspects of a system that should be
modelled are:

e System
e subsystems

e modules

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

e connectors
e processesand

e hardware devices

The Systeﬁ entity defines the outermost boundary of the system under consideration. The
Systenserves as a container for all other entities, and defines the system as a resource in the
business system.

A subsystens a part of aSystenor asubsystenbeing an abstraction of actual physical mod-
ules, connectors, and processes. It serves as a container and a building block.

A moduleis a basic architectural building block. For example, in the logical view, it represents
a entity that occurs in a domain, and in the implementation view, it represents a code unit.
Modulesare abstractions of basic building blocks of the domain, depending on the development
technology used.

A connectoris an abstraction of a communication mechanism or a channel that exists in a
system. Its size and complexity vary from a simple procedure call to a connection on the
Internet.

A procesds an executable piece of softwaRrocessesre basic building blocks of a run-time
architectural view.

A hardware devicés an entity that occurs in the run-time architectural view, and it represents a
physical device that is a part of the system.

The above types of system entities have their place in the domain model created at the require-
ments level, using the SRL. The System entity is used throughout the descriptions of functional
requirements in general, and in use case descriptions (scenarios) specifically. Other system en-
tities can be used in requirements that specify technical constraints on the prospective system.
Refer to document D2.1 for more details.

Note that this “system” is spelled out with initial uppercase letter to distinguish it from the generic “system”
used elsewhere.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain vocabulary representation 30.01.2007

Chapter 4

Domain vocabulary representation

4.1 Overview

This Chapter introduces the concept of domain vocabulary. In Sgctipn 4.2 the need to separate
the vocabulary from a requirements representation is explained. This section also describes the
structure of domain vocabularies. Section 4.3 shows the idea of the vocabulary in the context

of the whole ReDSeeDS Requirements Specification Language (RSL).

4.2 Domain vocabulary concept

The main purpose of a requirements specification in software engineering is to reflect the real
needs of the clients. This specification should be the basis on which developers build a soft-
ware system of a good quality — i.e. a system that meets clients’ expectations to high extent.
Unfortunately, a commonly encountered problem with requirements specifications is that they
are imprecise and have many inconsistences. Specifications are often written using wordy style
or, on the contrary, they are too general. In both cases, the intentions of the writer are hard to
understand and interpret causing ambiguity. The majority of requirements specification writers
tend to mix descriptions of the system’s behaviour, quality or appearance with descriptions of
notions from the application (problem) domain. Definitions of notions are buried in many differ-
ent places inside scenarios, stories or simply free text. What is more harmful, the same notions
often have conflicting definitions and, on the other hand, a number of different synonyms are
used to describe identically (or close to identically) defined notions. Having the requirements
specification of such a poor quality, it is a very hard task to build a system that fully fulfills the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain vocabulary representation 30.01.2007

real clients’ needs. It is hard to reflect these requirements in the architecture and in the design
of the prospective system as well as to apply changes in the system when requirements change.
Finally, imprecise requirements make it close to impossible to apply the concept of software
reuse at the level of problem definition.

To overcome all problems mentioned above, we need a special language for creating precise
and consistent requirements specifications. With this language we should be able to describe all
functional and non-functional requirements on the prospective system with the simplest possible
sentences in well defined grammar. For example, to describe interactions between a customer
of a fitness club and the fitness club system in a scenario, sentences in SVO(O) grammar (see
deliverable D2.1) could be used:

e Customer wants to sign up for exercises.
e System shows time schedule.

e Customer chooses time from time schedule.

With these simple sentences we can precisely describe actions performed by an actor or by the
system. However, they are not appropriate for defining the notions used therein. For example,
we lack explanation of what ‘exercises’ or ‘time schedule’ is and how they relate to each other.
In order to avoid inconsistencies, as mentioned above, we should not insert definitions of no-
tions into the sentences. Thus, the requirements specification language should provide means
to describe the environment of the system. We need to hal@in vocabulary- a repos-

itory that keeps all necessary notions from the system’s domain along with their definitions
and relationships between them. For the above example, the domain vocabulary would contain
definitions for nouns:

Exercises —Form of physical activity performed in fitness club. Exercises may be [cyclic ex-
ercises] or [sporadic exercises].

Time schedule —A program of [exercises] offered to [customers] by the [fitness club] in a
given period of time: day, week or month.

Square brackets in notion definitions denote relationships with other notions. Every notion in
the domain vocabulary can have different forms (i.e. singular and plural) and synonyms. In
addition to nouns, the domain vocabulary can also contain verbs. However, verbs do not have
their own autonomous definitions — they are related to nouns as their meaning depends on the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain vocabulary representation 30.01.2007

Domain vocabulary

. Customer wants to sign up for exercises.
. System checks availability of exercises* -
. System shows time schedule. B

. Customer chooses time from time schedulg'
. System shows sign-up summawialog. S~ O

. Customer submits sign-up for exercises. S

. System signs up customer for exercis?s\ S o
S sign-up~ | | availability time

N < N~ -
N Sa

—

— ;
= * exercises customer

NOOGOAWN=

sign-up summary dialog time schedule

Figure 4.1: Scenario with separated domain vocabulary

context of a concrete noun. Verbs are treated as behavioural features of related nouns. For
example, “choose exercise” has a different meaning than “choose time from time schedule”,
although both contain the verb “choose”.

The domain vocabulary should be partially created by interviews with the future users of the
prospective system as well as with specialists from the problem domain. While writing re-
guirements in an appropriate grammar (see deliverable D2.1), the writer has constant access
to the vocabulary and can easily insert notions directly into sentences. He/she can also extend
the vocabulary at any time by introducing new notions and their definitions. Higdre 4.1 illus-
trates the concept of separation of the domain vocabulary from requirements descriptions. In
the example, scenario sentences have links (depicted as dashed arrow lines) to notions defined
in the domain vocabulary (depicted as boxes). The lines connecting the notions in the domain
vocabulary denotes relationships between them.

4.3 Domain vocabulary in the RSL

Domain vocabulary should hold all the notions used in a requirements specification. Notions
are usually nouns from the problem domain that the requirement specification describes. In
RSL, such a notion is represented by DomainElement.

Such a DomainElement should include a description (definition) and relations to other Do-
mainElements and phrases containing this DomainElements. For this reason, the RSL's domain

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain vocabulary representation 30.01.2007

vocabulary is based on the phrase concept. Every DomainElement is described by its wiki-like
description (text with hyperlinks relating to other notions or phrases). Its name is a phrase,
composed from noun terms (and optionally some modifiers and/or quantifiers). DomainEle-
ment also contains a set of phrases referring to this notion. A phrase, in a similar way to a
notion, contains its definition in the wiki-like description form.

Every phrase is based on terms existing in a general thesaurus. A thesaurus stores terms with
their inflections, classified by their types of speech. These terms are the building blocks for
phrases. Terms in a thesaurus are related to their homonyms and synonyms. Such information
allows for measuring similarity between phrases composed of such terms. This mechanism
makes it possible to use not only identical, but also similar phrases when trying to reuse re-
quirements.

