
Structural Requirements Language Definition
Defining the ReDSeeDS Languages

Deliverable D2.2, version 1.00, 30.01.2007

IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide-Matrix S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Structural Requirements Language Definition
Defining the ReDSeeDS Languages

Workpackage WP2
Task T2.2
Document number D2.2
Document type Deliverable
Title Structural Requirements Language Definition
Subtitle Defining the ReDSeeDS Languages
Author(s) Hermann Kaindl, MichałŚmiałek, Albert Ambroziewicz, Davor

Svetinovic, Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak,
Mohamad Hani el Jamal, Lothar Hotz, Katharina Wolter, Thorsten
Krebs, Hannes Schwarz, Daniel Bildhauer, Jürgen Falb, John Paul
Brogan

Internal Reviewer(s) Daniel Bildhauer, Rober Draber, Hermann Kaindl, Sevan Kavaldjian,
Thorsten Krebs, Roman Popp, Hannes Schwarz, Michal Smialek,
Katharina Wolter, Radoslaw Ziembinski

Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP2_Re-

quirements_specification_language/D2.2.00/ReDSeeDS_D2.2_Struc-
tural_Requirements_Language_Definition.pdf

Version 1.00
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

30.01.2007

Structural Requirements Language Definition – D2.2
History of changes

ver. 1.00
30.01.2007

History of changes

Date Ver. Author(s) Change description

27.12.2006 0.01 Hermann Kaindl (TUW) Proposition of ToC

30.12.2006 0.02 Michal Smialek (WUT) Modified ToC and example of contents

30.12.2006 0.03 Hermann Kaindl (TUW) Modified ToC and task assignment

09.01.2007 0.04 Albert Ambroziewicz,

Tomasz Straszak (WUT)

Added content for "Words" section

10.01.2007 0.05 Albert Ambroziewicz,

Tomasz Straszak (WUT)

Added content for "Phrases" section

10.01.2007 0.06 John Paul Brogan (HWU) Added content for Document Scope

11.01.2007 0.07 Lothar Hotz (UH) Added content for Related work

11.01.2007 0.08 Hannes Schwarz (UKo) Added content for Related work, added

content for Structure of this document

12.01.2007 0.09 Tomasz Straszak (WUT) Added content for "Usage guidelines" sec-

tion

12.01.2007 0.10 John Paul Brogan (HWU) Added content for Related work

12.01.2007 0.11 Hannes Schwarz (UKo) Added content for Constraint Require-

ments

15.01.2007 0.12 Daniel Bildhauer (UKo) Added content for actor representation

16.01.2007 0.13 Daniel Bildhauer (UKo) Added section “system representation”

and content

16.01.2007 0.14 Daniel Bildhauer (UKo) Added overview for chapter 7 and section

7.2, added diagrams

16.01.2007 0.15 Tomasz Straszak (WUT) Added content for "“Basic Domain Enti-

ties” section

16.01.2007 0.16 Daniel Bildhauer (UKo) Added content for entity representation

17.01.2007 0.17 Davor Svetinovic (TUW) Added content for chapters 2 and 3

18.01.2007 0.18 Hermann Kaindl (TUW) Added executive summary

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III

Structural Requirements Language Definition – D2.2
History of changes

ver. 1.00
30.01.2007

Date Ver. Author(s) Change description

18.01.2007 0.19 Albert Ambroziewicz,

Jacek Bojarski (WUT)

Added content for Domain vocabulary in

RSL section

18.01.2007 0.20 Wiktor Nowakowski

(WUT)

Added content for section 4.2

18.01.2007 0.21 Hermann Kaindl (TUW) Added conclusion

19.01.2007 0.21 Katharina Wolter (UH) Added content for Section 7.7

20.01.2007 0.22 Michał Śmiałek (WUT) Added and modified content to Chapter 1,

corrected minor errors

21.01.2007 0.23 Hermann Kaindl (TUW) Added references

23.01.2007 0.24 Katharina Wolter (UH) Modified content for Section 7.7

24.01.2007 0.25 John Paul Brogan (HWU) Updated/Corrected English Spelling and

Grammer for Chapters 1-4

26.01.2007 0.26 Daniel Bildhauer (UKo) Updated/Corrected some figures

26.01.2007 0.27 Katharina Wolter (UH) Corrections in Section 7.7

26.01.2007 0.28 John Paul Brogan (HWU) Updated/Corrected English Spelling and

Grammer for Chapters 4-6

26.01.2007 0.29 Wiktor Nowakowski

(WUT)

Small corrections in Chapters 4

28.01.2007 0.30 Michał Śmiałek (WUT) Small corrections in the whole document

29.01.2007 0.31 John Paul Brogan (HWU) Updated/Corrected English Spelling and

Grammer for Chapters 6-7

29.01.2007 0.32 Katharina Wolter (UH) Updated Section 1.3

29.01.2007 0.33 Hermann Kaindl (TUW) Clean-up

29.01.2007 0.34 Katharina Wolter (UH) Small corrections

30.01.2007 0.35 Michał Śmiałel Small updates in Chapter 3

30.01.2007 1.00 Hermann Kaindl (TUW) Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV

Structural Requirements Language Definition – D2.2
Summary

ver. 1.00
30.01.2007

Summary

Existing approaches to object-oriented software development mostly focus onsoftware objects,

i.e., somethingwithin the software. Referring to such objects in a Requirements Specification

would blur the distinction between Requirements Specification and SoftwareDesign, however.

The structural part of our requirements specification language deals with models and descrip-

tions of objects existing in the domain (environment) of the software system to be built —

domain objects. These objects are part of a Domain Model (to-be) and/or described in a defined

vocabulary. This facilitates a better understanding of the requirements.

This deliverable contains the structural part of the requirements specification language, i.e.,

all the parts of the meta-model and other descriptions dealing with abstractions of important

objects existing in the environment of the software system to be built, as well as their attributes

and relations, including their relationships to the software system. Note, that this is a structural

requirements language definition, but it isnot about “structural requirements”. This deliverable

first gives a conceptual overview of this structural requirements specification language. In the

second part, it provides a comprehensive language reference including concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Structural Requirements Language Definition – D2.2
Table of contents

ver. 1.00
30.01.2007

Table of contents

History of changes III

Summary V

Table of contents VI

List of figures VII

1 Scope, conventions and guidelines 1

1.1 Document scope . 1

1.2 Approach to language definition and notation conventions 2

1.2.1 Defining languages using meta-modelling 2

1.2.2 Structure of the language reference . 2

1.3 Related work and relation to other documents 2

1.4 Structure of this document . 4

1.5 Usage guidelines . 4

I Conceptual Overview of the Structural Requirements Language 5

2 Introduction 6

2.1 Typical OOAD method . 6

2.1.1 Requirements modelling . 7

2.1.2 OOA . 7

2.1.3 OOD . 9

2.2 Our Language . 10

3 Domain entities 11

3.1 Business entities . 11

3.2 System entities . 12

4 Domain vocabulary representation 14

4.1 Overview . 14

4.2 Domain vocabulary concept . 14

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Structural Requirements Language Definition – D2.2
Table of contents

ver. 1.00
30.01.2007

4.3 Domain vocabulary in the RSL . 16

5 Discussion 19

II Language Reference 20

6 Domain entities 21

6.1 Overview . 21

6.2 Basic domain elements . 23

6.2.1 Overview . 23

6.2.2 Abstract syntax and semantics . 24

6.2.3 Concrete syntax and examples . 26

6.3 Actors . 28

6.3.1 Overview . 28

6.3.2 Abstract syntax and semantics . 29

6.3.3 Concrete syntax . 30

6.4 System representations . 31

6.4.1 Overview . 31

6.4.2 Abstract syntax and semantics . 31

6.4.3 Concrete syntax . 33

6.5 Element representations . 34

6.5.1 Overview . 34

6.5.2 Abstract syntax and semantics . 34

6.5.3 Concrete syntax . 35

6.6 Phrases . 36

6.6.1 Overview . 36

6.6.2 Abstract syntax and semantics . 36

6.6.3 Concrete syntax and examples . 39

6.7 Terms . 40

6.7.1 Overview . 40

6.7.2 Abstract syntax and semantics . 40

6.7.3 Concrete syntax and examples . 47

7 Conclusion 50

Bibliography 51

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII

Structural Requirements Language Definition – D2.2
List of figures

ver. 1.00
30.01.2007

List of figures

4.1 Scenario with separated domain vocabulary 16

6.1 Overview of packages inside theDomainEntities part of RSL 22

6.2 Basic domain elements . 24

6.3 DomainVocabulary example, normal and tree view 26

6.4 DomainElement tree view example . 27

6.5 DomainElement’s diagram example . 27

6.6 DomainElement’s diagram example . 28

6.7 DomainElementRepresentation’s concrete syntax example 28

6.8 DomainStatement example . 28

6.9 Actor metamodel part . 29

6.10 The concrete syntax of an actor. 30

6.11 System representations . 32

6.12 The concrete syntax of an system component. 33

6.13 Entity representations . 34

6.14 Phrases . 37

6.15 Phrase concrete syntax examples . 39

6.16 SimpleVerbPhrase concrete syntax examples 39

6.17 ComplexVerbPhrase concrete syntax examples 39

6.18 Thesaurus, Term and its specialisations. 41

6.19 Specialisation Relations of terms from the same type. 42

6.20 Part of a Thesaurus in abstract syntax with organisation-specific extension (only

Nouns are presented in this figure.) . 43

6.21 Part of a Thesaurus in abstract syntax with organisation-specific extension (only

Verbs are presented in this figure.) . 44

6.22 Package view: thesaurus’s concrete syntax. 48

6.23 Thesaurus tree view example . 48

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII

Structural Requirements Language Definition – D2.2
Scope, conventions and guidelines

ver. 1.00
30.01.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document provides a conceptual overview, and defines syntax and semantics for the ReD-

SeeDS Structural Requirements Language (SRL). This definition is required to aid the construc-

tion of accurate requirements specifications in the form of descriptive or model-based represen-

tations.

The conceptual overview of the SRL explains the approach taken to allow for describing struc-

tural requirements meant as vocabularies and thesauruses or ontologies containing domain ele-

ments, including terms used in the domain and their descriptions. This document then presents

the SRL Reference which covers definitions for Domain elements. This reference explains the

syntax of the language in its abstract form (using a meta-model) and in its concrete form (using

concrete examples of language usage). The semantics of all the language constructs is also

defined.

