
Requirements Specification Language Definition
Defining the ReDSeeDS Languages

Deliverable D2.4.1, version 1.00, 28.02.2007

IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide-Matrix S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Requirements Specification Language Definition
Defining the ReDSeeDS Languages

Workpackage WP2
Task T2.4
Document number D2.4.1
Document type Deliverable
Title Requirements Specification Language Definition
Subtitle Defining the ReDSeeDS Languages
Author(s) Hermann Kaindl, Michał Śmiałek, Davor Svetinovic, Albert Am-

broziewicz, Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak,
Hannes Schwarz, Daniel Bildhauer, John Paul Brogan, Kizito
Ssamula Mukasa, Katharina Wolter, Thorsten Krebs

Internal Reviewer(s) Michał Śmiałek, Albert Ambroziewicz, Jacek Bojarski, Wiktor
Nowakowski, Tomasz Straszak, John Paul Brogan, Hermann Kaindl,
Sevan Kavaldjian, Roman Popp

Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP2_Re-

quirements_specification_language/D2.4.01/ReDSeeDS_D2.4.1_Re-
quirements_Specification_Language_Definition.pdf

Version 1.00
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

28.02.2007

Requirements Specification Language Definition – D2.4.1
History of changes

ver. 1.00
28.02.2007

History of changes

Date Ver. Author(s) Change description
13.02.2007 0.01 Hermann Kaindl (TUW) Proposition of ToC

15.02.2007 0.02 Hannes Schwarz (UKo) Added sections Constrained language rep-
resentations, Representation sentences,
SVO sentences, Phrases, Terms

15.02.2007 0.03 Hermann Kaindl (TUW) Added content for executive summary

16.02.2007 0.04 Hermann Kaindl (TUW) Added content for Requirements on RSL

16.02.2007 0.05 Albert Ambroziewicz
(WUT)

Transferred and updated UIBehaviour de-
scription; transferred sections 1.2&1.5

16.02.2007 0.06 Albert Ambroziewicz
(WUT)

Added Profiles appendix and profile de-
scription for UI devices

16.02.2007 0.07 Michał Śmiałek (WUT) Proposition of content for Chapter 6, up-
date in Chapter 7

16.02.2007 0.08 Albert Ambroziewicz,
Jacek Bojarski (WUT)

Changed document structure

16.02.2007 0.09 Daniel Bildhauer (UKo) Added sections Natural language repre-
sentations, Interaction representation, Sys-
tem, Actors, Basic domain elements

16.02.2007 0.10 John Paul Brogan (HWU) Added content for Document Scope

16.02.2007 0.11 John Paul Brogan (HWU) Added content for Related work and rela-
tions to other documents

16.02.2007 0.12 John Paul Brogan (HWU) Added content for Structure of Document

16.02.2007 0.13 Daniel Bildhauer (UKo) Restructuring of Interaction representa-
tions

16.02.2007 0.14 Kizito Ssamula Mukasa
(Fraunhofer)

Added profile for user interface elements

16.02.2007 0.15 Hermann Kaindl (TUW) Added content for Domain representations
using conceptual models

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III

Requirements Specification Language Definition – D2.4.1
History of changes

ver. 1.00
28.02.2007

Date Ver. Author(s) Change description
16.02.2007 0.16 Hermann Kaindl (TUW) Added content for Thesaurus (based on

text by Markus Nick)

16.02.2007 0.17 Hermann Kaindl (TUW) Added content for Conclusion

17.02.2007 0.18 Jacek Bojarski (WUT) Added content for Activity sentences and
Activity sentence constructs

19.02.2007 0.19 Albert Ambroziewicz
(WUT)

Added content for Kernel package de-
scription

19.02.2007 0.20 John Paul Brogan (HWU) Added content for Relations to UML and
SysML

20.02.2007 0.21 Tomasz Straszak (WUT) Added content for TermsRelations section
and updated Terms section

20.02.2007 0.22 Kizito Ssamula Mukasa
(Fraunhofer)

Added content for Chap 15

21.02.2007 0.23 Daniel Bildhauer (UKo) Finished all sections dealing with interac-
tion representations

21.02.2007 0.24 Albert Ambroziewicz,
Tomasz Straszak (WUT)

Major changes in User interface elements
section

21.02.2007 0.25 John Paul Brogan (HWU) Updated content for Relations to UML and
SysML and added relevant references

21.02.2007 0.26 Hannes Schwarz (UKo) Added section 12.1

21.02.2007 0.27 Wiktor Nowakowski
(WUT)

Added content for Chapter 11

22.02.2007 0.28 Daniel Bildhauer (UKo) Major changes to actors and system ele-
ments sections.

22.02.2007 0.29 Jacek Bojarski (WUT) Finished all sections dealing with activity
representations

23.02.2007 0.30 Daniel Bildhauer (UKo) Removed deprecated content and replaced
figures

23.02.2007 0.31 Albert Ambroziewicz
(WUT)

Added content for Notions section

23.02.2007 0.32 Jacek Bojarski (WUT) Added content for Scenario sentences sec-
tion

23.02.2007 0.33 Tomasz Straszak (WUT) Added content for Domain elements sec-
tion

23.02.2007 0.34 Hannes Schwarz (UKo) Added content for Requirement represen-
tations section

23.02.2007 0.35 Daniel Bildhauer (UKo) Updated and replaced figures

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV

Requirements Specification Language Definition – D2.4.1
History of changes

ver. 1.00
28.02.2007

Date Ver. Author(s) Change description
23.02.2007 0.36 Katharina Wolter (UH) Small additions and corrections in Chapter

7,14

23.02.2007 0.37 John Paul Brogan (HWU) Added examples

23.02.2007 0.38 Wiktor Nowakowski
(WUT)

Revised and updated descriptions in
“Overview” sections for Chapters 11-13

24.02.2007 0.39 Michał Śmiałek (WUT) Typographical, language and content
(slight) changes made throughout the
document

24.02.2007 0.40 Wiktor Nowakowski
(WUT)

Updated description in “Overview” sec-
tions for Chapter 14

26.02.2007 0.41 Davor Svetinovic (TUW) Completed all TUW sections

26.02.2007 0.42 Hannes Schwarz (UKo) Added list of abbreviations (based on in-
put from Sevan Kavaldjian and Roman
Popp)

26.02.2007 0.43 Hermann Kaindl (TUW) Cleaning-up conceptual Requirements
Model chapter

26.02.2007 0.44 Hermann Kaindl (TUW) Added text to Requirements Representa-
tion Model chapter

26.02.2007 0.45 Hermann Kaindl (TUW) Cleaning-up Discussion chapter

27.02.2007 0.46 Albert Ambroziewicz
(WUT)

Corrections in interaction sentences sec-
tions

27.02.2007 0.47 Tomasz Straszak (WUT) Introducing Terminology instead of Dic-
tionary and Thesaurus

27.02.2007 0.48 Jacek Bojarski (WUT) Revision and small corrections in docu-
ment

27.02.2007 0.49 Kizito Ssamula Mukasa
(Fraunhofer)

Revised chap 8 and 15

27.02.2007 0.50 John Paul Brogan (HWU) Correct english revision and small docu-
ment corrections

27.02.2007 0.51 Kizito Ssamula Mukasa
(Fraunhofer)

Revised UI Profile

27.02.2007 0.52 Daniel Bildhauer (UKo) Small corrections and updates

27.02.2007 0.53 Hermann Kaindl (TUW) Clean-up

28.02.2007 0.54 Katharina Wolter &
Thorsten Krebs (UH)

Improvements in Chapter 7 (e.g. Termi-
nology)

28.02.2007 1.00 Hermann Kaindl (TUW) Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Requirements Specification Language Definition – D2.4.1
Summary

ver. 1.00
28.02.2007

Summary

Requirements specification languages are abundant in the field of Requirements Engineering.
However, most of them focus on formal representation only and are not used much in practice.
Others provide a subset of natural language only and do not provide means for conceptual
modelling. So, natural language is still the most widely used language for writing requirements
specifications in practice. Generally, requirements specification languages do not integrate user-
interface specifications, although requirements and user interfaces have a lot to do with each
other.

Therefore, we defined a new language, the ReDSeeDS Requirements Specification Language

(RSL). Our approach is intended to be comprehensive for practical use and includes, therefore,
even unconstrained natural language. RSL integrates descriptions — constrained and uncon-
strained —, conceptual modelling — based on object-oriented ideas — and even user-interface
specifications. RSL is, however, not simply an aggregation of existing concepts and language
constructs. It has several distinguished and even unique features.

The behavioural part of RSL distinguishes between Functional and Behavioural Requirements.
While the former specify the required effects of some system, the latter specify required be-
haviour across the system border, in the form of Envisioned Scenarios. Functional Require-
ments are further specialised into Functional Requirements on Composite System and Func-
tional Requirements on System to be built. The former are fulfilled by an Envisioned Scenario,
while the functions of the latter will make its execution possible. Related Envisioned Scenarios
together make up a Use Case.

The structural part of RSL deals with models and descriptions of objects existing in the domain
(environment) of the software system to be built — domain objects. These objects are part of a
conceptual Domain Model (to-be). In addition, the concepts can (and should) be described in a
defined vocabulary with phrases, containing terms which are organised in a terminology repre-
sentation that integrates a dictionary with a thesaurus. RSL is the first language that integrates

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Requirements Specification Language Definition – D2.4.1
Summary

ver. 1.00
28.02.2007

conceptual modelling with thesaurus features. The descriptions facilitate a better understanding
of the concepts, which in turn facilitates a better understanding of the requirements.

We distinguish strictly between requirements and representations of requirements. Strictly
speaking, only the latter can actually be reused. Requirements representations can be descrip-

tive or model-based, and our RSL language makes this distinction explicit. The former describe
the needs of certain requirements, while the latter represent models of the system to be built. A
requirement is then to build a system like the one modelled.

The user-interface part of RSL contains language features for specifying user-interface elements
and their dynamics. It deals with descriptions of various user-interface elements that can express
various graphical or other types of elements existing in a user interface. It also includes user-
interface storyboards that show dynamic change in the user interface.

Based on the previous deliverables D2.1, D2.2 and D2.3, this deliverable contains a comprehen-
sive description of RSL. First, it gives a conceptual overview and explanation of the approach
and the language. In the second part, it provides a complete language reference including con-
crete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII

Requirements Specification Language Definition – D2.4.1
Table of contents

ver. 1.00
28.02.2007

Table of contents

History of changes III

Summary VI

Table of contents VIII

List of figures XIII

1 Scope, conventions and guidelines 1
1.1 Document scope . 1
1.2 Approach to language definition and notation conventions 2

1.2.1 Meta-modelling . 2
1.2.2 Defining languages using meta-modelling 4
1.2.3 Relations to UML and SysML . 5
1.2.4 Structure of the language reference . 6
1.2.5 Notation conventions . 7

1.3 Related work and relations to other documents 7
1.3.1 Model Based User Interface Development 9
1.3.2 User Interface Description Languages 10
1.3.3 Task and Object Oriented Requirement Engineering 11

1.4 Structure of this Document . 13
1.5 Usage guidelines . 14

I Conceptual Overview of the Coherent Requirements Language 16

2 Introduction 17

3 Requirements for the requirements language 19
3.1 Functional Requirements . 19
3.2 Constraint Requirements . 20

4 Requirements Model 21
4.1 Requirements Model Overview . 24

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII

Requirements Specification Language Definition – D2.4.1
Table of contents

ver. 1.00
28.02.2007

4.2 Requirements Model Details . 25
4.3 Why No Goals? . 30

5 Requirements Representation Model 32
5.1 Requirements Representation Model Overview 32
5.2 Requirements Representation Model Details 33

6 Domain entities 36
6.1 Business entities . 37
6.2 System entities . 38

7 Representation of domains 40
7.1 Overview . 40
7.2 Domain representations using conceptual models 43
7.3 Domain representation using phrases . 44
7.4 Terminology . 45

8 Representing the user interface and its dynamics 47
8.1 Elements of the user interface . 47
8.2 Behaviour of the user interface . 48

9 Discussion 50

II Language Reference 53

10 Kernel 54
10.1 Overview . 54
10.2 Attributes . 55

10.2.1 Overview . 55
10.2.2 Abstract syntax and semantics . 55
10.2.3 Concrete syntax and examples . 57

10.3 Elements . 59
10.3.1 Overview . 59
10.3.2 Abstract syntax and semantics . 59
10.3.3 Concrete syntax and examples . 62

11 Requirements 63
11.1 Overview . 63
11.2 Requirements specifications . 67

11.2.1 Overview . 67
11.2.2 Abstract syntax and semantics . 67

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IX

Requirements Specification Language Definition – D2.4.1
Table of contents

ver. 1.00
28.02.2007

11.2.3 Concrete syntax and examples . 71
11.3 Requirement relationships . 74

11.3.1 Overview . 74
11.3.2 Abstract syntax and semantics . 74
11.3.3 Concrete syntax and examples . 77

11.4 Use case relationships . 78
11.4.1 Overview . 78
11.4.2 Abstract syntax and semantics . 78
11.4.3 Concrete syntax and examples . 80

12 Requirement representations 82
12.1 Overview . 82
12.2 Requirement representations . 86

12.2.1 Overview . 86
12.2.2 Abstract syntax and semantics . 88
12.2.3 Concrete syntax and examples . 89

12.3 Natural language representations . 90
12.3.1 Overview . 90
12.3.2 Abstract syntax and semantics . 91
12.3.3 Concrete syntax and examples . 92

12.4 Constrained language representations . 92
12.4.1 Overview . 92
12.4.2 Abstract syntax and semantics . 92
12.4.3 Concrete syntax and examples . 94

12.5 Activity representations . 95
12.5.1 Overview . 95
12.5.2 Abstract syntax and semantics . 95
12.5.3 Concrete syntax and examples . 96

12.6 Interaction representations . 97
12.6.1 Overview . 97
12.6.2 Abstract syntax and semantics . 97
12.6.3 Concrete syntax and examples . 98

13 Requirement representation sentences 100
13.1 Overview . 100
13.2 Representation sentences . 102

13.2.1 Overview . 102
13.2.2 Abstract syntax and semantics . 102
13.2.3 Concrete syntax and examples . 104

13.3 SVO sentences . 104

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page X

Requirements Specification Language Definition – D2.4.1
Table of contents

ver. 1.00
28.02.2007

13.3.1 Overview . 104
13.3.2 Abstract syntax and semantics . 104
13.3.3 Concrete syntax and examples . 107

13.4 Scenario sentences . 108
13.4.1 Overview . 108
13.4.2 Abstract syntax and semantics . 109
13.4.3 Concrete syntax and examples . 112

13.5 Activity sentences . 114
13.5.1 Overview . 114
13.5.2 Abstract syntax and semantics . 114
13.5.3 Concrete syntax and examples . 117

13.6 Activity sentence constructs . 119
13.6.1 Overview . 119
13.6.2 Abstract syntax and semantics . 119
13.6.3 Concrete syntax and examples . 121

13.7 Interaction sentences . 121
13.7.1 Overview . 121
13.7.2 Abstract syntax and semantics . 121
13.7.3 Concrete syntax and examples . 125

13.8 Interaction sentence constructs . 127
13.8.1 Overview . 127
13.8.2 Abstract syntax and semantics . 127
13.8.3 Concrete syntax and examples . 134

14 Domain elements 137
14.1 Overview . 137
14.2 Domain elements . 140

14.2.1 Overview . 140
14.2.2 Abstract syntax and semantics . 141
14.2.3 Concrete syntax and examples . 143

14.3 Notions . 145
14.3.1 Overview . 145
14.3.2 Abstract syntax and semantics . 145
14.3.3 Concrete syntax . 148

14.4 System elements . 151
14.4.1 Overview . 151
14.4.2 Abstract syntax and semantics . 151
14.4.3 Concrete syntax . 153

14.5 Actors . 153

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XI

Requirements Specification Language Definition – D2.4.1
Table of contents

ver. 1.00
28.02.2007

14.5.1 Overview . 153
14.5.2 Abstract syntax and semantics . 153
14.5.3 Concrete syntax . 155

14.6 Domain element representations . 156
14.6.1 Overview . 156
14.6.2 Abstract syntax and semantics . 156
14.6.3 Concrete syntax . 158

14.7 Phrases . 159
14.7.1 Overview . 159
14.7.2 Abstract syntax and semantics . 159
14.7.3 Concrete syntax and examples . 163

14.8 Terms . 164
14.8.1 Overview . 164
14.8.2 Abstract syntax and semantics . 164
14.8.3 Concrete syntax and examples . 169

14.9 TermsRelations . 171
14.9.1 Overview . 171
14.9.2 Abstract syntax and semantics . 172
14.9.3 Concrete syntax and examples . 176

15 User interface elements 179
15.1 Overview . 179
15.2 Abstract syntax and semantics . 180
15.3 Concrete syntax and examples . 186

16 User interface behaviour representation 190
16.1 Overview . 190
16.2 Abstract syntax and semantics . 190
16.3 Concrete syntax and examples . 192

17 Conclusion 195

A Profiles for User Interface Representation 197
A.1 Profile for user interface elements 197
A.2 Profile for devices . 206

B List of abbreviations 209

Bibliography 211

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XII

Requirements Specification Language Definition – D2.4.1
List of figures

ver. 1.00
28.02.2007

List of figures

1.1 UML meta-modelling example . 3
1.2 ReDSeeDS meta-modelling example . 5
1.3 The MB-UID Architecture . 10
1.4 The TORE Framework . 11

4.1 Conceptual Requirements Model . 24

5.1 Requirements Representation Model . 33

6.1 Application Domain Model . 36

7.1 Scenario with separated domain specification 42

8.1 Usage-oriented UIElements . 48

10.1 Overview of packages inside the Kernel part of RSL 54
10.2 Attributes . 55
10.3 Showing Requirements Attributes on a diagram 57
10.4 Element representations . 59
10.5 Element relationships . 60
10.6 Element packages . 60

11.1 Overview of packages inside the Requirements part of RSL 64
11.2 Mappings between meta-classes representing requirements from the Require-

ments package and meta-classes from the conceptual model 65
11.3 Mappings between meta-classes representing requirements relationships from

the Requirements package and meta-classes from the conceptual model 66
11.4 Requirements specifications . 68
11.5 Requirement types . 69
11.6 Requirement example . 71
11.7 UseCase example . 72
11.8 UseCase tree example . 73
11.9 RequirementsPackage example . 73
11.10RequirementsPackage tree example . 74
11.11RequirementsSpecification example . 74

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XIII

Requirements Specification Language Definition – D2.4.1
List of figures

ver. 1.00
28.02.2007

11.12RequirementsSpecification tree example . 74
11.13Requirement relationships . 75
11.14Requirements and requirement relationships concrete syntax example 77
11.15Use case relationships . 79
11.16Use case relationships concrete syntax example 81

12.1 Overview of packages inside the RequirementRepresentations part of RSL (generic
representations, natural language and constrained language) 83

12.2 Overview of packages inside the RequirementRepresentations part of RSL (ac-
tivities and interactions) . 84

12.3 Main classes in the RequirementRepresentations part with mappings to the con-
ceptual model . 85

12.4 Requirement representation . 86
12.5 Requirement representations hierarchy . 87
12.6 UseCase representations . 88
12.7 The same scenario in three different representations: ConstrainedLanguageSce-

nario, ActivityScenario and InteractionScenario 90
12.8 Natural language representations . 91
12.9 NaturalLanguageHypertext example . 92
12.10Constrained language representations . 93
12.11Examples of ConstrainedLanguageStatements 94
12.12Example of a ConstrainedLanguageScenario 95
12.13Activity representations . 96
12.14ActivityScenario example . 97
12.15Interaction representation . 98
12.16Interaction representation with sequence diagram 99
12.17Interaction representation with communication diagram 99

13.1 Overview of packages inside the RequirementRepresentationSentences part of
RSL (representation, SVO and scenario sentences) 101

13.2 Overview of packages inside the RequirementRepresentationSentences part of
RSL (activity and interaction sentences) . 102

13.3 RepresentationSentences . 103
13.4 Example for NaturalLanguageHypertextSentence 104
13.5 SVOSentences . 105
13.6 SVOSentence concrete syntax example . 107
13.7 ModalSVOSentence concrete syntax example 107
13.8 ConditionalSentence concrete syntax example 108
13.9 Scenario Sentences . 109
13.10Control Sentences . 110

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XIV

Requirements Specification Language Definition – D2.4.1
List of figures

ver. 1.00
28.02.2007

13.11SVOScenarioSentence example . 112
13.12ControlSentence example . 113
13.13PreconditionSentence example . 113
13.14PostconditionSentence example . 113
13.15InvocationSentence example . 114
13.16ActivityScenarioSentences . 115
13.17ActivityControlSentences . 116
13.18ActivitySVOScenarioSentence example . 117
13.19ActivityConditionSentence example . 118
13.20ActivityInvocationSentence example . 118
13.21ActivityPreconditionSentence example . 118
13.22ActivityPostconditionSentence example . 119
13.23ActivitySVOSentence . 119
13.24ActivityScenarioPartition . 120
13.25ActivitySubject and Preditace example . 121
13.26InteractionScenarioSentences . 122
13.27InteractionConditionSentences . 123
13.28InteractionControlSentences . 124
13.29Concrete syntax of sequence diagram . 126
13.30Concrete syntax of communication diagram 126
13.31InteractionLifelines . 128
13.32InteractionMessages . 130
13.33InteractionPredicateMessages . 131
13.34InteractionMessageEnds . 132
13.35InteractionSVOScenarioSentences . 133
13.36Concrete syntax of sequence diagram . 134
13.37Concrete syntax of communication diagram 135

14.1 Overview of packages inside the DomainEntities part of RSL 137
14.2 Overview of packages inside the DomainEntities part of RSL 138
14.3 Overview of packages inside the DomainEntities part of RSL 139
14.4 DomainSpecification . 141
14.5 Relationship of domain elements . 143
14.6 Multiplicities of domain elements’ relationships 144
14.7 DomainSpecification example, normal and tree view 144
14.8 Notions . 146
14.9 NotionsPackages . 146
14.10Notion’s tree view example . 148
14.11Notion’s diagram example - notions and their associations 148

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XV

Requirements Specification Language Definition – D2.4.1
List of figures

ver. 1.00
28.02.2007

14.12Notion’s diagram example - extended view of notions 149
14.13DomainStatement example . 149
14.14Notion’s diagram example - attributes and generalisations 150
14.15System elements . 151
14.16System package . 152
14.17The concrete syntax of system elements and coresponding packages. 153
14.18Actor metamodel part . 154
14.19Actors package metamodel part . 154
14.20The concrete syntax of actors and actors packages. 156
14.21Domain element representations . 157
14.22DomainElementRepresentation’s concrete syntax example 159
14.23Phrases . 160
14.24PhraseHyperlink . 162
14.25Phrase concrete syntax examples . 163
14.26SimpleVerbPhrase concrete syntax examples 163
14.27ComplexVerbPhrase concrete syntax examples 163
14.28Regular expressions for Phrase and its subclasses. Optional elements are de-

noted by square brackets. 164
14.29PhraseHyperlink concrete syntax example . 164
14.30Term and its specialisations. 165
14.31Inflections of the Term. 166
14.32TermHyperlink and its subclasses . 166
14.33Package view: Terminology’s concrete syntax. 169
14.34Terminology tree view example . 170
14.35Synonym and homonym Terms’s relations. 172
14.36Specialisation Relations of terms from the same type. 173
14.37Part of a Terminology in abstract syntax with organisation-specific extension

(only Nouns are presented in this figure.) . 177
14.38Part of a Terminology in abstract syntax with organisation-specific extension

(only Verbs are presented in this figure). 178

15.1 Overview of packages containing elements for the representation of the user
interface . 179

15.2 UIElements . 180
15.3 Relationships with UIElement . 182
15.4 Ordering Element for UI Elements . 184
15.5 Representatinos of UI elements . 185
15.6 Devices for UI elements . 186
15.7 Examples of UIElement Concrete Syntax . 187

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XVI

Requirements Specification Language Definition – D2.4.1
List of figures

ver. 1.00
28.02.2007

15.8 Examples of Concrete Syntax for other UIElements 187
15.9 UIPresentationOrder concrete syntax example 188
15.10UIElementRepresentation concrete syntax example 188

16.1 UIBehaviour representation . 191
16.2 UIStoryboard concrete syntax example . 192
16.3 UIStoryboard concrete syntax example (2) . 193
16.4 UIScene concrete syntax example . 193

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page XVII

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document provides a conceptual overview, and defines coherent syntax and semantics for
the Requirements Specification Language (RSL). This definition is required to aid the construc-
tion of accurate requirements specifications in the form of descriptive or model-based represen-
tations.

The conceptual overview of the RSL explains the approach taken to allow for describing func-
tional, behavioural, structural and user interface requirements and how functional, behavioural,
structural and user interface requirements can be represented in the language. Structural re-
quirements are meant as vocabularies and thesauruses or ontologies containing domain ele-
ments, including terms used in the domain and their descriptions. User Interface requirements
are meant as a means to specify user interface elements such as menus or screens which can
be determined from acquired user requirements. Furthermore, the user interface requirements
language provides constructs for specifying the intended behaviour of user interface elements.

This document then presents the detailed RSL Reference which covers the definitions for Re-
quirements, Requirements Representations, Requirement Representation Sentences and Do-
main Elements with User Interface Elements. This reference explains the syntax of the language
in its abstract form (using a meta-model) and in its concrete form (using concrete examples of
language usage). The semantics of all the RSL language constructs are also defined. The
definitions for Requirements, Domain Elements and User Interface Elements describe the re-
quired language constructs that allow for depicting individual requirements and elements of the
domain vocabulary. This explains how to structure requirements, domain elements and user in-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

terface elements into full requirements specifications and full vocabularies respectively. It also
defines possible relationships between requirements domain elements, including the system un-
der development, actors and user interface considerations. Such relationships are presented
graphically through appropriate diagrams.

Moreover, the reference for Requirements Representations, Domain Elements and User Inter-
face Elements defines all the representations of requirements possible to be expressed in the
RSL. These include textual, descriptive representations in natural or constrained language and
schematic, model-based representations mostly derived from UML. The reference for Domain
Elements defines top-level, general representations for all the elements’ constructs of the lan-
guage. It also defines how to express phrases and terms that can be used for representing
Domain Elements. This part of the language is mostly textual but also includes some graphical
variants.

Within its given definition, the RSL uses hyperlinks as basic facilitators of coherence. This
allows for building a requirements specification where behavioural and quality requirements
are based on the domain vocabulary, thus greatly enhancing the possibility to reuse it in the
future. The Representation Sentences define the smallest “building blocks” of the RSL, ie.
sentences. These sentences allow and usually necessitate for extensive use of hyperlinks to
the domain vocabulary. Apart from natural language sentences, several types of controlled,
structured language sentences are defined. These are mostly based on the Subject-Verb-Objects
SVO(O) grammar. Finally, The description of user interface elements and associated behaviour
representation constructs is shown to demonstrate a need for a compromise between the user
interface elements abstract and concrete syntax as well as the user interface elements semantics
language construct components.

1.2 Approach to language definition and notation conventions

1.2.1 Meta-modelling

The Requirements Specification Language is defined using a meta-model. The meta-model is
a model of models, where a model of a system is a description or specification of that system
and its environment for some known task. A model is often presented as a combination of
drawings and text. The text may be in a modelling language or in a natural language (adapted
from [MM03]).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

The meta-model can be treated as a definition of a language in which models can be expressed
properly. A Meta-model sets well-formedness rules for models. A model has to comply with
the meta-model of the language it uses. For instance, a UML model [Obj05b] has to comply
with the UML meta-model.

Class model consistent with UML2.0 - level M1 (concrete syntax)

class model consistent with UML2.0 - level M1 (abstract syntax)UML2.0 Metamodel (Knowlendge Rep. Language - level M2

Classifier Class

Generalization

vehicle :Class

car :Class truck :Class

v_to_c :

Generalization

v_to_t :

Generalization

Vehicle

- length: int

- width: int

Car

Truck

These "class" objects have other objects associated

with them that denote their name, attributes (e.g.

length, width), operations etc. - all according to the

UML metamodel - not shown for brevity

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«instantiate»

+general

1

+generalization *

+specific 1

Figure 1.1: UML meta-modelling example

Meta-models and models define two levels of meta-modelling. In fact we can have four levels:
M0 - model instance level, M1 - model level, M2 - meta-model level, M3 - meta-meta-model
level. The model instance level contains all the objects (real time instances or real world ob-
jects) of classifiers (classes) included in the model level. The meta-meta-model level defines
the language to represent a meta-model (a meta-modelling language). In defining the whole
Requirements Specification Language we use MOF1 [Obj03a] as a meta-modelling language.
From the perspective of MOF, UML and RSL both can be viewed as user models based on MOF
as language specification. From the perspective of RSL, requirements specification is a model
of requirements expressed by the RSL.