In RSL we need a set of grammars that would allow us to express precise, coherent and well-
formulated user requirements. If these grammars are based on a properly structured vocabulary,
they ensure separation of concerns (behaviour from the environment description) and guarantee
consistency of requirements expressed.

The proposal to use a domain vocabulary structure facilitates creation of other parts of the RSL
(behavioural, Ul, quiality) through the use of phrases as atomic “lexemes”. Any phrase can be
perceived as a complex domain vocabulary element. Using phrases as lexemes we can easily
define grammars based on such complex elements. For example we can define an SVO(O)
sentence (see deliverable D2.1) using just two phrases: a subject phrase and a predicate phrase.
Subject can include any noun from a domain vocabulary grouped with its quantifier and modifier
(which together form a noun phrase, eegery registered customexuthorized user Predicate

is a more complex phrase, containing a verb and possibly referring to some other notion (it is
a noun phrase). Such a VerbPhrase forms the VO (simple verb phrase) or VOO (complex verb
phrase pointing also to another notion) part of the sentence. Let's now consider the following
example sentences that use the SVO(O) grammar:

e User submits form.
e System adds user to the user list.

e Registered customer cancels reservation.

The first sentence consists of theer phrase (a noun with no quantifier or modifier) in the
role of a subject and theubmits formsimple verb phrase in the role of a predicate (VO part
of the sentence). The second sentence consists dfyftemphrase in the role of a subject

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain vocabulary representation 30.01.2007

and theadds user to the user lisiomplex verb phrase (pointing to thser listnotion) in the

role of predicate (VOO part of the sentence). In the third sentence we have an example of a
more complex noun phrasegistered customefcontaining a modifier). For more details and
examples please refer to Chagtgr 6

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Structural Requirements Language Definition — D2.2 ver. 1.00
Discussion 30.01.2007

Chapter 5

Discussion

Requirements can be compared to novels in literature. Good novels communicate stories treated
as sequences of events, and place these stories in a well described environment. Unfortunately,
writing “stories” that describe requirements for software systems seems to be equally as hard as
(or harder) than as writing good novels. However, unlike writing novels, lack of coherence and
ambiguities may cause disaster when developing a system based on such requirements.

Finding inconsistencies in a set of several tens or hundreds of requirements is quite a hard
task, especially, when these requirements are written by different people and at different times.

It seems that keeping the vocabulary separate from the rest of the requirements specification
can significantly facilitate keeping sparse requirements documents consistent by keeping the
vocabulary controlled. This is because most inconsistencies in requirements are caused by
contradictory definitions of terms. To eliminate the source of such inconsistencies we introduce

a single repository of notions (a vocabulary) that can be used in various requirements. This

means that for instance, the behavioural requirements could use definitions already found in the
repository and just concentrate on the actual sequence of events.

In addition to the above, having a clearly defined vocabulary makes it possible to introduce
certain query mechanisms that would allow for easy retrieval and reuse of requirements. For
such mechanisms it is very important to be able to compare requirements. This comparison
should be based on a thesaurus where terms with similar meaning are related. It has to be
stressed that the language to define vocabularies has to be used in conjunction with a tool.
This is necessary as using notions stored in a vocabulary within requirements and keeping it
constantly coherent would be very laborious and error-prone if done manually. Thus such a
tool would need allow for providing consistency between different requirements using the same
notions (notion has the same definition wherever it is used).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Structural Requirements Language Definition — D2.2 ver. 1.00
30.01.2007

Part Il

Language Reference

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Chapter 6

Domain entities

6.1 Overview

The DomainEntities part defines the domain description aspects of a requirements specification.
All terms that are domain related, for instance actors and components of the system under
development as well as special actions of actors or the system will be stored in the domain
vocabulary.

While this part of the language has a focus on structured language, it also allows basic object-
oriented representation of structured domain knowledge in the spirit of UML class diagrams.
So, even a simple form of ontology can be represented in this language. Further work on the
guery mechanism in WP4 and the experiences from industrial applications during ReDSeeDS
will show whether extensions of the requirements language would be desirable for supporting
a knowledge representation and reasoning approach, which would support the representation of
ontologies even better.

The specification in this part of the Requirements Specification Language contains six packages
as shown in Figurg 6].1.

e The Terms package contains constructs that allow for building a thesaurus of words
(terms) that can be used in various requirements specifications. Out of these terms, more
complex constructs, like phrases can be built. This is done through the use of hyperlinks
to appropriate terms in the thesaurus.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Sy=temUnder Dewvelopment

wimpoarts wimports
yeimports
kernel | EasicDomainElements | FPhrases |
e SO >
aimporte wimparts
@'.—ui?é: LI etz ode!)) ", . M
' wimports 7 H i wimparts N H
Elemert Representations | E Terms |
V aimports
FAotors
wimports aimports

Figure 6.1: Overview of packages inside th@mainEntities part of RSL

e ThePhrases package adds to the language important constructs that allow for building
parts of sentences in a structured language. Phases of various type are constructed as sets
of hyperlinks to appropriate words in the thesaurus.

e TheElementRepresentations package supplies the language with abstract, high level con-
structs for elements with their representations separated. These elements have names, and
their representations contain sets of sentences. Both the names and sentences can contain
hyperlinks to terms or phrases.

e TheBasicDomainElements package is the basis for the construction of a domain vocabu-
lary. Such vocabularies contain sets of domain elements which define notions existing in
the problem domain. These notions have appropriate statements attached which allow for
expressing various phrases associated with a given notion. All the vocabulary elements
are representable through hyperlinked text. Domain elements can have relationships.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

e TheActors package allows for defining actors as part of the domain vocabulary. There
can be shown relationships between actors. Actors are representable, and can have de-
scriptions in hyperlinked text.

e The SytemUnderDevelopment package adds to the vocabulary the possibility to express
the system and its general components. This does not allow for designing the system but
allows for showing those elements of the system that might be used inside requirements
specifications.

Generally, the vocabularies defined through our language consipmésentableElements
which have names aniyperlinkedSentences as descriptions. Since thedgperlinkedSen-
tences may contairHyperlinks, RerpesentableElements resp. their descriptions that are related
to each other are logically connected.

RepresentableElements can be actors, system components, special actions or entities that are
domain-related, but not part of the system under development. Hence, thRepessentableEle-

ment is a base class for some more special classes sustt@s SystemComponent, andDo-
mainElement. Everyone of these classes derived frRapresentableElement may have special
associations to oth@epresentableElements, for instance th®omainElement calledwristband

in the fitness-club is associated with thetor customer as every customer wears a wristband.
These associations are modelled with the ciassainElementAssociation and derived ones.

6.2 Basic domain elements

6.2.1 Overview

This package describes the general structure of domain elements asRagtioédmentsSpec-
ifications :: RequirementsSpecification. This structure is typical three level package structure.
We have thédomainVocabulary class that defines the top level element holding a whole collec-
tion of DomainElements (second level) for a specific system. EvBgmainElement has to have

at least on®omainStatement (third level). DomainStatement is a description of an element of

the domain of the system to be developed with its context.