The definitions for Domain elements describe language constructs that allow for depicting el-

ements of the domain vocabulary. This explains how to structure domain elements into full

vocabularies. It also defines possible relationships between domain elements, including the

system under development and actors. The reference for Domain elements defines top-level,

general representations for all the constructs of the language, including its behavioural and UI

part (see deliverables D2.1, D2.3). It also defines how to express phrases and terms that can be

used for representing Domain elements. Within its definition, the SRL uses hyperlinks as basic

facilitators of coherence. This allows for building a requirements specification where behav-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Structural Requirements Language Definition – D2.2
Scope, conventions and guidelines

ver. 1.00
30.01.2007

ioural and quality requirements are based on the domain vocabulary, thus greatly enhancing the

possibility to reuse it in the future.

1.2 Approach to language definition and notation conventions

1.2.1 Defining languages using meta-modelling

The Structural Requirements Language (SRL) is defined using a meta-model. A meta-model

can be treated as a definition of a language in which models can be expressed properly. A meta-

model sets well-formedness rules for models. A model has to comply with the meta-model of

the language it uses. In defining the whole Requirements Specification Language (RSL) we use

MOF [Obj03] as a meta-modelling language. More details on the meta-modelling approach and

notation conventions are given in D2.1, section 1.2.

1.2.2 Structure of the language reference

Part II of this document contains the SRL definition. It has been divided into sections according

to logical structure of packages of the BRL.

SRL is contained in a single main package “Domain elements” which starts with an overview

of division into subpackages. Every subpackage is presented in an overview explaining general

ideas behind a package, a meta-model diagram for this package and two sections which describe

the abstract syntax with the semantics of language constructs and their concrete syntax.

1.3 Related work and relation to other documents

External research work conducted in compliance with formulating a good understanding of

the Structural Requirements Language included researching and reasoning about such areas

as software case representations, query procedure pragmatics, Domain representation, Do-

main mapping with or without hyperlinking, Domain access methods via taxonomies and sim-

ilarity measures concerning domain constructs (vocabulary items) and requirement dependen-

cies/interdependencies leading to possible upgrades of the domain or industry specific dictio-

nary of terms.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Structural Requirements Language Definition – D2.2
Scope, conventions and guidelines

ver. 1.00
30.01.2007

In Chapters 3, 4 and 6 means for modelling domain entities are introduced, such as domain

entity types, vocabulary, phrases, and terms. Terms are organized in a thesaurus. Domain enti-

ties are used for representing requirements ofeachnew software development project forming

a requirement model of the developed software case. For performing case retrieval on the basis

of similarity measures, this requirement model is mapped and included in a so-calledsoftware

knowledge model. This software knowledge model contains the knowledge known forall soft-

ware cases of an organisation i.e. the software vendor that implements the different software

cases.

For reuse purposes, we strive in this project for finding software cases based on similarity mea-

sures. In principle, this can be done by text-based approaches, where our thesaurus as defined

in the language will be very useful. For including more semantics into similarity measures, an

ontologyof the given application domain should be available. While our requirements language

does not yet include any means for knowledge representation and reasoning, the user may still

use it to represent a domain model using object-oriented means (in the form of a domain ele-

ment diagram, as derived from a UML class diagram). Such models can be used as a simple

form of ontology. These issues will be worked out in Workpackages 3 and 4 of ReDSeeDS and

discussed in the related deliverables.

One form of representing requirements in ReDSeeDS is to write them down in constrained

language. This constrained language uses the so-calledSVO(O)-Grammar, recently researched

at WUT [SBNS05b, SBNS05a]. Other significant work concerning some kind of restriction

to natural language was and is still done in theAttemptoresearch project conducted by the

Department of Informatics and the Institute of Computational Linguistics at the University of

Zurich [FHK+05].

The Attempto Controlled English (ACE)language developed in the course of theAttempto

project is currently available in its fifth version. Although ACE closely resembles natural Eng-

lish, the syntax of a text written in ACE is based on a defined abstract grammar which avoids

ambiguity in language constructs [Hoe04]1. Furthermore, ACE can be automatically translated

into first-order logic and consequently be read by humans as well as by machines.

1The cited article contains abstract grammar for ACE 4.0. The grammar for version 5.0 has not been published
yet.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Structural Requirements Language Definition – D2.2
Scope, conventions and guidelines

ver. 1.00
30.01.2007

1.4 Structure of this document

Part I of this document, covering chapters 2 to 4, gives a conceptual overview of the Structural

Requirements Language. While chapter 2 serves as an introduction, the following chapters 3

and 4 describe different types of entities existing in a domain and the conceptual model of the

domain’s vocabulary, respectively.

Part II, after discussing the benefits and consequences of using a domain vocabulary in its first

chapter 5, defines six major packages of the language meta-model in its second chapter 6. The

first four of these packages are related to the basic domain entities, the actors in the system’s

environment and the representations of the system and the entities. The fourth package contains

phrases and other, more fine-grained elements which compose phrases. Phrases constitute the

names of the entities as well as the parts of a sentence in constrained language. The last package

comprises the individual terms which can occur in a phrase. Each section concerning one of

the packages has an overview, defines abstract syntax and semantics, and then gives a short

explanation of the concrete syntax using the Fitness Club case study as a running example.

The final Chapter ,7, sums up the document and draws conclusions from the previous parts.

1.5 Usage guidelines

ReDSeeDS Structural Requirements Language (SRL) definition should be used as a book that

guides the reader through the structure, syntax and semantics of the SRL, as part of the complete

ReDSeeDS Requirements Specification Language. It should be used mainly by creators of

appropriate CASE tools that would allow handling of the language by end users (analysts, etc.)

to express descriptions of static elements (domain elements) of the system under development.

It can be used by advanced end users of the language as a reference to the language’s syntax and

semantics. Examples of SRL elements’ concrete syntax have illustrative character and should

be treated only as support in understanding of each element’s occurrence.

Users of the SRL Specification are expected to know the basics of metamodelling and MOF

(Meta Object Facility) specification [Obj06]. Knowledge of UML ([Obj05b] and [Obj05a])

could be helpful as some elements of SRL are extensions, constraints or redefinitions of UML

elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Structural Requirements Language Definition – D2.2 ver. 1.00
30.01.2007

Part I

Conceptual Overview of the Structural

Requirements Language

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Structural Requirements Language Definition – D2.2
Introduction

ver. 1.00
30.01.2007

Chapter 2

Introduction

The Structural Requirements Language Definition is primarily concerned with the specification

of entities or concepts in an application domain. Referring explicitly to entities of an application

domain from requirements was proposed in [Kai97].

Traditionally, we use object-oriented analysis and design methods to discover these entities in

a domain and then use them for design purposes. However, several misunderstandings existed

about which entities are to be represented in the course of object-oriented analysis. For a dis-

cussion and clarification see [Kai99]. A clear separation between analysis and design artefacts

in a meta-model can be found in [EK02].

In this chapter we describe a common approach to OOAD, i.e., how the domain entities are

discovered and used, and in the next chapter we discuss what is typically captured using these

types of methods and how our language documents it.

2.1 Typical OOAD method

This section describes the parts of a typical object-oriented analysis and design (OOAD) method.

Full details about OOAD methods can be found in many OOAD books and articles (e.g. [Lar01,

Gom01, Dou99, Kai99]).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Structural Requirements Language Definition – D2.2
Introduction

ver. 1.00
30.01.2007

2.1.1 Requirements modelling

Input: Business tasks, use cases, and other business engineering artifacts.

Goal: Break down business-level artifacts in order to capture and define the scope and respon-

sibilities of a system to be built that meets the requirements embodied in the input.

Activities: The main requirements modelling activities are:

• Identify mainbusiness goals, processes, resources, andfeatures.

• Write use case descriptions with a clear identification of theactorsand thedataex-

changed between the system and the environment, and thecontextexpressed through

pre-conditions, post-conditions and invariants.

• Draw a use case diagram with all the use cases in order to depict the relationships

among use cases.

2.1.2 OOA

Input: All Requirements Modelling artifacts.

Goal: Decompose requirements artifacts and build a domain model.

Activities: The main OOA activities are:

• Relate use cases to each other with respect to their main concerns. This produces

the first level of the domain’s decomposition into related functionality domains, that

is, the domain subsystems. Show the decomposition of the use case diagrams using

the UML package notation. Repeat this step for any identified domain subsystem.

• For each domain subsystem, from its task and use case descriptions, extract its

classes, attributes, and the relationships among them. Show the decomposition us-

ing UML-like class notation in what is known as a domain model (DM). This step

is present in most OOA methods. Our opinion is that use case conceptual analysis

is not an effective way for developing the DM. Analysts should have good prior do-

main knowledge, which should be the main source for domain concepts. Of course,

in the absence of knowledge of the domain, use case conceptual analysis at least

represents a good starting point.

• Extract common concepts from different domain subsystems and allocate them to

common domain subsystems.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Structural Requirements Language Definition – D2.2
Introduction

ver. 1.00
30.01.2007

• Emphasise relationships among data concepts in the DM. Data concepts represent

external data with a high probability of having to be used and preserved within

the system. These data concepts and their relationships constitute the traditional

relational part of the DM.

• With use cases, develop the domain-level interaction diagram. The main goal of this

step is to define the domain’s external interface.

• With use cases, DMs, and the domain-level interaction diagram, for each domain

subsystem, develop the domain subsystem interaction diagrams. The main goal of

this step is to define the domain subsystems’ interfaces. Use higher-level domain

subsystem interaction diagrams to develop the lower-level domain subsystem inter-

action diagrams. This activity is recursive.

• With use cases, DMs, and the domain subsystem interaction diagrams, develop the

low-level object interaction diagrams. The main goal of this step is to capture:

– how objects collaborate to accomplish the functionality described in use cases

— note, these objects are the objects from the domain and not the software

objects,

– definitions of object interfaces,

– object associations and interactions, and

– the sequence of the objects’ interactions.

• With all interaction diagrams, build a unified collaboration diagram (UCD) without

message numbering, multiple objects of the same type, or object names. Indicate:

– Controller andcoordinator objects— the main sources for the definitions of

active objectsin the design phase.