1MOF is similar to UML but it is reduced to simplified class diagrams with embedded OCL [Obj03b] constraint
expressions (expressions in curly brackets “{}”). These special class diagrams have their semantics defined for
language construction.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

The most common role of a meta-model is to define the semantics for how language tokens
from a language specification can be used. As an example, consider figure 1.1, where the meta-
classes Classifier, Generalisation and Class are defined as part of the UML meta-model. These
are instantiated in a user model in such a way that the classes Car, Truck and Vehicle are all
instances of the meta-class Class. The generalisation between Car and Vehicle (or Truck and
Vehicle) classes is an instance of the Generalisation meta-class (based on [Obj05a]).

1.2.2 Defining languages using meta-modelling

In languages defined with MOF we define tokens of a language, their relationships and meaning.
Every token has to be described in terms of its syntax (abstract, concrete) and semantics.

The abstract syntax defines the tokens of the language and their relationships and integrity
constraints available in the language. Relationships and constraints determine a set of correct
sentences that can be created in the language (its grammar). Note that abstract syntax should be
independent from graphical or textual representation of the language elements it is defining. In
the RSL, abstract syntax is expressed by MOF diagrams and natural language descriptions.

The concrete syntax is a description of specific notation used in representing a language’s el-
ements. In other words it is a mapping from notation to the abstract syntax. If an element of
the meta-model is marked as abstract it does not have any concrete syntax (because it cannot be
instantiated). In the RSL, its concrete syntax is expressed by natural language descriptions and
illustrated with examples of the language’s usage. The figure 1.2 is an example of a definition
of the abstract and concrete syntax for the RSL.

The semantics of meta-model elements expresses the meaning of properly formulated constructs
of a language (according to its abstract syntax). In the RSL, its semantics are represented by
natural language descriptions.

The RSL is not an extension to UML, though we use certain UML packages (for those parts of
the RSL that derive from UML). Those packages were merged into the RSL definition (using
«merge» or «include») from “UML Superstructure” [Obj05b] packages. This merger is done
on the package level. Inside a package that is part of the RSL’s definition, meta-classes from
the merged UML package are directly specialised.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

Requirements model consistent with the ReDSeeDS language - level M1 (concrete syntax)

Requirements model consistent with the ReDSeeDS language - level M1 (instances of meta-classes)ReDSeeDS Metamodel (Knowledge Rep.

Language) level M2 (abstract syntax)

ConstrainedLanguageScenario

ScenarioSentence

SVOScenarioSentence

OrangesScenario :

ConstrainedLanguageScenario

s1 :ScenarioSentence

s2 :SVOScenarioSentence

s3 :SVOScenarioSentence

These links are

instances of the

association in the

ReDSeeDS model

These sentences have

other objects attached that

form their individual parts

(like: "System",

"Computes", "Total numer

of oranges"). These

objects are instances of

appropriate meta-classes

from the ReDSeeDS

metamodel (not shown for

brevity).

1. [[System]] [[counts]] [[number of oranges]] in [[basket1]].
2. [[System]] [[counts]] [[number of oranges]] in [[basket2]].
3. [[System]] [[computes]] [[total number of oranges]].

+scenarioSteps 1..*

1..*

«instantiate»

«instantiate»

«instantiate»

«instantiate»

Figure 1.2: ReDSeeDS meta-modelling example

1.2.3 Relations to UML and SysML

As described in the previous section the RSL as a modelling language is not an exact extension
to UML or indeed a replacement. However UML is utilised under specialised circumstances
where it is only individually unique parts (sub-packages, meta-classes, etc) of the RSL which re-
quire the reuse of the already defined UML packages. This reusability feature but non-extension
of the UML concept is facilitated through the utilisation of «merge» or «include» from “UML
Superstructure” [Obj05b] packages. The merger activity is conducted at the RSL package level.
Since the RSL is not deriving any previously defined OMG UML packages but is instead merg-
ing parts of UML that are deemed of necessary use to the RSL’s formation then it is safe to point
out that the ReDSeeDS RSL is not extending UML in any way. The RSL under the context of
software case and requirements reusability is in effect a highly constrained specialisation of
UML which falls out of the bounds of being a subset of or an extension to UML itself but UML
definitions and theories are incorporated into the RSL’s overall design .

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

In contrast, SysML [Obj06b] as a domain specific modelling language was purposefully created
as an open source project to aid in supporting the specification, analysis, design, verification
and validation of an ever broadening range of systems and systems of systems which are not
software centric or indeed software oriented in any way. See http://www.sysml.org/. SysML is
defined to be an extension to a subset of UML using the UML profiling mechanism. This allows
for robust modelling to be conducted within the generalised field of systems engineering. As
such SysML is an enhancement to UML which takes away some of UML’s software centric
specialisation features and replaces them with generality or generic features special to the entire
engineering field as a whole.

One extension of SysML of potential interest for our RSL is a part explicitly dedicated to re-
quirements in textual form. We even considered to base RSL on this part of SysML. However,
what is defined there only covers a minor part of what we can express for requirements. In
particular, there is no classification of requirements, and they can be related only in predefined
ways. So, the reuse effect would have been very small.

While it was intended by the developers of SysML to keep this part small and to rather have it
extended, such extensions would have been very laborious, if not also very hard to do for ev-
erything we had in mind. In particular, the textual representation of a requirement is inherently
mixed up with the corresponding requirements entity itself. In contrast, we strive for a clean
distinction between requirements and their representation.

Considering the view of SysML as now defined it is plausible to say that the ReDSeeDS RSL is
intended to be similar to SysML’s portrayal in that the RSL is effectively to become the SysML
for software centric requirements reuse but without the need to extend UML or any subsets of
UML.

1.2.4 Structure of the language reference

Part II of this document contains the RSL definition. It has been divided into sections according
to the logical structure of packages and subpackages of the RSL.

The RSL is divided into five main packages:

• Kernel (abstract elements of the language forming the common basis for other elements)

• Requirements (requirements as such with their relationships)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

• Requirements Representations (definitions of individual requirements in various nota-
tions)

• Requirement Representation Sentences (basic “building blocks”, i.e. sentences that form
the representations as above)

• Domain elements (elements that allow for forming a vocabulary of phrases based on
common terminology)

Each of theses packages is described briefly with an overview section (including a package
diagram), which is followed by description of its subpackages. Every subpackage is presented in
an overview explaining general ideas behind a package, a meta-model diagram for this package
and two sections which describe the abstract syntax with semantics of language constructs and
the concrete syntax.

1.2.5 Notation conventions

Lowest level package descriptions use the following notation conventions:

• sans-serif font is used for names of classes, attributes and associations, e.g. Requirement

• if a class name is used in description of package other than the one it is included in, it
is preceded with package name and a double colon (“::”), e.g. RequirementsSpecifica-

tions::Requirement

• bold/italics font is used for emphasized text, e.g. Abstract syntax

Class colours used on the diagrams indicate membership of the packages. Introduction of
colours is intended to enhance readability of diagrams which contain classes from different
packages (e.g. blue colour denotes that classes are from Requirement packages, yellow are
from RequirementRepresentation package and green are from DomainElement package).

1.3 Related work and relations to other documents

External research work conducted in compliance with formulating a good understanding of
the Requirements Specification Language included researching and reasoning about such ar-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

eas as software case representations, query procedure pragmatics, Domain representation, Do-
main mapping with or without hyperlinking, Domain access methods via taxonomies and sim-
ilarity measures concerning domain constructs (vocabulary items) and requirement dependen-
cies/interdependencies leading to possible upgrades of the domain or industry specific termi-
nology including terms.

From the domain elements part of RSL, a means for modelling domain entities are introduced,
such as domain entity types, vocabulary, phrases, and terms. Terms are organised in a terminol-
ogy. Domain entities are used for representing requirements of each new software development
project forming a requirement model of the developed software case. For performing case re-
trieval on the basis of similarity measures, this requirement model is mapped and included in a
so-called software knowledge model. This software knowledge model contains the knowledge
known for all software cases of an organisation i.e. the software vendor that implements the
different software cases.

For reuse purposes, we strive in this project for finding software cases based on similarity mea-
sures. In principle, this can be done by text-based approaches, where our terminology as defined
in the language will be very useful. For including more semantics into similarity measures, an
ontology of the given application domain should be available. While our requirements language
does not yet include any means for knowledge representation and reasoning, the user may still
use it to represent a domain model using object-oriented means (in the form of a domain ele-
ment diagram, as derived from a UML class diagram). Such models can be used as a simple
form of ontology. These issues will be worked out in Workpackages 3 and 4 of ReDSeeDS and
discussed in the related deliverables.

One form of representing requirements in ReDSeeDS is to write them down in constrained
language. This constrained language uses the so-called SVO(O)-Grammar, recently researched
at WUT [SBNS05b, SBNS05a]. Other significant work concerning some kind of restriction
to natural language was and is still done in the Attempto research project conducted by the
Department of Informatics and the Institute of Computational Linguistics at the University of
Zurich [FHK+05].

The Attempto Controlled English (ACE) language developed in the course of the Attempto

project is currently available in its fifth version. Although ACE closely resembles natural En-
glish, the syntax of a text written in ACE is based on a defined abstract grammar which avoids
ambiguity in language constructs [Hoe04]2. Furthermore, ACE can be automatically translated
into first-order logic and consequently be read by humans as well as by machines.

2The cited article contains abstract grammar for ACE 4.0. The grammar for version 5.0 has not been published
yet.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

The results of search engines in the internet for "user interface" is a long list including confer-
ences, workshops, symposia etc. This incudes conferences like the International Conference on
Intelligent User Interfaces (IUI), Computer Human Interaction (CHI), International Conference
on HumanComputer Interaction (INTERACT), The International Conference on Ubiquitous
Computing (UbiComp) etc. They all show a number of on going research activities in this field.
A short analysis of these activities will show that most research is concerned with the design
of user interfaces as one stage in the software development process, and not with the elicita-
tion of user interface requirements in the analysis phase. Consequently, re-use of user interface
requirements becomes impossible. Nevertheless significant research work in the field of user
interface development that serve as a basis for the RSL has been done.

1.3.1 Model Based User Interface Development

Following the Model Based User Interface Development (MB-UID), the user interface is spec-
ified through different declarative models at different abstraction levels (see [Sze96])

• at the highest abstraction level is the application model. This defines the objects in the
domain as well as the user tasks. Some of these objects can be manipulated by users on
the user interface.

• at the following abstraction level is the abstract user interface specification. Abstract
interaction objects (AIO) are defined at this level. they include groups of objects for
information representation as well as for the user interaction and the dialog.

• at the third level the concrete user interface is defined by using concrete interaction objects
(CIO). These are concrete objects, e.g., button, window, checkbox, text field etc., from
the object library of a selected toolkit.

Other models include the user model and the platform model (see Figure 1.3).

The distribution of user interface aspects over several models allows the separation of concerns,
an important requirement especially for complex user interfaces. An extensive overview of
MB-UID can be found in [Mol04].

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

Figure 1.3: The MB-UID Architecture

1.3.2 User Interface Description Languages

Since the existence of XML as a universal data format, several languages for the description
of user interfaces models (UIDL) for predefined systems have been developed. They can be
classified according to

1. The abstraction levels of their elements with respect to the elements of the implementation
toolkit,

2. Their application domains and

3. The abstraction levels of the resulting models with respect to modality.

The first category includes UIDLs with abstract elements like UIML [AH02] and those that
provide concrete elements like XUL [Moz02].
In the second category, there are general purpose UIDLs, e.g., UIML [AH02], and those for
specific application domains, e.g., XUL [Moz02] for web applications.
The third category includes UIDLs following on the approach of first defining the abstract
user interface with modality independent elements and then transforming the resulting descrip-
tion into a concrete user interface by providing modality dependent elements, e.g., UsIXML
[Lim04], or integrating modality specific elements of different modalities in one model, e.g,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

useGUI [Muk06]. An extensive survey of most UIDLs can be found in [Lim04].
As mentioned previously, the goal of these UDLs is to support the design phase of the software
development process. In the contrary, the UI descriptive part of the RSL should support the
analysis phase.

1.3.3 Task and Object Oriented Requirement Engineering

The success of both approaches above depends on the proper elicitation of user requirements.
The requirements analysts should know which data to collect and which decision to take. The
Task and Object Oriented Requirements Engineering Framework (TORE) [PK03] gives an an-
swer. It defines decision points to be made at different (abstraction) levels (see Figure 1.4).
The levels conform to a certain kind of pattern: At the domain level, the interaction level, the
application core and the GUI, there are always decisions concerning behaviour chunks like ac-
tivities, functions or actions as well as decisions concerning data. Interaction and dialog put
these chunks into a sequence. UI-structure, architecture and screen structure group data and
behaviour chunks together. In this way, it implicitly guides the analyst towards the required
data. The specified decision points in TORE can be defined as follows. More details can be
found in [PK03].

Figure 1.4: The TORE Framework

• (T1) Decisions about the user tasks:
User roles and the tasks of these roles to be supported by the system are determined.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

• (D1) Decisions about the as-is activities:
Decision on which activities users currently perform and whether these are relevant for
the system. The activities are derived from the tasks. Hence user tasks are being refined
here.

• (D2) Decisions about the to-be activities:
Decision on new tasks as the improvement of the as-is activities.

• (D3) Decisions about the system responsibilities:
Which activities should be done automatically by the system and which should be left to
the user?

• (D4) Decisions about the domain data relevant for a task:
System responsibilities of UIS manipulate data. Decisions have to be made on which
domain data are relevant for the system responsibilities.

• (I1) Decisions about the system functions:
System responsibilities are realised by system functions. The decision about the system
functions determines the border between user and system.

• (I2) Decisions about user-system interaction:
It has to be decided how the user can use the system function to achieve the system
responsibilities. This determines the interaction between user and system.

• (I3) Decisions about interaction data:
For each system function the input data provided by the user as well as the output data
provided by the system have to be defined.

• (I4) Decisions about the structure of the user interface (UI-structure): Decisions about the
grouping of data and system functions in different workspaces have to be made. Through
the UI-structure, the rough architecture of the user interface is defined. This structure has
a big influence on the usability of the system.

• (C1) Decisions about the application architecture:
The code realising the system functions is modularised into different components. In the
decision about the component architecture, existing components and physical constraints
as well as quality constraints such as performance have to be taken into account. Only a
preliminary decision concerning the architecture is made during requirements.

• (C2) Decisions about the internal system actions:
Decisions have to be made regarding the internal system actions that realise the system
functions. The system actions define the effects of the system function on the data.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

• (C3) Decisions about internal system data:
The internal system data refines the interaction data to the granularity of the system ac-
tions. The decisions about the internal system data reflect all system actions. In OO,
system data is grouped within classes.

• (G1) Decisions about navigation and support functions:
It has to be decided how the user can navigate between different screens during the exe-
cution of system functions. This determines the navigation functions.

• (G2) Decisions about dialog interaction:
For each interaction the detailed control of the user has to be decided. This determines
the dialog. It consists of a sequence of support and navigation function executions. These
decisions also have a strong influence on the usability of the system.

• (G3) Decisions about detailed UI-data:
For each navigation and support function, the input data provided by the user as well as
the output data provided by the system have to be defined. These decisions determine the
UI-data visible on each screen.

• (G4) Decisions about screen structure:
The separation of workspaces as defined in (I4) into different screens that support the
detailed dialog interaction as described in (G2) has to be decided. The screen structure
groups navigation and support functions as well as UI-data. The decisions to separate the
workspaces into different screens are influenced by the platform of the system.

1.4 Structure of this Document

Part I gives a conceptual overview of the behavioural, structural and user interface parts of
the Requirements Specification Language. The behavioural part introduces the requirements
language and the representation language and deals with functional and behavioural require-
ments and presents their conceptual model. Then outlined are possible representations of the
requirements without going too deeply into detail. Newly introduced concepts affecting the
behavioural aspects are also discussed. The structural part of RSL gives a conceptual overview
of domain entities and dictionaries. It describes different types of entities existing in a domain
and the conceptual model of the domain’s vocabulary, respectively. the user interface part com-
municates the purpose of modelling user interfaces within requirements specifications, contains
a rationale and outlines the approach taken in development of this part of the language. Also
described are the basics of modelling elements and behaviour within the user interface environ-
ment.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

Part II initially defines the metamodel of the RSL’s behavioural part, again dealing with the
subject of requirements itself and different possibilities for requirement representation. It is
divided into four chapters, each of them dealing with a part of the metamodel. Every chapter
has a short overview, defines abstract syntax and semantics and then gives a short example of the
concrete syntax. It defines the part of the metamodel containing the requirements themselves
and their arrangement. It explains the part of the metamodel that deals with different kinds
of representations, especially textual representations and schematic representations, which can
be displayed as UML-like models. It then defines the grammar for the semi-formal textual
representation.

Furthermore part II, after discussing the benefits and consequences of using a domain vocabu-
lary, defines the domain elements (structural) part of the language. This major package contains
several subpackages. These subpackages cover basic domain entities, the actors in the system’s
environment and the representations of the system and the entities. Furthermore, this package
contains phrases and other, more fine-grained elements which compose phrases. Phrases consti-
tute the names of the entities as well as the parts of a sentence in constrained language. Finally,
the package comprises the individual terms which can occur in a phrase. Each section con-
cerning one of the packages has an overview, defines abstract syntax and semantics, and then
gives a short explanation of the concrete syntax using the Fitness Club case study as a running
example.

Finally, partII specifies the meta-model for the user interface aspects of the Requirements Spec-
ification Language. Here, there are addressed the structural and behavioural aspects of UI
specification on the requirements level.

1.5 Usage guidelines

The ReDSeeDS Requirements Specification Language (RSL) definition should be used as a
book that guides the reader through the structure, syntax and semantics definitions of the RSL,
as part of the complete ReDSeeDS Software Case Specification Language (to be defined in
Workpackage 3). It should be used mainly by creators of appropriate software CASE tools
(with reusability features) that would allow handling of the language by the end users (analysts,
etc.) to express behaviour of the system under development. It can be used by advanced end
users of the language as a reference for the language’s syntax and semantics. Examples of RSL
elements’ concrete syntax have illustrative character and should be treated only as support in
understanding of a given element’s occurrence.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Requirements Specification Language Definition – D2.4.1
Scope, conventions and guidelines

ver. 1.00
28.02.2007

Users of the RSL Specification are expected to know the basics of metamodelling and MOF
(Meta Object Facility) specification [Obj06a]. Knowledge of UML ([Obj05b] and [Obj05a])
could be helpful as some elements of RSL are extensions, constraints or redefinitions of UML
elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Requirements Specification Language Definition – D2.4.1 ver. 1.00
28.02.2007

Part I

Conceptual Overview of the Coherent
Requirements Language

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Requirements Specification Language Definition – D2.4.1
Introduction

ver. 1.00
28.02.2007

Chapter 2

Introduction

The ReDSeeDS Requirements Specification Language (meta-)model consists of 3 parts, which
are linked to an extra model of the Reuse Domain:

1. Requirements Language

2. Requirements Representation Language

3. Application Domain Language

The primary reason for separation of the overall language model into several parts is the sepa-
ration of concerns. In particular, the main separation is between Requirements Language and
Requirements Representation Language. This is a crucial innovation, which is important since
we are not reusing requirements themselves but rather requirements representations.

The separation of Requirements Language and Requirements Representation Language allows
separation and simplification of the Reuse Domain. Avoiding the separation between the former
two would force integration of the latter and mixing of the different concerns and lead to higher
complexity of the overall language specification. In addition, requirements are not reusable
directly, and this fact should be reflected in the language specification.

It is also important that the representation of the Application Domain is distinct from the Re-
quirements Representation, while they will be linked, of course. The requirements may not
be understood without the links to the Application Domain, but the content of the application
domain is not requirements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Requirements Specification Language Definition – D2.4.1
Introduction

ver. 1.00
28.02.2007

Hyperlinks between Application Domain and Requirement Representation are a crucial element
of our language, and greatly facilitate keeping the specification coherent.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Requirements Specification Language Definition – D2.4.1
Requirements for the requirements language

ver. 1.00
28.02.2007

Chapter 3

Requirements for the requirements
language

Before actually designing our requirements language RSL as a joint effort of several partners, it
was deemed useful to gather requirements for RSL itself. Unfortunately, RSL has obviously not
yet been available for specifying its own requirements. So, we simply used natural language for
their representation. Still, we used the keywords shall and should (in italics) for clearly distin-
guishing mandatory from optional requirements. We also separated functional from constraint
requirements. The sections below list the results of this informal requirements acquisition.

3.1 Functional Requirements

• RSL shall allow describing any kind of requirement in (free) natural language text.

• RSL shall allow assigning a unique identifier to each requirement, which becomes a re-
quirement entity in this way.

• RSL shall allow specifying whether a requirement is mandatory or optional.

• RSL shall allow including attributes to each requirement entity.

• RSL shall allow to formulate scenarios in textual form according to a given grammar.

• RSL shall allow to formulate use cases and to link scenarios to them.

• RSL shall allow to explicitly link a scenario with functional requirements for the system
to be built in such a way, as to specify which functions will have to be available to execute
this scenario.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Requirements Specification Language Definition – D2.4.1
Requirements for the requirements language

ver. 1.00
28.02.2007

• RSL shall allow defining a glossary of terms in natural language, which serves as a de-
fined vocabulary for formulating the requirements.

• RSL shall allow to model requirements using a selection of UML 2.0 diagrams.

• RSL shall allow building hierarchical structures of the requirements entities.

• RSL shall allow cross-linking of the requirements entities.

• RSL should allow linking each entry of the glossary of terms with a corresponding class
in UML diagrams.

• RSL shall allow defining a user interface of the system to be built.

• RSL should allow specifying a task model.

• RSL should allow linking to any kind of descriptions or models in any other language.

• RSL should allow defining stakeholders.

3.2 Constraint Requirements

• RSL shall have a mandatory core part that is being used for finding similar cases.

• RSL shall have optional parts that are not being used for finding similar cases.

• RSL shall be defined based on the UML 2.0 metamodel, both through restrictions and
extensions.

• RSL shall have compatible representations of requirements and user interface.

• RSL documents shall be semi-formal in the sense of including both formal and informal
representation.

• RSL should be extensible.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

Chapter 4

Requirements Model

Requirements engineering (RE) is the essential activity in assuring that one builds computer-
based systems that will satisfy stakeholders’ goals. As the need for a systematic method of
requirements elicitation and specification first became obvious for very large and complex sys-
tems, most RE research focused on discovery and development of requirements techniques and
artefacts that are tailored to support the development of these very large systems in those en-
vironments with relatively large amounts of resources. Developers of a small system, on the
other hand, traditionally used an ad hoc approach to RE due to the system’s small size and
the developers’ unsystematic approach to development. The importance of systematic RE in-
creases dramatically, even for small systems, with the introduction of product-line approaches,
customisable software, etc. So, over time, we have gone from ad hoc approaches to require-
ments management to more formal ways of capturing and managing requirements. This trend
is what led to our project and the goal of building systems based on requirements reuse. That is,
if we are systematically capturing and managing requirements for one project then we should
be able to reuse some of these requirements on other similar projects.

The other important impact on RE techniques is due to the nature of the development of large
systems. Traditionally, a typical Computer-Based System (CBS) is developed in-house, where
developers work with relatively stable domains, are responsible for the development of the sys-
tem from scratch, and have relatively stable production teams and a large amount of resources.
This way of development has led to the dominance of the requirements specification that focuses
mainly on product-level requirements such as features [Lau02] and subsequently on low-level
requirements and design. Designs of different systems have already been successfully reused
either through reuse such as using design pattern or through larger scale reuse such as using ref-
erence architectures for the specification of the new systems. The reuse of these design elements
implied the reuse of some of the background requirements that led to these designs, but there

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

was no intentional and systematic reuse of the requirements as such. The main contribution of
this project will be in pushing the reuse effort even further, i.e., beyond design reuse — all the
way to systematic requirement reuse. The primary target, for facilitating reuse are product-level
and low-level requirements.

Product-level and low-level requirements are very well studied and widely applied in industrial
settings, but the main difficulty is in ensuring that they fulfil essential business goals. Product-
level requirements form a set of features that, combined, are used to achieve the organisation’s
business goals. The success of the overall goal depends on every single one of the features and
on the particularities of their interactions. The problem of achieving goals is exacerbated as a
result of their frequent changes over time, which cause a chain reaction of changes in product-
level and low-level requirements.

Lauesen has observed that product-level and low-level requirements management is straightfor-
ward and changes to them are relatively easy to deal with in practice [Lau02]. Developers can
usually sense when these requirements are not correct and do not fit with each other. This ability
usually does not work at the higher levels of abstractions, and it is the responsibility of the busi-
ness analyst to deal with these higher level requirements. In an occasional case, it is not even
possible to estimate how changes in the product-level requirements effect overall goals until
the changes are implemented [Lau02]. Therefore, besides attempting to reuse product-level and
low-level requirements, our project is also dealing with the reuse of higher-level requirements
in order to ensure the traceability and the fulfilment of all the requirements at the later design
stages for the system that is built through the requirements reuse.

Requirements are specified either directly or indirectly for many different purposes and as part
of many different engineering activities. One example classification is [Lau02]:

1. Business-level requirements specification — Business-level requirements are most often
specified indirectly as part of business re-engineering activities. The most common con-
cepts that appear at this level are business goals, processes, resources, and rules. For
example, for an elevator system, a business-level requirement is: “The elevator shall
transport passengers and goods from any floor to any other floor.”

2. Domain-level requirements specification — Domain-level requirements, as mentioned
previously, are most often indirectly specified in the traditional requirements specifica-
tions [DvLF93]. Newer, more systematic versions of domain-level RE have received a lot
of attention recently [BPG+01, CKM01, MCL+01]. Most explicit domain-level require-
ments are captured and specified for domains, which are becoming increasingly complex
and difficult to adequately support by systems [CKM02, GMP01, GPS01, MC00]. The

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

most common concepts that appear at this specification level are user goals, user tasks,
domain input, and domain output. A more recent trend is the incorporation of agent-based
analysis as part of domain modelling [MKG02, KGM02, MKC01, GPM+01]. For an el-
evator system, an example domain-level requirement is: “The elevator shall be accessible
from each floor.”

3. Product-level requirements specification — Product-level requirement specifications are
the most common type of requirement specifications. There is an extensive body of
knowledge about them, and most previous research focused on improving the different
techniques used to elicit, specify, and validate this type of requirement. The common
artefacts and concepts that occur as parts of product-level specifications are features, use
cases, functional lists, data input, data output, etc. For an elevator system, an example
product-level requirement is: “The elevator shall accept elevator calls only while station-
ary.”

4. Design-level requirements specification — Design-level requirements specification are
the requirements that directly constrain the design of a system. Much effort has been
invested into its standardisation through the Unified Modelling Language (UML) [Lar04,
Fow04]. UML artefacts and underlying techniques present the most common types of
concepts and techniques used to capture requirements at this level. This level acts as a
transition phase between product-level specification and code-level requirement specifi-
cations. For an elevator system, an example design-level requirement is: “A queue data
structure shall be used to store the data for elevator calls.”

5. Code-level requirements specification — Code-level requirements are usually specified
as part of the programming activity and describe details of low-level algorithm and data
structures. This type of specification is that with which most programmers are familiar, as
it is inseparable from coding. Code-level requirements focus mainly on implementation-
related issues and constraints and are probably the best understood form of requirements
specification. For an elevator system, an example code-level requirement is: “Due to the
timing constraints, function calls to retrieve elevator call data shall be implemented in the
C programming language rather than in the Python programming language.”

This work and our requirements language is applicable and can be used at all these requirement
and requirement specification levels in order to ensure full reuse and proper development of the
new system.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

Application Domain::
Application Domain Object

Requirement

Use Case Envisioned
Scenario

Functional Requirement Constraint
Requirement

Functional Requirement on
Composite System

Functional Requirement on
System to be built

Constraint on
Process

Constraint on
System to be built

makes possible

constrains

Partial Decomposition into

constrains

invokes

relates

makes
statement
about

fulfils

operationalizes

Figure 4.1: Conceptual Requirements Model

4.1 Requirements Model Overview

Figure 4.1 shows our conceptual Requirements Model, i.e., how we conceptualise the domain
of requirements. This conceptualisation is influenced by decades of research and practice of
requirements engineering and especially [Kai97, Kai00, EK02, Kai05]. This conceptual model
shows what models of concrete requirements should look like in our applications. This is al-
ready in the spirit of a metamodel, but the formal metamodel of our requirements specification
language is given below.

The main entity in the Requirements Language is Requirement. Requirement can be decom-
posed into a number of other requirements or aggregated to composites, thus the granularity
is flexible. There are four specialisations of requirements: Use Case, Envisioned Scenario,
Functional Requirement, and Constraint Requirement:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

• A Use Case consists of a number of Envisioned Scenarios that belong together in terms
of use. E.g., the Use Case for getting cash money has several scenarios of how this is
actually envisioned to be achieved.

• Envisioned Scenarios are the means of achieving high-level functions given as Functional
Requirements on Composite System (e.g., Cash Withdrawal). The composite system
includes the system to be built (e.g., an ATM) and possibly other systems (e.g., a bank
system), including human users (e.g., bank customers).