DomainVocabulary can be presented in Package Diagrams that have their syntax derived from
UML Package Diagram®omainElements are presented iDomainElements Diagrams as sim-

ple rectangle icons with their ‘name’ or rectangle with ‘name’ and nameswkinStatements
included in concret®omainElement. DomainStatements are presented in a form of source or
preview of wiki-like hyperlinked sentence. All these elements can be placed in the Project Tree.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007
6.2.2 Abstract syntax and semantics
Abstract syntax for th@asicDomainElements package is described in Figure|6.2.
Kernel:: DomainElementAssociation I{tha(:gﬂgst;et:ne\g;?smuh?sgl!‘names"
. . | Wi
Relationship <l contain Phrases linked with the same
Noun as in the DomainElement's "name"}
. 2 .
relatedDomainElement | (redefines e
relatedElement} -7
Package .
DomainVocabulary Package| .7 Hyperlink Term
K >—————— DomainElement |-~ name NounLink linkedNoun Terms::Noun
T fredef : !
redetines
{redefines
name} linkedTerm}
47 >
Ei “-\'c,n tations:: 1
RepresentableElement
0.* 1.*
{redefines representations {redefines
statements | ownedMember} representations}
DomainStatement ElementRepresentation
representations | DomainElementRepresentation
@ T
{redefines
representations}

1
name {redefines name}

StructuredLanguageSentence
Phrases::Phrase

Figure 6.2: Basic domain elements

DomainVocabulary

Semantics DomainVocabulary is a type of UMLPackage, i.e. a structure that groups elements
and constitutes a container for these elements. It can contairboniginElements andActors

:: Actors. DomainVocabulary is specific for only on&kequirementsSpecification.

Abstract syntaxDomainVocabulary is a specialisation dML :: Kernel :: Package ([Obj05K]).

It can contain manypomainElements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System

page 24

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

DomainElement

Semantics.This is a type of a UMLPackage, i.e. a structure that groups elements and con-
stitutes a container for these elemer®mainElement contains allDomainStatements whose
‘name’s contairPhrases linked with the sam@erms :: Noun as in theDomainElement’s ‘name’.
DomainElements can be related.

Abstract syntaxDomainElement is a specialisation afML :: Kernel :: Package ([Obj056]) and
ElementRepresentations :: RepresentableElement. It redefinesownedMember. Owned mem-
bers for theDomainElement must beDomainStatements. It also redefinesame’ with NounLink

and representations witbomainElementRepresentation. DomainElements can be related only
by DomainElementAssociation.

DomainElementRepresentation

SemanticsThis is a representation for elements from paclk@agcDomainElements (Domain-
Statement andDomainElement) in form of wiki-like description. It contains set of hyperlinked
sentences derived froRepresentableElements :: ElementRepresentation.

Abstract syntax DomainElementRepresentation is concrete specialisation BEpresentableEle-
ments :: ElementRepresentation. It overridesrepresentations for classes from packag#asic-
DomainElements.

DomainElementAssociation

Semantics DomainElementAssociation denotes relationships between tlvomainElements.
Abstract syntax. DomainElementAssociation is a kind ofKernel :: Relationship [ObjO5b]. It
connects twdomainElements by redefiningelatedElement with relatedDomainElement. This
relationship is not directed.

NounLink

Semantics. NounLink is a hyperlink that points to th@rms :: Noun used for namingdo-
mainElements.

Abstract syntax.A NounLink is a kind of aBasicRepresentations :: Hyperlink. It is associated
with Terms :: Noun andDomainElement.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

DomainStatement

Semantics. DomainStatement is a wiki-like description of an element of the domain of the
system to be developed with its context - noun with modifiers, verbs and other nmamain-
Statements are grouped iDomainElement.

Abstract syntax. DomainStatement is a specialization oElementRepresentations :: Repre-
sentableElement. It redefinesname’ with Phrases :: Phrase. DomainStatements are contained
in DomainElement.

6.2.3 Concrete syntax and examples

DomainVocabulary.The concrete syntax is similar kernel :: Package, described in the UML
Superstructure (in [Obj05b], paragraph 7.3.37, page 104): “A package is shown as a large rec-
tangle with a small rectangle (a 'tab’) attached to the left side of the top of the large rectangle.
(...) Members may also be shown by branching lines to member elements, drawn outside the
package. A plus sign (+) within a circle is drawn at the end attached to the namespace (pack-
age). (...)” In addition to the above Kernel :: Package description, namerséinVocabulary
package is inside rectangle situated in the center of the large rectangle. It can also be presented
in a tree structure with a minimized icon. See Figureé 6.3 for examples of concrete syntax in a
Package Diagram and in a Project Tree structure with a minimized icon, respectively.

= [55] Domain Yocabulary
M E? bracelet
E? club offer
E? club price

[+ == custormer

Domain Vocabulary

Figure 6.3: DomainVocabulary example, normal and tree view

DomainElement.The basic representation DbmainElement is denotated by a rectangle with

its name inside it (see Figure 6.5). Another form of representation is a rectangle divided into two
parts by a horizontal line. The name@dmainElement is placed in the upper part. The bottom
part includes hyperlinked hames DbmainStatements, each in its own rectangle (see Figure
[6.6). DomainElements can be presented in s diagram as both of their forms of representation.
DomainElement can also be presented as a tree structure with a minimized icon. An example of
concrete syntax for the tree view bbmainElement can be found in Figure §.4.

DomainElementRepresentationis a description obomainElement. Its concrete syntax de-
pends on the context in whidbomainElementRepresentation is presented to the user. It can

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Structural Requirements Language Definition — D2.2

Domain entities

ver. 1.00
30.01.2007

= exercizes
P om))
-] change sign-up for exercises
H = .
b Exerrises
= .
w1 sign up For exercises

Figure 6.4: DomainElement tree view example

DomainElementAssociation

exercises

customer

\

sign-up

availability

time

sign-up summary dialog

Figure 6.5: DomainElement’s diagram example

time schedule

be represented in the form of a purely textual “source”, or in a “preview” form of sentences
with underlined wiki-like links. In sourcéomainElementRepresentation consists of text with

a double pair of square brackets (“[[]]") surrounding text to be hyperlinked in preview mode. In
preview, containe®asicRepresentations :: Hyperlinks are represented as coloured and under-

lined text (see Figurie 6.7).

DomainElementAssociationis presented as a line connecting two ordered SVOScenarioSen-
tence. See Figurés 6[5, .6 for examples of concrete syntax in a Domain Element Diagram.

NounLink. Concrete syntax is inherited from the BasicRepresentations :: Hyperlink meta-class.