– Entity and service objects— the main sources for the definitions ofpassive

objectsin the design phase.

– External objects— the main sources for the definitions ofinterfacesin the

design phase. These objects include devices and business resources.

• With the UCD, record each message as a method in the DM.

• For each controller and coordinator object in the UCD, develop a state diagram.

The messages from the UCD are the main sources of events; the mapping is not

necessarily one to one.

• Develop state diagrams for any additional objects that have non-trivial state transi-

tions. The messages from the UCD are the main sources of events; the mapping is

not necessarily one to one due to the possible presence of internal events.

Additional Notes: It is usually recommended that one should capture invariants, pre-conditions,

and post-conditions for each entity in the OOA artifacts. Each entity or artifact has to be

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Structural Requirements Language Definition – D2.2
Introduction

ver. 1.00
30.01.2007

taken into account and to be related by its constraints, business goals, business rules,

non-functional requirements, to other artifacts captured during the requirements model-

ing phase.

2.1.3 OOD

Input: All requirements and domain model artifacts, with special emphasis on the DM, the

UCD, and the state diagrams.

Goal: Map the domain model into an OOD model [Kai99] taking into account internal system

requirements and development resources.

Activities: The main OOD activities are:

• Using the domain subsystem information from the DM and internal architectural

requirements, design the initial high-level non-run-time architecture of the system.

Define the interfaces of the system and its subsystem.

• Using the DM and the UCD, in addition to internal system requirements, map do-

main concepts into software classes. This mapping should be performed taking into

account reusability, maintainability and other design goals. Take into account the

internal system requirements such as persistence, security, performance, and so on.

Augment and refine the class interfaces.

• Define the run-time architecture of the system. Define run-time components, processes,

and processing node allocations.

• Define the run-time communication channels, interfaces, and protocols.

• For each run-time entity, i.e., component, process, or communication channel:

– make its decomposition explicit, i.e., define out of which objects it is con-

structed, and

– make a clear distinction between active objects, i.e., controllers and coordina-

tors, and passive objects, i.e., data concepts, computation and logic providers.

• Refine all class interfaces.

• For each class, design its internals, i.e., its algorithms, additional classes, data types,

internal attributes, and so on.

There are many different OOAD methods, but common to all of them is an early conceptuali-

sation of the domain into concepts. These concepts drive specification and have an impact on

all the produced OOAD artifacts and, in some cases, propagate all the way to the code. This

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Structural Requirements Language Definition – D2.2
Introduction

ver. 1.00
30.01.2007

propagation of the concepts and the concepts’ influence on the other produced artifacts might

have both positive and negative effects.

2.2 Our Language

A typical approach to OOAD is described above. Our language can be useful for the early

stages of such an approach. Nevertheless, our language introduces a number of changes and

enhancements. Namely, we do not use UML class diagrams with attributes and methods. We

use “domain entity diagrams”, where domain elements have Phrases. Our language describes

these domain entities. Our language also allows for linking the vocabulary precisely with the

behavioural and quality requirements. However, we are also not limited to use cases only.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Chapter 3

Domain entities

The main purpose of a domain model (DM) is to capture the entities that exist in a system’s

domain. The domain can be seen as consisting of:

• business entities, and

• computer entities, including hardware and software.

In the sections below we discuss these two main groups.

3.1 Business entities

A software system is part of a larger business system, and serves as a resource to accomplish

business goals. To build a useful DM, we need to study and discover different business entities

of the domain. The possible sources of business entities are presented below:

1. Business Resources— All entities, both physical and abstract, that exist inside the en-

vironment of the business are business resources. They include people, information,

different systems, and business supplies and products. They participate in the business

processes. A subset of these resources is a source of modelling entities for the system to

be built. The value of tracking and preserving knowledge about these entities is that these

entities are used to perform analysis of the system’s architecture, to track changes to the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

domain and the system from the beginning, and to evaluate how well the system reflects

current business needs. For an elevator system, an example business resource is thecable

used to pull up the elevator cab.

2. Business Processes— A system to be built may participate later in several business

processes in order to help achieve several business goals. Use cases (UCs) describe sub-

processes of larger business processes that are automated by the software system. It is

important to understand a business process as it relates its UCs, which in turn relate soft-

ware requirements that the system has to satisfy. For an elevator system, an example

business process isa passenger’s riding of an elevator cab.

3. Business Rules— Business rules are a major source of constraints on a software system.

Many constraints directly influence the system’s architecture. Therefore, it is important

to understand these constraints and to keep track of them, for example, to be able to

remove architectural limitations imposed by constraints that do not hold any more. For

an elevator system, an example business rule isthe elevator will not change its direction

until it services all previously received calls that lie in the current travelling direction.

The main source of business domain objects are Business Resources, but they are very tightly

interlinked with Business Processes and Business Rules. In some cases, they cannot exist sep-

arately. Therefore, we need to seek for domain objects inside business process or business

rule descriptions. These are not intended to be described using our Structural Requirements

Language (SRL), but can be sources to elements expressed in the SRL.

3.2 System entities

It is often a case that we are building a new system for which domain consists of an already

existing computer-based system that includes both software and hardware. For such a system,

domain entities are not some “natural” objects but rather software and hardware components

and other building blocks. For such domains, the main aspects of a system that should be

modelled are:

• System,

• subsystems,

• modules,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

• connectors,

• processes, and

• hardware devices.

The System1 entity defines the outermost boundary of the system under consideration. The

Systemserves as a container for all other entities, and defines the system as a resource in the

business system.

A subsystemis a part of aSystemor asubsystem, being an abstraction of actual physical mod-

ules, connectors, and processes. It serves as a container and a building block.

A moduleis a basic architectural building block. For example, in the logical view, it represents

a entity that occurs in a domain, and in the implementation view, it represents a code unit.

Modulesare abstractions of basic building blocks of the domain, depending on the development

technology used.

A connectoris an abstraction of a communication mechanism or a channel that exists in a

system. Its size and complexity vary from a simple procedure call to a connection on the

Internet.

A processis an executable piece of software.Processesare basic building blocks of a run-time

architectural view.

A hardware deviceis an entity that occurs in the run-time architectural view, and it represents a

physical device that is a part of the system.

The above types of system entities have their place in the domain model created at the require-

ments level, using the SRL. The System entity is used throughout the descriptions of functional

requirements in general, and in use case descriptions (scenarios) specifically. Other system en-

tities can be used in requirements that specify technical constraints on the prospective system.

Refer to document D2.1 for more details.

1Note that this “system” is spelled out with initial uppercase letter to distinguish it from the generic “system”
used elsewhere.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Structural Requirements Language Definition – D2.2
Domain vocabulary representation

ver. 1.00
30.01.2007

Chapter 4

Domain vocabulary representation

4.1 Overview

This Chapter introduces the concept of domain vocabulary. In Section 4.2 the need to separate

the vocabulary from a requirements representation is explained. This section also describes the

structure of domain vocabularies. Section 4.3 shows the idea of the vocabulary in the context

of the whole ReDSeeDS Requirements Specification Language (RSL).

4.2 Domain vocabulary concept

The main purpose of a requirements specification in software engineering is to reflect the real

needs of the clients. This specification should be the basis on which developers build a soft-

ware system of a good quality – i.e. a system that meets clients’ expectations to high extent.

Unfortunately, a commonly encountered problem with requirements specifications is that they

are imprecise and have many inconsistences. Specifications are often written using wordy style

or, on the contrary, they are too general. In both cases, the intentions of the writer are hard to

understand and interpret causing ambiguity. The majority of requirements specification writers

tend to mix descriptions of the system’s behaviour, quality or appearance with descriptions of

notions from the application (problem) domain. Definitions of notions are buried in many differ-

ent places inside scenarios, stories or simply free text. What is more harmful, the same notions

often have conflicting definitions and, on the other hand, a number of different synonyms are

used to describe identically (or close to identically) defined notions. Having the requirements

specification of such a poor quality, it is a very hard task to build a system that fully fulfills the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Structural Requirements Language Definition – D2.2
Domain vocabulary representation

ver. 1.00
30.01.2007

real clients’ needs. It is hard to reflect these requirements in the architecture and in the design

of the prospective system as well as to apply changes in the system when requirements change.

Finally, imprecise requirements make it close to impossible to apply the concept of software

reuse at the level of problem definition.

To overcome all problems mentioned above, we need a special language for creating precise

and consistent requirements specifications. With this language we should be able to describe all

functional and non-functional requirements on the prospective system with the simplest possible

sentences in well defined grammar. For example, to describe interactions between a customer

of a fitness club and the fitness club system in a scenario, sentences in SVO(O) grammar (see

deliverable D2.1) could be used:

• Customer wants to sign up for exercises.

• System shows time schedule.

• Customer chooses time from time schedule.

With these simple sentences we can precisely describe actions performed by an actor or by the

system. However, they are not appropriate for defining the notions used therein. For example,

we lack explanation of what ‘exercises’ or ‘time schedule’ is and how they relate to each other.

In order to avoid inconsistencies, as mentioned above, we should not insert definitions of no-

tions into the sentences. Thus, the requirements specification language should provide means

to describe the environment of the system. We need to have adomain vocabulary– a repos-

itory that keeps all necessary notions from the system’s domain along with their definitions

and relationships between them. For the above example, the domain vocabulary would contain

definitions for nouns:

Exercises –Form of physical activity performed in fitness club. Exercises may be [cyclic ex-

ercises] or [sporadic exercises].

Time schedule –A program of [exercises] offered to [customers] by the [fitness club] in a

given period of time: day, week or month.

Square brackets in notion definitions denote relationships with other notions. Every notion in

the domain vocabulary can have different forms (i.e. singular and plural) and synonyms. In

addition to nouns, the domain vocabulary can also contain verbs. However, verbs do not have

their own autonomous definitions – they are related to nouns as their meaning depends on the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Structural Requirements Language Definition – D2.2
Domain vocabulary representation

ver. 1.00
30.01.2007

1. Customer wants to sign up for exercises.
2. System checks availability of exercises.
3. System shows time schedule.
4. Customer chooses time from time schedule.
5. System shows sign-up summary dialog.
6. Customer submits sign-up for exercises.
7. System signs up customer for exercises.

customer

time schedule

exercises

sign-up

sign-up summary dialog

timeavailability

Domain vocabulary

Figure 4.1: Scenario with separated domain vocabulary

context of a concrete noun. Verbs are treated as behavioural features of related nouns. For

example, “choose exercise” has a different meaning than “choose time from time schedule”,

although both contain the verb “choose”.