• Functional Requirements are the generalisation of Functional Requirements on Compos-
ite System and Functional Requirement on System to be built. The latter are functions
needed (e.g., Customer Identification or Cash Provision) that will make possible the en-
actment of Envisioned Scenarios once available. In effect, Functional Requirements on
Composite System are partially decomposed into Functional Requirements on System to
be built.

• Functional Requirements are tightly related to Constraint Requirements. Constraint Re-
quirements often constrain Functional Requirements. E.g., only solutions for Cash Provi-
sion are acceptable (in the overall solution space) that are secure and reliable. There are
two specialisations of Constraint Requirements: Constraint on Process and Constraint on
System to be built. The former involve, for instance, development method or tools, the
latter, for instance, security or reliability. Some Functional Requirements on System to
be built operationalize Constraint Requirements on System to be built. E.g., (required)
functions for accepting a password, etc. operationalize a security requirement.

4.2 Requirements Model Details

Requirement

IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology defines
requirement as:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

As discussed previously, a requirement can exist at multiple abstraction levels. It is common
to decompose higher-level requirements to lower-level requirements forming some kind of re-
quirement decomposition tree. Each requirement is typically related to a number of other re-
quirements. In addition, each requirement can be represented in multiple views. As such, we
have a number of dimensions that constrain and make it challenging to capture a requirement
properly with all its relationships.

This difficulty was obvious even during our work. It was hard to boil down and to keep in mind
the clear definition of what a requirement is. This was particularly difficult when discussing
different types of requirements. Any deviation from the common definition resulted in a ripple
effect of conflicts with other terms and definitions of other language constructs. This is why we
insisted on strictly following and not modifying the standard definition of what a requirement is
in the early stages of our work. Nevertheless, at the end we had to adapt and limit this definition
as discussed in the Discussion section.

Use Case

The official definition for use cases in our project is:

“A collection of possible scenarios between the system under discussion and ex-
ternal actors, characterised by the goal the primary actor has toward the system’s
declared responsibilities, showing how the primary actor’s goal might be delivered
or might fail.” [Coc97]

Use cases are related using invoke relationship. This relationship unifies and overrides the
standard UML use case relationships extends and includes.

Envisioned Scenario

The definition for a scenario in our project is:

“A sequence of interactions happening under certain conditions, to achieve the pri-
mary actor’s goal, and having a particular result with respect to that goal. The

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

interactions start from the triggering action and continue until the goal is deliv-
ered or abandoned, and the system completes whatever responsibilities it has with
respect to the interaction.” [Coc97]

Of course, not every scenario may be considered a requirement. In particular, an as-is scenario
is already performed and will not need new functionality from the system to be built. In contrast,
an “envisioned” scenario is not yet (fully) supported by software but will have to be executable
after deployment of the system to be built. In this sense, an envisioned scenario can be viewed
as a requirement.

Note, however, that the system to be built alone will also not be able to execute it alone. It
will need the interaction with some actor in its environment. So, it is a requirement on the
Composite System, which will have to be able to execute it. In the course of its execution, the
currently envisioned scenario will then fulfil a Functional Requirement on Composite System.

Again, the same as with use cases, our language supports writing scenarios using the language
of different levels of formality; from informal natural language to constrained versions such as
SVO(O). Of course, a more formal representation is to be preferred for any kind of processing
by machine, in our case for finding similar cases facilitating reuse.

Functional Requirement

Taking into account the previously mentioned definition of a requirement, one can define a
functional requirement as:

1. A capability needed by a user to solve a problem or achieve an objective.

2. A capability that must be met by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents.

3. A documented representation of a capability as in (1) or (2).

Compared to the previous definition, the definition of a functional requirement limits the re-
quirements definition to the usage of the term capability.

Functional requirements typically represent the majority of the requirements. A major issue
to resolve with any functional requirement is who is responsible for fulfilling it, i.e., what is

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

the system that is performing the activity or activities that will satisfy the respective functional
requirement.

This issue often comes up when a functional requirement is discussed in relationship with a
use case or scenario. Is a use case or scenario a functional requirement? Since fulfilment of
a use case typically involves activities performed by both actors and the system to be built,
we cannot say that a use case is a functional requirement on the system to be built. On the
other hand, if we take into consideration that actors together with a system to be built from
another, composite, system, one can claim that use cases and scenarios are requirements on
that composite system. That is, the name of the use case or scenario can be thought of as a
functional requirement on a composite system, and the actual steps that the system to be built
has to perform in order to satisfy the functional requirement on the composite system can be
thought of either as functional requirements on the system to be built or as activities needed to
fulfil those requirements, depending on the perspective taken.

Therefore, in our model we have two different kinds of functional requirements: functional
requirement on composite system and functional requirement on system to be built.

Functional Requirement on Composite System

Functional Requirement on Composite System is a functional requirement that is supposed to be
fulfilled by the system composed of system to be built and its actors. This type of requirement
is primarily fulfilled through the envisioned scenarios.

Functional Requirement on System To Be Built

Functional Requirement on System To Be Built is a functional requirement that is supposed to
be fulfilled by the system that is being specified. This type of requirement primarily appears as
the steps in envisioned scenarios, i.e., makes envisioned scenarios possible.

Constraint Requirement

In the requirements engineering community, it is common practice to distinguish between func-
tional requirements and constraint requirements, which are also called non-functional require-
ments in literature (see, for example [Gli05]). While functional requirements refer to tasks a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

system must or may perform, constraint requirements describe mandatory or optional properties
of a system. These may relate to e.g. security, reliability and performance conditions or even to
political, legal and economical aspects [CdPL04].

Examples for constraint requirements are:

• The system will be proved to have a E4 level in ITSEC standard.

• The system must store and process customer data conforming to current legislation.

• The cost for system development may not be higher than three times the fitness club’s
monthly net profit.

Certain constraint requirements on system to be built may be operationalized by functional
requirements on system to be built. For example, the constraint requirement

The system must store and process customer data conforming to current legislation.

could be operationalized by

The encryption of customer data is done using a public key method with 1024 bits of key
length.

Similar to functional requirements, taking into account the IEEE definition of a requirement,
one can define a constraint requirement as:

1. A condition needed by a user to solve a problem or achieve an objective.

2. A condition that must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents.

3. A documented representation of a condition as in (1) or (2).

Compared to the IEEE definition, the definition of a constraint requirement limits the require-
ments definition to the usage of the term condition.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

Traditionally, constraint requirements are referred to as non-functional requirement or as quality

attributes. In our language they are only a part of non-functional requirements. Taking into
account that non-functional requirements are a set of all requirements excluding functional
requirements, we can see that our set of non-functional requirements consists of use cases,
envisioned scenarios, and constraint requirements. Moreover, we completely avoid using the
term non-functional requirements since this term may be misinterpreted as representing a type
of a requirement that has no relationship to functional requirement, or even a requirement that
is not functional, i.e., that does not work.

We recognise two types of constraint requirements: constraints on process and constraints on

the system to be built.

Constraint on Process

Constraint on process is a type of constraint requirement that constrains different development
process related decisions. For example, the system shall be implemented in Java programming
language. These requirements do not constrain the system’s functionality per se.

Constraint on System to be built

Constraint on system to be built is a type of constraint requirement that constraints the func-
tionality of the system to be built. For example, the response time has to be no more than 2
seconds.

4.3 Why No Goals?

Goal-driven requirements engineering is an important area of requirements engineering. In par-
ticular, several researchers proposed goal-driven RE [DvLF93, BI96, Kai95, MCY99, Kai00,
vLL00] as a promising technique for dealing with domain-level requirements for large systems.
Goal-driven RE focuses on ensuring that software actually fulfils business needs and require-
ments. This focus has been achieved by shifting from considering what a system should do to
considering why the CBS should provide particular functionality. In other words, requirements

rationale is the main focus.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Requirements Specification Language Definition – D2.4.1
Requirements Model

ver. 1.00
28.02.2007

Although most of the original goal-driven RE techniques concern domain-level requirements,
for example, through analysis of personal and system goals, the main idea of goal-driven RE
techniques has been to enhance certain traditional requirements techniques such as use cases
[Coc00]. Nevertheless, although goal-driven RE techniques are extensively studied, goal-driven
RE remains an immature area. This immaturity is apparent from the many different definitions
of the word “goal” [DvLF93, Ant96, MCY99, Kai00]. The common pattern to all these defini-
tions is that goals capture the intention, i.e., objective, and the target state for the entity under
analysis and at the entity’s own abstraction level. For example, in the case of an elevator sys-
tem, a goal for the elevator system is to deliver passengers to the requested floor. This goal
captures the intention of delivering passengers and also the target state of arriving at the re-

quested floor. This particular goal captures the rationale for the elevator’s responsibility for
carrying passengers from a floor to another.

An interesting point to note is that depending on the abstraction level from which one is ob-
serving a system and the goal decomposition, a goal may or may not become a functional
requirement. For example, for an elevator system, the next level of the goal decomposition
might include goals such as move elevator cab, stop elevator cab, pick up a passenger, and so
on. Now, if we start working at this abstraction level, the higher-level goal of delivering passen-

gers to the requested floor becomes a functional requirement for the lower-level goals such as
moving elevator cab. An advantage of this goal hierarchy is that it provides traceability when
moving from one abstraction level to another and from one goal decomposition level to another.

Overall, one can see that the goals can be ultimately represented or decomposed as regular
requirements. In fact, one can even claim that goals are neither necessary nor sufficient for
the specification of a system. As such, in our project we have decided not to include them as
part of the requirements model. This is not to be interpreted as if goals are not useful for the
specification of a system. Quite contrary, but we had to make this decision in the early stages
of specifying our language in order to make it:

• Manageable,

• Useful to those who are not using goals as part of their requirements work,

Nevertheless, it will be possible to extend the language and add goals in the future revisions of
the language if deemed necessary or desirable.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Requirements Specification Language Definition – D2.4.1
Requirements Representation Model

ver. 1.00
28.02.2007

Chapter 5

Requirements Representation Model

In this section we discuss different requirements specification techniques. Prior to this discus-
sion, it is important to emphasise different aspects of a system to be built from a RE perspective.
The four main aspects of each system from the RE perspective are processes, data, architecture,
and interfaces. Requirements specification techniques focus on modelling one of these four
main aspects. Nevertheless, in many articles in the requirements literature, this division is rep-
resented slightly differently.

5.1 Requirements Representation Model Overview

The Requirements Representation Model is presented in Figure 5.1. The main entity in the
Requirements Representation Language is Requirement Representation, which is used to rep-
resent a Requirement entity from the Requirements Language. The Requirement Representation
Language supports representing requirements in two distinct ways:

1. Through the use of Descriptive Requirement Representation, i.e., through Natural Lan-
guage Requirement Statements and/or Constrained Language Requirement Statements,
and

2. Through the use of Model-Based Requirement Representation, in particular UML-Based
Requirement Representation.

The mapping from the Requirements Domain to the Requirements Representation Language
is not clear cut. For example, a simple Functional Requirement can be captured through the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Requirements Specification Language Definition – D2.4.1
Requirements Representation Model

ver. 1.00
28.02.2007

Requirement
Representation

Descriptive
Requirement

Representation

Model-Based
Requirement

Representation

UML-Based
Requirement

Representation

Activity Diagram
Requirement

Representation

Sequence
Diagram

Requirement
Representation

Natural Language
Requirement

Representation

Constrained
Language

Requirement
Representation

Constrained
Language
Scenario

Representation

Requirements
Model::

Requirement

Requirements
Model

Requirements
Specification

Document

represents

Figure 5.1: Requirements Representation Model

use of a Natural Language Requirement Statement, while a Use Case can be captured through
the use of both Constrained Language Requirement Statements and UML-Based Requirement
Representations complementing each other.

A self-contained set of Model-Based Requirement Representations makes up a Requirements
Model. A Requirements Specification Document contains instances of Descriptive Requirement
Representation or Model-Based Requirement Representation.

5.2 Requirements Representation Model Details

Requirement Representation

Requirement Representation is the representation of some requirement using a requirements
specification language. We distinguish between Descriptive Requirement Representation and

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Requirements Specification Language Definition – D2.4.1
Requirements Representation Model

ver. 1.00
28.02.2007

Model-Based Requirement Representation. A combination of both would normally be part of a
Requirements Specification Document.

Descriptive Requirement Representation

Descriptive Requirement Representation is the representation of some requirement as specified
using a descriptive specification language, e.g., natural language, SVO(O), etc. The need of the
requirement is described in this approach, rather than a model of the system to be built.

Natural Language Requirement Representation

Natural Language Requirement Representation is the representation of some requirement as
specified using a natural language, e.g., English, Turkish, Bulgarian, etc. Note, that we techni-
cally include also hypertext links into natural-language text, see below. The use of hypertext for
representing requirements was already proposed long time ago, see [Kai93, Kai96], but it was
not yet defined as precisely as below in a metamodel.

Constrained Language Requirement Representation

Constrained Language Requirement Representation is the representation of some requirement
as specified using a controlled/constrained natural language, e.g., SVO(O), Attempto Controlled
English (ACE), etc. The point is to take advantage of both the formality introduced by a gram-
mar of a formal language and still the readability of natural language.

Constrained Language Scenario Representation

Constrained Language Scenario Representation is the representation of some envisioned sce-
nario as specified using a constrained language. It gives a precise structure to how such an
envisioned scenario is to be written.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Requirements Specification Language Definition – D2.4.1
Requirements Representation Model

ver. 1.00
28.02.2007

Model-Based Requirement Representation

Model-Based Requirement Representation is the representation of some requirement as spec-
ified using a modelling language, e.g., UML, etc. In contrast to a Descriptive Requirement
Representation, the need of a requirement is specified indirectly. The model specifies what the
system to be built should look like, and the requirement is just to build a system like the one
modelled.

UML-Based Requirement Representation

UML-Based Requirement Representation is the representation of some requirement as specified
in RSL in parts that are based on UML. Using UML for Model-Based Requirement Represen-
tation is actually just one of many ways, but it is one appropriate for today´s practice.

Activity Diagram Requirement Representation

Activity Diagram Requirement Representation is the representation of some requirement as
specified using UML-Based activity diagrams, as specialised for the requirements specification
purposes.

Interaction Diagram Requirement Representation

Interaction Diagram Requirement Representation is the representation of some requirement as
specified using UML-Based sequence or communication diagrams, as specialised for the re-
quirements specification purposes.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Requirements Specification Language Definition – D2.4.1
Domain entities

ver. 1.00
28.02.2007

Chapter 6

Domain entities

The application domain model, referred in the following text as just domain model (DM), con-
sists of three classes: Application Domain Object, System Element, and Actor. The relationships
among these three classes of domain elements are depicted in Figure 6.1. Note, that System El-
ement is an element of the composite system and not of the system to be built.

These three elements constitute an important support to requirements specifications, i.e., they
allow us to create domain specifications. These specifications are clearly linked (through hy-
perlinks) to the requirements specifications making the overall specification coherent.

Application Domain Object

SystemElement
Actor

Requirements

Model::

Requirement

associate

hyperlink

Figure 6.1: Application Domain Model

The main purpose of a DM is to capture the entities that exist in a system’s domain. The domain
can be seen as consisting of:

• business entities, and

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Requirements Specification Language Definition – D2.4.1
Domain entities

ver. 1.00
28.02.2007

• computer entities, including hardware and software (modelled by SystemElement).

In the sections below we discuss these two main groups. In Chapter 7 we present the domain
model with details of representations for individual domain entities.

6.1 Business entities

A software system is part of a larger business system, and serves as a resource to accomplish
business goals. To build a useful DM, we need to study and discover different business entities
of the domain. The possible sources of business entities are presented below:

1. Business Resources — All entities, both physical and abstract, that exist inside the envi-
ronment of the business are business resources. They include people, information, dif-
ferent systems, and business supplies and products. They participate in the business pro-
cesses. A subset of these resources is a source of modelling entities for the system to be
built. The value of tracking and preserving knowledge about these entities is that these
entities are used to perform analysis of the system’s architecture, to track changes to the
domain and the system from the beginning, and to evaluate how well the system reflects
current business needs. For an elevator system, an example business resource is the cable

used to pull up the elevator cab.

2. Business Processes — A system to be built may participate later in several business pro-
cesses in order to help achieve several business goals. Use cases (UCs) describe sub-
processes of larger business processes that are automated by the software system. It is
important to understand a business process as it relates its UCs, which in turn relate soft-
ware requirements that the system has to satisfy. For an elevator system, an example
business process is a passenger’s riding of an elevator cab.

3. Business Rules — Business rules are a major source of constraints on a software system.
Many constraints directly influence the system’s architecture. Therefore, it is important
to understand these constraints and to keep track of them, for example, to be able to
remove architectural limitations imposed by constraints that do not hold any more. For
an elevator system, an example business rule is the elevator will not change its direction

until it services all previously received calls that lie in the current travelling direction.

The main source of business domain objects are Business Resources, but they are very tightly
interlinked with Business Processes and Business Rules. In some cases, they cannot exist sep-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Requirements Specification Language Definition – D2.4.1
Domain entities

ver. 1.00
28.02.2007

arately. Therefore, we need to seek for domain objects inside business process or business rule
descriptions. These are not intended to be described using structural part of RSL, but can be
sources to elements expressed in RSL.

6.2 System entities

It is often a case that we are building a new system for which the domain consists of an already
existing computer-based system that includes both software and hardware. For such a system,
domain entities are not some “natural” objects but rather software and hardware components
and other building blocks. Also, taking into account types of systems such as operating sys-
tems, compilers, embedded device controllers, shells, GUI libraries, etc. which are all software
systems in which all of the domain entities consist purely of what many would call “design
components”, while in such cases they are all domain entities. For example, a scheduler is a
domain entity and Round-Robin algorithm is a scheduling process. For such domains, the main
aspects of a system that should be modelled are:

• System,

• subsystems,

• modules,

• connectors,

• processes, and

• hardware devices.

The System1 entity defines the outermost boundary of the system under consideration. The
System serves as a container for all other entities, and defines the system as a resource in the
business system.

A subsystem is a part of a System or a subsystem, being an abstraction of actual physical mod-
ules, connectors, and processes. It serves as a container and a building block.

A module is a basic architectural building block. For example, in the logical view, it represents
a entity that occurs in a domain, and in the implementation view, it represents a code unit.

1Note that this “system” is spelled out with initial uppercase letter to distinguish it from the generic “system”
used elsewhere.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Requirements Specification Language Definition – D2.4.1
Domain entities

ver. 1.00
28.02.2007

Modules are abstractions of basic building blocks of the domain, depending on the development
technology used.

A connector is an abstraction of a communication mechanism or a channel that exists in a
system. Its size and complexity vary from a simple procedure call to a connection on the
Internet.

A process is an executable piece of software. Processes are basic building blocks of a run-time
architectural view.

A hardware device is an entity that occurs in the run-time architectural view, and it represents a
physical device that is a part of the system.

The above types of system entities have their place in the domain model created at the require-
ments level, using the structural part of RSL. The System entity is used throughout the de-
scriptions of functional requirements in general, and in use case descriptions (scenarios) specif-
ically. Other system entities can be used in requirements that specify technical constraints on
the prospective system.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

Chapter 7

Representation of domains

7.1 Overview

When considering requirements specifications as described in Chapters 4 and 5 we should ob-
serve that they do not contain any descriptions of the application (or: problem) domain. In the
Requirements Specification Language we clearly want to separate the requirements with their
representations from the representations of the problem domain. Thus, none of the require-
ments representations allows for defining elements of the problem domain. They only allow for
defining the system behaviour or quality in their pure form. No interleaving of domain element
definitions are allowed.

The main rationale behind this clear distinction is to make requirements specifications unam-
biguous and consistent. We need to remember that the main purpose of a requirements specifi-
cation in software engineering is to reflect the real needs of the clients. This specification should
be the basis on which developers build a software system of good quality – i.e. a system that
meets the clients’ expectations to a high extent. Unfortunately, a commonly encountered prob-
lem with requirements specifications is that they are imprecise and have many inconsistences.
Specifications are often written using a natural written language style or, on the contrary, they
are too general. In both cases, the intentions of the writer are hard to understand and interpret
causing ambiguity. The majority of requirements specification writers tend to mix descriptions
of the system’s behaviour, quality or appearance with descriptions of objects (or: notions) con-
tained in the problem domain. Definitions of notions are buried in many different places inside
scenarios, stories or simply free text. What is more harmful, the same notions often have con-
flicting definitions and, on the other hand, a number of different synonyms are used to describe
identically (or close to identically) defined notions.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

Having the requirements specification of such a poor quality, it is a very hard task to build
a system that fully fulfills the real clients’ needs. It is hard to reflect these requirements in
the architecture and in the design of the prospective system as well as to apply changes in the
system when requirements change. Finally, imprecise requirements make it close to impossible
to apply the concept of software reuse at the level of problem definition.

To overcome all problems mentioned above, we need a separate part of our language that sup-
ports creating precise and consistent requirements specifications through the introduction of a
separate specification of the domain. The precision of requirements specifications is assured
by using hyperlinks that link requirements text with definitions of phrases and terms. These
hyperlinks can be embedded in free text requirement representations, structured language rep-
resentations (like SVO sentences) and textual parts of model-based representations.

Let’s consider a simple scenario, forming part of a requirement representation written in the
SVO format. This scenario describes a sequence of interactions between a customer of a fitness
club and the fitness club system:

• Customer wants to sign up for exercises.

• System shows time schedule.

• Customer chooses time from time schedule.

With these simple sentences we can precisely describe actions performed by the actor (Customer
or System). It can be noted, however, that such sentences do not contain definitions of notions
used therein. For example, we lack an explanation of what ‘exercises’ or ‘time schedule’ is, and
how they relate to each other. In order to avoid inconsistencies, as mentioned above, we should
not insert definitions of notions into the sentences. In fact, the RSL does not allow for inserting
such definitions into structured sentences (like SVO). However, no restriction is set on natural
language sentences. With such sentences, the requirements specifiers are strongly advised not to
put domain element definitions into this free text. Instead, a hyperlink should be introduced that
points to an appropriate definition in the domain specification. This prevents from introducing
contradictory definitions of the same notion in different places of the requirements specification.

Considering the above, the Requirements Specification Language provides a means to describe
the problem domain of the system. We can crete domain specifications that contain domain

element packages – repositories that keep all necessary notions from the domain along with their
definitions and relationships between them. For the above example, the domain specification
would contain the following definitions for nouns:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

Exercises – Form of physical activity performed in fitness club. Exercises may be [cyclic ex-
ercises] or [sporadic exercises].

Time schedule – A program of [exercises] offered to [customers] by the [fitness club] in a
given period of time: day, week or month.

Square brackets in notion definitions denote relationships with other notions. Every notion
in the domain specification can have different forms (i.e. singular and plural), synonyms and
homonyms. In addition to nouns, the domain specification can also contain verbs. However,
verbs do not have their own autonomous definitions – they are related to nouns as their meaning
depends on the context of a concrete noun. Verbs are treated as behavioural features of related
nouns. For example, “choose exercise” has a different meaning than “choose time from time
schedule”, although both contain the verb “choose”.

The domain specification should be partially created by interviews with the future users of the
prospective system as well as with specialists from the problem domain. While writing require-
ments in the RSL grammar (see the Language Reference part), the writer should have constant
access to the domain elements in the domain specification and should be able to insert easily
notions directly into sentences. He/she should also be able to extend the domain specification
at any time by introducing new notions and their definitions.

Figure 7.1 illustrates the separation of the domain specification from requirements descriptions.
In the example, scenario sentences have hyperlinks (depicted as dashed arrow lines) to notions
defined in the domain specification (depicted as boxes). The lines connecting the notions in the
domain elements denote relationships between them.

1. Customer wants to sign up for exercises.
2. System checks availability of exercises.
3. System shows time schedule.
4. Customer chooses time from time schedule.
5. System shows sign-up summary dialog.
6. Customer submits sign-up for exercises.
7. System signs up customer for exercises.

1. Customer wants to sign up for exercises.
2. System checks availability of exercises.
3. System shows time schedule.
4. Customer chooses time from time schedule.
5. System shows sign-up summary dialog.
6. Customer submits sign-up for exercises.
7. System signs up customer for exercises.

customer

time schedule

exercises

sign-up

sign-up summary dialog

timeavailability

Domain specification

Figure 7.1: Scenario with separated domain specification

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

7.2 Domain representations using conceptual models

An application domain can be modelled by representing its important concepts and entities in a
model. Such conceptual models are usually built from symbols, most popular today is object-
oriented representation. An object is usually represented by a class that it is an abstraction of
an entity in the application domain.

Unfortunately, representations in object-oriented classes are often confused to be representa-
tions of a software design rather than that of an application domain. Such a model typically
contains operations in the class definitions, which are already operations of a software object.

That is why we define for our RSL a special kind of structural domain representation that
explicitly focuses on domain elements. In particular, such a representation does not even allow
the inclusion of operations for a conceptual domain model. Apart from that, however, it allows
representations according to the following key object-oriented principles:

• Domain elements can be generalised (and inversely specialised).

• Domain elements can be connected through domain element associations.

• Domain elements associations can be aggregations.

• Domain element associations can have multiplicities.

These are actually the same principles as those behind an ontology. In contrast to the origin
of this notion stemming from the old Greek culture and language, an ontology is today con-
sidered a formal representation of a domain. In the field of Artificial Intelligence, even special
ontology languages have been defined for this purpose, based on formal approaches to so-called
knowledge representation.

Still, while not completely formal in a pure sense, a representation in UML or using our domain
elements approach derived from it, may still be considered to result in a simple form of a usable
ontology.

Even when having a representation in a model according to these principles (being more or less
formal), the meaning of a domain entity is often not really obvious for a human and is sometimes
just inductively inferred from the name. That is why dictionaries with glossary information are
usually suggested, but they are often kept separately and, therefore, not easily accessible.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

The RETH tool, for example, embedded for each domain object their glossary entries in a
predefined attribute (see, [Kai96, Kai97]). In RSL, we include similar descriptions in notions
of the domain elements.

7.3 Domain representation using phrases

Conceptual specification of a particular domain is an important element of any software devel-
opment project (a so called software case). However, conceptual specification is not enough to
describe the full specification of the problem domain. This specification should be referenced
throughout all the requirements, as pointed out in Section 7.1. The conceptual model allows us
to define noun notions, but we also need to define certain phrases containing verbs or adjectives.
Such phrases could be used in constrained language requirement representations. At the same
time, definitions of these phrases could be kept consistently in a single coherent terminology.

Thus, the RSL introduces a capability to attach to domain elements, certain statements in the
form of phrases. The simplest statement contains just the noun with its description (using
hypertext). More complex statements contain verb phrases and quantifier or modifier phrases.
It is important that every phrase is tightly combined with the noun being part of it. This way, the
domain elements are highly structured, where the structure is reflected through the conceptual
specification with associations between domain elements (i.e. nouns).

In RSL, every domain element can include many phrases referring to the same noun. These
phrases can contain wiki-like descriptions (text with hyperlinks relating to other domain ele-
ments or phrases). It can be noted that the name of every domain element is a phrase containing
a noun and an optional modifier or quantifier (eg. user, additional user).

This way, the domain specification becomes coherently embedded into the conceptual model
described in the previous section. The RSL shows an overview of all the phrases contained in a
domain element. The domain specification can be shown on domain element diagrams (inside
domain element icons), and can be presented in a traditional textual form.

Phrases that form the domain specification ensure a clear separation of concerns (behaviour
and quality vs. problem domain description) which guarantees consistency of requirements ex-
pressed. These phrases form pieces for a constrained language to be used elsewhere throughout
the RSL. This approach facilitates the creation of RSL specifications through the use of phrases
as atomic “phrase lexemes”. Any phrase can be perceived as a complex domain element. By
using phrase lexemes we can easily define grammars based on such complex elements. For

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

example we can define a Subject-Verb-Objects (SVO[O]) sentence using just two phrases: a
subject phrase and a predicate phrase. Subject can include any noun from the conceptual speci-
fication optionally grouped with its quantifier and modifier (which together form a noun phrase,
e.g. every registered customer, authorised user). Predicate is a more complex phrase, contain-
ing a verb and possibly referring to some other notion (it is a noun phrase). Such a VerbPhrase
forms the VO (simple verb phrase) or VOO (complex verb phrase pointing also to another no-
tion) part of the sentence. Let’s now consider the following example sentences that use the
SVO(O) grammar:

• User submits form.

• System adds user to the user list.

• Registered customer cancels reservation.

The first sentence consists of the user phrase (a noun with no quantifier or modifier) in the
role of a subject and the submits form simple verb phrase in the role of a predicate (VO part
of the sentence). The second sentence consists of the system phrase in the role of a subject
and the adds user to the user list complex verb phrase (pointing to the user list notion) in the
role of predicate (VOO part of the sentence). In the third sentence we have an example of a
more complex noun phrase registered customer (containing a modifier). For more details and
examples please refer to Chapter 6

7.4 Terminology

In order to build phrases as described in the previous section, we need terms. Terms are universal
and have general meaning as specified in natural language dictionaries, and they have specific
meaning in the context of a software project (or group of projects). Terms have inflections
depending on the particular natural language used (English has different inflections than Polish
for instance).