DomainStatement.Concrete syntax includes the nhameDafimainStatement as a hyperlink to
Phrases :: Phrase or one of its subclasses and descriptiomaturalLanguageHypertext. It can
be represented in the form of a source or preview of wiki-like hyperlinked sentence. Example

of concrete syntax dbomainStatement can be found in Figure §.8.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

exercises
customer

‘ exercises ‘
DomainElementAssociation ‘ cyclic exercises
‘ sporadic exercises

‘ check availability of exercises

‘ submit sign-up for exercises ‘

sign-up
‘ want to sign up for exercises
‘ sign up customer for exercises time
time
availability
sign-up summary dialog pp—
-) — time schedule
sign-up summary dialog check availability
‘ show sign-up summary dialog ‘ ‘ time schedule ‘

‘ choose time from time schedule ‘

Figure 6.6: DomainElement’s diagram example

Source: View:

[[Customer]]'s interaction, when customer Customer's interaction, when customer
signs up for exercises chosen from signs up for exercises chosen from
[[available exercises list]]. available exercises list.

Figure 6.7: DomainElementRepresentation’s concrete syntax example

6.3 Actors

6.3.1 Overview

This package contains that part of the RSL metamodel that deals with the representation of
actors in the requirements specification. Actors are for instance “customer” or “fitness club
employee”, they can be refered in every type of requirement representation.

Source: View:

[[sign up customer]] : [[for]] : [[exercises]] sign up : customer : for : exercises
[[Customer]]'s interaction, when customer Customer's interaction, when customer
signs up for exercises chosen from signs up for exercises chosen from
[[available exercises list]]. available exercises list.

Figure 6.8: DomainStatement example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

6.3.2 Abstract syntax and semantics

The diagram in Figurg 6.9 describes the RSL part that is related to actor. The two élasses
andElementActorAssociation which are introduced in this Figure are described in the following
sections.

Package ElementRepresentations:: RedefinableElement
BasicDomainElements:: RepresentableElement Kernel::Classifier

DomainVocabulary

0

Actor
1
< .
* |
1
Package | ! i
. . {redefines relatedActor /|\1 !
BasicDomainElements:: | |5tcqDomainElement} {redefines '
DomainElement relatedDomainElement}
1
relatedDomainElement i
relatedDomainElement /|\ 2 {Actor contains a pure
{redefines Phrase, not its
relatedElement} specialization}
1
* * * {redefines name}| name
Relationshil StructuredLanguageSentence
P ElementActorAssociation e
BasicDomainElements:: Phrases::Phrase
DomainElementAssociation <17

Figure 6.9: Actor metamodel part

Actor

SemanticsThis class is the most important class in this package. Every actor that is referred to
in the requirements specification is modelled as an instangetof. If requirements for a fit-

ness club system are specified, actors may for instance be “customer”, “system administrator”,
or “staff member”. Actors participate in scenarios and use cases on the one hand, but they may
also be referred to in other functional and even non-functional requirements.

Abstract syntax.The class\ctor is derived from the class&dassifier from the UML 2.0 Super-
structure andtlementRepresentations :: RepresentableElement. The aggregation tBasicRep-

resentations :: HyperlinkedSentence, which specifies theame of a ElementRepresentations :

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

RepresentableElement is redefined, thus the name of Actor may only be @hrases :: Phrase.

The constraint is added to this redefined aggregation because an actor’s name should be for ex-
ample “a customer” but notRhrases :: VerbPhrase like “take”. Actors can be associated with

other elements througilementActorAssociations, as described below Singetors are domain
specific, they are part of trgasicDomainElements :: DomainVocabulary.

ElementActorAssociation

Semantics. An ElementActorAssociation models the relationship between actor and other
domain specific entities in th@gasicDomainElements :: DomainVocabulary.

Abstract syntax.ElementActorAssociations base-class iBasicDomainElements :: DomainEle-
mentAssociation, which models the relationship between any BesicDomainElements :: Do-
mainElements. Since theElementActorAssociation should only be used to model the relation-
ship between onactor and oneBasicDomainElements :: DomainElement, the inherited associ-
ation toBasicDomainElements :: DomainElement is redefined as two associations, onéttor
and one td@asicDomainElements :: DomainElement, each of them needing exactly one instance
of Actor peiBasicDomainElements :: DomainElement to participate.

6.3.3 Concrete syntax

Actor. An Actor occurring in an interaction or a use case representation is depicted as a stylised
stick figure (see Figure 6.]L0), though not only a person can be an actor, but also external soft-
ware systems interacting with the system in development. The actars’ is written below

the stick figure.

Customer :Actor

Figure 6.10: The concrete syntax of an actor.

ElementActorAssociationThis class models a relationship betweentator and some other
BasicDomainElements :: DomainElements. This element can for instance be a noun like “wrist-
band” if a fitness club software system gets specified. In schematic requirement representations,
the ElementActorAssociation is modelled as a solid line from the stick figure representing the
Actor to the BasicDomainElements :: DomainElement the Actor is associated with. In textual
representations, tHeementActorAssociation are not explicitly modelled.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

6.4 System representations

6.4.1 Overview

This package contains the part of the RSL meta-model that deals with the representation of

the system under development and its components in the requirements specification. If the

system under development is the fitness club software system, its components are for instance
“terminal” or “database”.

6.4.2 Abstract syntax and semantics

The diagram in Figurg 6.11 describes the part of RSL that is related to system representation.
The three classesystemUnderDevelopment, SystemComponent, andElementSystemAssocia-
tion introduced in this Figure are described in the following sections.

SystemComponent

SemanticsThis class is the most important class in this package. Every part of the system that
is referred to in the requirements specification is modelled as an instaBgst@hComponent.

If requirements for a fitness club system are specified, system components may for instance be
“terminal”, “database”, or “reception computer”. System components can be referred in func-
tional and non-functional requirements.

Abstract syntax.The classSystemComponent is derived from the classedassifier from the

UML 2.0 Superstructure and the cla@smentRepresentations :: RepresentableElement. Sys-
temComponent is the base class f@ystemUnderDevelopment. The aggregation tBasicRep-
resentations :: HyperlinkedSentence, which specifies th@ame of a ElementRepresentations

:: RepresentableElement, is redefined, thus the name ofSgstemComponent may only be a
Phrases :: Phrase. The constraint is added to this redefined aggregation because a system’s
name should be for example “terminal” but noParases :: VerbPhrase like “take”. Sys-
temComponents can be associated with other elements thratigientSystemAssociations, as
described below. SincgystemComponents are domain specific, they are part of th@nain-

Vocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Structural Requirements Language Definition — D2.2 ver. 1.00

Domain entities 30.01.2007
RedefinableElement
. . FeeEre ElementRepresentations:: G i
BasicDomainElements:: RepresentableElement Kernel::Classifier
DomainVocabulary
0.1
+component
0.*
. SystemComponent
Package <17 SystemUnderDevelopment
BasicDomainElements:: | 1 @
DomainElement {redefines AN
relatedDomainElement} 1+re|atedSystemComponent .
\
. {redefines AN
*relatedDomainElement relatedDomainElement} .
2 N
{redefines [*relatedDomainElement AN
relatedElement} AN
\\
N
\
SystemComponent
contains a pure Phrase,
not its specialization
1
N x| +name | {redefines name}