The domain vocabulary should be partially created by interviews with the future users of the

prospective system as well as with specialists from the problem domain. While writing re-

quirements in an appropriate grammar (see deliverable D2.1), the writer has constant access

to the vocabulary and can easily insert notions directly into sentences. He/she can also extend

the vocabulary at any time by introducing new notions and their definitions. Figure 4.1 illus-

trates the concept of separation of the domain vocabulary from requirements descriptions. In

the example, scenario sentences have links (depicted as dashed arrow lines) to notions defined

in the domain vocabulary (depicted as boxes). The lines connecting the notions in the domain

vocabulary denotes relationships between them.

4.3 Domain vocabulary in the RSL

Domain vocabulary should hold all the notions used in a requirements specification. Notions

are usually nouns from the problem domain that the requirement specification describes. In

RSL, such a notion is represented by DomainElement.

Such a DomainElement should include a description (definition) and relations to other Do-

mainElements and phrases containing this DomainElements. For this reason, the RSL’s domain

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Structural Requirements Language Definition – D2.2
Domain vocabulary representation

ver. 1.00
30.01.2007

vocabulary is based on the phrase concept. Every DomainElement is described by its wiki-like

description (text with hyperlinks relating to other notions or phrases). Its name is a phrase,

composed from noun terms (and optionally some modifiers and/or quantifiers). DomainEle-

ment also contains a set of phrases referring to this notion. A phrase, in a similar way to a

notion, contains its definition in the wiki-like description form.

Every phrase is based on terms existing in a general thesaurus. A thesaurus stores terms with

their inflections, classified by their types of speech. These terms are the building blocks for

phrases. Terms in a thesaurus are related to their homonyms and synonyms. Such information

allows for measuring similarity between phrases composed of such terms. This mechanism

makes it possible to use not only identical, but also similar phrases when trying to reuse re-

quirements.

In RSL we need a set of grammars that would allow us to express precise, coherent and well-

formulated user requirements. If these grammars are based on a properly structured vocabulary,

they ensure separation of concerns (behaviour from the environment description) and guarantee

consistency of requirements expressed.

The proposal to use a domain vocabulary structure facilitates creation of other parts of the RSL

(behavioural, UI, quiality) through the use of phrases as atomic “lexemes”. Any phrase can be

perceived as a complex domain vocabulary element. Using phrases as lexemes we can easily

define grammars based on such complex elements. For example we can define an SVO(O)

sentence (see deliverable D2.1) using just two phrases: a subject phrase and a predicate phrase.

Subject can include any noun from a domain vocabulary grouped with its quantifier and modifier

(which together form a noun phrase, e.g.every registered customer, authorized user). Predicate

is a more complex phrase, containing a verb and possibly referring to some other notion (it is

a noun phrase). Such a VerbPhrase forms the VO (simple verb phrase) or VOO (complex verb

phrase pointing also to another notion) part of the sentence. Let’s now consider the following

example sentences that use the SVO(O) grammar:

• User submits form.

• System adds user to the user list.

• Registered customer cancels reservation.

The first sentence consists of theuser phrase (a noun with no quantifier or modifier) in the

role of a subject and thesubmits formsimple verb phrase in the role of a predicate (VO part

of the sentence). The second sentence consists of thesystemphrase in the role of a subject

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Structural Requirements Language Definition – D2.2
Domain vocabulary representation

ver. 1.00
30.01.2007

and theadds user to the user listcomplex verb phrase (pointing to theuser listnotion) in the

role of predicate (VOO part of the sentence). In the third sentence we have an example of a

more complex noun phraseregistered customer(containing a modifier). For more details and

examples please refer to Chapter 6

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Structural Requirements Language Definition – D2.2
Discussion

ver. 1.00
30.01.2007

Chapter 5

Discussion

Requirements can be compared to novels in literature. Good novels communicate stories treated

as sequences of events, and place these stories in a well described environment. Unfortunately,

writing “stories” that describe requirements for software systems seems to be equally as hard as

(or harder) than as writing good novels. However, unlike writing novels, lack of coherence and

ambiguities may cause disaster when developing a system based on such requirements.

Finding inconsistencies in a set of several tens or hundreds of requirements is quite a hard

task, especially, when these requirements are written by different people and at different times.

It seems that keeping the vocabulary separate from the rest of the requirements specification

can significantly facilitate keeping sparse requirements documents consistent by keeping the

vocabulary controlled. This is because most inconsistencies in requirements are caused by

contradictory definitions of terms. To eliminate the source of such inconsistencies we introduce

a single repository of notions (a vocabulary) that can be used in various requirements. This

means that for instance, the behavioural requirements could use definitions already found in the

repository and just concentrate on the actual sequence of events.

In addition to the above, having a clearly defined vocabulary makes it possible to introduce

certain query mechanisms that would allow for easy retrieval and reuse of requirements. For

such mechanisms it is very important to be able to compare requirements. This comparison

should be based on a thesaurus where terms with similar meaning are related. It has to be

stressed that the language to define vocabularies has to be used in conjunction with a tool.

This is necessary as using notions stored in a vocabulary within requirements and keeping it

constantly coherent would be very laborious and error-prone if done manually. Thus such a

tool would need allow for providing consistency between different requirements using the same

notions (notion has the same definition wherever it is used).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Structural Requirements Language Definition – D2.2 ver. 1.00
30.01.2007

Part II

Language Reference

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Chapter 6

Domain entities

6.1 Overview

The DomainEntities part defines the domain description aspects of a requirements specification.

All terms that are domain related, for instance actors and components of the system under

development as well as special actions of actors or the system will be stored in the domain

vocabulary.

While this part of the language has a focus on structured language, it also allows basic object-

oriented representation of structured domain knowledge in the spirit of UML class diagrams.

So, even a simple form of ontology can be represented in this language. Further work on the

query mechanism in WP4 and the experiences from industrial applications during ReDSeeDS

will show whether extensions of the requirements language would be desirable for supporting

a knowledge representation and reasoning approach, which would support the representation of

ontologies even better.

The specification in this part of the Requirements Specification Language contains six packages

as shown in Figure 6.1.

• The Terms package contains constructs that allow for building a thesaurus of words

(terms) that can be used in various requirements specifications. Out of these terms, more

complex constructs, like phrases can be built. This is done through the use of hyperlinks

to appropriate terms in the thesaurus.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Figure 6.1: Overview of packages inside theDomainEntities part of RSL

• The Phrases package adds to the language important constructs that allow for building

parts of sentences in a structured language. Phases of various type are constructed as sets

of hyperlinks to appropriate words in the thesaurus.

• TheElementRepresentations package supplies the language with abstract, high level con-

structs for elements with their representations separated. These elements have names, and

their representations contain sets of sentences. Both the names and sentences can contain

hyperlinks to terms or phrases.

• TheBasicDomainElements package is the basis for the construction of a domain vocabu-

lary. Such vocabularies contain sets of domain elements which define notions existing in

the problem domain. These notions have appropriate statements attached which allow for

expressing various phrases associated with a given notion. All the vocabulary elements

are representable through hyperlinked text. Domain elements can have relationships.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

• The Actors package allows for defining actors as part of the domain vocabulary. There

can be shown relationships between actors. Actors are representable, and can have de-

scriptions in hyperlinked text.

• The SytemUnderDevelopment package adds to the vocabulary the possibility to express

the system and its general components. This does not allow for designing the system but

allows for showing those elements of the system that might be used inside requirements

specifications.

Generally, the vocabularies defined through our language consist ofRepresentableElements

which have names andHyperlinkedSentences as descriptions. Since theseHyperlinkedSen-

tences may containHyperlinks,RerpesentableElements resp. their descriptions that are related

to each other are logically connected.

RepresentableElements can be actors, system components, special actions or entities that are

domain-related, but not part of the system under development. Hence, the classRepresentableEle-

ment is a base class for some more special classes such asActor, SystemComponent, andDo-

mainElement. Everyone of these classes derived fromRepresentableElement may have special

associations to otherRepresentableElements, for instance theDomainElement calledwristband

in the fitness-club is associated with theActor customer as every customer wears a wristband.

These associations are modelled with the classDomainElementAssociation and derived ones.

6.2 Basic domain elements

6.2.1 Overview

This package describes the general structure of domain elements as part ofRequirementsSpec-

ifications :: RequirementsSpecification. This structure is typical three level package structure.

We have theDomainVocabulary class that defines the top level element holding a whole collec-

tion of DomainElements (second level) for a specific system. EveryDomainElement has to have

at least oneDomainStatement (third level). DomainStatement is a description of an element of

the domain of the system to be developed with its context.

DomainVocabulary can be presented in Package Diagrams that have their syntax derived from

UML Package Diagrams.DomainElements are presented inDomainElements Diagrams as sim-

ple rectangle icons with their ‘name’ or rectangle with ‘name’ and names ofDomainStatements

included in concreteDomainElement. DomainStatements are presented in a form of source or

preview of wiki-like hyperlinked sentence. All these elements can be placed in the Project Tree.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.2.2 Abstract syntax and semantics

Abstract syntax for theBasicDomainElements package is described in Figure 6.2.

Package

DomainVocabulary Package

DomainElement

Hyperlink

NounLink

DomainStatement

Term

Terms::Noun

ElementRepresentations::

RepresentableElement

DomainElementAssociationKernel::

Relationship

StructuredLanguageSentence

Phrases::Phrase

{DomainElement groups all

DomainStatements whose "names"

contain Phrases linked with the same

Noun as in the DomainElement's "name"}

ElementRepresentation

DomainElementRepresentation

* name

1

{redefines

name}

1

linkedNoun

1

{redefines

linkedTerm}

statements

0..*

{redefines

ownedMember}

1

*

relatedDomainElement
2

{redefines

relatedElement}

name
1

{redefines name}

1

representations

1..*

{redefines

representations}

representations

1..*

{redefines

representations}

Figure 6.2: Basic domain elements

DomainVocabulary

Semantics.DomainVocabulary is a type of UMLPackage, i.e. a structure that groups elements

and constitutes a container for these elements. It can contain onlyDomainElements andActors

:: Actors. DomainVocabulary is specific for only oneRequirementsSpecification.