The dictionary defines terms (nouns, verbs, adjectives, etc.) with their inflections. Every term
is equivalent to a lexeme used in other specifications. It can be noted however, that for a single
term, many lexemes can be formed — one for each natural language that we use in our specifi-
cations. The dictionary organised in this form can greatly facilitate formulation and comparison
of requirements in different languages (especially important on the EU market).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Requirements Specification Language Definition – D2.4.1
Representation of domains

ver. 1.00
28.02.2007

Thus, in RSL we separate the phrases for a given domain from a global dictionary common for
all software cases. This separation allows facilitating reuse of specifications in the RSL, as it
allows for combining the common dictionary with a thesaurus.

The word thesaurus originates in Latin and Greek, meaning “treasury”. In the 19th century,
a thesaurus was a book of jargon for a specialised field. Today, a thesaurus is an ordered
composition of terms from an application domain or area with their relations [Bro03]. Relations
defined in a thesaurus are, e.g., synonym (similar term), antonym (opposite) and hierarchical
relations (“broader term” and “narrower term”).1 These relations define the lexical semantics
of terms. Based on the lexical semantics of terms it is possible to compare requirements, i.e.,
the similarity of requirements can be measured based on the lexical semantics defined in the
thesaurus.

In fact, a dictionary and a thesaurus complement one another. The dictionary provides a textual
description, information about inflections and possibly translations to other languages, while the
thesaurus describes the relation of a term to other terms. In RSL this combination of dictionary
and thesaurus is placed in the terminology package. The RSL allows for specifying a thesaurus
through adding relationships between terms. These relationships can be depicted graphically as
specified in the language reference.

The combination of dictionary and thesaurus features within one structure is not new. The
WordNet lexical database is a well-known example of such a combination that interlinks En-
glish nouns, verbs, adjectives and adverbs in a wordnet [MBF+90], [Mil90], [GM90], [BMT90].
Similar wordnets also exist for other European languages (e.g., for German see the Wortschatz-
lexikon http://wortschatz.uni-leipzig.de). EuroWordNet, for example was a European resources
and development project2 providing a multilingual database with wordnets for several European
languages (Dutch, Italian, Spanish, German, French, Czech and Estonian) [VPG99]. Lexical se-
mantics defined in wordnets can be used to improve the results in information retrieval [Kur04],
[CEE+04], e.g., through support for resolving ambiguities.

The use of a wordnet in information retrieval is not new as stated above. Using a wordnet for
comparing software requirements is innovative, however.

1Thesauri are standardised, e.g. in DIN 1463-1 (German Industry Norm) and ISO 2788 (International Stan-
dardisation Organisation).

2Project reference number LE-2 4003 & LE-4 8328; http://www.illc.uva.nl/EuroWordNet/index.html

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Requirements Specification Language Definition – D2.4.1
Representing the user interface and its dynamics

ver. 1.00
28.02.2007

Chapter 8

Representing the user interface and its
dynamics

8.1 Elements of the user interface

In order to enable analysts specify user interface requirements in a notation understandable to
their stakeholders, prototype-oriented model-based elements are required. This section defines
such user interface elements. Since concrete user interface elements mainly differ according to
modality and toolkit and there are currently many modalities and toolkits, general user interface
elements should be defined independent therefrom. The RSL therefore provides general usage-
oriented UIElements that are both modality and toolkit independent. Extending the UIElements
and hence tailoring them to concrete elements of a specific domain is an important requirement,
which is done by using UML profiles.

In order to obtain general UIElements, the usage of different concrete user interface elements
from different sources were analyzed. There are elements for direct interaction with the user and
others for structuring the user interface for example by grouping other elements. Consequently
the former elements are regarded as simple or atomic while the latter ones are containers. This
modality and toolkit independent classification is showed in Figure 8.1.

Chapter 15 of this document provides a detailed description of these elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Requirements Specification Language Definition – D2.4.1
Representing the user interface and its dynamics

ver. 1.00
28.02.2007

Notion

UIElement

hasAutoContent: boolean

isMandatory: boolean

InputUIElement

dataValidation: String

OptionUIElement

isReSelectable: boolean

SelectionUIElement

maximumSelectableOptions: int

sortCriterion: String

sortOrder: String

TriggerUIElement

executionTime: int

isStatelessTrigger: boolean

UIContainer

UIPresentationUnit

0..*

0..*

{"isReSelectable" must have the same value}

Figure 8.1: Usage-oriented UIElements

8.2 Behaviour of the user interface

The UI representation part of the RSL gives us means to create models of the user interface for
the prospective system. With this language we can precisely describe the structure of elements
that build the UI. Description of the structure, however, is not enough – we need to have the
possibility to express the behaviour of the UI. The UI behaviour representation part of the RSL

should allow for describing navigability and interactivity of the system’s UI. In particular, it
should describe how the system’s UI will behave in response to user actions. This description
should give a high-level overview of the UI behaviour in order to allow the users to quickly
understand and verify it.

The behaviour of the prospective system’s UI can be modelled in three ways using the proposed
UI behaviour representation part of the RSL. Firstly, it can be used to illustrate interactions
between a user and the system within a single use case scenario. A good way of illustrating
scenarios are storyboards, mostly known from the Rational Unified Process (RUP) [Kru03].
Storyboards are simply scenarios with screenshots attached to scenario sentences illustrating
how the UI changes in response to user or system actions expressed in these sentences. Sec-
ondly, with the UI behaviour representation part of the RSL we can describe the overall flow
of the application’s UI – a combination of UI behaviours for one or more use cases. Such an
architectural overview of the UI can be visualised by showing UI elements with labelled asso-
ciations illustrating user actions that triggers transitions of the interface. Having illustrated all
possible ways of navigation through the application’s interface it is easy for the users to gain
an understanding of how it works and determine if it will be usable. Another way of modeling

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Requirements Specification Language Definition – D2.4.1
Representing the user interface and its dynamics

ver. 1.00
28.02.2007

UI behaviour is associating elements of user interface (UIElements) with RequirementsSpecifi-

cations :: UseCases – every UIElement can trigger a Use Case, in other words, user can begin
interaction with system by using element of interface (graphical, voice or other).

Chapter 16 of this document provides a detailed description on how the UI behaviour can be
represented using the UI behaviour representation part of the RSL.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Requirements Specification Language Definition – D2.4.1
Discussion

ver. 1.00
28.02.2007

Chapter 9

Discussion

Requirements can be compared to novels in literature. Good novels communicate stories treated
as sequences of events, and place these stories in a well described environment. Unfortunately,
writing “stories” that describe requirements for software systems seems to be equally as hard as
(or harder) than as writing good novels. However, unlike writing novels, lack of coherence and
ambiguities may cause disaster when developing a system based on such requirements.

Finding inconsistencies in a set of several tens or hundreds of requirements is quite a hard
task, especially, when these requirements are written by different people and at different times.
It seems that keeping the vocabulary separate from the rest of the requirements specification
can significantly facilitate keeping sparse requirements documents consistent by keeping the
vocabulary controlled. This is because most inconsistencies in requirements are caused by
contradictory definitions of terms. To eliminate the source of such inconsistencies we introduce
a single repository of notions (a vocabulary) that can be used in various requirements. This
means that for instance, the behavioural requirements could use definitions already found in the
repository and just concentrate on the actual sequence of events.

In addition to the above, having a clearly defined vocabulary makes it possible to introduce
certain query mechanisms that would allow for easy retrieval and reuse of requirements. For
such mechanisms it is very important to be able to compare requirements. This comparison
should be based on a terminology where terms with similar meaning are related.

In fact, our thesaurus (as integrated with a dictionary in our vocabulary representation) involves
a specialisation relation (and indirectly the inverse generalisation). While this is not unusual
for a thesaurus, a complication arises since we link the thesaurus also with a conceptual model,
which involves generalisation / specialisation as well. As long as only one of these approaches

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Requirements Specification Language Definition – D2.4.1
Discussion

ver. 1.00
28.02.2007

will be used for domain representation, this does not pose a problem. Just to the contrary, in
the absence of a conceptual model, a thesaurus can define such hierarchies. Whenever both
approaches will be used at the same time, however, these relations are somewhat redundant and
may, therefore, result in inconsistencies.

One approach to tackle this problem may be to automatically generate a generalisation / spe-
cialisation hierarchy for a not yet existing conceptual model from the related hierarchy in the
thesaurus (using tool support, of course). Such an approach was taken in [SK94] for a unified
hypertext and structured object representation as defined in [KS91]. This representation is sim-
ilar enough to ours to make this approach promising. Another approach would be to implement
automatic consistency checks in a tool. Since one representation is clearly less formal than the
other, this approach may be difficult to pursue.

So, it has to be stressed that the language to define vocabularies should be used in conjunction
with a tool. This is highly recommended as using notions stored in a vocabulary within re-
quirements and keeping it constantly coherent would be very laborious and error-prone if done
manually. Thus such a tool would need to allow for providing consistency between different
requirements using the same notions (the notion has the same definition wherever it is used).

Going back to the original IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engi-
neering Terminology definition of requirement that we used for this project:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

we can see in (3) that it includes the documented representation of the requirement. During
this project we realised that the documented representation of the requirement should not be
considered to be the requirement itself, but a representation. There are several reasons:

• A requirement is something that exists even if it is never documented, i.e., represented.

• A requirement can have multiple representations.

• A requirement can be represented at different abstraction levels.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Requirements Specification Language Definition – D2.4.1
Discussion

ver. 1.00
28.02.2007

• Each representation of a requirement is usually not complete from each possible perspec-
tive.

The first issue tackles the fact that requirements and their representations belong to two differ-
ent dimensions. Similar to real world entities and the OOA representations, an orange in the
real world is different than an orange represented using UML. Besides the fact that it is very
hard to elicit all requirements and represent them properly, even when they are elicited, their
representations are not necessarily the right ones.

The second issue is that each requirement can be represented in multiple ways and some can be
represented in certain ways that others cannot. For example requirements concerning different
sound types and ranges are hard to capture using UML sequence diagrams.

The third issue is that requirements can be represented at different abstraction levels leaving
some part of the actual requirement out. By doing this any single requirement representation
abstraction level represents no full requirement. On the other hand, requirements themselves
are harder to decompose into multiple abstraction levels.

Finally, taking into account that each requirement can be represented in a number of different
ways, and for each way at different abstraction levels, it is obvious that almost any requirements
representation cannot be considered as complete representation of the requirement and as such
different than the requirement itself.

This distinction between requirements and their representations is evident throughout our lan-
guage. As such, it removes the confusion between requirements themselves and their represen-
tations that commonly exists in the requirements engineering community. The removal of this
problem is one of the prerequisites for successful capture of the requirements, proper traceabil-
ity, and quality insurance involved in checking that requirement specification is consistent and
complete. This is one of the major contributions of our language and this project.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

Requirements Specification Language Definition – D2.4.1 ver. 1.00
28.02.2007

Part II

Language Reference

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 53

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

Chapter 10

Kernel

10.1 Overview

The Kernel part groups the most important concepts of the Requirements Specification Lan-
guage: Elements, their Relationships, Representations and Attributes. All key meta-classes of
the RSL are somehow dependent on Kernel (mostly by generalisations), which was designed as
a central part of the RSL, making it more coherent and understandable.

Kernel also acts as a layer between the RSL and the Kernel of UML – the concepts of Package
and Relationship from UML Kernel are refined in the RSL Kernel.

Attributes Elements

UML:Kernel

(from UMLMetaModel)

«import»

«import»

Figure 10.1: Overview of packages inside the Kernel part of RSL

Figure 10.1 shows two packages of the Kernel part of the language. The Elements package
contains all the basic entities while the Attributes package adds attribute values to these entities.
Both packages depend on certain elements defined in the UML :: Kernel packages. This way,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 54

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

the RSL can be treated as an extension of UML, but in a very broad sense, as many elements of
the language do not necessarily originate in UML.

10.2 Attributes

10.2.1 Overview

RSL Kernel is designed to reflect the concept of Element and its Representation. The Attributes

package serves the purpose of attaching Attributes and AttributeSets to Elements :: Repre-

sentableElements (that is Elements :: Elements having a representation).

The main concept behind the Attributes package is to allow grouping of attributes in sets and to
separate attributes treated as containers for values from these attributes’ definitions.

10.2.2 Abstract syntax and semantics

The diagram in Figure 10.2 shows the abstract syntax of the Attributes package. The following
subsections will describe classes in this diagram.

Attribute

AttributeSet

AttributeDefinition

name: String

type: String

AttributeValue

Element

Elements::

RepresentableElement

name: String

{RepresentableElement's

attributes contain all Attributes

with names and values

corresponding to the ones in this

RepresentableElement

attributeSets.}

1 0..

attributes 0..*

1

0..*

*

*

attributeSets

1..*

Figure 10.2: Attributes

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 55

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

Attribute

Semantics. An Attribute is an entity containing properties of various elements. Attribute is de-
fined by AttributeDefinition. Attributes can be grouped in AttributeSets. Attribute is a container
for value(s), which are attached to Elements :: RepresentableElements (which is constrained
by existence of Attribute’s definition in an AttributeSet corresponding to this Elements :: Repre-

sentableElement).
Abstract syntax. Attribute is a component of Elements :: RepresentableElement, but only if
its definition exists in the AttributeSet associated with this Elements :: RepresentableElement.
Attribute is also associated with AttributeDefinition (many Attributes can be associated with one
definition). Attribute can have multiple AttributeValues associated with it.

AttributeDefinition

Semantics. AttributeDefinition is a description of associated Attribute and a constraint for its
values. Attribute can have a name (AttributeDefinition’s name attribute) and type (type attribute,
which determines the set of possible values of AttributeValue).
Abstract syntax. AttributeDefinition can be a component of several AttributeSets. AttributeDefi-

nition can be associated with Attributes.

AttributeSet

Semantics. AttributeSet is an entity grouping Attributes via their definitions (AttributeDefini-

tion). AttributeSets can be associated with Elements :: RepresentableElements, which restricts
attachment of Attributes to those elements. AttributeSet can be treated as a template for Attributes

that should be connected to given Elements :: RepresentableElement.
Abstract syntax. AttributeSet is a container for AttributeDefinitions. AttributeSet is associated
with Elements :: RepresentableElements.

AttributeValue

Semantics. AttributeValue represents a value of a property associated with a Elements :: Repre-

sentableElement.
Abstract syntax. AttributeValues can be associated with an Attribute.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 56

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

10.2.3 Concrete syntax and examples

Attribute. Attribute is expressed through its name and value in the following form:

attribute name = value

for example

version = 345

If Attribute has multiple values that are separated by commas:

attribute name = value1, value2, ..., valueN

for example:

Author = John Smith, Alice Brown

R001
Requi rem entR001 author = John Sm ith

version = 1.2

Figure 10.3: Showing Requirements Attributes on a diagram

When showing Attributes on a requirements diagram the above syntax can be placed in a “note”
(similar to a UML Comment): in a rectangle with upper right corner bent and connected to the
given Elements :: RepresentableElement by a dashed line (see figure 10.3).

When showing Attributes as properties of a Elements :: RepresentableElement it can be repre-
sented in tabular form:

Name Value(s)

attribute1 name value1, value2, . . . , valueN

attribute2 name value1, value2, . . . , valueN

.

attributeN name value1, value2, . . . , valueN

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 57

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

AttributeDefinition. Attribute can be shown in the form of a listing of its attributes and values
with a caption showing its definition’s name:

attribute definition name

name = attribute name

type = attribute type

for example

Version attribute definition

name = version

type = Integer

AttributeSet. AttributeSet can be shown as a listing of attributes’ names and types defined in the
AttributeDefinitions owned by this AttributeSet (every attribute in separate line), along with this
AttributeSet’s name:

attribute set name

attribute1 name (attribute1 type)

attribute2 name (attribute2 type)

...

attributeN name (attributeN type)

for example

Requirements attributes

author (String)

version (Number)

AttributeValue. AttributeValue can be shown in a way similar to the Attribute (see above).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 58

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

10.3 Elements

10.3.1 Overview

The Elements package defines basic entities for the RSL, relationships between them and a
mechanism for grouping RSL elements. The package meta-classes reflect the RSL’s concept
of separating Elements from their representations. The Elements package also introduces two
ways of linking entities – it is done either through relationship meta-classes or through Hy-

pelinks.

10.3.2 Abstract syntax and semantics

The diagrams in Figures 10.4 through to 10.6 show the abstract syntax of the Elements package.
The following subsections will describe classes in these diagrams.

RepresentableElement

name: String

ElementRepresentation

HyperlinkedSentence

HyperlinkElement

representations

1..*

name

1

0..1

sentences

1..*

{ordered}

0..1

hyperlinks 0..*

linkedElement

0..1

Figure 10.4: Element representations

Element

Semantics. An Element is the most basic entity existing in the RSL. It has a capability of being
linked by Hyperlinks.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 59

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

RepresentableElement

name: String

RepresentableElementRelationship

Element
Relationship

UML:Kernel::

DirectedRelationship

target

{redefines target}

source

{redefines source}

Figure 10.5: Element relationships

Element

RepresentableElement

name: String

RepresentableElementsPackage

NamedElement

UML:Kernel::

Package

elements

*

{redefines ownedMember}

nestedPackage *

{redefines

nestedPackage}

0..1

Figure 10.6: Element packages

Abstract syntax. Element can be associated with Hyperlinks (it has the role of linkedElement in
this relationship). Element is a superclass for RepresentableElement. Element is abstract.

ElementRepresentation

Semantics. ElementRepresentation is a superclass for all representation classes in the RSL. It
contains HyperlinkedSentences as sentences forming the representation.
Abstract syntax. ElementRepresentation is a superclass for DomainElementRepresentation,
RequirementRepresentation and UIElementRepresentation. ElementRepresentation is a com-
ponent of RepresentableElement with the role of representation. ElementRepresentation con-
sists of HyperlinkedSentences. ElementRepresentation is abstract.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 60

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

Hyperlink

Semantics. Hyperlink is used for linking Elements. HyperlinkedSentences are formed of Hyper-

links.
Abstract syntax. Hyperlink may point at exactly one Element. Hyperlink is a component of
HyperlinkedSentence. Hyperlink is a base class for Phrases :: PhraseHyperlink and Term ::

TermHyperlink. Hyperlink is abstract.

HyperlinkedSentence

Semantics. HyperlinkedSentence is a base class for various types of sentences in RSL. Hyper-

linkedSentence is a set of Hyperlinks used for representing RepresentableElements.
Abstract syntax. HyperlinkedSentence consists of Hyperlinks. HyperlinkedSentence is a com-
ponent of ElementRepresentation (with the role of sentences) and RepresentableElement (with
the role of name). HyperlinkedSentence is a superclass for NaturalLanguageHypertextSen-

tence, ConstrainedLanguageSentence and DomainElementHyperlinkedSentence. Hyperlinked-

Sentence is abstract.

RepresentableElement

Semantics. RepresentableElement is a base class for Element’s specialisations which have
a representation. RepresentableElements can be grouped in RepresentableElementsPackages.
RepresentableElement can be source and target for RepresentableElementRelationships, allow-
ing all elements that have representation to be linked in way other than by Hyperlinks. Every
RepresentableElement has its name.
Abstract syntax. RepresentableElement is a kind of Element. RepresentableElement has the
name attribute. RepresentableElement consists of its ‘name’ (a HyperlinkedSentence) and its
‘representations’ (ElementRepresentations). RepresentableElement can be the source and/or
target for RepresentableElementRelationship. RepresentableElement is a component of Re-

presentableElementPackage. RepresentableElement consists of Attributes :: Attributes and is
associated with an Attributes :: AttributeSet. RepresentableElement is a superclass for Require-

ment, DomainElement and DomainStatement. RepresentableElement is abstract.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 61

Requirements Specification Language Definition – D2.4.1
Kernel

ver. 1.00
28.02.2007

RepresentableElementRelationship

Semantics. RepresentableElementRelationship is used for connecting representable elements
in a way other than through Hyperlinks.
Abstract syntax. RepresentableElementRelationship is a kind of UML :: Kernel :: DirectedRela-

tionship. It is associated to RepresentableElements - being its ‘source’ and ‘target’. Representa-

bleElementRelationship is a superclass for DomainElements :: DomainElementRelationship, No-

tions :: NotionGeneralisation, UseCaseRelationships :: Participation, RequirementRelationships

:: RequirementRelationship, RequirementRelationships :: RequirementVocabularyRelationship

and UseCaseRelationships :: Usage. RepresentableElementRelationships is abstract.

RepresentableElementsPackage

Semantics. RepresentableElementsPackage is entity used for grouping of various kinds of
RepresentableElements in packages.
Abstract syntax. RepresentableElementsPackage is a kind of UML :: Kernel :: Package. Re-

presentableElementsPackage consists of elements – RepresentableElements. Representable-

ElementsPackage can contain nested packages. RepresentableElementsPackage is a super-
class for DomainElements :: DomainElementsPackage, DomainElements :: DomainSpecifica-

tion, RequirementSpecifications :: RequirementsPackage and RequirementSpecifications :: Re-

quirementsSpecification. RepresentableElementsPackage is abstract.

10.3.3 Concrete syntax and examples

As abstract meta-classes, all classes in the Elements package do not have concrete syntax. Most
of them contain several concrete subclasses in which concrete syntax is defined.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 62

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Chapter 11

Requirements

11.1 Overview

The Requirements part defines all the RSL constructs that pertain to Requirements as such
and relationships between them. This part of the language defines only the top level elements
which do not show details of individual representations of Requirements. Language users will
typically use elements from this part to present requirements as such (in diagrams and project
trees) contained in the requirements specifications they create. These diagrams or trees will
generally consist of icons denoting individual Requirements (including UseCases) and lines
denoting appropriate RequirementRelationships (including relationships for UseCases).

The specification in this part contains three packages, as shown in Figure 11.1 (marked in blue
on colour print-outs).

• The RequirementsSpecifications package contains all the general constructs. These con-
structs allow for expressing whole requirements specifications, groups of logically related
requirements (their packages) and individual requirements. It «import»s from the Kernel

:: Elements package to allow for specialising the syntax and semantics of general meta-
classes from this package. It also «import»s from the UML :: Kernel package to allow
for using UML elements. It «merge»s the UML :: UseCases package as it redefines the
UML’s UseCase class. Different relationships between requirements are defined in the
RequirementsRelationships package.

• The RequirementsRelationships package generally introduces the possibility to relate in-
dividual requirements. Different types of dependencies between individual requirements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 63

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RequirementsSpecifications

RequirementRelationships

UseCaseRelationships

UML:Kernel

(from UMLMetaMode l)

Actors

(from RSLSyntax:DomainE lements)

UML:UseCases

(from UMLMetaModel)

Elements

(from RSLSyntax:Kerne l)

Notions

(from RSLSyn tax:DomainElements)

ScenarioSentences

(from RSLSyn tax:Requi rementRepresenta tionSentences)

« im port»

«merge»

« im port»

« im port»

« im port»
« im port»

«merge»

«im port»

« im port»

« im port»

« im port»

« im port»
« im port»

« im port»

« im port»

« im port»

Figure 11.1: Overview of packages inside the Requirements part of RSL

can be expressed by appropriate relationships defined in this package. In this way, con-
ceptual relationships between Requirements as specified in Chapter 4 can be expressed.
This package imports from Kernel :: Elements in order to reuse the syntax and seman-
tics of more general elements. Since the relationships defined in this package include
those connecting requirements to notions, also the DomainElements :: Notions package is
imported.

• The UseCaseRelationships package is a modification of the UML :: UseCases package
with which it «merges» to redefine use case relationship classes. This package also «im-
port»s from DomainElements :: Actors – it relates UseCases with DomainElements ::

Actors :: Actors, which makes such relationships explicit as opposed to what is defined in
UML. Moreover, the package imports the RequirementRepresentationSentences :: Sce-

nariosentences package. This is because the «invoke» relationship points to a sentence
in a scenario which needs to be associated with it.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 64

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RepresentableElement

RequirementsSpecifications::

Requirement

ID: String

UseCase

RequirementsSpecifications::

UseCase

Requirements Model::Use Case

Requirements Model::Requirement

Constraint Requirement

Requirements Model::Constraint on

Process

Constraint Requirement

Requirements Model::Constraint on

System to be built

Functional Requirement

Requirements Model::Functional

Requirement on Composite System

Functional Requirement

Requirements Model::Functional

Requirement on System to be built

RequirementsSpecifications::

ConstraintOnProcess

RequirementsSpecifications::

ConstraintOnSystem

RequirementsSpecifications::

FunctionalRequirementOnComposite

RequirementsSpecifications::

FunctionalRequirementOnSystem

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

Figure 11.2: Mappings between meta-classes representing requirements from the Requirements
package and meta-classes from the conceptual model

Individual classes in the above packages can be mapped from 1 the conceptual model described
in Chapter 4. Mappings between conceptual requirements and requirements meta-classes in the
RequirementsSpecifications package are shown in Figure 11.2. Figure 11.3 shows from which
conceptual meta-associations, the requirement relationship meta-classes are mapped.

The main class in this part is the Requirement class and all its specialisations (see Fig. 11.2).
These classes allow for expressing requirements as such without going into details of the re-
quirement’s representation. The source of these classes are the Requirements Model :: Require-

ment class from the conceptual model and its subclasses. It can be noted that among possible

1«mappedFrom» specifies a relationship between RSL model elements that represent corresponding ideas in
the conceptual model.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 65

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RepresentableElementRelationship

RequirementRelationships::

RequirementRelationship

Mapping from conceptual

association between

requirements

RequirementRelationships::

Constrains

RequirementRelationships::Fulfills

RequirementRelationships::

MakesPossible

RequirementRelationships::

Operationalizes

Mapping from conceptual

association "constrains"

Mapping from conceptual

association "fulfills"

Mapping from conceptual

association "makes possible"

Mapping from conceptual

association "operationalizes"

UseCaseRelationships::

InvocationRelationshipMapping from conceptual

association "invoke"

Figure 11.3: Mappings between meta-classes representing requirements relationships from the
Requirements package and meta-classes from the conceptual model

specialised requirements types, use cases are special. This is because of specific syntax for
relationships between UseCases. As for other types, this class directly traces from the Require-

ments Model :: UseCase class found in the conceptual model. However, a separate package in
the RSL syntax meta-model is devoted only to use case relationships.

In addition, specialisations of the RequirementRelationship class (see Fig. 11.3) allow for ex-
pressing in RSL connections of Requirements through different relation types defined in the
conceptual model: ‘invokes’, ‘constrains’, ‘operationalizes’, ‘fulfils’ and ‘makes possible’. Other
relationships in this part include relationships that pertain to the UseCase class and are not di-
rectly described in the conceptual model. However, these relationships directly specialise and
modify appropriate relationships from the UML model.

All the elements contained in the Requirements part can be shown on Requirements Diagrams
or Use Case Diagrams. Requirements Diagrams show Requirement icons with relevant Require-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 66

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

mentRelationships between them. Use Case diagrams show UseCases with DomainElements ::

Actors :: Actors, also with appropriate relationships between them. These diagrams do not show
the details of individual elements. These details can be shown using diagrams or text as defined
in the RequirementRepresentations part.

Requirements can be also logically grouped into larger containers - RequirementPackages.
These containers can be shown on Package Diagrams as derived from UML. Containment
of Requirements in RequirementPackages can be shown in Project Trees. These trees show
containment hierarchies of RequirementsSpecifications with RequirementsPackages and Re-

quirements.

11.2 Requirements specifications

11.2.1 Overview

This package describes the general structure of requirements specifications. This structure is
similar to the structure of Models in UML. So, by analogy, we have the RequirementsSpecifi-

cation class that defines the top level element holding a complete specification of requirements
for a specific system. Every such specification has to have a DomainElements :: DomainSpec-

ification and can be divided into many RequirementsPackages. RequirementsPackages can be
nested and contain all types of Requirements (including UseCases).

Requirements are presented on Requirements Diagrams as simple rectangle icons with their
‘name’, ‘ID’ and type appropriately expressed. This notation is modified for UseCases by sub-
stituting rectangles with ovals (for consistency with UML) on Use Case Diagrams. Require-

mentsSpecifications and RequirementsPackages can be presented on Package Diagrams that
have their syntax derived from UML Package Diagrams. Requirements and UseCases can be
placed in Project Trees under appropriate Packages and a RequirementSpecification. These
trees are presented as any browser tree with appropriate small icons expressing all the above
elements.