Relationship StructuredLanguageSentence

ElementSystemAssociation
BasicDomainElements:: Phrases::Phrase

DomainElementAssociation

Figure 6.11: System representations

SystemUnderDevelopment

Semantics.The classSystemUnderDevelopment represents the whole system under develop-
ment as a black box. It can be used in all kinds of requirement representations, especially if
requirements on all parts of the system are modelled or if modelling is on a coarse granularity.
Abstract syntax.SystemUnderDevelopment is derived fromSystemComponent, So it inherits

all associations fronsystemComponent. SinceSystemUnderDevelopment depicts the whole
system under development, it may not be part of anddlgstemComponent, as the constraint

in the diagram indicates. Another restriction is the cardinality at the aggregatizontainVo-
cabulary, since there is exactly or&/stemUnderDevelopment during the requirements specifi-
cation process, it must be exactly oBgstemUnderDevelopment in the DomainVocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

ElementSystemAssociation

Semantics.An ElementSystemAssociation models the relationship betweersgstemCompo-
nent and other domain specific entities in themainVocabulary.

Abstract syntax.The base class d@lementSystemAssociation is the clasDomainElementAs-
sociation, which models the relationship between any tixamainElements. Since theEle-
mentSystemAssociation should only be used to model the relationship betweersgaem and
oneDomainElement, the inherited association @omainElement is redefined as two associa-
tions, one tBystem and one tdomainElement, each of them needing exactly one instance of
System perDomainElement to participate.

6.4.3 Concrete syntax

SystemComponentA SystemComponent Occuring in an interaction or a use case representa-
tion is depicted as a rectanglular UML object (see Figure|6.12). Piases :: Phrase that
defines thename of the SystemComponent is written in the rectangle. If 8ystemComponent

Is refered to in a textual description, it is represented only bythases :: Phrase that defines

its name.

Terminal :

SystemComponent

Figure 6.12: The concrete syntax of an system component.

SystemUnderDevelopmenfAs SystemUnderDevelopment is the SystemComponent at a very
coarse granularity, its concrete syntax is exactly the same &y$amComponent.

ElementActorAssociationThis class models a relationship betweesyatemComponent and
some otheDomainElements. This element can for instance be a noun like “wristband” if a fit-
ness club software system gets specified. In a schematic representatiflapteeSystemAs-
sociation is modelled as a solid line from the rectangle representingysg&mComponent to

the DomainElement the System is associated to. In textual descriptions, this association is not
explicitly modelled.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

6.5 Element representations

6.5.1 Overview

The packag€&lementRepresentations contains the class&epresentableElement andElement-
Representation that model the basic representation of domain-specific elements. These domain
specific elements are for instance actors, components of the system under development or other
terms from the problem domain that the requirement specification is describing. This section
describes only that part which all those element representations have in common; the specific
parts are described in the other sections of this chapter.

6.5.2 Abstract syntax and semantics

RepresentableElement ElementRepresentation BasicRepresentations::
representations L Requir Pl i

1.*

1.*

BasicDomainElements::
sentences | {ordered}

DomainElementRepresentation

BasicRepresentations::
HyperlinkedSentence

hyperlinksTO..*

BasicRepresentations::
Hyperlink

name

Figure 6.13: Entity representations

The diagram in Figurie 6.13 shows the abstract syntax of the classes in the palekagreRep-
resentations. The following sections explain semantics and abstract syntax for the two recently
introduced classeRepresentableElement andElementRepresentation.

RepresentableElement

Semantics. Every entity that is related to the system under development is represented by a
RepresentableElement and has a hame. Since such elements can be represented in different

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

ways, every element has at least one representation.

Abstract syntax RepresentableElement is the abstract base class for all elements related to the
system under development that are represented in the requirements specification,Rich as
qguirementSpecification :: Requirement, DomainElements :: DomainElement or Actors :: Actor.
EveryRepresentableElement has a name, which isBasicRepresentations :: HyperlinkedSen-
tence, SO it may contairBasicRepresentations :: Hyperlinks that refer taPhrases :: Phrases
andTerms::Terms in the thesaurus. In addition to the name, RepresentableElement is rep-
resented by at least oiéementRepresentation, as the aggregation between these two classes
indicates.

ElementRepresentation

Semantics EveryElementRepresentation iS one possible representation ®epresentableEle-

ment. Due to this, &RepresentableElement may contain one or more representations. All those
representations in the requirement specification, for instanectionRepresentations :: Ac-
torLifeline, which is introduced in section 7.7 “ScenarioRepresentation” of D2.1 “Behavioural
Requirements Language Definition”, are derived friBlementRepresentation.

Abstract syntax.The clas€lementRepresentation is the base class for all representations such

as e.g.BasicRepresentations :: RequirementsRepresentation Or InteractionRepresentations ::
ActorLifeline. The aggregation tBasicRepresentations :: HyperlinkedSentence shows that &I-
ementRepresentation containsBasicRepresentations :: HyperlinkedSentences, but as the way

these aggregation is realized differes from representation to representation, it is redefined in
most of them. These sentences are typically ordered and may be used to build up the textual
description of the element tiE#ementRepresentation describes, but there are also other types

of containment relations betwe&tementRepresentation andBasicRepresentations :: Hyper-
linkedSentence, for instance in thenteractionRepresentations :: InteractionScenario described

in D2.1 “Behavioural Requirements Language Definition”, chapter 7.

6.5.3 Concrete syntax

RepresentableElement. ElementRepresentatidinese classes are abstract, and they do not
introduce any concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

6.6 Phrases

6.6.1 Overview

The Phrases package contains language entities that allow for formulating phrases in a struc-
tured language. Thegthrases representierms :: Nouns associated with otheferms (Terms

i1 Verbs, Terms :: Adjectives). A genericPhrase is always put in the context of @rms :

Noun (is part of aBasicDomainElements :: DomainElement) and is (possibly) associated with a
Quantifier and/orModifier. Another kind ofPhrase is VerbPhrase which describes the context

of Verb.

6.6.2 Abstract syntax and semantics

Abstract syntax in this package is presented in Figure 6.14.

Phrase

Semantics Phrase describes an expression involving a gieems :: Noun.

Abstract syntaxPhrase is a kind ofRepresentationSentences :: StructuredLanguageSentence.
Phrase consists of arDbject (a BasicRepresentations :: Hyperlink to a Terms :: Noun) and
optionally aTerms :: Modifier and aTerms :: Quantifier (BasicRepresentations :: Hyperlinks

to special types offerms :: Term). It represents the “name” of BasicDomainElements ::
DomainElement by pointing to aTerms :: Noun and is associated with oth@erms (Terms

:: Modifier, Terms :: Quantifier) throughBasicRepresentations :: Hyperlinks. Phrase contains

a hyperlinked description. It is used for referencing the vocabulary of different requirement
representations (controlled grammars, wiki-like descriptions).