Abstract syntax.DomainVocabulary is a specialisation ofUML :: Kernel :: Package ([Obj05b]).

It can contain manyDomainElements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

DomainElement

Semantics.This is a type of a UMLPackage, i.e. a structure that groups elements and con-

stitutes a container for these elements.DomainElement contains allDomainStatements whose

‘name’s containPhrases linked with the sameTerms :: Noun as in theDomainElement’s ‘name’.

DomainElements can be related.

Abstract syntax.DomainElement is a specialisation ofUML :: Kernel :: Package ([Obj05b]) and

ElementRepresentations :: RepresentableElement. It redefinesownedMember. Owned mem-

bers for theDomainElement must beDomainStatements. It also redefines‘name’ with NounLink

and representations withDomainElementRepresentation. DomainElements can be related only

by DomainElementAssociation.

DomainElementRepresentation

Semantics.This is a representation for elements from packageBasicDomainElements (Domain-

Statement andDomainElement) in form of wiki-like description. It contains set of hyperlinked

sentences derived fromRepresentableElements :: ElementRepresentation.

Abstract syntax.DomainElementRepresentation is concrete specialisation ofRepresentableEle-

ments :: ElementRepresentation. It overridesrepresentations for classes from packageBasic-

DomainElements.

DomainElementAssociation

Semantics.DomainElementAssociation denotes relationships between twoDomainElements.

Abstract syntax.DomainElementAssociation is a kind ofKernel :: Relationship [Obj05b]. It

connects twoDomainElements by redefiningrelatedElement with relatedDomainElement. This

relationship is not directed.

NounLink

Semantics. NounLink is a hyperlink that points to theTerms :: Noun used for namingDo-

mainElements.

Abstract syntax.A NounLink is a kind of aBasicRepresentations :: Hyperlink. It is associated

with Terms :: Noun andDomainElement.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

DomainStatement

Semantics. DomainStatement is a wiki-like description of an element of the domain of the

system to be developed with its context - noun with modifiers, verbs and other nouns.Domain-

Statements are grouped inDomainElement.

Abstract syntax. DomainStatement is a specialization ofElementRepresentations :: Repre-

sentableElement. It redefines‘name’ with Phrases :: Phrase. DomainStatements are contained

in DomainElement.

6.2.3 Concrete syntax and examples

DomainVocabulary.The concrete syntax is similar toKernel :: Package, described in the UML

Superstructure (in [Obj05b], paragraph 7.3.37, page 104): “A package is shown as a large rec-

tangle with a small rectangle (a ’tab’) attached to the left side of the top of the large rectangle.

(...) Members may also be shown by branching lines to member elements, drawn outside the

package. A plus sign (+) within a circle is drawn at the end attached to the namespace (pack-

age). (...)” In addition to the above Kernel :: Package description, name ofDomainVocabulary

package is inside rectangle situated in the center of the large rectangle. It can also be presented

in a tree structure with a minimized icon. See Figure 6.3 for examples of concrete syntax in a

Package Diagram and in a Project Tree structure with a minimized icon, respectively.

Figure 6.3: DomainVocabulary example, normal and tree view

DomainElement.The basic representation ofDomainElement is denotated by a rectangle with

its name inside it (see Figure 6.5). Another form of representation is a rectangle divided into two

parts by a horizontal line. The name ofDomainElement is placed in the upper part. The bottom

part includes hyperlinked names ofDomainStatements, each in its own rectangle (see Figure

6.6). DomainElements can be presented in s diagram as both of their forms of representation.

DomainElement can also be presented as a tree structure with a minimized icon. An example of

concrete syntax for the tree view ofDomainElement can be found in Figure 6.4.

DomainElementRepresentation.is a description ofDomainElement. Its concrete syntax de-

pends on the context in whichDomainElementRepresentation is presented to the user. It can

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Figure 6.4: DomainElement tree view example

customer

time schedule

exercises

sign-up

sign-up summary dialog

timeavailability

DomainElementAssociation

Figure 6.5: DomainElement’s diagram example

be represented in the form of a purely textual “source”, or in a “preview” form of sentences

with underlined wiki-like links. In source,DomainElementRepresentation consists of text with

a double pair of square brackets (“[[]]”) surrounding text to be hyperlinked in preview mode. In

preview, containedBasicRepresentations :: Hyperlinks are represented as coloured and under-

lined text (see Figure 6.7).

DomainElementAssociation.is presented as a line connecting two ordered SVOScenarioSen-

tence. See Figures 6.5, 6.6 for examples of concrete syntax in a Domain Element Diagram.

NounLink. Concrete syntax is inherited from the BasicRepresentations :: Hyperlink meta-class.

DomainStatement.Concrete syntax includes the name ofDomainStatement as a hyperlink to

Phrases :: Phrase or one of its subclasses and description asNaturalLanguageHypertext. It can

be represented in the form of a source or preview of wiki-like hyperlinked sentence. Example

of concrete syntax ofDomainStatement can be found in Figure 6.8.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

sign-up summary dialog

sign-up summary dialog

show sign-up summary dialog

sign-up summary dialog

sign-up summary dialog

show sign-up summary dialog

exercises

cyclic exercises

sporadic exercises

check availability of exercises

submit sign-up for exercises

want to sign up for exercises

sign up customer for exercises

exercises

exercises

cyclic exercises

sporadic exercises

check availability of exercises

submit sign-up for exercises

want to sign up for exercises

sign up customer for exercises

exercises

customer

customer

returning customer

sign up customer

customer

customer

returning customer

sign up customer

time schedule

time schedule

choose time from time schedule

time schedule

time schedule

choose time from time schedule

time

time

choose time

time

time

choose time

availability

availability

check availability

availability

availability

check availability

sign-up

sign-up

submit sign-up

DomainElementAssociation

Figure 6.6: DomainElement’s diagram example

Source: View:

[[Customer]]'s interaction, when customer Customer's interaction, when customer
signs up for exercises chosen from signs up for exercises chosen from
[[available exercises list]]. available exercises list.

Figure 6.7: DomainElementRepresentation’s concrete syntax example

6.3 Actors

6.3.1 Overview

This package contains that part of the RSL metamodel that deals with the representation of

actors in the requirements specification. Actors are for instance “customer” or “fitness club

employee”, they can be refered in every type of requirement representation.

Source: View:

[[sign up customer]] : [[for]] : [[exercises]] sign up : customer : for : exercises

[[Customer]]'s interaction, when customer Customer's interaction, when customer
signs up for exercises chosen from signs up for exercises chosen from
[[available exercises list]]. available exercises list.

Figure 6.8: DomainStatement example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.3.2 Abstract syntax and semantics

The diagram in Figure 6.9 describes the RSL part that is related to actor. The two classesActor

andElementActorAssociation which are introduced in this Figure are described in the following

sections.

Actor

Package

BasicDomainElements::

DomainVocabulary

ElementRepresentations::

RepresentableElement

Package

BasicDomainElements::

DomainElement

StructuredLanguageSentence

Phrases::Phrase
ElementActorAssociation

{Actor contains a pure

Phrase, not its

specialization}

RedefinableElement

Kernel::Classifier

Relationship

BasicDomainElements::

DomainElementAssociation

*

name
1

{redefines name}

1

*

relatedDomainElement

1

{redefines

relatedDomainElement}

*

relatedActor 1

{redefines

relatedDomainElement}

*

relatedDomainElement 2

{redefines

relatedElement}

Figure 6.9: Actor metamodel part

Actor

Semantics.This class is the most important class in this package. Every actor that is referred to

in the requirements specification is modelled as an instance ofActor. If requirements for a fit-

ness club system are specified, actors may for instance be “customer”, “system administrator”,

or “staff member”. Actors participate in scenarios and use cases on the one hand, but they may

also be referred to in other functional and even non-functional requirements.

Abstract syntax.The classActor is derived from the classesClassifier from the UML 2.0 Super-

structure andElementRepresentations :: RepresentableElement. The aggregation toBasicRep-

resentations :: HyperlinkedSentence, which specifies thename of a ElementRepresentations ::

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

RepresentableElement is redefined, thus the name of anActor may only be aPhrases :: Phrase.

The constraint is added to this redefined aggregation because an actor’s name should be for ex-

ample “a customer” but not aPhrases :: VerbPhrase like “take”. Actors can be associated with

other elements throughElementActorAssociations, as described below SinceActors are domain

specific, they are part of theBasicDomainElements :: DomainVocabulary.

ElementActorAssociation

Semantics.An ElementActorAssociation models the relationship between anActor and other

domain specific entities in theBasicDomainElements :: DomainVocabulary.

Abstract syntax.ElementActorAssociations base-class isBasicDomainElements :: DomainEle-

mentAssociation, which models the relationship between any twoBasicDomainElements :: Do-

mainElements. Since theElementActorAssociation should only be used to model the relation-

ship between oneActor and oneBasicDomainElements :: DomainElement, the inherited associ-

ation toBasicDomainElements :: DomainElement is redefined as two associations, one toActor

and one toBasicDomainElements :: DomainElement, each of them needing exactly one instance

of Actor perBasicDomainElements :: DomainElement to participate.

6.3.3 Concrete syntax

Actor. An Actor occurring in an interaction or a use case representation is depicted as a stylised

stick figure (see Figure 6.10), though not only a person can be an actor, but also external soft-

ware systems interacting with the system in development. The actor’s‘name’ is written below

the stick figure.

Customer :Actor

Figure 6.10: The concrete syntax of an actor.

ElementActorAssociation.This class models a relationship between anActor and some other

BasicDomainElements :: DomainElements. This element can for instance be a noun like “wrist-

band” if a fitness club software system gets specified. In schematic requirement representations,

the ElementActorAssociation is modelled as a solid line from the stick figure representing the

Actor to theBasicDomainElements :: DomainElement the Actor is associated with. In textual

representations, theElementActorAssociation are not explicitly modelled.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.4 System representations

6.4.1 Overview

This package contains the part of the RSL meta-model that deals with the representation of

the system under development and its components in the requirements specification. If the

system under development is the fitness club software system, its components are for instance

“terminal” or “database”.

6.4.2 Abstract syntax and semantics

The diagram in Figure 6.11 describes the part of RSL that is related to system representation.