11.2.2 Abstract syntax and semantics

Abstract syntax for the RequirementsSpecifications package is described in Figures 11.4 and
11.5.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 67

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RequirementsSpecification
RequirementsPackage

RepresentableElement

Requirement

ID: String

DomainElements::

DomainSpecification

Package

Elements::

RepresentableElementsPackage

«invariant»

{RequirementsSpecification

cannot contain

nestedPackages}

«invariant»

{DomainSpecification

cannot contain

nestedPackages}

1

domainSpecification

1

requirementsPackages

*

{redefines elements}
0..1

nestedPackage

*

{redefines

nestedPackage}

0..1

requirements

*

{redefines elements}

nestedPackage *

{redefines nestedPackage}

0..1

Figure 11.4: Requirements specifications

Requirement

Semantics. Requirement is understood as a placeholder for one or more RequirementRepre-

sentations :: RequirementRepresentations. It is treated as a concise way to symbolise this
representation. Requirement is very general and it can express every kind of requirement (func-
tional requirements, constraint requirements, etc.). To express a requirement of a concrete type
(functional requirement on system or composite, constraint requirement on system or process,
use case) the RSL defines appropriate specialisations of Requirement described below.
Abstract syntax. Requirement is a kind of Elements :: RepresentableElement. Requirement has
derived the ‘name’ property. As a ‘name’, there can be used any concrete subtype of Elements ::

HyperlinkedSentence. Requirement is detailed with one or more ‘representations’ in the form of
RequirementRepresentations :: RequirementRepresentation. Requirements can be related with
other Requirements through RequirementRelationships :: RequirementRelationships. Require-

ments can be grouped into RequirementsSpecifications :: RequirementsPackages. Requirement

is a superclass for meta-classes representing requirements of a specific type.

ConstraintOnProcess

Semantics. ConstraintOnProcess is a type of Requirement. It is used to express constraint
requirements on process – i.e. requirements that constrain different development process related

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 68

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RepresentableElement

Requirement

ID: String

UseCaseConstraintOnProcess ConstraintOnSystem

FunctionalRequirementOnComposite FunctionalRequirementOnSystem

BehavioredClassifier

UML:UseCases::

UseCase

Figure 11.5: Requirement types

decisions.
Abstract syntax. ConstraintOnProcess is a specialisation of Requirement. It derives whole
abstract syntax from its superclass.

ConstraintOnSystem

Semantics. ConstraintOnSystem is a type of Requirement. It is used to express constraint
requirements on system to be built – i.e. requirements that constrain the functionality of the
system to be built.
Abstract syntax. ConstraintOnSystem is a specialisation of Requirement. It derives whole
abstract syntax from its superclass.

FunctionalRequirementOnComposite

Semantics. FunctionalRequirementOnComposite is a type of Requirement. It is used to express
functional requirements that are supposed to be fulfilled by the system composed of system to
be built and its actors.
Abstract syntax. FunctionalRequirementOnComposite is a specialisation of Requirement. It
derives whole abstract syntax from its superclass.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 69

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

FunctionalRequirementOnSystem

Semantics. FunctionalRequirementOnSystem is a type of Requirement. It is used to express
functional requirements that are supposed to be fulfilled by the system that is being specified.
Abstract syntax. FunctionalRequirementOnSystem is a specialisation of Requirement. It de-
rives whole abstract syntax from its superclass.

UseCase

Semantics. UseCase has the same meaning as described in the UML Superstructure: “A use
case is the specification of a set of actions performed by a system, which yields an observable
result that is, typically, of value for one or more actors or other stakeholders of the system.”
([Obj05b]) This definition is analogous to one specified in section 4.2. In accordance with the
classification in Chapter 4, this semantics is extended by stating that UseCase is a special kind
of Requirement. It is also a placeholder for its Representations which might be of various kinds,
as specified in the ConstrainedLanguageRepresentations, ActivityRepresentations and Interac-

tionRepresentations packages. These representations describe the behaviour (set of actions) for
the UseCase.
Abstract syntax. UseCase is a specialisation of UML :: UseCases :: UseCase and Requirement.
Instances of UseCase can be related with each other by UseCaseRelationships :: InvocationRe-

lationships. This relationship redefines UML’s extend and include. UseCase can contain several
UseCaseRelationship :: Participation relationships and can be pointed to by UseCaseRelation-

ship :: Usage relationships. These relationships relate it with Actors :: Actors. It can con-
tain InteractionRepresentations :: InteractionScenarios, ConstrainedLanguageRepresentations

:: ConstrainedLanguageScenarios and an ActivityRepresentations :: ActivityScenario as its ‘rep-

resentation’s. UseCase can be associated with one or more UIElements :: UIElements as their
‘triggeredUseCase’.

RequirementsSpecification

Semantics. RequirementsSpecification is a type of Elements :: RepresentableElementsPack-

age. It can contain all elements of a requirements specification for a given project – Require-

ments grouped in appropriate packages and elements which form specification of the system
domain. RequirementsSpecification is a root package for the whole requirements specification.
It can be treated as equivalent of Model from UML.
Abstract syntax. RequirementsSpecification is a specialisation of Elements :: RepresentableEle-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 70

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

mentsPackage. It redefines ‘elements’ from the superclass with RequirementsPackages. It is
also associated with one DomainElements :: DomainSpecification.

RequirementsPackage

Semantics. RequirementsPackage is a type of Elements :: RepresentableElementsPackage. It
can contain Requirements and their specialisations as well as nested RequirementsPackages.
Abstract syntax. RequirementsPackage is a specialisation of Elements :: RepresentableEle-

mentsPackage. It redefines ‘elements’ from the superclass. Owned members for the Require-

mentsPackage must be Requirements. It also redefines ‘nestedPackage’, which can only be an-
other RequirementsPackage. Every RequirementsPackage can be part of a RequirementsSpec-

ification.

11.2.3 Concrete syntax and examples

Requirement. It is depicted as a rectangle with two additional vertical lines on its left. Require-

ment’s ‘ID’ is written in the top left corner of the box. Requirement’s ‘name’ is written inside the
rectangle centred horizontally and vertically. See Figure 11.6 for illustration of this, and Figure
11.14 for an example of usage of these icons in a Requirements Diagram.

Optionally, Requirement can have its type shown in the form of text indicating this type sur-
rounded by double angle brackets (“« »”, an “angle quote”).

Sign-up for exercises

R001

Figure 11.6: Requirement example

ConstraintOnProcess. Concrete syntax is the same as for Requirement except that it has
mandatory requirement type indicator – shown as a text surrounded by double angle brackets:
“«constraint on process»”.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 71

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

ConstraintOnSystem. Concrete syntax is the same as for Requirement except that it has manda-
tory requirement type indicator – shown as a text surrounded by double angle brackets: “«con-
straint on system»”.

FunctionalRequirementOnComposite. Concrete syntax is the same as for Requirement except
that it has mandatory requirement type indicator – shown as a text surrounded by double angle
brackets: “«functional on composite»”.

FunctionalRequirementOnSystem. Concrete syntax is the same as for Requirement except
that it has mandatory requirement type indicator – shown as a text surrounded by double angle
brackets: “«functional on system»”.

UseCase. Concrete syntax is an extension of concrete syntax for UML :: UseCases :: UseCase,
as described in UML Superstructure ([Obj05b], paragraph 16.3.6, page 579). “A use case is
shown as an ellipse, either containing the name of the use case or with the name of the use
case placed below the ellipse.” As for any Requirement, every UseCase icon can present the
‘ID’ (see concrete syntax for Requirement). Additionally, UseCase can be presented with a
minimised icon on a tree structure. See Figures 11.7, 11.8 for illustration of the above on a Use
Case Diagram and Project Tree structure, respectively. See also 11.16 for example of usage of
UseCases on Use Case Diagrams.

Sign up for

exercises

Figure 11.7: UseCase example

RequirementsPackage. Concrete syntax is almost the same as for UML :: Kernel :: Package,
described in UML Superstructure (in [Obj05b], paragraph 7.3.37, page 104): “A package is
shown as a large rectangle with a small rectangle (a ’tab’) attached to the left side of the top
of the large rectangle. The members of the package may be shown within the large rectangle.
Members may also be shown by branching lines to member elements, drawn outside the pack-
age. A plus sign (+) within a circle is drawn at the end attached to the namespace (package).
If the members of the package are not shown within the large rectangle, then the name of the
package should be placed within the large rectangle. If the members of the package are shown
within the large rectangle, then the name of the package should be placed within the tab. In ad-
dition to the above Kernel :: Package description, RequirementsPackage has two vertical lines
to the left of the “rectangle with a tab” icon. It can also be presented in a tree structure. See
Figures 11.9, 11.10 for examples of concrete syntax in a Package Diagram and in a Project Tree
structure, respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 72

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Figure 11.8: UseCase tree example

RequirementsSpecification. Concrete syntax is almost the same as for UML :: Kernel :: Pack-

age, described in UML Superstructure (in [Obj05b]); for this description see concrete syntax for
RequirementsPackage. In addition to concrete syntax for plain Packages, RequirementsSpeci-

fication has one thick vertical line on its left. It can also be presented in a Project Tree structure
with a minimised icon. See Figures 11.11, 11.12 for illustration of RequirementSpecification

icon on a Package Diagram and in a Project Tree.

Requirements

Figure 11.9: RequirementsPackage example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 73

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Figure 11.10: RequirementsPackage tree example

Requirements
 specification

Figure 11.11: RequirementsSpecification example

11.3 Requirement relationships

11.3.1 Overview

This package describes relationships of different types between Requirements. Standard re-
lationships, as specified in the conceptual model are defined here. Moreover, a relationship
between a Requirement and Notions found in the domain specification are made available.

In general, relationships between Requirements are presented on Requirements Diagrams as
dashed arrows with appropriate relationship type expressed through its name in angle brackets.

11.3.2 Abstract syntax and semantics

Abstract syntax for the RequirementRelationships package is described in Figure 11.13.

Figure 11.12: RequirementsSpecification tree example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 74

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RequirementsSpecifications::
Requirement

ID: String

Relationship
UML:Kernel::

DirectedRelationship

RequirementRelationship

«invariant»
{source of Requirem entRelationship should be
d i fferent than i t's target (Requirem ent cannot
be associated wi th i tse l f)}

Elements::
RepresentableElementRelationship

Fulfills Operationalises Constrains MakesPossible

Element
Elements::

RepresentableElement

nam e: String

RequirementVocabularyRelationship

DomainElement
Package

Notions::Notion

*

1
{redefines source}

*
1
{redefines
source}

* 1
{redefines target}

source

{redefines source}

target

{redefines target}

*

1
{redefines
target}

Figure 11.13: Requirement relationships

RequirementRelationship

Semantics. RequirementRelationship denotes a relationship between two requirements. The
type of a relationship (e.g. similarity, conflict) is specified by a stereotype defined in an appro-
priate Profile.
Abstract syntax. RequirementRelationship is a kind of Elements :: RepresentableElementRe-

lationship. RequirementRelationship is a component of RequirementsSpecifications :: Require-

ment (source of the relationship) and it points to another RequirementsSpecifications :: Require-

ment (target of the relationship). Source of the relationship should be different than its target –
RequirementsSpecifications :: Requirement cannot be associated with itself. RequirementRela-

tionship is the base meta-class for Constrains, Fulfills, MakesPossible and Operationalizes which
precisely define types of relationships between Requirements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 75

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Constrains

Semantics. Constrains is a type of RequirementRelationship. The relationship of this type
denotes that one requirement (Constraint Requirement) impose a constraint on another require-
ment (Functional Requirement).
Abstract syntax. Constrains is a specialisation of RequirementRelationship. It derives whole
abstract syntax from its superclass.

Fulfills

Semantics. Fulfills is a type of RequirementRelationship. The relationship of this type denotes
that one requirement (Envisioned Scenario) is responsible for fulfillment of the responsibility
captured in another requirement (Functional Requirement on Composite System).
Abstract syntax. Fulfills is a specialisation of RequirementRelationship. It derives whole ab-
stract syntax from its superclass.

MakesPossible

Semantics.MakesPossible is a type of RequirementRelationship. The relationship of this type
denotes that one requirement (Functional Requirement on System to be built) is made feasible,
i.e., partially or fully fulfilled, by another requirement (Envisioned Scenario).
Abstract syntax. MakesPossible is a specialisation of RequirementRelationship. It derives
whole abstract syntax from its superclass.

Operationalizes

Semantics.Operationalizes is a type of RequirementRelationship. The relationship of this type
denotes that one requirement (Functional Requirement) represents functionality required to
make the responsibility captured in another requirement (Constraint Requirement) possible.
Abstract syntax. Operationalizes is a specialisation of RequirementRelationship. It derives
whole abstract syntax from its superclass.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 76

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

RequirementVocabularyRelationship

Semantics. RequirementVocabularyRelationship denotes a relationship between a requirement
and a notion from the domain specification. This means that related notion is applicable to the
realisation of the requirement.
Abstract syntax. RequirementVocabularyRelationship is a kind of Elements :: RepresentableEle-

mentRelationship. It redefines source with RequirementsSpecifications :: Requirement and tar-

get with Notions :: Notion. RequirementVocabularyRelationship can have exactly one source
RequirementsSpecifications :: Requirement and one target Notions :: Notion.

11.3.3 Concrete syntax and examples

RequirementRelationship is drawn as a dashed line connecting two RequirementsSpecifica-

tions :: Requirements. An open arrowhead may be drawn on the end of the line indicating the
target of the relationship. The line is labeled with an appropriate stereotype determining the
type of a relationship. The line may consist of many orthogonal or oblique segments.

«operational ises»

«m akes possib le» «m akes possib le»

«constrains»

R001 R005

R002 R003 R004

«functional on system»
 Requirement 1

«constraint on system»
 Requirement 5

«functional on system»
 Requirement 2

«functional on system»
 Requirement 3

«constraint on system»
 Requirement 4

Figure 11.14: Requirements and requirement relationships concrete syntax example

Constrains. Concrete syntax is the same as for RequirementRelationship. It is labeled with
appropriate text indicating the type of the relationship surrounded by double angle brackets:
“«constrains»”.

Fulfills. Concrete syntax is the same as for RequirementRelationship. It is labeled with appro-
priate text indicating the type of the relationship surrounded by double angle brackets: “«ful-
fills»”.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 77

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

MakesPossible. Concrete syntax is the same as for RequirementRelationship. It is labeled with
appropriate text indicating the type of the relationship surrounded by double angle brackets:
“«makes possible»”.

Operationalizes. Concrete syntax is the same as for RequirementRelationship. It is labeled with
appropriate text indicating the type of the relationship surrounded by double angle brackets:
“«operationalizes»”.

RequirementVocabularyRelationship is drawn as a dashed line connecting a RequirementsSpec-

ifications :: Requirement and a Notions :: Notion. An open arrowhead is drawn on the end of the
line indicating Notions :: Notion – the target of the relationship. The line may consist of many
orthogonal or oblique segments.

11.4 Use case relationships

11.4.1 Overview

This package describes relations between UseCases and Classifiers (mainly Actors) or between
two UseCases. The UseCaseRelationships package redefines parts of the UseCases package
from the current UML specification [Obj05b].

Relationships between UseCases are generally reduced to «invoke» relationships denoted as
dashed arrows. Generalisations between UseCases are also possible, as derived from UML.
Actors can be related to UseCases with appropriate solid arrows that denote usage and partici-
pation of an actor in a use case.

11.4.2 Abstract syntax and semantics

Abstract syntax for the UseCaseRelationships package is described in Figure 11.15.

InvocationRelationship

Semantics. InvocationRelationship substitutes «include» and «extend» relationships from UML
([Obj05b], p.570) and unifies their disadvantageous semantics ([Sim99], [MOW01]). Invoca-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 78

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Requirement

RequirementsSpecifications::

UseCase

Participation

InvocationRelationship

Usage

ControlSentence

ScenarioSentences::

InvocationSentence

type: InclusionType

DomainElement

Actors::Actor

RedefinableElement

UML:Kernel::Classifier

{'invokedSentence' must be

contained in a

RequirementRepresentation of

the 'invoked' UseCase}

BehavioredClassifier

UML:UseCases::

UseCase

DirectedRelationship

Elements::

RepresentableElementRelationship

RequirementRelationships::

RequirementRelationship

observableBehavior 0..*

owner 1

0..*

useCase
1

{redefines source}

1

actor

1

{redefines

target}

*

invoked

1

{redefines target}

invoke

*

{redefines include,

redefines extend}

invokingCase

1

{redefines source}

0..*

invokedSentence
1

1

useCase

1

{redefines

target}

0..*

actor

1

{redefines

source}

Figure 11.15: Use case relationships

tionRelationship denotes that another use case (actually, one of its scenarios) can be invoked
from within currently performed use case. After performing one of the final actions in the
invoked use case, the flow of control returns to the invoking use case right after the point of in-
vocation to perform the remaining part of the base use case. There are two types of invocation:
a use case can be invoked conditionally – only when requested by an actor, or unconditionally
– every time the appropriate scenario of the base use case is performed. The type of the invo-
cation, the name of a use case to be invoked and the exact point of invocation in the invoking
use case scenario is defined by a special kind of scenario sentence (see ScenarioSentences ::

InvocationSentences in Chapter 13.4).
Abstract syntax. InvocationRelationship is a kind of RequirementRelationships :: Requiremen-

tRelationship. It redefines source and target elements of its superclass with RequirementsSpec-

ifications :: UseCase. It is a part of an ‘invoking’ RequirementSpecifications :: UseCase pointing
to an ‘invoked’ UseCase. It also points to an ScenarioSentences :: InvocationSentence, which

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 79

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

must be contained in a RequirementRepresentations :: RequirementRepresentation of the ‘in-

voked’ UseCase.

Usage

Semantics. Usage indicates possibility for an Actors :: Actor to initiate a particular UseCase

performance directly as a primary actor (the one that expects to reach the use case’s goal).
Abstract syntax. Usage is a kind of RequirementRelationships :: RequirementRelationship. It
is a component of an Actor and points to a RequirementSpecifications :: UseCase.

Participation

Semantics. Participation indicates possibility for an Actor to participate as a secondary actor in
the execution of a particular UseCase.
Abstract syntax. Participation is a kind of RequirementRelationships :: RequirementRelation-

ship. It is a component of a RequirementSpecifications :: UseCase and points to an Actor.

11.4.3 Concrete syntax and examples

InvocationRelationship. It can be shown similarly to a UML Dependency relationship between
RequirementSpecifications :: UseCases with an «invoke» stereotype and an open arrowhead
denoting navigability on the end of the ‘invoked’ RequirementSpecifications :: UseCase (see
Figure 11.16).

Usage. It’s concrete syntax is a solid line between an Actor and a RequirementSpecifications ::

UseCase and an arrowhead on the side of the UseCase (see Figure 11.16). This arrow can be
appended with a «use» UML-like stereotype.

Participation’s concrete syntax is a solid line between a RequirementSpecifications :: UseCase

and an Actors :: Actor and an arrowhead on the side of the Actor (see Figure 11.16). This arrow
can be appended with a «participate» UML-like stereotype.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 80

Requirements Specification Language Definition – D2.4.1
Requirements

ver. 1.00
28.02.2007

Actor

Use Case 1 Use Case 2

Use Case 3

external system

 Invocation Relationship

Participation

Usage

«use»

«participate»

«invoke»

«use»

Figure 11.16: Use case relationships concrete syntax example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 81

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Chapter 12

Requirement representations

12.1 Overview

In the RequirementRepresentations part we describe how our language defines requirement
representations and present differences between various requirement representations. As stated
in Part I, requirements can have descriptive representations (natural or constrained language) or
schematic representations (model-based). Language users will typically use elements from this
part to describe the contents of individual requirements using the notations chosen from those
available in the language. Requirement representations are tightly bound to the appropriate
requirements they represent. Particular representation depends highly on the requirement type,
as specified in the Requirements part.

The specification in this part contains five packages, as shown in Figures 12.1 and 12.2 (marked
in blue on colour print-outs, excluding RequirementSpecifications belonging to the previous
part).

• The RequirementRepresentations package contains all the general constructs needed to
polymorphically represent differing requirement representations. It «import»s from the
RequirementsSpecifications package to relate representations with appropriate require-
ments defined there. It also «import»s the Elements package, for RequirementRepresen-

tation is a subtype of ElementRepresentation. As such the RequirementRepresentations

package gives access to the RequirementsSpecifications package. The RequirementRep-

resentations package describes a general way of representing Requirements: every Re-

quirementRepresentation is a component for its Requirement.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 82

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

NaturalLanguageRepresentations ConstrainedLanguageRepresentations

RequirementRepresentationsElements

RepresentationSentences SVOSentences ScenarioSentences

RequirementsSpecifications

«import»

«import»«import»

«import»

« import»

«import»

«import»

«import»

«import»

«import»«import»

Figure 12.1: Overview of packages inside the RequirementRepresentations part of RSL
(generic representations, natural language and constrained language)

• The NaturalLanguageRepresentations package contains all the constructs needed to ex-
press requirements in natural language. It «import»s from the RequirementRepresen-

tations package. In this manner, natural language representations are specialisations of
classes in RequirementRepresentations. As such the NaturalLanguageRepresentations

package gives access to the RequirementRepresentations package and the Requirements-

Specifications package for any variant of natural language requirement representation
being utilised within a requirements specification. This package also «import»s from
RepresentationSentences where natural language hypertext sentences (which constitute
natural language representations) are defined.

• The ConstrainedLanguageRepresentations package contains all the constructs needed to
express requirements in constrained language. It «import»s from the RequirementRepre-

sentations package. In this manner constrained language representations can be specified
as being specialisations of elements in RequirementRepresentations. As such the Con-

strainedLanguageRepresentations package gives access to the RequirementRepresenta-

tions package and the RequirementsSpecifications package for any variant of constrained
language requirement representation being utilised within a requirements specification.
The ConstrainedLanguageRepresentations package also «import»s from ScenarioSen-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 83

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

ActivityRepresentations

UML:BasicActivities UML:Interactions

InteractionRepresentations

RequirementRepresentations Elements

InteractionSentencesActivitySentences InteractionSentenceConstructs

«import»

« import» « import»

« im port»

« im port»

« import»« im port» « im port»

« import»

« import»

« import»

« im port»

Figure 12.2: Overview of packages inside the RequirementRepresentations part of RSL (activ-
ities and interactions)

tences and SVOSentences packages where the sentences used in this representation are
defined.

• The ActivityRepresentations package contains all the constructs needed to express re-
quirements with diagrams that specialise from UML activity diagrams. It «import»s from
the RequirementRepresentations package and the UML :: BasicActivities package. In
this manner activity requirement representations are specialisations of UML Activity and
elements from RequirementRepresentations. As such, the ActivityRepresentations pack-
age gives access to the RequirementRepresentations package, the RequirementsSpecifi-

cations package, and the BasicActivities package for any variant of activity diagram based
requirement representation being utilised within a requirements specification. This pack-
age also «import»s from the ActivitySentences package which contains special kind of
sentences that can be used in activity representations.

• The InteractionRepresentations package contains all the constructs needed to represent
UML 2.0 interaction diagram based requirement representations. It «import»s from the
RequirementRepresentations package and the UML :: Interactions package. In this man-
ner interaction requirement representations are specialisations of UML Interaction and el-
ements from the RequirementRepresentations package. As such the InteractionRepresen-

tations package gives access to the RequirementRepresentations package, the Require-

mentsSpecifications package, and the Interactions package for any variant of interaction
diagram based requirement representation being utilised within a requirements specifica-
tion. This package also «import»s from the InteractionSentences package and Interac-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 84

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

tionSentenceConstructs which contain special kind of sentences and other constructs that
can be used in interaction representations.

Activity

ModelBasedRequirementRepresentation

ActivityRepresentations::ActivityScenario

Interaction

ModelBasedRequirementRepresentation

InteractionRepresentations::

InteractionScenario

ConstrainedLanguageRepresentation

ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

DescriptiveRequirementRepresentation

NaturalLanguageRepresentations::

NaturalLanguageHypertext

ConstrainedLanguageRepresentation

ConstrainedLanguageRepresentations::

ConstrainedLanguageStatement

ElementRepresentation

RequirementRepresentations::

RequirementRepresentation

Requirement Representations Model::

Activity Diagram Requirement

Representation

Descriptive Requirement Representation

Requirement Representations Model::

Natural Language Requirement

Representation

Requirement Representations Model::

Constrained Language Scenario Representation

Descriptive Requirement Representation

Requirement Representations Model::

Constrained Language Requirement

Representation

Requirement Representations Model::

Sequence Diagram Requirement

Representation

Requirement Representations Model::

Requirement Representation

Model-Based Requirement Representation

Requirement Representations Model::

UML-Based Requirement Representation

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

«mappedFrom»

Figure 12.3: Main classes in the RequirementRepresentations part with mappings to the con-
ceptual model

Individual classes in the above packages can be mapped from the conceptual model described
in Chapter 5. These mappings are shown in Figure 12.3. The most general class in this part is
the RequirementRepresentation class. This class allows for expressing details of requirement
representations. Its source is the RequirementsModel :: RequirementRepresentation class from
the conceptual model. Different specialisations of RequirementRepresentation also trace from
relevant classes of the conceptual model, and particularly, the representation hierarchy as shown
in Figure 5.1.

Representations include diagrams as well as text. Diagrams include Activity Diagrams where
ActivityRepresentations can be shown and Sequence Diagrams where InteractionRepresenta-

tions can be shown. Concrete syntax of these diagrams derives from the syntax of appropri-
ate UML diagrams. Concrete syntax for textual representations is composed of “source” and

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 85

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

“view” syntax. The first variant allows to represent various elements of representation in purely
textual way. The second variant uses also font variations (underlining, bolding, etc.).

12.2 Requirement representations

12.2.1 Overview

The RequirementRepresentations package contains the most general and abstract constructs of
the representation language. On this structure, all the concrete representations are built. Gener-
ally, every RequirementRepresentation is part of an appropriate RequirementsSpecifications ::

Requirement (see figure 12.4).

RequirementsSpecifications::

Requirement

ID: String

Elements::HyperlinkedSentence

RequirementRepresentation

Elements::ElementRepresentation

Element

Elements::

RepresentableElement

name: String

representations

1..*
{redefines representations}

sentences

1..*
{ordered}

0..1

name

1

0..1

representations

1..*

Figure 12.4: Requirement representation

Figure 12.5 shows a hierarchy of requirements representations that are allowed by the current
language.

As one possible variant, requirements can be presented in textual form (DescriptiveRequirement-

Representation). NaturalLanguageRepresentations allow requirements to be represented as
NaturalLanguageRepresentations :: NaturalLanguageHypertext. ConstrainedLanguageRepre-

sentations allow requirements to be represented as either a ConstrainedLanguageRepresen-

tations :: ConstrainedLanguageStatement or a ConstrainedLanguageRepresentations :: Con-

strainedLanguageScenario.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 86

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

RequirementRepresentation

ConstrainedLanguageRepresentations::

ConstrainedLanguageRepresentation

ModelBasedRequirementRepresentation

Activity

ActivityRepresentations::

ActivityScenario

Interaction

InteractionRepresentations::

InteractionScenario

ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

NaturalLanguageRepresentations::

NaturalLanguageHypertext

ConstrainedLanguageRepresentations::

ConstrainedLanguageStatement

Elements::

ElementRepresentation

DescriptiveRequirementRepresentation

Figure 12.5: Requirement representations hierarchy

As a cecond possibility, requirements can also be presented in model-based form (ModelBased-

RequirementRepresentation). ActivityRepresentations allow a requirement to be represented as
an ActivityRepresentations :: ActivityScenario. InteractionRepresentations allow a requirement
to be represented as an InteractionRepresentations :: InteractionScenario.

Furthermore, RequirementRepresentations introduces several meta-associations defining the
possible representations for RequirementsSpecifications :: UseCases (see figure 12.6).

RequirementsSpecifications :: UseCase meta-class is a kind of RequirementsSpecifications ::

Requirement and also inherits from UML’s UseCase :: UseCase. It’s content can be expressed
through three different perspectives:

• ConstrainedLanguageRepresentations :: ConstrainedLanguageScenario – textual repre-
sentation of UseCase’s scenarios

• ActivityRepresentations :: ActivityScenario – adds graphical representation of control flow
between different scenarios of a single UseCase

• InteractionRepresentations :: InteractionScenario – emphasises the aspect of interaction
between a system and its users by showing a sequence of messages sent between them

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 87

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

UseCase

RequirementsSpecifications::

UseCase

Activity

ModelBasedRequirementRepresentation

ActivityRepresentations::

ActivityScenario

ConstrainedLanguageRepresentation

ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

RepresentableElement

RequirementsSpecifications::

Requirement

ID: String

Interaction

ModelBasedRequirementRepresentation

InteractionRepresentations::

InteractionScenario

{ScenarioSentences contained in these
scenarios are the same (they have the same
subjects and predicates in the same order).}

activity
0..1
{subsets representations} scenarios

0..*
{subsets representations} interaction

0..*
{subsets representations}

Figure 12.6: UseCase representations

It has to be stressed that the above three representations for the same UseCase should contain
the same information. These representations show this information in three different aspects.

12.2.2 Abstract syntax and semantics

RequirementRepresentation

Semantics. Defines the content of a RequirementsSpecifications :: Requirement which should,
according to IEEE definition, generally constitute a condition or capability needed by a user to
solve a problem or achieve an objective. It also contains a condition or capability that must be
met or possessed by a system or system component to satisfy a contract, standard, specification,
or other formally imposed documents. This content depends on the concrete representation type
that specialises RequirementRepresentation.
Abstract syntax. It is part of every RequirementsSpecifications :: Requirement and forms one of
its ‘representations’. It consists of one or more ‘sentences’ in the form of HyperlinkedSentences
derived from ElementRepresentations :: ElementRepresentation. RequirementRepresentation

is abstract and has several concrete specialisations.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 88

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

DescriptiveRequirementRepresentation

Semantics. This meta-class allows for textual representation of requirements in the form of free
or constrained text.
Abstract syntax. It is a kind of RequirementRepresentations :: RequirementRepresentation.
DescriptiveRequirementRepresentation is an abstract class.