VerbPhrase

Semantics. This expression describes an operation that can be performed in association with
the Object described by derms :: Noun.

Abstract syntax.VerbPhrase is an abstract kind oPhrase. It exists in two concrete classes:
SimpleVerbPhrase and ComplexVerbPhrase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Structural Requirements Language Definition — D2.2 ver. 1.00

Domain entities 30.01.2007
Hyperlink
Modifier
+linkedTerm
{redefines linkedTerm}
- +linkedTerm
StructuredLanguageSentence Hyperlink
Phrase Quantifier {redefineslinkedTerm}
-
Hyperlink
Object +linkedTerm
{redefineslinkedTerm}
VerbPhrase
Hyperlink
PhraseVerb +linkedTerm
Zr {redefineslinkedTerm}
ComplexVerbPhrase SimpleVerbPhrase &
1 >———
0..1
Hyperlink

PhrasePreposition +linkedTe

{redefineslinkedTerm}

i

Figure 6.14: Phrases

SimpleVerbPhrase

Semantics SimpleVerbPhrase has the semantics dkrbPhrase and can be used as th®© part

in anSVOSentences :: SVOSentence.

Abstract syntax. SimpleVerbPhrase, in addition to aPhrase, includes aPhraseVerb (Basic-
Representations :: Hyperlink to aTerms :: Verb). SimpleVerbPhrase is a concrete subclass of
VerbPhrase.

ComplexVerbPhrase

Semantics. ComplexVerbPhrase can be usedv&30 (SVOSentences :: SVOSentence with
direct and indirect object) part in aBvOSentences :: SVOSentence. ComplexVerbPhrase

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

describes a behavioural relation between a direct and an indirect object.

Abstract syntax.ComplexVerbPhrase extendsSimpleVerbPhrase with an additionalTerms ::
Noun (indirect object). It is a kind of/erbPhrase pointing to the other BasicDomainElements
:: DomainElements’s SimpleVerbPhrase. It includes also @hrasePreposition. Complex\Verb-
Phrase is a concrete subclass @rbPhrase.

Modifier

Semantics.A Modifier combines withObject and indicates how it should be interpreted in the
surrounding context. In this way it creates a Phrase that distinguisheGHjeist’'s meaning
from its main vocabulary entry.

Abstract syntaxModifier is a kind of aBasicRepresentations :: Hyperlink. It points to theTerms

:: Term used as Modifier in a given Phrase.

Quantifier

Semantics A Quantifier combines withObject and indicates how they should be interpreted in
the surrounding context in terms of quantity and variability, that is the extent to which Noun
holds over a range of things. In this way it creates a Phrase that distinguish@bjiiss
meaning from it's main vocabulary entry.

Abstract syntax.Quantifier is a kind of aBasicRepresentations :: Hyperlink. It points to the
Term :: Term used as &uantifier in a given Phrase.

Object

Semantics An Object is a type of aBasicRepresentations :: Hyperlink that points to th&erms
:: Noun specific for thisObject’'s Phrase.
Abstract syntaxObject is a kind of aBasicRepresentations :: Hyperlink.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

PhraseVerb

Semantics.A PhraseVerb is a type of aBasicRepresentations :: Hyperlink that points to the
Terms :: Verb specific for thisPhrase.
Abstract syntaxPhraseVerb is a kind of aBasicRepresentations :: Hyperlink.

PhrasePreposition

Semantics A PhrasePreposition is a type of aBasicRepresentations :: Hyperlink that points to
the Terms :: Preposition used to conne@impleVerbPhrases with ComplexVerbPhrases.
Abstract syntaxPhrasePreposition is a kind of aBasicRepresentations :: Hyperlink.

6.6.3 Concrete syntax and examples

Source: View:
n:customer Customer
m:registered n:customer : customer

Figure 6.15: Phrase concrete syntax examples

Source: View:
v:sign up n:customer sign up : customer

Figure 6.16: SimpleVerbPhrase concrete syntax examples
Source: View:

visign up n:customer p:for n:exercises sign up : customer : : exercises

Figure 6.17: ComplexVerbPhrase concrete syntax examples

Object. PhraseVerb. PhrasePrepositionheir concrete syntax is inherited from tBasicRep-
resentations :: Hyperlink meta-class.

Phrase. SimpleVerbPhrase. ComplexVerbPhra3éeir concrete syntax depends on the con-

text in which phrases are presented to the user. They can be represented in a form of source or
preview of wiki-like hyperlinked sentence. In the source form, they consist of element’s names
preceded by a letter with a colon (“:”) indicating this element type (“n:” for nadivjéct), “m:”

for Modifier, “q:” for Quatifier, “v:” for PhraseVerb, “p:” for PhrasePreposition). In preview

form, they are represented as coloured hyperlinks to appropriate elements separated with colons

(see Figurels 6.15, 6.16, 6]17).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

6.7 Terms

6.7.1 Overview

This package describd@srm and its relationship t@hesaurus. Thesaurus is a kind of highly
structured conceptual dictionary, common for all vocabularies. It contains morphological infor-
mation of terms, with their forms (cases, inflections, etc.) and semantic information. Currently
the TermSpecialisationRelation as well adHasSynonym andHasHomonym relations are seen as

the main semantic information.

The TermSpecialisationRelation structures the terms in a taxonomical hierarchy. This semantic
definition is organisation-specific and is specified by extending the term structure (see Figures

[6.20 and 6.21 for an example).

Every term is a distinguished part of speech. Note that “term” is not necessarily a single word
(eg. some modal verbs — see note on the Diagran] 6.18). We also treat phrasal verbs as Verb
class objectsTerms from Thesaurus are used for buildinghrases.

6.7.2 Abstract syntax and semantics

Figure[6.18 shows the specialisation hierarchy of the different typ@srofs, which areCon-
ditionalConjunction, ModalVerb, Verb, Noun, Modifier, Quantifier and Preposition. Addition-
ally, this figure introduces two bi-directional relations that can be defined betweeretms,
namelyHasHomonym andHasSynonym.

Figurg 6.19 also contains all the above mentioned specialisatigaeaf This figure focuses on

the relationships that can be defined between two terms of the same type (only in between two
Nouns, between twierbs, etc.). All relations are specialisationstefmSpecialisationRelation

and thus define a directed taxonomic relation.

Figured 6.2D and 6.21 show the abstract syntax of a thesaurus with domain-specific extensions
(for ProDV related terms in this case). Fighire 6.20 depicts the noun related part of the thesaurus,
while Figureg 6.2]L shows the verb related part respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007
Kernel::
Relationship

Modal verb in English:

will and would

shall and should

may and might

can and could

must and have to

ought to and had better

in more archaic use, dare and need
by some accounts, do

0.*
{redefines
ownedMember}

isSynonym *

isHomonym

[TTT

consists of two words).