The three classesSystemUnderDevelopment, SystemComponent, andElementSystemAssocia-

tion introduced in this Figure are described in the following sections.

SystemComponent

Semantics.This class is the most important class in this package. Every part of the system that

is referred to in the requirements specification is modelled as an instance ofSystemComponent.

If requirements for a fitness club system are specified, system components may for instance be

“terminal”, “database”, or “reception computer”. System components can be referred in func-

tional and non-functional requirements.

Abstract syntax.The classSystemComponent is derived from the classesClassifier from the

UML 2.0 Superstructure and the classElementRepresentations :: RepresentableElement. Sys-

temComponent is the base class forSystemUnderDevelopment. The aggregation toBasicRep-

resentations :: HyperlinkedSentence, which specifies thename of a ElementRepresentations

:: RepresentableElement, is redefined, thus the name of aSystemComponent may only be a

Phrases :: Phrase. The constraint is added to this redefined aggregation because a system’s

name should be for example “terminal” but not aPhrases :: VerbPhrase like “take”. Sys-

temComponents can be associated with other elements throughElementSystemAssociations, as

described below. SinceSystemComponents are domain specific, they are part of theDomain-

Vocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

SystemComponent

ElementRepresentations::

RepresentableElement

Package

BasicDomainElements::

DomainVocabulary

SystemUnderDevelopmentPackage

BasicDomainElements::

DomainElement

RedefinableElement

Kernel::Classifier

StructuredLanguageSentence

Phrases::Phrase

Relationship

BasicDomainElements::

DomainElementAssociation

ElementSystemAssociation

SystemComponent

contains a pure Phrase,

not its specialization

+component

0..*

0..1

*

*

+relatedDomainElement
2

{redefines

relatedElement}

*

+relatedDomainElement

1

{redefines

relatedDomainElement}

*

+relatedSystemComponent

1

{redefines

relatedDomainElement}

+name

1

{redefines name}

Figure 6.11: System representations

SystemUnderDevelopment

Semantics.The classSystemUnderDevelopment represents the whole system under develop-

ment as a black box. It can be used in all kinds of requirement representations, especially if

requirements on all parts of the system are modelled or if modelling is on a coarse granularity.

Abstract syntax.SystemUnderDevelopment is derived fromSystemComponent, so it inherits

all associations fromSystemComponent. SinceSystemUnderDevelopment depicts the whole

system under development, it may not be part of anotherSystemComponent, as the constraint

in the diagram indicates. Another restriction is the cardinality at the aggregation toDomainVo-

cabulary, since there is exactly oneSystemUnderDevelopment during the requirements specifi-

cation process, it must be exactly oneSystemUnderDevelopment in theDomainVocabulary.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

ElementSystemAssociation

Semantics.An ElementSystemAssociation models the relationship between aSystemCompo-

nent and other domain specific entities in theDomainVocabulary.

Abstract syntax.The base class ofElementSystemAssociation is the classDomainElementAs-

sociation, which models the relationship between any twoDomainElements. Since theEle-

mentSystemAssociation should only be used to model the relationship between oneSystem and

oneDomainElement, the inherited association toDomainElement is redefined as two associa-

tions, one toSystem and one toDomainElement, each of them needing exactly one instance of

System perDomainElement to participate.

6.4.3 Concrete syntax

SystemComponent.A SystemComponent occuring in an interaction or a use case representa-

tion is depicted as a rectanglular UML object (see Figure 6.12). ThePhrases :: Phrase that

defines thename of theSystemComponent is written in the rectangle. If aSystemComponent

is refered to in a textual description, it is represented only by thePhrases :: Phrase that defines

its name.

Terminal :

SystemComponent

Reception :

SystemComponent

Customer :Actor
Employee :Actor

asksForHelp

sendHelpRequest

showsHelpRequest

acceptsHelpRequest

sendRequestAccepted

informCustomer

Figure 6.12: The concrete syntax of an system component.

SystemUnderDevelopment.As SystemUnderDevelopment is theSystemComponent at a very

coarse granularity, its concrete syntax is exactly the same as forSystemComponent.

ElementActorAssociation.This class models a relationship between aSystemComponent and

some otherDomainElements. This element can for instance be a noun like “wristband” if a fit-

ness club software system gets specified. In a schematic representation, theElementSystemAs-

sociation is modelled as a solid line from the rectangle representing theSystemComponent to

theDomainElement theSystem is associated to. In textual descriptions, this association is not

explicitly modelled.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.5 Element representations

6.5.1 Overview

The packageElementRepresentations contains the classesRepresentableElement andElement-

Representation that model the basic representation of domain-specific elements. These domain

specific elements are for instance actors, components of the system under development or other

terms from the problem domain that the requirement specification is describing. This section

describes only that part which all those element representations have in common; the specific

parts are described in the other sections of this chapter.

6.5.2 Abstract syntax and semantics

RepresentableElement ElementRepresentation

BasicRepresentations::

HyperlinkedSentence

BasicRepresentations::

Hyperlink

BasicRepresentations::

RequirementRepresentation

BasicDomainElements::

DomainElementRepresentation

representations

1..*

name

1

0..1

sentences

1..*

{ordered}

0..1

hyperlinks 0..*

Figure 6.13: Entity representations

The diagram in Figure 6.13 shows the abstract syntax of the classes in the packageElementRep-

resentations. The following sections explain semantics and abstract syntax for the two recently

introduced classesRepresentableElement andElementRepresentation.

RepresentableElement

Semantics.Every entity that is related to the system under development is represented by a

RepresentableElement and has a name. Since such elements can be represented in different

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

ways, every element has at least one representation.

Abstract syntax.RepresentableElement is the abstract base class for all elements related to the

system under development that are represented in the requirements specification, such asRe-

quirementSpecification :: Requirement, DomainElements :: DomainElement or Actors :: Actor.

EveryRepresentableElement has a name, which is aBasicRepresentations :: HyperlinkedSen-

tence, so it may containBasicRepresentations :: Hyperlinks that refer toPhrases :: Phrases

andTerms::Terms in the thesaurus. In addition to the name, theRepresentableElement is rep-

resented by at least oneElementRepresentation, as the aggregation between these two classes

indicates.

ElementRepresentation

Semantics.EveryElementRepresentation is one possible representation of aRepresentableEle-

ment. Due to this, aRepresentableElement may contain one or more representations. All those

representations in the requirement specification, for instanceInteractionRepresentations :: Ac-

torLifeline, which is introduced in section 7.7 “ScenarioRepresentation” of D2.1 “Behavioural

Requirements Language Definition”, are derived fromElementRepresentation.

Abstract syntax.The classElementRepresentation is the base class for all representations such

as e.g.BasicRepresentations :: RequirementsRepresentation or InteractionRepresentations ::

ActorLifeline. The aggregation toBasicRepresentations :: HyperlinkedSentence shows that aEl-

ementRepresentation containsBasicRepresentations :: HyperlinkedSentences, but as the way

these aggregation is realized differes from representation to representation, it is redefined in

most of them. These sentences are typically ordered and may be used to build up the textual

description of the element theElementRepresentation describes, but there are also other types

of containment relations betweenElementRepresentation andBasicRepresentations :: Hyper-

linkedSentence, for instance in theInteractionRepresentations :: InteractionScenario described

in D2.1 “Behavioural Requirements Language Definition”, chapter 7.

6.5.3 Concrete syntax

RepresentableElement. ElementRepresentation.These classes are abstract, and they do not

introduce any concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.6 Phrases

6.6.1 Overview

ThePhrases package contains language entities that allow for formulating phrases in a struc-

tured language. ThesePhrases representTerms :: Nouns associated with otherTerms (Terms

:: Verbs, Terms :: Adjectives). A genericPhrase is always put in the context of aTerms ::

Noun (is part of aBasicDomainElements :: DomainElement) and is (possibly) associated with a

Quantifier and/orModifier. Another kind ofPhrase is VerbPhrase which describes the context

of Verb.

6.6.2 Abstract syntax and semantics

Abstract syntax in this package is presented in Figure 6.14.

Phrase

Semantics.Phrase describes an expression involving a givenTerms :: Noun.

Abstract syntax.Phrase is a kind ofRepresentationSentences :: StructuredLanguageSentence.

Phrase consists of anObject (a BasicRepresentations :: Hyperlink to a Terms :: Noun) and

optionally aTerms :: Modifier and aTerms :: Quantifier (BasicRepresentations :: Hyperlinks

to special types ofTerms :: Term). It represents the “name” of aBasicDomainElements ::

DomainElement by pointing to aTerms :: Noun and is associated with otherTerms (Terms

:: Modifier, Terms :: Quantifier) throughBasicRepresentations :: Hyperlinks. Phrase contains

a hyperlinked description. It is used for referencing the vocabulary of different requirement

representations (controlled grammars, wiki-like descriptions).

VerbPhrase

Semantics.This expression describes an operation that can be performed in association with

theObject described by aTerms :: Noun.

Abstract syntax.VerbPhrase is an abstract kind ofPhrase. It exists in two concrete classes:

SimpleVerbPhrase and ComplexVerbPhrase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

StructuredLanguageSentence
Phrase

ComplexVerbPhrase SimpleVerbPhrase

Terms::Term

Terms::Noun

VerbPhrase

Terms::Verb

Terms::
Preposition

Hyperl ink
Modifier

Hyperl ink
Quantifier

Hyperl ink
Object

Hyperl ink
PhraseVerb

Hyperl ink
PhrasePreposition

+l inkedT erm

{redefines l inkedT erm }

0..1

+l inkedT erm

{redefines l inkedT erm }

+l inkedT erm

{redefines l inkedT erm }

+l inkedT erm

{redefines l inkedT erm }

+l inkedT erm

{redefines l inkedT erm }

1

Figure 6.14: Phrases

SimpleVerbPhrase

Semantics.SimpleVerbPhrase has the semantics ofVerbPhrase and can be used as theVO part

in anSVOSentences :: SVOSentence.

Abstract syntax. SimpleVerbPhrase, in addition to aPhrase, includes aPhraseVerb (Basic-

Representations :: Hyperlink to a Terms :: Verb). SimpleVerbPhrase is a concrete subclass of

VerbPhrase.