ModelBasedRequirementRepresentation

Semantics. This meta-class allows for representing requirements in schematic form.
Abstract syntax. It is a kind of RequirementRepresentations :: RequirementRepresentation.
ModelBasedRequirementRepresentation is an abstract class.

Meta-associations between UseCase and its representations

Apart from the above meta-classes, this package defines several meta-associations that define
relationship between UseCases and their representations.

Appropriate abstract syntax is presented in Figure 12.6. UseCase is a special kind of Re-

quirement that can have its content represented by three RequirementRepresentations. Two of
them are ModelBasedRequirementRepresentations and one of them is a DescriptiveRequire-

mentRepresentation. All the three representations of the UseCase content (ConstrainedLan-

guageRepresentations :: ConstrainedLanguageScenario, ActivityRepresentations :: ActivitySce-

nario and InteractionRepresentations :: InteractionScenario) are described in detail in sections
12.4, 12.5 and 12.6, respectively.

12.2.3 Concrete syntax and examples

RequirementRepresentation. As an abstract meta-class, this meta-model element has no con-
crete syntax. It can be formulated in any of representations of meta-classes that derive from
it.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 89

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

DescriptiveRequirementRepresentation. As an abstract meta-class, this meta-model element
has no concrete syntax. However any of meta-classes that specialise from it may have capital
letter “D” in their concrete syntaxes, indicating their descriptive character.

ModelBasedRequirementRepresentation. As an abstract meta-class, this meta-model element
has no concrete syntax. However any of meta-classes that specialise from it may have capital
letter “M” in their concrete syntaxes, indicating their model-based character.

Figure 12.7: The same scenario in three different representations: ConstrainedLanguageSce-
nario, ActivityScenario and InteractionScenario

UseCase representations. Figure 12.7 shows three different representations of content of a
UseCase. This diagram compares alternative notations for the contents of UseCases. Details of
concrete syntax for the three alternative notations is given in sections 12.4, 12.5 and 12.6.

12.3 Natural language representations

12.3.1 Overview

The NaturalLanguageRepresentations package describes ways to represent requirements in
plain natural language without any formal structure. Sentences in natural language may contain

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 90

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Hyperlinks to build a coherent connection to the domain knowledge contained in the domain
specification.

12.3.2 Abstract syntax and semantics

The diagram in Figure 12.8 shows the abstract syntax of the NaturalLanguageRepresentations

package. The following subsections will describe relationships between the classes in this dia-
gram.

RepresentableElement
RequirementsSpecifications::

Requirement

ID: String

NaturalLanguageHypertext

Hyperl inkedSentence
RepresentationSentences::

NaturalLanguageHypertextSentence

sentenceT ext: String

RequirementRepresentation
RequirementRepresentations::

DescriptiveRequirementRepresentation

representationT ext

1
{subsets
representations}

textualSentences
1..*
{redefines sentences}

Figure 12.8: Natural language representations

NaturalLanguageHypertext

Semantics. A NaturalLanguageHypertext is the simplest possible representation of a single re-
quirement. The text is written in natural language.
Abstract syntax. A NaturalLanguageHypertext is derived from RequirementRepresentations ::

DescriptiveRequirementRepresentation. When it represents a Requirement, its role is ‘repre-

sentationText’. The text consists of one or more NaturalLanguageHypertextSentences.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 91

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Source:

Every [[customer]] may [[sign up for exercises]] at the [[terminals]] or
online over [[the Internet]]. After the registration, the [[customer]]
must [[recieve sign-up confirmation]].

View:

Every customer may sign up for exercises at the terminals or online over the Internet. After the
registration, the customer must recieve sign-up confirmation.

Figure 12.9: NaturalLanguageHypertext example

12.3.3 Concrete syntax and examples

NaturalLanguageHypertext. Figure 12.9 shows an example for the concrete syntax of Natu-

ralLanguageHypertext. The text is composed of several NaturalLanguageHypertextSentences
which contain zero or more hyperlinks. The upper sentence shown in the example is the syntax
as the requirements engineer will write it down, the lower sentence shows the presentation in
the requirements document.

12.4 Constrained language representations

12.4.1 Overview

The ConstrainedLanguageRepresentations package allows for representing requirements by
using constrained language, i.e. a subset of natural language whose sentences are limited to a
certain structure. Refer to Chapter 13 and specifically to section 14.7 for details on this structure.

12.4.2 Abstract syntax and semantics

Figure 12.10 shows the three classes contained in the package ConstrainedLanguageRepre-

sentations: ConstrainedLanguageRepresentation, ConstrainedLanguageStatement and Con-

strainedLanguageScenario.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 92

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

ConstrainedLanguageScenario

ScenarioSentences::

ScenarioSentence

seqNumber: int

ConstrainedLanguageRepresentation

ConstrainedLanguageStatement

RequirementRepresentation

RequirementRepresentations::

DescriptiveRequirementRepresentation

ConstrainedLanguageSentence

SVOSentences::

ConditionalSentence

scenarioSteps

1..*
{redefines sentences}

1..*

conditionalSentence

1..1
{redefines sentences}

1..1

Figure 12.10: Constrained language representations

ConstrainedLanguageRepresentation

Semantics. ConstrainedLanguageRepresentation constitutes the description of a requirement
by one or more sentences in a constrained language.
Abstract syntax. ConstrainedLanguageRepresentation is a kind of RequirementRepresenta-

tions :: DescriptiveRequirementRepresentation.

ConstrainedLanguageStatement

Semantics. This class represents a requirement by a single sentence in a constrained language.
This sentence may be a conditional sentence consisting of a conditional clause and a main clause
with a modal verb expressing the liability of the requirement. It is possible to omit the condition
part of the sentence, thus forming a simple sentence which only comprises a main clause. The
sentence may contain hyperlinks to phrases or terms in the vocabulary.
Abstract syntax. ConstrainedLanguageStatement is a kind of ConstrainedLanguageRepresen-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 93

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Source:

[[d:The n:Fitness Club]] a:should [[v:provide n:bracelets]].

c:If [[d:a n:customer]] [[v:signs up p:for d:a n:course]], [[d:the
n:system]] a:must [[v:bill d:this n:customer]].

View:

The : Fitness Club : should : provide : bracelets.

If : a : customer : signs up : for : a : course : , the : system : must : bill : this : customer.

Figure 12.11: Examples of ConstrainedLanguageStatements

tation. It is composed of exactly one single SVOSentences :: ConditionalSentence in the role
of ‘conditionalSentence’.

ConstrainedLanguageScenario

Semantics. ConstrainedLanguageScenario represents a requirement as a scenario and is part of
a use case. This scenario consists of a sequence of sentences in constrained language constitut-
ing its individual steps.
Abstract syntax. ConstrainedLanguageScenario is a kind of ConstrainedLanguageRepresen-

tation. It is composed of one or more ScenarioSentences :: ScenarioSentences taking the role
of ‘scenarioSteps’. ConstrainedLanguageScenario is part of a RequirementsSpecifications ::

UseCase.

12.4.3 Concrete syntax and examples

ConstrainedLanguageRepresentation. As an abstract meta-class, ConstrainedLanguageRep-

resentation does not have a concrete syntax. It can be formulated in any of the representations
of its subclasses.

ConstrainedLanguageStatement. Figure 12.11 shows two example of the concrete syntax of
a ConstrainedLanguageStatement. The Source part shows the statement as it is entered by the
requirements engineer. The words enclosed in double square brackets denote a hyperlink. The
View part below depicts the statement’s presentation in the requirements document. Hyperlinks
appear coloured and underlined. The preceding letter with the colon denotes the part of speech
(e.g. noun, verb). See section 14.7 for more details.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 94

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Source: View:

1. pre: [[Customer]] is not registered. 1. pre: Customer is not registered.
2. [[n:Customer]] [[v:submits n:personal
information]]. 2. Customer : submits : personal : information.

3. ==> cond: [[Receptionist]] is logged in. 3. →cond: Receptionist is logged in.
4. [[n:Receptionist]] [[v:registers n:customer]]. 4. Receptionist : registers : customer.
5. [[n:Receptionist]] [[v:verifies n:personal
information]]. 5. Receptionist : verifies : personal information.

6. [[n:Receptionist]] [[v:issues n:customer card]]. 6. Receptionist : issues : customer card.
7. [[n:Receptionist]] [[v:prints n:personal
information]]. 7. Receptionist : prints : personal information.

8. [[n:Receptionist]] [[v:gives n:customer card
p:to [[n:customer]]. 8. Receptionist : gives : customer card : to : customer.

9. post: [[Customer]] is registered. 9. post: Customer is registered.

Figure 12.12: Example of a ConstrainedLanguageScenario

ConstrainedLanguageScenario. An example for a ConstrainedLanguageScenario can be taken
from Figure 12.12. The left hand side, the Source side, displays the sequence of ScenarioSen-

tences as it is entered by the requirements engineer. The words enclosed in double square
brackets denote a hyperlink. On the right hand side, the result in the requirements document is
shown. Hyperlinks appear coloured and underlined. The preceding letter with the colon denotes
the part of speech (e.g. noun, verb). See section 14.7 for more details.

The above example also includes ScenarioSentences :: ControlSentences (see lines one and
nine) and ScenarioSentence :: ConditionSentence (line three). They are described in more
detail in section 13.4.

12.5 Activity representations

12.5.1 Overview

Activity representations package describes ActivityScenario as an alternative way of represent-
ing UseCase scenarios. Such representation emphasises flow of control between scenarios
within a UseCase in the form of a UML :: Activity.

12.5.2 Abstract syntax and semantics

Abstract syntax for this package is shown in 12.13.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 95

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Activ ityScenario

UML:
BasicActiv ities::

Activ ity

RequirementRepresentation
RequirementRepresentations::

ModelBasedRequirementRepresentation

Condi tionSentence
Contro lFlow

Activ itySentences::
Activ ityConditionSentence

Activi tyNode
ActivitySentences::

ActivityControlSentence

Activi tyNode
SVOScenarioSentence

Activ itySentences::
Activ itySVOScenarioSentence

activi tySentences
1..*
{redefines node;
redefines sentences}

activi tyContro lSentences

1..*
{subsets node; subsets

sentences}

activi tyCondi tionSentences

0..*
{subsets sentences,

subsets edge}

Figure 12.13: Activity representations

ActivityRepresentation

Semantics. An ActivityScenario is an alternative to ConstrainedLanguageScenario as a way of
representing a UseCase’s content. In this representation, UseCase scenarios are represented in
the form activities. Beside showing the sequence of ScenarioSentence (a scenario), it also rep-
resents in a graphical way the flow of control between different scenarios within one UseCase.
Abstract syntax. An ActivityScenario is a kind of RequirementsRepresentations :: ModelBase-
dRequirementRepresentation. It also specialises BasicActivities :: Activity out of the UML2.0
superstructure. ActivityScenario contains zero or more AcivityConditionSentences’s which
subsets ‘edge’ from Activity superclass ,one or more ActivityControlSentences which subset
‘node’ and one or more ActivitySVOScenarioSentence. These tree classes redefine and subset
sentences from the BasicRepresentations :: RequirementRepresentation superclass.

12.5.3 Concrete syntax and examples

ActivityScenario. Figure 12.14 shows an example of the concrete syntax of an ActivityScenario.
The notation for an activity is a combination of the notations of the nodes and edges it contains
(just like the notation of UML’s BasicActivities :: Activity). For more details please refer to
sections 13.5 and 13.6.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 96

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

«...

(System) shows
time schedule

(System) checks
availabilty of

exercices

«invoke/insert»
Choose exercises

type

(Customer) wants to
sign up for exercises

«...Fai lure

(Customer) cancels
sign up for exercices

«...Fai lure

(System) shows
error message dialog

«...Success

(System) signs up
customer for

exercices

(Customer) submits
sign-up for exercices

(System) shows
sign-up summary

dialog

«invoke/request»
Change location

(Customer) chooses
time from time

schedule
Shows tim e schedule
for defaul t location

[exercises
avai lable]

[exercices
unavai lable]

Figure 12.14: ActivityScenario example

12.6 Interaction representations

12.6.1 Overview

In addition to natural and constrained language descriptions and ActivityRepresentations, the
package InteractionRepresentations provides another way to model scenarios. The main meta-
class of this package is InteractionScenario, and allows for expressing scenarios in a notation
based on UML interaction diagrams.

12.6.2 Abstract syntax and semantics

The diagram in figure 12.15 illustrates the abstract syntax of the interaction diagrams that can
be used to describe requirements in the RSL. The following subsections explain the consecutive
classes displayed in this diagram.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 97

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

ModelBasedRequirementRepresentation

InteractionScenario

UML:Interactions::

Interaction

InteractionSentences::

InteractionScenarioSentence

Message

InteractionSentenceConstructs::

ScenarioMessage

Lifeline

InteractionSentenceConstructs::

InteractionRepresentationLifeline

sentences

0..*

{redefines

sentences} messages

*

{redefines

message}
lifeline

*

{redefines lifeline}

Figure 12.15: Interaction representation

InteractionScenario

Semantics. An InteractionScenario is one possible way to describe a scenario in a UseCase

that constitutes a requirement. It contains lifelines and messages between these lifelines. The
lifelines and messages build up InteractionScenarioSentences, where the lifelines constitute
subjects and objects of these sentences and the messages are predicates.
Abstract syntax. The base classes of InteractionScenario are the classes Interaction from the
UML :: Interactions package and ModelBasedRequirementRepresentation from Requiremen-

tRepresentations. While a general Interaction may contain Lifelines, an InteractionScenario may
contain only InteractionRepresentationLifelines. For detailed information about the different
messages and lifelines refer to sections 13.7 and 13.8.

12.6.3 Concrete syntax and examples

The Figures 12.16 and 12.17 describe the concrete syntax of the interaction diagram that can
be used to describe requirements in the RSL. The first Figure shows a sequence diagram as one
possible form of interaction diagram, the second Figure shows the other possible form – the
communication diagram.

InteractionScenario. Both diagrams shown in the Figures 12.16 and 12.17 show the same
InteractionScenario. Concrete syntax of specific elements of InteractionScenario are described
in sections 13.7 and 13.8.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 98

Requirements Specification Language Definition – D2.4.1
Requirement representations

ver. 1.00
28.02.2007

Terminal :

SystemComponent

Reception :

SystemComponent

Customer :Actor
Employee :Actor

asksForHelp

sendHelpRequest

showHelpRequest

acceptHelpRequest

sendRequestAccepted

informCustomer

Figure 12.16: Interaction representation with sequence diagram

Customer :Actor

Reception :

SystemElement

Terminal :

SystemElement

Employee :Actor

Terminal

authentication

StartStart

SuccessSuccess

1 : startScenario

6: acceptHelpRequest

{Employee available}

4: sendHelpRequest

8: informCustomer

5: showHelpRequest

7: sendRequestAccepted

9: endScenario

2: authenticate user

«invokes»

3: askForHelp

Figure 12.17: Interaction representation with communication diagram

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 99

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Chapter 13

Requirement representation sentences

13.1 Overview

This chapter covers the different types of sentences in constrained language which can be
used to represent requirements. Figures 13.1 and 13.2 give an overview of the seven pack-
ages (marked in yellow on colour print-outs) inside this part of the Requirements Specification
Language.

• The RepresentationSentences package contains classes representing single sentences in
natural and constrained language. The class representing a single sentence in constrained
language is abstract and it has its concrete specialisations in the other two packages de-
scribed below. RepresentationSentences packages «import»s from Kernel :: Elements in
order to reuse the syntax and semantics of more general elements.

• Inside the SVOSentences1 package, there exist constructs representing concrete types of
constrained language sentences and their breakdown into more fine-granular elements,
such as Subject or Predicate. Therefore SVOSentences package «import»s from Repre-

sentationSentences package, Phrases package and Terms package.

• The contents of the ScenarioSentences package which imports SVOSentences are used
for describing sentences of scenarios. They differ from “ordinary” SVOSentences by
containing a sequence number denoting their position inside the scenario. The subtypes
of a ScenarioSentence allow for describing a single scenario step as well as for expressing

1SVO stands for subject – verb – object. The identifier refers to the SVO(O) (subject – verb – object – (object))
grammar used for the constrained language.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 100

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

RepresentationSentences
SVOSentences

ScenarioSentences

Phrases

Terms

Elements

UML:BasicActiv ities

«import»

«import»

«import»

«import»

«import»

«import»
«import»

«import»«import»

«import»

Figure 13.1: Overview of packages inside the RequirementRepresentationSentences part of
RSL (representation, SVO and scenario sentences)

the control flow of a scenario’s execution. This package «import»s from packages UML ::

BasicActivities, RepresentationSentences and SVOSentences in order to specialise more
general elements form these packages and reuse their syntax and semantics.

• The ActivitySentences package contains meta-classes that defines scenario sentences for
requirement representations defined in ActivityRepresentations package. It «import»s
from ScenarioSentences package and UML :: BasicActivities package in order to spe-
cialise more general elements contained there.

• The ActivitySentenceConstructs package contain definitions of additional constructs. These
constructs are introduced to allow for representing scenario sentences in the form of ac-
tivity representations.

• The InteractionSentences package contains meta-classes that specialise scenario sen-
tences in order to use them in the representations defined in InteractionRepresentations.
To extend more general constructs, this package «import»s from ScenarioSentences

package.

• The InteractionSentenceConstructs package contains definitions of all constructs needed
to represent scenarios in the form of interaction diagrams. Thus, this package «import»s
from UML :: Interactions in order to reuse syntax and semantics of UML constructs. It

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 101

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

SVOSentences

ScenarioSentences

Activ itySentences

Activ itySentenceConstructs

InteractionSentencesUML:BasicActiv ities

InteractionSentenceConstructs
Activ ityRepresentations

UML:Interactions

Actors

SystemElements

RequirementsSpecifications

«im port» « im port»

« im port»

« im port»
« im port»

« im port»

« im port»

« im port»

« im port»
« im port»

« im port»

« im port»

« import»

« im port»

« im port»

« im port»

« im port»

Figure 13.2: Overview of packages inside the RequirementRepresentationSentences part of
RSL (activity and interaction sentences)

also «import»s from SystemElements and Actors packages to allow representing elements
defined there in the interaction diagrams.

13.2 Representation sentences

13.2.1 Overview

This section introduces sentences written in constrained language which may be used to de-
scribe requirements.

13.2.2 Abstract syntax and semantics

Figure 13.3 shows the abstract syntax of the RepresentationSentences package. Specific meta-
classes are described in the sections below.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 102

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Elements::

HyperlinkedSentence

NaturalLanguageHypertextSentence

sentenceText: String

ConstrainedLanguageSentence

Phrases::PhraseSVOSentences::SVOSentence

Elements::Hyperlink
hyperlinks

0..*

Figure 13.3: RepresentationSentences

NaturalLanguageHypertextSentence

Semantics. A NaturalLanguageHypertextSentence is used in a natural language description of
a requirement. Using wiki-like hyperlinks in the sentence, a connection to the domain knowl-
edge in the vocabulary is possible. If the sentence does not contain any Hyperlink, it is simply
free text.
Abstract syntax. A NaturalLanguageHypertextSentence is part of a NaturalLanguageHypertext,
its role is textualSentence. Since NaturalLanguageHypertextSentence is derived from Hyper-

linkedSentence, it may contain zero or more Hyperlinks. Each of those wiki-like hyperlinks
links to a Term or Phrase in the vocabulary.

ConstrainedLanguageSentence

Semantics. Constrained language is a subset of natural language which is structured by some
restrictions. Every type of constrained language sentence which is used in the RSL meta-model
is a specialisation of this class. A more detailed explanation of the different kinds of constrained
language sentences used in the RSL can be found in the sections below. In addition to its specific
structure, the ConstrainedLanguageSentence contains zero or more Elements :: Hyperlinks.
Abstract syntax. The ConstrainedLanguageSentence is an abstract base class for all other sen-
tences that use structured language. These are ConditionalSentence, SVOSentence (see section
13.3 for both) and Phrase, which are stored in the vocabulary. ConstrainedLanguageSentence

itself is derived from Elements :: HypertextSentence, so it may contain Elements :: Hyperlinks.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 103

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

13.2.3 Concrete syntax and examples

ConstrainedLanguageSentence. Since ConstrainedLanguageSentence is an abstract meta-
class, there is no concrete syntax.

Source:

Every [[customer]] may [[sign up for exercises]] at the [[terminals]] or
online over [[the Internet]]. After the registration, the [[customer]]
must [[receive sign-up confirmation]].

View:

Every customer may sign up for exercises at the terminals or online over the Internet. After the
registration, the customer must receive sign-up confirmation.

Figure 13.4: Example for NaturalLanguageHypertextSentence

NaturalLanguageHypertextSentence. Figure 13.4 shows an example for the concrete syntax of
NaturalLanguageHypertextSentence as a part of NaturalLanguageHypertext. NaturalLanguage-

HypertextSentence is natural language sentence, which contain zero or more hyperlinks. It can
be shown in source and view form. In source form, hyperlinks are marked with double square
brackets. In view form hyperlinks are shown as underlined, coloured text.

13.3 SVO sentences

13.3.1 Overview

This package describes the meta-model for three kinds of simple grammar sentences used for
expressing individual sentences inside requirement representations.

13.3.2 Abstract syntax and semantics

Figure 13.5 shows the part of the RSL meta-model which deals with the content of the SVOSen-

tences package.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 104

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ModalSVOSentence

Term

Terms::ModalVerb
Phrases::Phrase Phrases::VerbPhrase

PhraseHyperlink

Subject

PhraseHyperlink

Predicate

TermHyperlink

ModalVerb

SVOSentence

«invariant»
{Subject is associated with a
Phrase object only - not an object
of one of Phrase's subclasses.}

HyperlinkedSentence

RepresentationSentences::

ConstrainedLanguageSentence

«invariant»
{Subject can be associated
only with a Phrase contained
in Actor or SystemElement.}

ConditionalSentence

TermHyperlink

ConditionalConjunction

Term

Terms::ConditionalConjunction

«invariant»
{and}

«invariant»
{A conditionalClause must be a
SVOSentence object, not an
object of one of its subclasses.}

conditionalConjunction

0..1
{subsets
hyperlinks}

1..1

verbWithObjects

1
{subsets
hyperlinks}

1

subject

1
{subsets
hyperlinks}

1

*

1

1..1 mainClause 1..1

*

1

*

1

*

1

modalVerb

1
{subsets
hyperlinks}

0..1

conditionalClause

0..1

Figure 13.5: SVOSentences

SVOSentence

Semantics. Represents a sentence in a simple SVO(O) 2 grammar, where the VO(O) part is
represented by a Predicate pointing to a Phrases :: VerbPhrase.
Abstract syntax. SVOSentence is a kind of RepresentationSentences :: ConstrainedLanguage-

Sentence. It has one Subject and one Predicate (in the role of a ‘verbWithObjects’).

ConditionalSentence

Semantics. A ConditionalSentence is a sentence consisting of a condition part (‘conditional-

Clause’) beginning with ConditionalConjunction, e.g. “if”, and a ‘mainClause’ representing the
consequence if the condition proves to be true.
Abstract syntax. ConditionalSentence is a kind of RepresentationSentences :: Constrained-

LanguageSentence. It is composed of one mandatory ModalSVOSentence in the role of ‘main-

Clause’ and, optionally, of a ConditionalConjunction together with SVOSentence in the role of
‘conditionalClause’.

2Subject – Verb – Object – (Object)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 105

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ModalSVOSentence

Semantics. ModalSVOSentence is a SVOSentence extended by a ModalVerb allowing to ex-
press: 1) the priority of the described activity, 2) the modality of the described activity, 3) the
obligation or possibility of the subject to perform an action (described by a Predicate)
Abstract syntax. ModalSVOSentence is a kind of SVOSentence with an additional ModalVerb

(kind of Terms :: TermHyperlink) pointing to a Terms :: ModalVerb. It constitutes the ‘main-

Clause’ of a ConditionalSentence.

ConditionalConjunction

Semantics. ConditionalConjunction is part of a ConditionalSentence and commences the ‘con-

ditionalClause’.
Abstract syntax. ConditionalConjunction is a kind of Terms :: TermHyperlink that, as part of
ConditionalSentence, subsets ‘hyperlink’, being part of Elements :: HyperlinkedSentence. It
points to a Terms :: ConditionalConjunction (see section 14.8).

Subject

Semantics. Subject denotes the part of an SVOSentence being its subject from the point of view
of natural language grammar. Subject points to a Phrases :: Phrase that is associated with an
Actors :: Actor or SystemRepresentations :: SystemUnderDevelopment (see sections 14.4 and
14.5). This element can perform an action described by the predicate of the SVOSentence.
Abstract syntax. Subject is a kind of Phrases :: PhraseHyperlink that in a context of an SVOSen-

tence subsets the ‘hyperlink’ being part of a Elements :: HyperlinkedSentence. It is thus part of
an SVOSentence and points to a Phrases :: Phrase. The Phrase that is associated with the
Subject cannot be one of Phrase’s subclasses. The Phrases :: Phrase has to belong to an Actors

:: Actor or a SystemElements :: SystemElement.

Predicate

Semantics. Predicate hyperlinks an action performed by a Subject and all the words governed
by this action’s Phrases :: VerbPhrase or modifying it in a given SVOSentence.
Abstract syntax. Predicate is kind of Phrases :: PhraseHyperlink that in a context of SVOSen-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 106

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

tence subsets ‘hyperlink’ being part of Elements :: HyperlinkedSentence. It is thus part of an
SVOSentence and points to a Phrases :: VerbPhrase. The VerbPhrase that is associated with
the Predicate must be either Phrases :: SimpleVerbPhrase or Phrases :: ComplexVerbPhrase.

ModalVerb

Semantics. ModalVerb is an additional element of ModalSVOSentence. It allows for express-
ing modality, priority, obligation and/or possibility of action performed by the Subject of the
sentence.
Abstract syntax. ModalVerb is kind of Elements :: Hyperlink that in a context of ModalSVOSen-

tence subsets hyperlink being part of Elements :: HyperlinkedSentence. It points to a Terms ::

ModalVerb (see section 14.8).

13.3.3 Concrete syntax and examples

Source:

[[n:Customer]] [[v:signs up p:for n:exercises]].

View:

Customer : signs up : for : exercises.

Figure 13.6: SVOSentence concrete syntax example

SVOSentence. Its concrete syntax depends on the context in which the particular SVOSentence

is presented to the user. It can be represented in a source form or view form, where hyperlinks
are presented as in a Wiki. In the source form, SVOSentence consists of a hyperlink to a
Phrases :: Phrase (the Subject) and a hyperlink to a Phrases :: VerbPhrase (the Predicate). In
the view form, the SVOSentence is represented as a set of coloured hyperlinks separated with
colons (see Figure 13.6). The preceding letter with the colon denotes the part of speech (e.g.
noun, verb). See section 14.7 for more details.

Source:

[[n:Customer]] a:must [[v:receive n:sign-up confirmation]].

View:

Customer : must : receive : sign-up confirmation.

Figure 13.7: ModalSVOSentence concrete syntax example

ModalSVOSentence. Its concrete syntax is analogous to the SVOSentence’s concrete syntax,
with addition of a ModalVerb between a Subject and a Predicate (see Figure 13.7). The preced-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 107

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ing letter with the colon denotes the part of speech (e.g. noun, verb, auxiliary (modal verb)).
See below section 14.7 for more details.

Source:

c:If [[d:a n:customer]] [[v:signs up p:for d:a n:course]], [[d:the
n:system]] a:must [[v:bill d:this n:customer]].

View:

If : a : customer : signs up : for : a : course : , the : system : must : bill : this : customer.

Figure 13.8: ConditionalSentence concrete syntax example

ConditionalSentence. A ConditionalSentence consists of one ModalSVOSentence and, option-
ally, of one SVOSentence. Their concrete syntax is described above. Additional syntax ele-
ments are the ConditionalConjunction preceding the ConditionalSentence and the comma sep-
arating the ‘conditionalClause’ and the ‘mainClause’. The first is only included if the sentence
contains a ‘conditionalClause’ (see figure 13.8). The preceding letter with the colon denotes the
part of speech (e.g. noun, verb, conditional conjunction). See below and section 14.7 for more
details.

Subject. Predicate. Their concrete syntax is not changed in respect to that of the Phrases ::

PhraseHyperlink meta-class (see section 14.7).

ConditionalConjunction. ModalVerb. Their concrete syntax depends on the context in which
they are presented to the user. They can be represented in source or view form. In the source
form, they consist of the linked terms’ names preceded by a letter with a colon (“:”) indicating
the term type (“c:” for conditional conjunction, “a:” for modal verb (auxiliary)). In view form,
they are represented as the linked terms’ names separated by colons (see figures 13.8).