Every Term object form Thesaurus represents not onl - - . .
this Term's dictionary entry (eg. "go”), but also all it's Quantifier and Modifier can be different parts of speech in
grammatical forms ("went”, "gone”). Also, Term is not different languages (eg. Quantifier in Polish can be Zaimek

necessarily a single word (eg.: modal “ought to"

(Pronoun) see: http://en.wiktionary.org/wiki/zaimek, in English it i
most likely Adjective, we do not know about other languages).

Figure 6.18: Thesaurus, Term and its specialisations.

Term

Semantics.Term is a unit of language that native speakers can identify as a meaning-coherent
notion. Itis a block from which a phrase is made. A Term usually has different grammar forms.
Abstract syntax.Term has aname’ attribute. Terms are grouped inmraesaurus.

Thesaurus

SemanticsThesaurus is a structure containing all therms, with their forms, inflexions, cases
etc. as well as their relations between each other. These relations define the semantics of the

Terms.

Abstract syntaxThesaurus is a kind ofPackage. It containsterms.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System

page 41

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

1 1 1 1 1 1 1

191

ModifierSpecialised QuantifierSpecialised PrepositionSpecialised

CCSpecialiseId ModaIVerbSpecilaIised VerbSpeciali NounSpecialised
CCGeneralised ModalVerbGeneralised | VerbGeneralised

NounGeneralised ModifierGeneralised

TermSpecialisationRelation

— |

Kernel:: Kernel::

>

QuantifierGeneralised PrépositionGer

Dir

Figure 6.19: Specialisation Relations of terms from the same type.

Conditional Conjunction

Semantics. A Conditional Conjunction is a Thesaurus element used for combining two sen-
tences into a conditional or state descriptive structure.
Abstract syntax.Conditional Conjunction is a kind of aTerm.

ModalVerb

Semantics. A Modal Verb (also modal, modal auxiliary verb, modal auxiliary) is a type of
auxiliary verb that is used to indicate a provision of syntax that expresses the predication of an
action, attitude, condition, or state other than that of a simple declaration of fact.

Abstract syntaxModalVerb is a kind ofTerm.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Figure 6.20: Part of a Thesaurus in abstract syntax with organisation-specific extension (only
Nouns are presented in this figure.)

Modifier

Semantics.A Modifier is a type ofTerm that combines wittNoun and indicates how it should

be interpreted in the surrounding context. Modifier can be different parts of speech in different
languages (eg. Modifier in Lithuanian can be adjective, pronoun, pronoun+adjective, participle,
pronoun+participle, in Polish it is an Adjective sourcing fromia@un).

Abstract syntaxModifier is a kind of aTerm. It is an abstract class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Figure 6.21: Part of a Thesaurus in abstract syntax with organisation-specific extension (only
Verbs are presented in this figure.)

Quantifier

Semantics. A Quantifier is a type ofTerm that combines wittNoun and indicates how they
should be interpreted in the surrounding context in terms of quantity and variability, that is the
extent to which Noun holds over a range of thin@siantifier can be different parts of speech

in different languages (e@uantifier in Polish can be Zaimek (Pronoun), in English it is most
likely an Adjective).

Abstract syntaxQuantifier is a kind of Term. It is an abstract class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Noun

Semantics A Noun is a type offerm that names objects (a person, place, thing, quality, action
or data).
Abstract syntaxNoun is a kind of Term.

Preposition

Semantics A Preposition is a type offerm that combines witlPhrases :: Phrases and indicates
how they should be interpreted in the surrounding context.
Abstract syntaxPreposition is a kind ofTerm.

Verb

Semantics A Verb is a type of alerm that expresses action or state of being.
Abstract syntaxVerb is a kind of aTerm.

TermSpecialisationRelation

Semantics.TermSpecialisationRelation is an abstract class that defines semantics for all other
relation classes in this package other ti&sHomonym andHasSynonym. TermSpecialisa-
tionRelation inherits concrete syntax formirectRelationship. The subclasses dfermSpe-
cialisationRelation are: CondConjunctionSpecialisationRelation, ModalVerbSpecialisationRela-

tion, NounSpecialisationRelation, ModifierSpecialisationRelation, QuantifierSpecialisationRela-

tion, PrepositionSpecialisationRelation. These relations define specific specialisation relations
for the diverse types of terms. Those subclasses ensure that the source and the target of the rela-
tionship are of the same kind ®&rm. The source of each such relationship should be different
from its target -Term cannot be associated with itself.

Abstract syntax. TermSpecialisationRelation is a kind of DirectRelationship from the UML ::
Kernel package|[Obj05b].

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

CondConjunctionSpecialisationRelation

Semantics. A CondConjunctionSpecialisationRelation relates oneConditionalConjunction (as
the source of the relationship) to anotl@anditionalConjunction (the target of the relationship).
Abstract syntax.CondConjunctionSpecialisationRelation is a kind of TermSpecialisationRela-
tion.

ModalVerbSpecialisationRelation

Semantics. A ModalVerbSpecialisationRelation relates oneModalVerb (as the source of the
relationship) to anotheviodalVerb (the target of the relationship).
Abstract syntax ModalVerbSpecialisationRelation is a kind ofTermSpecialisationRelation.

NounSpecialisationRelation

Semantics.A NounSpecialisationRelation relates oneNoun (as the source of the relationship)
to anothemMNoun (the target of the relationship).
Abstract syntaxNounSpecialisationRelation is a kind of TermSpecialisationRelation.

ModifierSpecialisationRelation

Semantics A ModifierSpecialisationRelation relates onéodifier (as the source of the relation-
ship) to anotheModifier (the target of the relationship).
Abstract syntaxModifierSpecialisationRelation is a kind ofTermSpecialisationRelation.

QuantifierSpecialisationRelation

Semantics.A QuantifierSpecialisationRelation relates on&uantifier (as the source of the rela-
tionship) to anothe@Quantifier (the target of the relationship).
Abstract syntax QuantifierSpecialisationRelation is a kind ofTermSpecialisationRelation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

PrepositionSpecialisationRelation

Semantics. A PrepositionSpecialisationRelation relates onePreposition (as the source of the
relationship) to anothe®reposition (the target of the relationship).
Abstract syntax PrepositionSpecialisationRelation is a kind of TermSpecialisationRelation.

HasHomonym

Semantics.A HasHomonym relates tworerms that have the same character string as “hame”
attribute but that have different meanings.

Abstract syntaxHasHomonym is a kind ofRelationship from UML :: Kernel package|[Obj05b].
HasHomonym inherits concrete syntax forRelationship.

HasSynonym

Semantics A HasSynonym relates tworlerms that have the same meaning but a different char-
acter string as “name” attribute.

Abstract syntaxHasSynonym is a kind ofRelationship from UML :: Kernel package|[Obj05b].
HasSynonym inherits concrete syntax forRelationship.

6.7.3 Concrete syntax and examples

Term. It is a string of letters and white spaces having a logical meaning in a specific natural

language Examples (for English)‘car”, “buy”, “look for”, “buy ticket button”, “at”, “must”,
“‘every”.