ComplexVerbPhrase

Semantics.ComplexVerbPhrase can be used asVOO (SVOSentences :: SVOSentence with

direct and indirect object) part in anSVOSentences :: SVOSentence. ComplexVerbPhrase

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

describes a behavioural relation between a direct and an indirect object.

Abstract syntax.ComplexVerbPhrase extendsSimpleVerbPhrase with an additionalTerms ::

Noun (indirect object). It is a kind ofVerbPhrase pointing to the other BasicDomainElements

:: DomainElements’s SimpleVerbPhrase. It includes also aPhrasePreposition. ComplexVerb-

Phrase is a concrete subclass ofVerbPhrase.

Modifier

Semantics.A Modifier combines withObject and indicates how it should be interpreted in the

surrounding context. In this way it creates a Phrase that distinguishes thisObject’s meaning

from its main vocabulary entry.

Abstract syntax.Modifier is a kind of aBasicRepresentations :: Hyperlink. It points to theTerms

:: Term used as aModifier in a given Phrase.

Quantifier

Semantics.A Quantifier combines withObject and indicates how they should be interpreted in

the surrounding context in terms of quantity and variability, that is the extent to which Noun

holds over a range of things. In this way it creates a Phrase that distinguishes thisObject’s

meaning from it’s main vocabulary entry.

Abstract syntax.Quantifier is a kind of aBasicRepresentations :: Hyperlink. It points to the

Term :: Term used as aQuantifier in a given Phrase.

Object

Semantics.An Object is a type of aBasicRepresentations :: Hyperlink that points to theTerms

:: Noun specific for thisObject’s Phrase.

Abstract syntax.Object is a kind of aBasicRepresentations :: Hyperlink.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

PhraseVerb

Semantics.A PhraseVerb is a type of aBasicRepresentations :: Hyperlink that points to the

Terms :: Verb specific for thisPhrase.

Abstract syntax.PhraseVerb is a kind of aBasicRepresentations :: Hyperlink.

PhrasePreposition

Semantics.A PhrasePreposition is a type of aBasicRepresentations :: Hyperlink that points to

theTerms :: Preposition used to connectSimpleVerbPhrases with ComplexVerbPhrases.

Abstract syntax.PhrasePreposition is a kind of aBasicRepresentations :: Hyperlink.

6.6.3 Concrete syntax and examples

Source: View:

n:customer Customer

m:registered n:customer Registered : customer

Figure 6.15: Phrase concrete syntax examples

Source: View:

v:sign up n:customer sign up : customer

Figure 6.16: SimpleVerbPhrase concrete syntax examples

Source: View:

v:sign up n:customer p:for n:exercises sign up : customer : for : exercises

Figure 6.17: ComplexVerbPhrase concrete syntax examples

Object. PhraseVerb. PhrasePreposition.Their concrete syntax is inherited from theBasicRep-

resentations :: Hyperlink meta-class.

Phrase. SimpleVerbPhrase. ComplexVerbPhrase.Their concrete syntax depends on the con-

text in which phrases are presented to the user. They can be represented in a form of source or

preview of wiki-like hyperlinked sentence. In the source form, they consist of element’s names

preceded by a letter with a colon (“:”) indicating this element type (“n:” for noun (Object), “m:”

for Modifier, “q:” for Quatifier, “v:” for PhraseVerb, “p:” for PhrasePreposition). In preview

form, they are represented as coloured hyperlinks to appropriate elements separated with colons

(see Figures 6.15, 6.16, 6.17).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

6.7 Terms

6.7.1 Overview

This package describesTerm and its relationship toThesaurus. Thesaurus is a kind of highly

structured conceptual dictionary, common for all vocabularies. It contains morphological infor-

mation of terms, with their forms (cases, inflections, etc.) and semantic information. Currently

theTermSpecialisationRelation as well asHasSynonym andHasHomonym relations are seen as

the main semantic information.

TheTermSpecialisationRelation structures the terms in a taxonomical hierarchy. This semantic

definition is organisation-specific and is specified by extending the term structure (see Figures

6.20 and 6.21 for an example).

Every term is a distinguished part of speech. Note that “term” is not necessarily a single word

(eg. some modal verbs – see note on the Diagram 6.18). We also treat phrasal verbs as Verb

class objects.Terms from Thesaurus are used for buildingPhrases.

6.7.2 Abstract syntax and semantics

Figure 6.18 shows the specialisation hierarchy of the different types ofTerms, which areCon-

ditionalConjunction, ModalVerb, Verb, Noun, Modifier, Quantifier and Preposition. Addition-

ally, this figure introduces two bi-directional relations that can be defined between twoTerms,

namelyHasHomonym andHasSynonym.

Figure 6.19 also contains all the above mentioned specialisations ofTerm. This figure focuses on

the relationships that can be defined between two terms of the same type (only in between two

Nouns, between twoVerbs, etc.). All relations are specialisations ofTermSpecialisationRelation

and thus define a directed taxonomic relation.

Figures 6.20 and 6.21 show the abstract syntax of a thesaurus with domain-specific extensions

(for ProDV related terms in this case). Figure 6.20 depicts the noun related part of the thesaurus,

while Figure 6.21 shows the verb related part respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Verb Noun Quantifier

Term

PrepositionModalVerb

Modal verb in English:
will and would
shall and should
may and might
can and could
must and have to
ought to and had better
in more archaic use, dare and need
by some accounts, do

Every Term object form Thesaurus represents not only
this Term's dictionary entry (eg. "go"), but also all it's
grammatical forms ("went", "gone"). Also, Term is not
necessarily a single word (eg.: modal "ought to"
consists of two words).

Modifier

Quantifier and Modifier can be different parts of speech in
different languages (eg. Quantifier in Polish can be Zaimek
(Pronoun) see: http://en.wiktionary.org/wiki/zaimek, in English it is
most likely Adjective, we do not know about other languages).

Package
Thesaurus

Conditional
Conjunction

HasHomonym

HasSynonym

Kernel::
Relationship

*
1

*1

1 isSynonym *

0..*
{redefines
ownedMember}

1

isHomonym *

Figure 6.18: Thesaurus, Term and its specialisations.

Term

Semantics.Term is a unit of language that native speakers can identify as a meaning-coherent

notion. It is a block from which a phrase is made. A Term usually has different grammar forms.

Abstract syntax.Term has a‘name’ attribute. Terms are grouped in aThesaurus.

Thesaurus

Semantics.Thesaurus is a structure containing all theTerms, with their forms, inflexions, cases

etc. as well as their relations between each other. These relations define the semantics of the

Terms.

Abstract syntax.Thesaurus is a kind ofPackage. It containsTerms.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Term

Verb

Term

Noun

Term

Quantifier

Term

Preposition

Term

ModalVerb

Term

Modifier

Term

Conditional

Conjunction

NounSpecialisationRelation

VerbSpecialisationRelation

ModalVerbSpecialisationRelation

ModifierSpecialisationRelation

QuantifierSpecialisationRelation

PrepositionSpecialisationRelationCondConjunctionSpecialisationRelation

TermSpecialisationRelation

Kernel::

DirectedRelationship

Kernel::

Relationship

*

ModalVerbGeneralised

1

*

CCGeneralised

1

*

PrepositionGeneralised

1

*

QuantifierGeneralised

11

VerbSpecialised

* *

VerbGeneralised

1

*

NounGeneralised

11

CCSpecialised

*

1

ModifierSpecialised

*

1

ModalVerbSpecialised

*

1

PrepositionSpecialised

*

1

QuantifierSpecialised

*

1

NounSpecialised

*

*

ModifierGeneralised

1

Figure 6.19: Specialisation Relations of terms from the same type.

Conditional Conjunction

Semantics. A Conditional Conjunction is a Thesaurus element used for combining two sen-

tences into a conditional or state descriptive structure.

Abstract syntax.Conditional Conjunction is a kind of aTerm.

ModalVerb

Semantics. A Modal Verb (also modal, modal auxiliary verb, modal auxiliary) is a type of

auxiliary verb that is used to indicate a provision of syntax that expresses the predication of an

action, attitude, condition, or state other than that of a simple declaration of fact.

Abstract syntax.ModalVerb is a kind ofTerm.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

ProDVNoun :Noun

Data :NounPerson :Noun Thing :Noun

Admin :Noun ClubMember :NounStaffMember :Noun

ProDVtoPerson :

NounSpecialisationRelation

ProDVtoThing :

NounSpecialisationRelation

ProDVtoData :

NounSpecialisationRelation

PersontoNoun :

NounSpecialisationRelation

PersontoClubMember :

NounSpecialisationRelation

PersontoStaffMember :

NounSpecialisationRelation

ProDVTerm :Term

ProDVTermtoNoun :

TermSpecialisationRelation

Figure 6.20: Part of a Thesaurus in abstract syntax with organisation-specific extension (only
Nouns are presented in this figure.)

Modifier

Semantics.A Modifier is a type ofTerm that combines withNoun and indicates how it should

be interpreted in the surrounding context. Modifier can be different parts of speech in different

languages (eg. Modifier in Lithuanian can be adjective, pronoun, pronoun+adjective, participle,

pronoun+participle, in Polish it is an Adjective sourcing from aNoun).

Abstract syntax.Modifier is a kind of aTerm. It is an abstract class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

ProDVVerb :Verb

change :Verb

update :Verb change :Verb modify :Verb

input :Verb

enter :Verb type :Verb

ProDVtoChange :

VerbSpecialisationRelation

ProDVtoInput :

VerbSpecialisationRelation

ChangetoUpdate :

VerbSpecialisationRelation

ChangetoChange :

VerbSpecialisationRelation

ChangetoModify :

VerbSpecialisationRelation

Inputtoenter :

VerbSpecialisationRelation

InputtoType :

VerbSpecialisationRelation

ProDVTerm :Term

ProDVTermtoVerb :

TermSpecialisationRelation

Figure 6.21: Part of a Thesaurus in abstract syntax with organisation-specific extension (only
Verbs are presented in this figure.)

Quantifier

Semantics.A Quantifier is a type ofTerm that combines withNoun and indicates how they

should be interpreted in the surrounding context in terms of quantity and variability, that is the

extent to which Noun holds over a range of things.Quantifier can be different parts of speech

in different languages (eg.Quantifier in Polish can be Zaimek (Pronoun), in English it is most

likely an Adjective).