13.4 Scenario sentences

13.4.1 Overview

This package describes scenario sentences. It contains SVOScenarioSentence as a sentence in
the SVO grammar, ConditionSentence as a condition referring to a sentence being next in a
scenario and ControlSentence determining the flow of control in a scenario. ControlSentence

has three specialised concrete classes: InvocationSentence, PreconditionSentence, Postcondi-

tionSentence.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 108

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

13.4.2 Abstract syntax and semantics

ScenarioSentences::
ScenarioSentence

seqNum ber: in t

ScenarioSentences::
ControlSentence

Hyperl inkedSentence
RepresentationSentences::

ConstrainedLanguageSentence

ScenarioSentences::
SVOScenarioSentence

«invariant»
{T he Subject Phrase of th is
sentence has to belong to an
Actor.}

ScenarioSentences::
ConditionSentence

SVOSentences::
SVOSentence

Constra inedLanguageRepresentation
ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

scenarioSteps 1..*
{redefines sentences}

1..*

Figure 13.9: Scenario Sentences

Figure 13.9 shows part of the RSL meta-model which deals with the content of the Scenar-

ioSentences package. The classes in this package are described in detail below.

ScenarioSentence

Semantics. A ScenarioSentence is a sentence which can be used in a scenario. To use sentence
types which do not specialise from the ScenarioSentence in a scenario description is not pos-
sible since the sentences in a scenario description must have an order. Since the sentences in
a scenario description may have different purposes, the ScenarioSentence is just the base for
several more specialised sentence types.
Abstract syntax. ScenarioSentence is an abstract class and is a base for all the scenario sen-
tences. It includes an attribute called seqNumber and type int. This attribute defines the
sentence’s position in the scenario description. ScenarioSentences form scenarioSteps of
ConstrainedLanguageRepresentations :: ConstrainedLanguageScenarios. ScenarioSentence’s

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 109

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

InvocationSentence

type: InclusionT ype

PostconditionSentence

isSuccess: boolean

PreconditionSentence

type: InclusionT ype

«enum eration»
InclusionType

«enum »
insert
request

ConstrainedLanguageSentence
ScenarioSentence

ControlSentence

{for invokedSentence sentence
content should correspond to nam e
of UseCase pointed by
InvocationRelationship}

Figure 13.10: Control Sentences

subclasses are SVOScenarioSentence, ControlSentence and ConditionSentence, which are de-
scribed in detail in the sections below.

SVOScenarioSentence

Semantics. SVOScenarioSentence describes a single scenario step (an action) in the form of a
sentence in the SVO(O) grammar. This action can be performed by an actor or by the system.
Abstract syntax. SVOScenarioSentence is a kind of RepresentationSentences :: ScenarioSen-

tence and has the whole syntax of SVOSentence :: SVOSentence. Because the action described
in SVOScenarioSentence can be performed only by an actor or by the system, there is a con-
straint that the Phrases :: Phrase associated with this sentence as a subject (see SVOSentences

:: SVOSentence) has to belong to an Actors :: Actor or SystemRepresentations :: SystemU-

nderDevelopmet.

ConditionSentence

Semantics. ConditionSentence is a special kind of scenario sentence that controls the flow of
scenario execution. It is a point of conditional control flow: the following scenario step can be
executed only when the condition expressed by the ConditionSentence is true.
Abstract syntax. ConditionSentence is a kind of RepresentationSentences :: ScenarioSentence

It also derives from RepresentationSentences :: ConstrainedLanguageSentence.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 110

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ControlSentence

Semantics. ControlSentence is a general type of scenario sentences that control the flow of
scenario execution. Depending on the concrete kind of ControlSentence, the flow of execution
can be initiated, stopped or moved to another use case.
Abstract syntax. ControlSentence is a kind of RepresentationSentences :: ScenarioSentence.
It also derives from RepresentationSentences :: ConstrainedLanguageSentence. This abstract
class is a generalisation of concrete classes: InvocationSentence, PreconditionSentence and
PostconditionSentence.

InvocationSentence

Semantics. InvocationSentence denotes the invocation of another use case scenario from within
the currently performed use case scenario. There are two types of InvocationSentence: insert

and request. Insert means that the system invokes another use case by inserting its scenario
sentences. Request means that the Actor requests invoking another UseCaseRelationships ::

UseCase – it depends on the actor decision whether scenario sentences of invoked use case
will be inserted or not. After performing all scenario steps of the invoked use case, the flow of
execution returns to the invoking use case scenario to execute the remaining sentences. Invoca-

tionSentence is semantically related to PreconditionSentence (see below).
Abstract syntax. InvocationSentence is a kind of ControlSentence. It has the ‘type’ attribute
determining the type of InvocationSentence, which can have one of the values enumerated in
InclusionType.

PreconditionSentence

Semantics. PreconditionSentence is an initial sentence of every use case scenario. It indicates
where the flow of control of every use case scenario starts. There are two types of Precondition-

Sentence: insert and request. PreconditionSentence of type request is always performed when
the actor triggers a use case directly or requests invoking a use case (see InvocationSentence

above) from another use case scenario through initial actor action (first SVO(O) sentence in
the scenario). When use case is invoked by inserting its scenario into the flow of invoking use
case, the initial action is omitted. In this case PreconditionSentence of type insert is performed.
PreconditionSentence may contain an associated condition which must be fulfilled before exe-
cuting the sentence.
Abstract syntax. PreconditionSentence is a kind of ControlSentence. It has the ‘type’ attribute

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 111

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

determining the type of PreconditionSentence, which can have one of the values enumerated in
InclusionType.

PostconditionSentence

Semantics. PostconditionSentence is a final sentence of every use case scenario. It indicates if
the goal of a use case has been reached or not.
Abstract syntax. PostconditionSentence is a kind of ControlSentence. Its isSuccess attribute
can have value ‘true’ or ‘false’.

InclusionType

Semantics. InclusionType specifies the type of InvocationSentence and PreconditionSentence

scenario sentences.
Abstract syntax. InclusionType is an enumerator which defines values: insert and request.

13.4.3 Concrete syntax and examples

ScenarioSentence. As an abstract meta-class, this meta-model element has no concrete syntax.
It can be formulated in any of the representations of meta-classes that specialise from it.

ControlSentence. As an abstract meta-class, this meta-model element has no concrete syntax.
It can be formulated in any of the representations of meta-classes that specialise from it.

Figure 13.11: SVOScenarioSentence example

SVOScenarioSentence. SVOScenarioSentence’s concrete syntax is an ordered list of words. It
has structure similar to SVOSenteces :: SVOSentence. In addition to SVOsentence, SVOSce-

narioSentence has its sequence number in a scenario placed at its front. See Figure 13.11 for
an example.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 112

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Figure 13.12: ControlSentence example

ConditionSentence. Concrete syntax of ConditionSentence is a special sign ’==>’, key word
’cond:’ and a set of words forming a ConstrainedLanguageSentence. See Figure 13.12 for an
example.

Figure 13.13: PreconditionSentence example

PreconditionSentence. PreconditionSentence’s is notated by a keyword ’pre:’ and a sentence
in a constrained language (wiki-like description). PreconditionSentence can occur only before
the first sentence in the scenario. See Figure 13.13 for an example.

Figure 13.14: PostconditionSentence example

PostconditionSentence. PostconditionSentence is notated by a keyword ’post:’ and a sentence
in a constrained language (wiki-like description). PostconditionSentence can occur only after
the last sentence in the scenario. See Figure 13.14 for an example.

InvocationSentence. InvocationSentence is notated by a special sign ’==>’, one of two key-
words: ’invoke/request:’ or’invoke/insert:’ and a sentence in a constrained language (this con-
stitutes the name of invoked use case). See Figure 13.15 for an example.

InclusionType. Concrete syntax of this element is one of two expressions: ’invoke/request:’,
’invoke/insert:’. See Figure 13.15.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 113

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Figure 13.15: InvocationSentence example

13.5 Activity sentences

13.5.1 Overview

This package describes scenario sentences for ActivityRepresentations. It contains ActivitySVO-

ScenarioSentence as a sentence in the SVO grammar, ActivityConditionSentence and Activity-

ControlSentence. ActivityControlSentence has three specialised concrete classes: ActivityInvo-

cationSentence, ActivityPreconditionSentence, ActivityPostconditionSentence.

13.5.2 Abstract syntax and semantics

Abstract syntax for this package is shown in Figures 13.16 and 13.17.

ActivitySVOScenarioSentence

Semantics. An ActivitySVOScenarioSentence represents ScenarioSentences :: SVOScenar-

ioSentence in ActivityRepresentations :: ActivityScenario. It has similar semantics to its base
class. Additionally, ActivitySVOScenarioSentence as an UML :: BasicActivities :: ActivityN-

ode represents scenario step on activity diagram in context of flow control within an Require-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 114

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ScenarioSentences::
ScenarioSentence

seqNum ber: in t

Constra inedLanguageSentence
ScenarioSentences::
ControlSentence

SVOSentence
ScenarioSentences::
SVOScenarioSentence

UML:BasicActivities::
Activ ityNode

RedefinableElement
UML:BasicActivities::

Activ ityEdge

UML:BasicActivities::
ControlFlow

Constra inedLanguageSentence
ScenarioSentences::
ConditionSentence

ActivityControlSentence ActivitySVOScenarioSentence Activ ityConditionSentence

Figure 13.16: ActivityScenarioSentences

mentsSpecifications :: Usecase.
Abstract syntax. An ActivitySVOScenarioSentence is a kind of ScenarioSentences :: SVOSce-

narioSentence. It also derives from UML :: BasicActivities :: ActivityNode. It redefines its
‘subject’ and verbWithObjects with ActivitySentenceConstructs :: ActivitySubject and Activity-

SentenceConstructs :: ActivitySubject.

ActivityConditionSentence

Semantics. An ActivityConditionSentence represents ScenarioSentences :: ConditionSentence

in ActivityRepresentations :: ActivityScenario.
Abstract syntax. An ActivityConditionSentence is a kind of ScenarioSentences :: Condition-

Sentence. It also derives from UML :: BasicActivities :: ControlFlow.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 115

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ScenarioSentences::
InvocationSentence

type: InclusionT ype

ScenarioSentences::
PostconditionSentence

i sSuccess: boolean

ScenarioSentences::
PreconditionSentence

type: InclusionT ype

«enum eration»
ScenarioSentences::

InclusionType

«enum »
insert
request

ConstrainedLanguageSentence
ScenarioSentence

ScenarioSentences::
ControlSentence

Activi tyNode
ActivityControlSentence

Activ ityPostconditionSentence Activ ityPreconditionSentence Activ ityInvocationSentence

Figure 13.17: ActivityControlSentences

ActivityControlSentence

Semantics. An ActivityControlSentence represents ScenarioSentences :: ControlSentence in
ActivityRepresentations :: ActivityScenario. It has three concrete subclasses: ActivityInvocation-

Sentence, ActivityPreconditionSentence, ActivityPostconditionSentence. Each of these three
subclasses corresponds to an appropriate ScenarioSentences :: ControlSentence’s subclass.
Abstract syntax. An ActivityConditionSentence is a kind of UML :: BasicActivities :: ActivityN-

ode. It is aggregated by ActivityRepresentations :: ActivityScenario in role of activityControlSen-

tences and subsets its ‘nodes’ and ‘sentences’

ActivityInvocationSentence

Semantics. An ActivityInvocationSentence represents ScenarioSentences :: InvocationSen-

tence in ActivityRepresentations :: ActivityScenario. It shows point of another RequirementsSpec-

ifications :: Usecase invocation in an activity diagram.
Abstract syntax. An ActivityInvocationSentence is a kind of ActivityControlSentence. It also de-
rives from ScenarioSentences :: InvocationSentence. An ActivityInvocationSentence indirectly
inherits from UML :: BasicActivities :: ActivityNode

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 116

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ActivityPreconditionSentence

Semantics. An ActivityPreconditionSentence represents ScenarioSentences :: Precondition-

Sentence in ActivityRepresentations :: ActivityScenario. It shows starting point of a scenario
on an activity diagram. ActivityPreconditionSentence can have precondition of the scenario at-
tached as a constraint. It has semantics similar to ScenarioSentences :: PreconditionSentence.
Additionally it has semantics of UML’s UML :: BasicActivities :: InitialNode.
Abstract syntax. An ActivityPreconditionSentence is a kind of ActivityControlSentence. It also
derives from ScenarioSentences :: PreconditionSentence.

ActivityPostconditionSentence

Semantics. An ActivityPostconditionSentence represents ScenarioSentences :: Postcondition-

Sentence in ActivityRepresentations :: ActivityScenario. It shows end point of scenario on ac-
tivity diagram. ActivityPreconditionSentence can have precondition of the scenario attached as
a constrained . It also shows, if scenario ends with success or failure. It has semantics similar
to ScenarioSentences :: PostconditionSentence. Additionally it has semantics of UML’s UML

:: BasicActivities :: FinalNode.
Abstract syntax. An ActivityPostconditionSentence is a kind of ActivityControlSentence. It also
derives from ScenarioSentences :: PostconditionSentence.

13.5.3 Concrete syntax and examples

(System) shows
time schedule

(System) shows
sign-up summary

dialog

(Customer) chooses
time from time

schedule

Figure 13.18: ActivitySVOScenarioSentence example

ActivitySVOScenarioSentence. ActivitySVOScenarioSentence has concrete syntax as an UML

:: Activities :: Action (([Obj05b], paragraph 12.3.2, page 303): “Actions are notated as round-
cornered rectangles. The name of the action or other description of it may appear in the symbol.”
In our case, the ‘name’ is a ActivitySentenceConstructs :: ActivityPredicate. Additionally, before
name stands sentence’s ActivitySentenceConstructs :: ActivitySubject in round brackets as a
swimlane (UML :: Basic Activities ::ActivityPartition). See Figure 13.18 for an example.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 117

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

(System) shows
time schedule

(System) checks
availabilty of

exercices

(System) shows
error message dialog

[exercises
avai lable]

[exercices
unavai lable]

Figure 13.19: ActivityConditionSentence example

ActivityConditionSentence. Concrete syntax of ActivityConditionSentence is an arrowed line
connecting two ordered ActivitySVOScenarioSentences. In addition, it contains a NaturalLan-

guageHypertextSentence in square brackets put near the arrow. See Figure 13.19 for an exam-
ple.

ActivityControlSentence. As an abstract meta-class, ActivityControlSentence does not have a
concrete syntax.

(System) checks
availabilty of

exercices

«invoke/insert»
Choose exercises

type

(Customer) wants to
sign up for exercises

(System) shows
time schedule

«invoke/request»
Change location

Figure 13.20: ActivityInvocationSentence example

ActivityInvocationSentence. Concrete syntax of ActivityInvocationSentence is a round-cornered
rectangle with stereotype ’invoke/request’ or ’invoke/insert’. The name of the ActivityInvocation-

Sentence appears in the symbol. ActivityInvocationSentence is connected with ActivitySVOSce-

narioSentences with two arrowed lines. See Figure 13.20 for an example.

«...

(Customer) wants to
sign up for exercises

Figure 13.21: ActivityPreconditionSentence example

ActivityPreconditionSentence. Concrete syntax of ActivityPreconditionSentence is UML :: Ba-

sic Activities :: InitialNode with attached note. See Figure 13.21 for an example.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 118

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

«...Fa i lure

(Customer) cancels
sign up for exercices

«...Success

(System) signs up
customer for

exercices

Figure 13.22: ActivityPostconditionSentence example

ActivityPostconditionSentence. Concrete syntax of ActivityPostconditionSentence is UML ::

Basic Activities :: FinalNode with attached note. Additionally, the type of the sentence (success
or failure) is placed near the node. See Figure 13.22 for an example.

13.6 Activity sentence constructs

13.6.1 Overview

This package describes additional constructs, introduced to fit ScenarioSentences :: SVOSce-

narioSentence into activity diagrams. Such Constructs are ActivityPredicate derived from Basi-

cActivities :: ActivityNode and ActivitySubject derived from BasicActivities :: ActivityPartition.

13.6.2 Abstract syntax and semantics

Abstract syntax for this package is shown in Figures 13.23 and 13.24.

Activi tyNode
SVOScenarioSentence

Activ itySentences::
Activ itySVOScenarioSentence

Activi tyParti tion
ActivitySubject

Activi tyNode
Activ ityPredicate

PhraseHyperl ink
SVOSentences::

Predicate

Constra inedLanguageSentence
SVOSentences::SVOSentence

PhraseHyperl ink
SVOSentences::

Subject

verbsWi thObjects
1
{redefines verbsWi thObjects}1subject

1
{redefines subject}

1

verbWi thObjects

1
{subsets
hyperl inks}

1

sub ject

1
{subsets
hyperl inks}

1

Figure 13.23: ActivitySVOSentence

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 119

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ModelBasedRequi rementRepresentation
ActivityRepresentations::

Activ ityScenario

Pred icate
ActivitySubject

UML:
BasicActiv ities::

Activ ity

UML:
BasicActiv ities::
Activ ityGroup

NamedElement
UML:

BasicActiv ities::
Activ ityPartition

Subject
ActivityPredicate

RedefinableElement
UML:

BasicActiv ities::
Activ ityNode

{has no subgroup or
superParti tion}

{M ust belong to exact
one Activi tySubject}

activi tySubjects
*
{redefines group}

activi ty

{redefines activi ty}

group

*
{subsets ownedElem ent}

activi ty0..1
{subsets owner}

inParti tion 1
{redefines inParti tion}

conta inedNode
*
{redefines conta inedNode}

inParti tion *
{subsets inGroup}

conta inedNode

{redefines
conta inedNode}

Figure 13.24: ActivityScenarioPartition

ActivitySubject

Semantics. An ActivitySubject represents SVO sentence’s subject on Activity diagram as swim-
lane.
Abstract syntax. An ActivitySubject is kind of SVOSentences :: Subject. It also derives from
BasicActivities :: ActivityPartition. It redefines its containedNode with ActivityPredicate. An
ActivitySubject is associated with ActivityRepresentations :: ActivityScenario in role of activ-

itySubjects (redefines its activityGroup). It is also aggregated by ActivitySentences :: Activi-

tySVOScenarioSentence. It redefines its subject.

ActivityPredicate

Semantics. An ActivityPredicate represents SVO sentence’s predicate on Activity diagram as
an ActivityNode .
Abstract syntax.An ActivityPredicate is kind of SVOSentences :: Predicate. It also derives
from BasicActivities :: ActivityNode. It redefines its ‘inPartition’ with ActivitySubject. An Activ-

itySubject is aggregated by ActivitySentences :: ActivitySVOScenarioSentence. It redefines its
verbWithObjects.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 120

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

13.6.3 Concrete syntax and examples

ActivitySubject. ActivitySubject’s concrete syntax is similar to BasicActivities :: ActivityParti-

tion’s concrete syntax. It is represented as a subject’s text in round brackets placed in Activity
symbol before name (ActivityPredicate). See Figure 13.25 for an example.

(Customer) wants to
sign up for exercises

(System) checks
availabilty of

exercices

Figure 13.25: ActivitySubject and Preditace example

ActivityPredicate. ActivityPredicate’s concrete syntax is a predicate’s text placed in Activity
symbol after partition name (ActivitySubject). See Figure 13.25 for an example.

13.7 Interaction sentences

13.7.1 Overview

This package describes scenario sentences in InteractionRepresentations. It contains Inter-

actionSVOScenarioSentence as a sentence in the SVO grammar, InteractionConditionSentence

and InteractionControlSentence. InteractionControlSentence has three specialised concrete class-
es: InteractionInvocationSentence, InteractionPreconditionSentence, InteractionPostcondition-

Sentence. Syntax and semantics of all these classes is described in the sections below.

13.7.2 Abstract syntax and semantics

Abstract syntax for this package is shown in Figures 13.26, 13.27 and 13.28.

InteractionScenarioSentence

Semantics. An InteractionScenarioSentence represents ScenarioSentences :: ScenarioSen-

tence in an InteractionScenario.
Abstract syntax. An InteractionScenarioSentence is the abstract base class for all sentences

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 121

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ScenarioSentences::

ScenarioSentence

seqNumber: int

ConstrainedLanguageSentence

ScenarioSentences::

ControlSentence

SVOSentence

ScenarioSentences::

SVOScenarioSentence

ConstrainedLanguageSentence

ScenarioSentences::

ConditionSentence

InteractionControlSentence
Constraint

InteractionConditionSentence

InteractionSentenceConstructs::

InteractionSVOScenarioSentence

InteractionScenarioSentence

Figure 13.26: InteractionScenarioSentences

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 122

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ConditionSentence

InteractionSentences::

InteractionConditionSentence

Interaction

ModelBasedRequirementRepresentation

InteractionRepresentations::

InteractionScenario

InteractionSentences::

InteractionScenarioSentence

UML:Kernel::

Constraint

{nextSentence cannot be

InteractionConditionSentence}

guard

0..1

nextSentence

1

sentences

0..*

{redefines sentences}

Figure 13.27: InteractionConditionSentences

that may occur in InteractionScenarios. It is associated with InvocationConditionSentence and
is a component of InteractionRepresentations :: InteractionScenario.

InteractionConditionSentence

Semantics. An InteractionConditionSentence represents a conditional sentence in an Interac-

tionScenario. It acts as guard for another InteractionScenarioSentence, which gets executed
only if the condition evaluates to true. InteractionConditionSentence’s condition is represented
as it is common for constraints in UML 2.0.
Abstract syntax. An InteractionConditionSentence is a kind of ScenarioSentences::Condition-

Sentence, so it inherits all associations from this class. It is also derived from InteractionSce-

narioSentence as it occurs only in InteractioScenarios. Additionally, it is a subclass of UML

:: Kernel :: Constraint. There is a InteractionScenarioSentence associated to InteractionCondi-

tionSentence with the role nextSentence, the InteractionConditionSentence is the guard of that
InteractionScenarioSentence.

InteractionControlSentence

Semantics. An InteractionControlSentence represents ScenarioSentences :: ControlSentence

in InteractionRepresentations :: InteractionScenario. It has three concrete subclasses: Inter-

actionyInvocationSentence, InteractionPreconditionSentence and InteractionPostconditionSen-

tence. Each of these three subclasses corresponds to appropriate ScenarioSentences :: Con-

trolSentence’s subclass.
Abstract syntax. An InteractionControlSentence is a kind of InteractionScenarioSentence, so it

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 123

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ScenarioSentences::

InvocationSentence

type: InclusionType

ScenarioSentences::

PostconditionSentence

isSuccess: boolean

ScenarioSentences::

PreconditionSentence

type: InclusionType

«enumeration»

ScenarioSentences::

InclusionType

«enum»

insert

request

ConstrainedLanguageSentence

ScenarioSentence

ScenarioSentences::

ControlSentence

ScenarioMessage

InteractionPostconditionSentence

ScenarioMessage

InteractionPreconditionSentence

ScenarioMessage

InteractionInvocationSentence

InteractionScenarioSentence

InteractionControlSentence

Figure 13.28: InteractionControlSentences

may occur in InteractionScenarios. As it derives from ControlSentence, it inherits all relations
from this class.

InteractionInvocationSentence

Semantics. An InteractionInvocationSentence represents ScenarioSentences :: InvocationSen-

tence in InteractionRepresentations :: InteractionScenario. It shows point of another use case
invocation in a communication or sequence diagram. As invocation of another use case is
triggered by system elements in all cases, InteractionInvocationSentences may start only at Sys-

temElementLifelines.
Abstract syntax. An InteractionInvocationSentence is a kind of InteractionControlSentence.
It also derives from ScenarioSentences :: InvocationSentence and inherits all relations from
this base class. A InteractionInvocationSentence starts at a SystemElementLifeline with a Sys-

temElementMessageEnd and ends at a InvokeLifeline with a InvokeMessageEnd.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 124

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

InteractionPreconditionSentence

Semantics. An InteractionPreconditionSentence represents ScenarioSentences :: Interaction-

Sentence in InteractionRepresentations :: InteractionScenario. It shows the entrypoint of the
scenario represented by an interaction diagram. A constraint may be attached to a Interaction-

PreconditionSentence serving as a precondition of the scenario. It has semantics similar to
ScenarioSentences :: PreconditionSentence.
Abstract syntax. An InteractionPreconditionSentence is a kind of InteractionControlSentence.
It also derives from ScenarioSentences :: PreconditionSentence. It is associated with Interac-

tionSentenceConstructs :: ActorMessageEnd.

InteractionPostconditionSentence

Semantics. An InteractionPostconditionSentence represents ScenarioSentences :: Postcondi-

tionSentence in a scenario description by InteractionRepresentations :: InteractionScenario. It
shows the end point of a scenario represented by an interaction diagram. Similar to Interac-

tionPreconditionSentence, a constraint may be attached to InteractionPostconditionSentence,
serving as a postcondition of the described scenario. Additionally, InteractionPostconditionSen-

tence shows, if the scenario ends with success or failure. Further semantics of InteractionPost-

conditionSentence is similar to ScenarioSentences :: PostconditionSentence.
Abstract syntax. An InteractionPostconditionSentence is a kind of InteractionControlSentence.
It also derives from ScenarioSentences :: PostconditionSentence. It is associated with Interac-

tionSentenceConstructs :: ActorMessageEnd.

13.7.3 Concrete syntax and examples

This section describes concrete syntax for the sentences described in the section above using
the figures 13.29 and 13.30 known from section 12.6 as examples.

InteractionScenarioSentence This class is abstract, so there is no concrete syntax.

InteractionConditionSentence In interaction diagrams used for describing scenarios, condi-
tional sentences are represented as a condition at the next message in the scenario. A example
is shown in figure 13.29 at the message “acceptHelpRequest”. The condition for this sentence
should be put in curly brackets nearby the line representing the message with role nextSentence

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 125

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Terminal :

SystemElement

Reception :

SystemElement

Customer :Actor Employee :Actor

successsuccess

«Pre-condition»

{Customer has access to

terminal}

Terminal

authentication

«Post-condition»

{Employee provides help

to customer}

«invokes»

askForHelp

sendHelpRequest

showHelpRequest

[Employee available]:

acceptHelpRequest
sendRequestAccepted

informCustomer

Figure 13.29: Concrete syntax of sequence diagram

Customer :Actor

Reception :

SystemElement

Terminal :

SystemElement

Employee :Actor

Terminal

authentication

StartStart

SuccessSuccess

1 : startScenario

6: acceptHelpRequest

{Employee available}

4: sendHelpRequest

8: informCustomer

5: showHelpRequest

7: sendRequestAccepted

9: endScenario

2: authenticate user

«invokes»

3: askForHelp

Figure 13.30: Concrete syntax of communication diagram

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 126

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

in the abstract syntax. In communication diagram the notation is similar to this, as message
number 6 in Figure 13.30 shows.

InteractionControlSentence This class is abstract, so there is no concrete syntax.

InteractionInvocationSentence An InteractionInvocationSentence is modelled by a message
starting at a lifeline and ending at a use case oval. This use case is the one the InteractionInvo-

cationSentence invokes. The message left in figure 13.29 shows an example of InteractionIn-

vocationSentence’s concrete syntax. The use case called Terminal authentication is included in
the scenario description using a message from the main actors lifeline to the use case diagram
element. In figure 13.30, the same sentence is represented by message with number 2.

InteractionPreconditionSentence InteractionPrecondiationSentences are modelled as shown in
the upper left corner of figure 13.29. An initial point represents the start of the scenario, the
precondition is attached to this initial point as a UML constraint. In figure 13.30, the same
sentence is represented by message with number 1.

InteractionPostconditionSentence The representation of InteractionPostconditionSentence is
similar to the one of InteractionPreconditionSentence. A end point is used to represent the end
of the scenario, the postcondiation is, analogous to the precondition of InteractionPrecondition-

Sentence, modelled as a UML constraint attached to the end point. In figure 13.30, the same
sentence is represented by message with number 10.

13.8 Interaction sentence constructs

13.8.1 Overview

Sections 12.6 and 13.7 have described the concept of InteractionScenario and the different sen-
tence types that may be used in such scenario representations. This section explains the remain-
ing elements of InteractionScenarios, such as different types of lifelines, messages and relations
between them.

13.8.2 Abstract syntax and semantics

The abstract syntax for this package is shown in figures 13.31 to 13.35.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 127

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

UML:Interactions::

Interaction

NamedElement

UML:Interactions::

Lifeline

ActorLifeline SystemElementLifeline

InteractionRepresentationLifeline

InvokeLifeline

SubjectLifeline

Classifier

DomainElement

Actors::Actor

Classifier

DomainElement

SystemElements::

SystemElement

PhraseHyperlink

SVOSentences::

Subject

Requirement

UseCase

RequirementsSpecifications::

UseCase

0..*

represents

0..1

{redefines

represents}

0..*

represents

0..1

{redefines

represents}

0..*

represents

1

{redefines

represents}

Figure 13.31: InteractionLifelines

InteractionRepresentationLifeline

Semantics. Lifelines in an InteractionScenario are always InteractionScenarioLifelines. They
represent actors, components of the system under development or use cases that are invoked in
the scenario. Communication between lifelines can be modeled with ScenarioMessages.
Abstract syntax. An InteractionRepresentationLifeline is the abstract base class for SubjectLife-

line and InvokeLifeline. It is derived from the class UML::Interactions::Lifeline out of the UML2.0
superstructure and the class ElementRepresentation out of the package ElementRepresenta-

tions. It is a component of InteractionRepresentations :: InteractionScenario.