Thesaurus.ltis a semantic structure that holtsms. This structure should allow for semantic-
based reuse of organisation-specifems as well as browsing th&hesaurus contents by
Phrases :: Phrase names and/erbs associated witlPhrases :: Phrases. The concrete syn-

tax is equivalent to the concrete syntax of temainVocabulary (compare Figur¢ 6.22 and
Figure[6.8) which is based dternel :: Package. More important is the tree view presentation

of the Thesaurus as depicted in Figure 6.23. Please note that the tree view depicts only the
specialisation relations. Therefore the thesaurus itself is not shown.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

]

Thezaurus

Figure 6.22: Package view: thesaurus’s concrete syntax.

(1 ProDV-Term
1 ProDV-CondConjunction
(1 ProDV-ModalVerb
1 ProDV-Verb
1 ProDV-Noun
+ (1 Data
- 1 Person
= 21 Admin
Homonym:
Synonym: Administrator
1 Club Member
[Staff Member
+- 1 Thing
+- 1 ProDV-Modifier
+- 1 ProDV-Quantifier
+-] ProDV-Preposition

+

F

+

Figure 6.23: Thesaurus tree view example

Conditional Conjunction. It is a string of letters and white spaces used in formulating con-
ditional or state descriptive clauseExamples (for English)if”, “when”, “upon”, “after”,
“during”.

ModalVerb. Itis a string of letters and white spaces used in formulating a modal fiéxaimples
(for English): “will"/“would”, “shall”, “should”, “may”/“might”, “can”/“could”, “must”, “have
to”, “ought to”.

Modifier. As an abstract meta-class, it has no concrete syntax. It can be formulated in any of
those representations of the meta-classes that derive from it. The derivativesifidr should

have their concrete syntax as a string of letters and white spaces used in formuldtingsa
context.Examples (for English):registereduser”, “selectedwindow”

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Structural Requirements Language Definition — D2.2 ver. 1.00
Domain entities 30.01.2007

Quantifier. As an abstract meta-class, it has no concrete syntax. It can be formulated in any of
those representations of meta-classes that derive from it. The derivatigesmffier should

have their concrete syntax as a string of letters and white spaces used in formuldtingsa
context.Examples (for English):every”, “all”, “no”, “none of”

Noun. It is a string of letters and white spaces used in formulating an objects’ description.

Examples (for English):user”, “system”, “buy ticket button”, “accessibility”, “saving”

Preposition. It is a string of letters and white spaces used in formulaBhgses :: Phrases’

context. Examples (for English)¥on”, “of”, “to”, “for”, “inside”, “next to”, “in accordance
with”

Verbis a string of letters and white spaces used in formulating an action descripkamples
(for English): “add”, “show”, “save”, “start”, “provide”, “look for”, “choose between”

TermSpecialisationRelation.This relationship between twterms is depicted as a package
with a subpackage in the tree view of the thesaurus (see Higure 6.23). Homonyms and Syn-
onyms are presented for each term (see Figureg 6.23).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Structural Requirements Language Definition — D2.2 ver. 1.00
Conclusion 30.01.2007

Chapter 7

Conclusion

This deliverable presents a novel requirements specification language, more precisely its struc-
tural part. This language is special because of its explicit inclusion of objects existing in the
domain (environment) of the software system to be buillemain objectsWhile the represen-

tation of a Domain Model (to-be) makes use of standard UML, which is still allowed, additional
descriptions are possible in a newly defined representation of vocabulary. This facilitates a bet-
ter understanding of the requirements per se. Our language is the first requirements specification
language intimately integrated with UML and defined using the same meta-modelling approach
as used for UML itself (using MOF). This deliverable also presents and explains the structural
part of this language definition, from abstract down to concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Structural Requirements Language Definition — D2.2 ver. 1.00

Bibliography

30.01.2007

Bibliography

[Dou99]

[EKO02]

[FHK*05]

[GomO01]

[Hoe04]

[Kaig7]

[Kaig9]

[Lar01]

[ObjO3]

Bruce Powel Douglas®oing hard time: developing real-time systems with UML,
objects, frameworks, and patternsAddison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

Gerald Ebner and Hermann Kaindl. Tracing all around in reengineeliBBE
Software 19(3):70-77, 2002.

Norbert E. Fuchs, Stefan Hoéfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold
Schneider. Attempto controlled english: A knowledge representation language
readable by humans and machindsecture Notes in Computer Scien@b64,
2005.

Hassan Gomaa. Designing concurrent, distributed, and real-time applications with
UML. In ICSE '01: Proceedings of the 23rd International Conference on Soft-
ware Engineeringpages 737-738, Washington, DC, USA, 2001. IEEE Computer
Society.

Stefan Hoefler. The syntax of attempto controlled english: An abstract grammar
for ace 4.0, technical report. Technical Report ifi-2004.03, Department of Infor-
matics, University of Zurich, 2004.

H. Kaindl. A practical approach to combining requirements definition and object-
oriented analysisAnnals of Software Engineering:319-343, 1997.

H. Kaindl. Difficulties in the transition from OO analysis to desitffEE Software
16(5):94-102, Sept./Oct. 1999.

Craig Larman.Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Proces&entice Hall, Englewood Cliffs,
NJ, second edition, 2001.

Object Management GroupMeta Object Facility (MOF) 2.0 Core Specification,
Final Adopted Specification, ptc/03-10;@D03.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Structural Requirements Language Definition — D2.2 ver. 1.00
Bibliography 30.01.2007

[Obj05a] Object Management GroupJnified Modeling Language: Infrastructure, version
2.0, formal/05-07-052005.

[ObjO5b] Object Management Groufunified Modeling Language: Superstructure, version
2.0, formal/05-07-042005.

[Obj06] Object Management Groupdeta Object Facility Core Specification, version 2.0,
formal/2006-01-012006.

[SBNSO05a] Michat Smiatek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Sce-
nario construction tool based on extended UML metamodedcture Notes in
Computer Scienc&713:414-429, 2005.

[SBNSO05b] Michat Smiatek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Writ-
ing coherent user stories with tool suppotiecture Notes in Computer Science
3556:247-250, 2005.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

	History of changes
	Summary
	Table of contents
	List of figures
	Scope, conventions and guidelines
	Document scope
	Approach to language definition and notation conventions
	Defining languages using meta-modelling
	Structure of the language reference

	Related work and relation to other documents
	Structure of this document
	Usage guidelines

	I Conceptual Overview of the Structural Requirements Language
	Introduction
	Typical OOAD method
	Requirements modelling
	OOA
	OOD

	Our Language

	Domain entities
	Business entities
	System entities

	Domain vocabulary representation
	Overview
	Domain vocabulary concept
	Domain vocabulary in the RSL

	Discussion

	II Language Reference
	Domain entities
	Overview
	Basic domain elements
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Actors
	Overview
	Abstract syntax and semantics
	Concrete syntax

	System representations
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Element representations
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Phrases
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Terms
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Conclusion
	Bibliography