Abstract syntax.Quantifier is a kind ofTerm. It is an abstract class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Noun

Semantics.A Noun is a type ofTerm that names objects (a person, place, thing, quality, action

or data).

Abstract syntax.Noun is a kind ofTerm.

Preposition

Semantics.A Preposition is a type ofTerm that combines withPhrases :: Phrases and indicates

how they should be interpreted in the surrounding context.

Abstract syntax.Preposition is a kind ofTerm.

Verb

Semantics.A Verb is a type of aTerm that expresses action or state of being.

Abstract syntax.Verb is a kind of aTerm.

TermSpecialisationRelation

Semantics.TermSpecialisationRelation is an abstract class that defines semantics for all other

relation classes in this package other thanHasHomonym andHasSynonym. TermSpecialisa-

tionRelation inherits concrete syntax formDirectRelationship. The subclasses ofTermSpe-

cialisationRelation are: CondConjunctionSpecialisationRelation, ModalVerbSpecialisationRela-

tion, NounSpecialisationRelation, ModifierSpecialisationRelation, QuantifierSpecialisationRela-

tion, PrepositionSpecialisationRelation. These relations define specific specialisation relations

for the diverse types of terms. Those subclasses ensure that the source and the target of the rela-

tionship are of the same kind ofTerm. The source of each such relationship should be different

from its target -Term cannot be associated with itself.

Abstract syntax. TermSpecialisationRelation is a kind ofDirectRelationship from theUML ::

Kernel package [Obj05b].

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

CondConjunctionSpecialisationRelation

Semantics. A CondConjunctionSpecialisationRelation relates oneConditionalConjunction (as

the source of the relationship) to anotherConditionalConjunction (the target of the relationship).

Abstract syntax.CondConjunctionSpecialisationRelation is a kind ofTermSpecialisationRela-

tion.

ModalVerbSpecialisationRelation

Semantics. A ModalVerbSpecialisationRelation relates oneModalVerb (as the source of the

relationship) to anotherModalVerb (the target of the relationship).

Abstract syntax.ModalVerbSpecialisationRelation is a kind ofTermSpecialisationRelation.

NounSpecialisationRelation

Semantics.A NounSpecialisationRelation relates oneNoun (as the source of the relationship)

to anotherNoun (the target of the relationship).

Abstract syntax.NounSpecialisationRelation is a kind ofTermSpecialisationRelation.

ModifierSpecialisationRelation

Semantics.A ModifierSpecialisationRelation relates oneModifier (as the source of the relation-

ship) to anotherModifier (the target of the relationship).

Abstract syntax.ModifierSpecialisationRelation is a kind ofTermSpecialisationRelation.

QuantifierSpecialisationRelation

Semantics.A QuantifierSpecialisationRelation relates oneQuantifier (as the source of the rela-

tionship) to anotherQuantifier (the target of the relationship).

Abstract syntax.QuantifierSpecialisationRelation is a kind ofTermSpecialisationRelation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

PrepositionSpecialisationRelation

Semantics. A PrepositionSpecialisationRelation relates onePreposition (as the source of the

relationship) to anotherPreposition (the target of the relationship).

Abstract syntax.PrepositionSpecialisationRelation is a kind ofTermSpecialisationRelation.

HasHomonym

Semantics.A HasHomonym relates twoTerms that have the same character string as “name”

attribute but that have different meanings.

Abstract syntax.HasHomonym is a kind ofRelationship from UML :: Kernel package [Obj05b].

HasHomonym inherits concrete syntax formRelationship.

HasSynonym

Semantics.A HasSynonym relates twoTerms that have the same meaning but a different char-

acter string as “name” attribute.

Abstract syntax.HasSynonym is a kind ofRelationship from UML :: Kernel package [Obj05b].

HasSynonym inherits concrete syntax formRelationship.

6.7.3 Concrete syntax and examples

Term. It is a string of letters and white spaces having a logical meaning in a specific natural

language.Examples (for English):“car”, “buy”, “look for”, “buy ticket button”, “at”, “must”,

“every”.

Thesaurus.It is a semantic structure that holdsTerms. This structure should allow for semantic-

based reuse of organisation-specificTerms as well as browsing theThesaurus contents by

Phrases :: Phrase names andVerbs associated withPhrases :: Phrases. The concrete syn-

tax is equivalent to the concrete syntax of theDomainVocabulary (compare Figure 6.22 and

Figure 6.3) which is based onKernel :: Package. More important is the tree view presentation

of the Thesaurus as depicted in Figure 6.23. Please note that the tree view depicts only the

specialisation relations. Therefore the thesaurus itself is not shown.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Figure 6.22: Package view: thesaurus’s concrete syntax.

Figure 6.23: Thesaurus tree view example

Conditional Conjunction. It is a string of letters and white spaces used in formulating con-

ditional or state descriptive clauses.Examples (for English):“if”, “when”, “upon”, “after”,

“during”.

ModalVerb. It is a string of letters and white spaces used in formulating a modal form.Examples

(for English): “will”/“would”, “shall”, “should”, “may”/“might”, “can”/“could”, “must”, “have

to”, “ought to”.

Modifier. As an abstract meta-class, it has no concrete syntax. It can be formulated in any of

those representations of the meta-classes that derive from it. The derivatives ofModifier should

have their concrete syntax as a string of letters and white spaces used in formulating aNoun’s

context.Examples (for English):“ registereduser”, “selectedwindow”

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Structural Requirements Language Definition – D2.2
Domain entities

ver. 1.00
30.01.2007

Quantifier. As an abstract meta-class, it has no concrete syntax. It can be formulated in any of

those representations of meta-classes that derive from it. The derivatives ofQuantifier should

have their concrete syntax as a string of letters and white spaces used in formulating aNoun’s

context.Examples (for English):“every”, “all”, “no”, “none of”

Noun. It is a string of letters and white spaces used in formulating an objects’ description.

Examples (for English):“user”, “system”, “buy ticket button”, “accessibility”, “saving”

Preposition. It is a string of letters and white spaces used in formulatingPhrases :: Phrases’

context. Examples (for English):“on”, “of”, “to”, “for”, “inside”, “next to”, “in accordance

with”

Verb is a string of letters and white spaces used in formulating an action description.Examples

(for English): “add”, “show”, “save”, “start”, “provide”, “look for”, “choose between”

TermSpecialisationRelation.This relationship between twoTerms is depicted as a package

with a subpackage in the tree view of the thesaurus (see Figure 6.23). Homonyms and Syn-

onyms are presented for each term (see Figure 6.23).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Structural Requirements Language Definition – D2.2
Conclusion

ver. 1.00
30.01.2007

Chapter 7

Conclusion

This deliverable presents a novel requirements specification language, more precisely its struc-

tural part. This language is special because of its explicit inclusion of objects existing in the

domain (environment) of the software system to be built —domain objects. While the represen-

tation of a Domain Model (to-be) makes use of standard UML, which is still allowed, additional

descriptions are possible in a newly defined representation of vocabulary. This facilitates a bet-

ter understanding of the requirements per se. Our language is the first requirements specification

language intimately integrated with UML and defined using the same meta-modelling approach

as used for UML itself (using MOF). This deliverable also presents and explains the structural

part of this language definition, from abstract down to concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Structural Requirements Language Definition – D2.2
Bibliography

ver. 1.00
30.01.2007

Bibliography

[Dou99] Bruce Powel Douglass.Doing hard time: developing real-time systems with UML,

objects, frameworks, and patterns. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1999.

[EK02] Gerald Ebner and Hermann Kaindl. Tracing all around in reengineering.IEEE

Software, 19(3):70–77, 2002.

[FHK+05] Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold

Schneider. Attempto controlled english: A knowledge representation language

readable by humans and machines.Lecture Notes in Computer Science, 3564,

2005.

[Gom01] Hassan Gomaa. Designing concurrent, distributed, and real-time applications with

UML. In ICSE ’01: Proceedings of the 23rd International Conference on Soft-

ware Engineering, pages 737–738, Washington, DC, USA, 2001. IEEE Computer

Society.

[Hoe04] Stefan Hoefler. The syntax of attempto controlled english: An abstract grammar

for ace 4.0, technical report. Technical Report ifi-2004.03, Department of Infor-

matics, University of Zurich, 2004.

[Kai97] H. Kaindl. A practical approach to combining requirements definition and object-

oriented analysis.Annals of Software Engineering, 3:319–343, 1997.

[Kai99] H. Kaindl. Difficulties in the transition from OO analysis to design.IEEE Software,

16(5):94–102, Sept./Oct. 1999.

[Lar01] Craig Larman.Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process. Prentice Hall, Englewood Cliffs,

NJ, second edition, 2001.

[Obj03] Object Management Group.Meta Object Facility (MOF) 2.0 Core Specification,

Final Adopted Specification, ptc/03-10-04, 2003.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Structural Requirements Language Definition – D2.2
Bibliography

ver. 1.00
30.01.2007

[Obj05a] Object Management Group.Unified Modeling Language: Infrastructure, version

2.0, formal/05-07-05, 2005.

[Obj05b] Object Management Group.Unified Modeling Language: Superstructure, version

2.0, formal/05-07-04, 2005.

[Obj06] Object Management Group.Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01, 2006.

[SBNS05a] Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Sce-

nario construction tool based on extended UML metamodel.Lecture Notes in

Computer Science, 3713:414–429, 2005.

[SBNS05b] Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Writ-

ing coherent user stories with tool support.Lecture Notes in Computer Science,

3556:247–250, 2005.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

	History of changes
	Summary
	Table of contents
	List of figures
	Scope, conventions and guidelines
	Document scope
	Approach to language definition and notation conventions
	Defining languages using meta-modelling
	Structure of the language reference

	Related work and relation to other documents
	Structure of this document
	Usage guidelines

	I Conceptual Overview of the Structural Requirements Language
	Introduction
	Typical OOAD method
	Requirements modelling
	OOA
	OOD

	Our Language

	Domain entities
	Business entities
	System entities

	Domain vocabulary representation
	Overview
	Domain vocabulary concept
	Domain vocabulary in the RSL

	Discussion

	II Language Reference
	Domain entities
	Overview
	Basic domain elements
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Actors
	Overview
	Abstract syntax and semantics
	Concrete syntax

	System representations
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Element representations
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Phrases
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Terms
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Conclusion
	Bibliography