SubjectLifeline

Semantics. Acting subjects in the InteractionScenario are modelled as SubjectLifelines. They
represent actors or components of the system under development.
Abstract syntax. A SubjectLifeline is the abstract base class for ActorLifeline and SystemEle-

mentLifeline. It is a kind of InteractionRepresentationLifeline and thus inherits all associations
from it. Additionally, it is derived from SVOSentences :: Subject, so a SubjectLifeline acts as
subject in a SVOSentences :: SVOSentence.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 128

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ActorLifeline

Semantics. Every actor who participates in a scenario described by a InteractionScenario is
represented by an ActorLifeline. Since the scenario models an interaction between an actor and
parts of the system, every ActorLifeline can have some outgoing and incoming messages.
Abstract syntax. An ActorLifeline is a kind of SubjectLifeline, so it may act as subject in a
SVOSentence. An ActorLifeline may cover zero or more ActorMessageEnds, this association
redefines the inherited association between Lifeline and MessageEnd. Each ActorLifeline is the
representation of one Actors :: Actor, which is in represents role to ActorLifeline. An ActorLife-

line can associated with InteractionRepresentations :: InteractionScenarios as a primaryActor. It
is also a component of InteractionRepresentations :: InteractionScenario.

SystemElementLifeline

Semantics. A SystemElementLifeline is similar to ActorLifeline with the difference, that it rep-
resents components of the system under development instead of actors. Depending on the level
of granularity the requirements engineer chose, the whole system can be modeled as one single
component. Also communications between different system components or between a system
component and an actor are represented as outgoing and incoming messages.
Abstract syntax. An SystemElementLifeline is a kind of SubjectLifeline, so it may act as subject
in a SVOSentence similar to ActorLifeline. Each SystemElementLifeline is the representation of
one SystemElements :: SystemElement, which is in represents role to SystemElementLifeline.
It may cover SystemElementMessageEnds, the association describing this fact redefines the
inherited association between Lifeline and MessageEnd in almost the same manner as it is done
for ActorLifeline. SystemElementLifeline is also a component of InteractionRepresentations ::

InteractionScenario.

InvokeLifeline

Semantics. InvokeLifelines represent use cases that are invoked in a scenario. So use cases that
are needed more than once can be used in different scenarios easily and separation of concers
is possible.
Abstract syntax. InvokeLifeline is derived from InteractionRepresentationLifeline and represents
via association exact one RequirementsSpecifications :: UseCase, while a RequirementsSpe-

cifications :: UseCase can be represented by more than one invoke lifelines, as the multiplicities

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 129

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Interaction

ModelBasedRequirementRepresentation

InteractionRepresentations::

InteractionScenario

NamedElement

UML:Interactions:

:Message

ScenarioMessage

InteractionControlSentence

InvocationSentence

InteractionSentences::

InteractionInvocationSentence

InteractionControlSentence

PostconditionSentence

InteractionSentences::

InteractionPostconditionSentence

InteractionControlSentence

PreconditionSentence

InteractionSentences::

InteractionPreconditionSentence

MessageOccurrenceSpecification

ActorMessageEnd

OccurenceSpecification

InvokeMessageEnd

MessageOccurrenceSpecification

SystemElementMessageEnd

messages

*

{redefines

message}

1

sendEvent
1

{redefines

sendEvent}

1

receiveEvent

1

{redefines

receiveEvent}

receiveEvent

0..1

{redefines

receiveEvent}

0..1

sendEvent

0..1

{redefines

sendEvent}

0..1

Figure 13.32: InteractionMessages

indicate. InvokeLifeline is also associated with InvokeMessageEnd as a redefinition of covered

attribute.

ScenarioMessage

Semantics. A ScenarioMessage represents an interaction between different lifelines in a Inter-

actionScenario. Depending on the interaction, one of the classes derived from ScenarioMes-

sage is used to model the interaction.
Abstract syntax. A ScenarioMessage is derived from the class UML :: Interactions :: Mes-

sage out of the UML 2.0 metamodel. Every ScenarioMessage belongs to a InteractionSce-

nario, as the redefined aggregation with rolename message indicates. It is the abstract base
class for InteractionInvocationSentence, InteractionPreconditionSentence, InteractionPostcon-

ditionSentence and PredicateMessage.

PredicateMessage

Semantics. The class PredicateMessage represents the predicate of an InteractionSVOScenar-

ioSentence. Together with the lifeline related to it, every PredicateMessage builds up one
sentence. Since it is derived from SVOSentences :: Predicate, it may contain a hyperlink which

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 130

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Interaction

ModelBasedRequirementRepresentation

InteractionRepresentations::

InteractionScenario

PredicateMessage

NamedElement

UML:Interactions:

:Message

MessageOccurrenceSpecification

ActorMessageEnd

MessageOccurrenceSpecification

SystemElementMessageEnd

{<<invariant>>There must be exactly

one sendEvent role and one

recieveEvent role connected with a

concrete ScenarioMessage}

PhraseHyperlink

SVOSentences::

Predicate

ScenarioMessage

0..1

sendEvent

0..1

{redefines

sendEvent}

0..1

recieveEvent

0..1

{redefines

recieveEvent}

0..1

recieveEvent

0..1

{redefines

recieveEvent}

0..1

sendEvent

0..1

{redefines

sendEvent}

messages

*

{redefines

message}

Figure 13.33: InteractionPredicateMessages

refers to elements in the vocabulary.
Abstract syntax. PredicateMessage has associations to SystemElementMessageEnd and Ac-

torMessageEnd. These are described in detail at the class descriptions of SystemElementMes-

sageEnd and ActorMessageEnd. To ensure that ScenarioMessage is associated to exactly one
message end with role name sendEvent and exactly one with role name recieveEvent a con-
straint is added. PredicateMessage redefines verbWithObjects attribute for InteractionSVOSce-

narioSentence. PredicateMessage is also a redefinition of message attribute of InteractionRep-

resentations :: InteractionScenario, which is owning given PredicateMessage.

ActorMessageEnd

Semantics. A ActorMessageEnd models the connection between a PredicateMessage and a
ActorLifeline. Every PredicateMessage may contain zero to two ActorMessageEnds, depending
on what kind of communication is modelled with that message.
Abstract syntax. The base class of ActorMessageEnd is the class UML :: Interactions :: Message-

OccurenceSpecification which is derived from UML :: Interactions :: MessageEnd. From this
class the associations to Message are inherited, but because ActorMessageEnds may only be
endpoints of PredicateMessages, the associations with the roles sendEvent and recieveEvent

are redefined. The same applies for associated InteractionSentences :: InteractionPostcondition-

Sentence and InteractionSentences :: InteractionPreconditionSentence. The constraint which
holds for ActorMessageEnd, that also affects SystemComponentMessage, is described later in
context of the class ScenarioMessage. The last class associated to ActorMessageEnd is Ac-

torLifeline, the association between these two classes is inherited from Message and Lifeline,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 131

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

UML:Interactions::

MessageEnd

UML:Interactions::

MessageOccurrenceSpecification

InteractionFragment

UML:Interactions::

OccurenceSpecification

SubjectLifeline

ActorLifeline

ActorMessageEnd

InteractionRepresentationLifeline

InvokeLifeline

InvokeMessageEnd

SubjectLifeline

SystemElementLifeline

SystemElementMessageEnd

messageEnd 0..*

{ordered}

covered
1

{redefines covered}

messageEnd1

covered
1

{redefines covered}

messageEnd 0..*

{ordered}

covered

1

{redefines covered}

Figure 13.34: InteractionMessageEnds

but since ActorLifelines should be the only lifelines that may cover an ActorMessageEnd the
association is redefined in the metamodel.

SystemElementMessageEnd

Semantics. Analogous to ActorMessageEnd, SystemElementMessageEnd models the connec-
tion between a PredicateMessage and a SystemElementLifeline.
Abstract syntax. The base class of ActorMessageEnd is the class UML :: Interactions :: Message-

OccurenceSpecification which is derived from UML :: Interactions :: MessageEnd. Again anal-
ogous to ActorMessageEnd, the associations to Message are inherited from this class. Since
SystemElementMessageEnds may only be endpoints of PredicateMessages, the associations
with the roles sendEvent and recieveEvent are redefined here also. The same holds for the asso-
ciation to SystemElementLifeline, these associations are inherited from MessageEnd but must
be redefined so that SystemElementMessageEnds may be covered only by SystemElementLife-

lines.

InvokeMessageEnd

Semantics. Analogous to ActorMessageEnd and SystemElementMessageEnd, the class In-

vokeMessageEnd models the connection between a ScenarioMessage and a InvokeLifeline.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 132

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

ActorLifelineSystemElementLifeline

ScenarioMessage

PredicateMessage

PhraseHyperlink

SVOSentences::

Predicate

ConstrainedLanguageSentence

SVOSentences::SVOSentence

PhraseHyperlink

SVOSentences::

Subject

InteractionScenarioSentence

SVOScenarioSentence

InteractionSVOScenarioSentence

InteractionRepresentationLifeline

SubjectLifeline

verbWithObjects
1

{redefines verbWithObjects}

1

verbWithObjects 1

{subsets

hyperlinks}

1

subject 1

{subsets

hyperlinks}

1

subject

1

{redefines subject}

1

Figure 13.35: InteractionSVOScenarioSentences

Abstract syntax. The base class of InvokeMessageEnd is the class UML :: Interactions ::

MessageOccurenceSpecification which is derived from UML :: Interactions :: MessageEnd.
Again analogous to ActorMessageEnd and SystemElementMessageEnd, the associations to
Message are inherited from this class. Since InvokeElementMessageEnds may only be end-
points of InteractionInvocationSentences and their role may be only recieveEvent at the con-
nected InteractionInvocationSentence, the appropriate association with the roles recieveEvent is
redefined. The same holds for the association to InvokeLifeline, these associations are inherited
from MessageEnd but must be redefined so that InvokeMessageEnds may be covered only by
InvokeLifelines.

InteractionSVOScenarioSentence

Semantics. An InteractionSVOScenarioSentence represents ScenarioSentences :: SVOScenar-

ioSentence in InteractionRepresentations :: InteractionScenario. It has similar semantics to its
base class but, in contrast to its base class, it is composed of lifelines which act as subjects and
objects and messages which act as predicates.
Abstract syntax. An InteractionSVOScenarioSentence is devired from ScenarioSentences ::

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 133

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Terminal :

SystemElement

Reception :

SystemElement

Customer :Actor Employee :Actor

successsuccess

«Pre-condition»

{Customer has access to

terminal}

Terminal

authentication

«Post-condition»

{Employee provides help

to customer}

«invokes»

askForHelp

sendHelpRequest

showHelpRequest

[Employee available]:

acceptHelpRequest
sendRequestAccepted

informCustomer

Figure 13.36: Concrete syntax of sequence diagram

SVOScenarioSentence. It redefines its subject and verbWithObjects with SubjectLifeline and
PredicateMessage.

13.8.3 Concrete syntax and examples

This section describes concrete syntax for the sentence constructs described in the section
above, again the figures 13.36 and 13.37 which were already used in sections 13.7 and 12.6,
serve as examples.

InteractionRepresentationLifeline This class is abstract, so there is no concrete syntax.

SubjectLifeline This class is abstract, so there is no concrete syntax.

InvokeLifeline Both figures 13.36 and 13.37 contain an example for a InvokeLifeline. I both
cases, this is the use case called Terminal authentication in the left part of the appropriate figure.

ActorLifeline In figure 13.36, the two outer lifelines which have a stick-figure as illustration,
named “Customer” and “Employee”, are examples for a ActorLifeline. They are modelled as
dotted lines as it is common in UML. In figure 13.37 these lifelines are also represented by a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 134

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

Customer :Actor

Reception :

SystemElement

Terminal :

SystemElement

Employee :Actor

Terminal

authentication

StartStart

SuccessSuccess

1 : startScenario

6: acceptHelpRequest

{Employee available}

4: sendHelpRequest

8: informCustomer

5: showHelpRequest

7: sendRequestAccepted

9: endScenario

2: authenticate user

«invokes»

3: askForHelp

Figure 13.37: Concrete syntax of communication diagram

stick-figure, but their lifeline-nature is not explicitly modelled by a dotted line but by numbers
at the incomming and outgoing messages.

SystemElementLifeline The SystemElementLifeline is represented as it is common for lifelines
in UML 2.0. In sequence diagram example 13.36 the two inner lifelines named “Terminal”
and “Reception” are such lifelines, in communication diagram example 13.37 the names are
identical, but analogous to ActorLifeline, the lifeline-nature is not explicitly modelled by a dotted
line but by numbers at the incomming and outgoing messages.

ScenarioMessage This class is abstract, so there is no concrete syntax.

PredicateMessage In the example figures, all messages between a ActorLifeline and a Sys-

temElementLifeline or between two SystemElementLifelines are instances of PredicateMessage.
That are the messages labeled with askForHelp, sendHelpRequest, showHelpRequest, acceptHel-

pRequest, sendRequestAccepted and informCustomer. The message from Employee-lifeline
to itself is not a PredicateMessage but a InteractionConditionSentence, it’s concrete syntax is
described in section 13.7.3. They are modelled as black lines between two different Interaction-

RepresentationLifelines. The messages in the centre of Figure 13.36, which connect the Sys-

temElements Terminal and Reception, are PredicateMessages but do not contain a Hyperlink.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 135

Requirements Specification Language Definition – D2.4.1
Requirement representation sentences

ver. 1.00
28.02.2007

In this diagram, all messages between an Actor and a SystemElement contain a Hyperlink, as the
blue font colour indicated. The whole blue part in the message name is the Hyperlink, it refers to
the appropriate Phrase in the vocabulary. The points where a PredicateMessage and a Interac-

tionRepresentationLifeline meet are ActorMessageEnds or SystemElementMessageEnds, their
notation is explained at the description of the appropriate classes. The distribution of Hyperlinks

in this example is not representative, there is no general restriction for a message between an
Actor and a SystemElement to contain a Hyperlink neither a restriction for other messages to
contain no Hyperlinks.

ActorMessageEnd The connections between the ScenarioMessages and the ActorLifelines are
ActorMessageEnds. As it is common in UML sequence diagrams, the message whose end is
modelled just starts or ends at the appropriate lifeline. If the ActorMessageEnd has the role
of sendEvent, no additional graphical element is needed, if it has the role of receiveEvent the
connection to the lifeline is modelled as a black arrow, as it is common in UML. By analogy to
this, the messages in the communication diagram are represented as it is common in UML.

SystemElementMessageEnd The graphical representation of SystemComponentMessageEnd

is analogous to ActorMessageEnd, just it connects not to ActorLifelines but to SystemCompo-

nentLifelines.

InvokeMessageEnd InvokeMessageEnds model the connections between an InteractionInvoca-

tionSentence and a InvokeLifeline. Since their role may be only recieveEvent to InteractionIn-

vocationSentence, because a InvokeLifeline may only be invoked by another lifeline by may
not invoke another lifeline itself, InvokeMessageEnds are modelled as a black arrow, as it is
common in UML for the recieveEvent message end.

InteractionSVOScenarioSentence The InteractionSVOScenarioSentences are not modelled ex-
plicitly, but they are represented implicitly by the SubjectLifelines and PredicateMessages. For
instance, the two lifelines called “Actor” and “Terminal” together with the PredicateMessage

“askForHelp” build up the InteractionSVOScenarioSentence “Actor asks for help at terminal”.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 136

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Chapter 14

Domain elements

14.1 Overview

The DomainElements part defines the domain description aspects of a requirements specifica-
tion. All terms that are domain related, for instance actors and components of the system under
development as well as special actions of actors or the system will be stored in the domain
vocabulary.

Terms Phrases

UML:Kernel

(from UMLMetaModel)
TermsRelationships

Elements

(from RSLSyntax:Kernel) RepresentationSentences

(from RSLSyntax:RequirementRepresentationSentences)

«import»«import»«import»

«import»

«import» «import»«import»

Figure 14.1: Overview of packages inside the DomainEntities part of RSL

While this part of the language has a focus on structured language, it also allows basic object-
oriented representation of structured domain knowledge in the spirit of UML class diagrams.
So, even a simple form of ontology can be represented in this language. Further work on the
query mechanism in WP4 and the experiences from industrial applications during ReDSeeDS
will show whether extensions of the requirements language would be desirable for supporting

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 137

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

DomainElements

Terms

PhrasesDomainElementRepresentations

Notions

Elements

(from RSLSyntax:Kernel)

«import»

«import»

«import»

«import» «import»

«import»

«import»

«import»

«import»

«import»

«import»

Figure 14.2: Overview of packages inside the DomainEntities part of RSL

a knowledge representation and reasoning approach, which would support the representation of
ontologies even better.

The specification in this part of the Requirements Specification Language contains eight pack-
ages as shown in Figures 14.1, 14.2 and 14.3.

• The Terms package contains constructs defining terms, their structure, inflection and
terms’ hyperlinks that can be used in various requirements specifications. Out of these
terms, more complex constructs, like phrases can be built. This is done through the use
of hyperlinks to appropriate terms. This package «import»s from TermsRelationships

package where relationships of different types between terms are defined.

• The TermsRelationships package contains meta-classes that define relationships between
terms. Terms together with relationships form the basic structure for thesaurus and on-
tology. TermsRelationships package «import»s from UML :: Kernel package as term rela-
tionships are specialisations of relationship defined in UML.

• The Phrases package adds to the language important constructs that allow for building
parts of sentences in a structured language. Phases of various type are constructed as sets
of hyperlinks to appropriate terms. This package «import»s from RepresentationSen-

tences as a class representing phrase is an extension of an abstract class representing a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 138

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

SystemElements

DomainElements

Phrases

UML:Kernel

(from UMLMetaModel)

Actors

Elements

(from RSLSyntax:Kernel)

«import»

«import»

«import»

«import»

«import»

«import»

«import» «import»

«import»

«import»

Figure 14.3: Overview of packages inside the DomainEntities part of RSL

sentence in constrained language. It also «import»s from Kernel :: Elements and Terms

in order to define hyperlinks.

• The DomainElementRepresentations package supplies the language with definitions of
representations for all kinds of domain elements. These are textual representations which
contain sets of sentences with hyperlinks to phrases. Meta-classes from DomainElemen-

tRepresentations package extends abstract meta-classes from Kernel :: Elements.

• The DomainElements package supplies the language with abstract, high level constructs
for elements which have their representations separated. These elements have names, and
their representations contain sets of sentences. The names can contain hyperlinks to terms
or phrases. This package also contain definitions for relationships that can exist between
domain elements. Meta-classes from DomainElementRepresentations package extends
abstract meta-classes from Kernel :: Elements as well as from UML :: Kernel.

• The Notions package contains definitions of notion elements which are part of domain
vocabulary. Notions can express all real-world objects or entities from the problem do-
main of the system that requirements specification pertains to. Classes defined in this
package extends more general classes from Kernel :: Elements and DomainElements. No-

tions package also «imports»s from DomainElementRepresentations, Phrases and Terms

in order to use constructs defined in those packages.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 139

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

• The Actors package allows for defining actors as part of the domain vocabulary. There
can be shown relationships between actors. Actors are representable, and can have de-
scriptions in hyperlinked text. Elements in this package extends general elements from
DomainElements and UML :: Kernel. It also «import»s constructs from Phrases.

• The SytemElements package adds to the vocabulary the possibility to express the system
and its general components. This does not allow for designing the system but allows for
showing those elements of the system that might be used inside requirements specifica-
tions. Elements in this package extends general elements from DomainElements and UML

:: Kernel. It also «import»s constructs from Phrases.

Generally, the vocabularies defined through our language consist of RepresentableElements

which have names and HyperlinkedSentences as descriptions. Since these HyperlinkedSen-

tences may contain Hyperlinks, RerpesentableElements resp. their descriptions that are related
to each other are logically connected.

RepresentableElements can be actors, system components, special actions or entities that are
domain-related, but not part of the system under development. Hence, the class Representable-

Element is a base class for some more special classes such as Actor, SystemComponent, and Do-

mainElement. Everyone of these classes derived from RepresentableElement may have special
associations to other RepresentableElements, for instance the DomainElement called wristband

in the fitness-club is associated with the Actor customer as every customer wears a wristband.
These associations are modelled with the class DomainElementAssociation and derived ones.

14.2 Domain elements

14.2.1 Overview

This package describes the general structure of domain elements as part of RequirementsSpec-

ifications :: RequirementsSpecification. It consists of DomainSpecification class that defines the
top level element holding a whole collection of DomainElements for a specific system grouped
in DomainElementsPackages.
DomainSpecification and DomainElementsPackages can be presented in Package Diagrams that
have their syntax derived from UML Package Diagrams. DomainElements are presented in No-

tions :: Notion Diagrams, SystemElements :: SystemElement Diagrams or in Actors :: Actor

Diagrams, while DomainElement is abstract and superclass for these classes. DomainElements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 140

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

can be related through DomainElementRelationship. This relationship can be constrained by
DomainElementMultiplicity. All these elements can be placed in the Project Tree.

14.2.2 Abstract syntax and semantics

Abstract syntax for the DomainElements package is described in Figures 14.4, 14.5, 14.6.

DomainSpecification

RepresentableElement

DomainElement

DomainElementsPackage

Package

Elements::

RepresentableElementsPackage

Notions::

NotionsPackage

Actors::

ActorsPackage

SystemElements::

SystemElementsPackage

«invariant»

{DomainSpecification

cannot contain

nestedPackages}

domainElements

*

{redefines

elements}

domainElementsPackages

*

{redefines elements}

0..1

nestedPackage *

{redefines nestedPackage}

0..1

nestedPackage *

{redefines

nestedPackage}

0..1

Figure 14.4: DomainSpecification

DomainSpecification

Semantics. DomainSpecification is a type of UML Package, i.e. a structure that groups el-
ements and constitutes a container for these elements. It can contain only DomainElements,
which specialisations are: Notions :: Notion, SystemElements :: SystemElement, Actors :: Ac-

tor. DomainElements have to be grouped in DomainElementsPackages’ subclasses. Domain-

Specifications is specific for only one RequirementsSpecification.
Abstract syntax. DomainSpecialisation is a kind of Elements :: RepresentableElementsPack-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 141

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

age. It cannot contain any nested packages. It redefines elements with domainElementsPack-

ages. It can contain many DomainElementsPackages.

DomainElement

Semantics. DomainElement denotes an abstract element of DomainSpecification. DomainEle-

ments are groupped in packages. They have its own representation, which is specific for all
elements of domain. DomainElements can be related.
Abstract syntax. DomainElement is a specialisation of Elements :: RepresentableElement and
is a superclass for Notions :: Notion, SystemElements :: SystemElement and Actors :: Actor. It
is a component for DomainElementsPackage. DomainElement includes its own representation
– DomainElementRepresentations :: DomainElementRepresentation with redefinition of repre-

sentation. DomainElements can be related by DomainElementRelationship. DomainElement is
a source and a target for this relation.

DomainElementsPackage

Semantics. DomainElementsPackage is a type of Elements :: RepresentableElementsPackage.
It is an abstract package grouping DomainElements as well as nested DomainElementsPack-

ages. It is a part of DomainSpecification.
Abstract syntax. DomainElementsPackage is a specialisation of Elements :: RepresentableEle-

mentsPackage. It redefines elements from the superclass with domainElements. It is composite
for DomainElements. It also redefines nestedPackage, which can only be another DomainEle-

mentsPackage. Every DomainElementsPackage can be component of a DomainSpecification.
DomainElementsPackage is a superclass for Notions :: NotionsPackage, SystemElements ::

SystemElementsPackage and Actors :: ActorsPackage.

DomainElementRelationship

Semantics. DomainElementAssociation denotes relationships between two DomainElements.
The relationship can be constrained by bounds of multiplicity.
Abstract syntax. DomainElementRelationship is a kind of Elements :: RepresentableElemen-

tRelationship. It connects two DomainElements by redefining source and target. This relation-
ship is directed. Source of the relationship has to be different than its target – DomainElemen-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 142

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Element

Elements::

RepresentableElement

name: String

DomainElementRelationship
DomainElementRepresentations::

DomainElementRepresentation
DomainElement

Elements::

ElementRepresentation

DirectedRelationship

Elements::

RepresentableElementRelationship

*

1

{redefines target}

*
1

{redefines source}

representations

1..*

{redefines

representations}

representations

1..* target

{redefines target}

source

{redefines source}

Figure 14.5: Relationship of domain elements

tAssociation cannot be associated with itself. DomainElementAssociation can have constrained
multiplicity described by sourceMultiplicity and targetMultiplicity which are c.

DomainElementMultiplicity

Semantics. DomainElementMultiplicity is a type of UML :: Kernel :: MultiplicityElement. It is a
definition of optional DomainElementRelationship’s attributes for defining the bounds of a mul-
tiplicity.
Abstract syntax. DomainElementMultiplicity is a specialisation of UML :: Kernel :: Multiplici-

tyElement. It is component of DomainElementRelationship in two roles: sourceMultiplicity and
sourceMultiplicity.

14.2.3 Concrete syntax and examples

DomainSpecification. The concrete syntax is similar to UML :: Kernel :: Package, described
in the UML Superstructure (in [Obj05b], paragraph 7.3.37, page 104): “A package is shown
as a large rectangle with a small rectangle (a ’tab’) attached to the left side of the top of the
large rectangle. (...) Members may also be shown by branching lines to member elements,
drawn outside the package. A plus sign (+) within a circle is drawn at the end attached to the
namespace (package). (...)” In addition to the above UML :: Kernel :: Package description, name
of DomainSpecification package is inside rectangle situated in the center of the large rectangle.
It can also be presented in a tree structure with a minimized icon. See Figure 14.7 for examples

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 143

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

RepresentableElementRelationship

DomainElementRelationship
DomainElementMultiplicity

Element

UML:Kernel::

MultiplicityElement

UML:Kernel::

ValueSpecification

sourceMultiplicity

0..1

targetMultiplicity

0..1

owningLower

0..1

{subsets owner}

lowerValue

0..1

{subsets ownedElement}

owningUpper

0..1

{subsetsOwner}

upperValue

0..1

{subsets ownedElement}

Figure 14.6: Multiplicities of domain elements’ relationships

of concrete syntax in a Package Diagram and in a Project Tree structure with a minimized icon,
respectively.

Figure 14.7: DomainSpecification example, normal and tree view

DomainElement. As an abstract meta-class, DomainElement does not have a concrete syntax.

DomainElementsPackage. As an abstract meta-class, DomainElementsPackage does not have
a concrete syntax.

DomainElementRelationship. This class is presented as a line connecting two DomainEle-

ments’ specialisations (Notion, SystemElement, Actor). The line can be directed from a source

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 144

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

to a target. See Figures 14.11, 14.12 for examples of concrete syntax in a Domain Element
Diagram.

DomainElementsMultiplicty. The concrete syntax is similar to UML :: Kernel :: MultiplicityEle-

ment, described in the UML Superstructure (in [Obj05b], paragraph 7.3.32, page 90): “the
notation will include a multiplicity specification shown as a text string containing the bounds
of the interval, and a notation for showing the optional ordering and uniqueness specifications.”
See Figures 14.11, 14.12 for examples of concrete syntax in a Domain Element Diagram.

14.3 Notions

14.3.1 Overview

Notions package elements are extension of concepts from DomainElements (see section 14.2).
The new concepts allow linking vocabulary elements through generalisations and attaching at-
tributes to them. The role of core element of this package, a Notion, is to group all Phrases ::

Phrases with Terms :: Noun representing given notion in domain vocabulary.

14.3.2 Abstract syntax and semantics

Notion

Semantics. A Notion is the core element of this package, which extends DomainElement by
allowing generalising elements of vocabulary elements and assigning them properties (Notion-

Attributes). Notion is grouping all Phrases :: Phrases with Terms :: Noun representing given
notion in domain vocabulary. This noun gives a name to this notion.
Abstract syntax. A Notion is the kind of DomainElement and UML :: Kernel :: Package. It
consists of DomainStatements and NotionAttributes. A name of a Notion is redefined by Terms

:: Noun linked by NounLink. Notion can be source and target of NotionGeneralisation. No-

tion is a component of NotionPackage. It is also a superclass for UIElements :: UIElement,
UIElements :: InputOutputDevice and UIElements :: InputOutputType. Notion can be linked
with RequirementsSpecifications :: Requirements by RequirementRelationships :: Vocabula-

ryRequierementRelationship.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 145

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Package

Notion

TermHyperlink

NounLink

DomainStatement

Term

Terms::Noun

Element

Elements::

RepresentableElement

name: String

ConstrainedLanguageSentence

Phrases::Phrase

{Notion groups all DomainStatements whose

"names" contain Phrases linked with the

same Noun as in the Notion's "name"}
ElementRepresentation

DomainElementRepresentations::

DomainElementRepresentation

DomainElements::

DomainElement

RepresentableElementRelationship

NotionGeneralisation
NotionAttribute

name

1

{redefines

name}

1

linkedNoun

1

{redefines

linkedTerm}

statements

0..*

{redefines ownedMember}

1

name

1

{redefines name}
1

representations
1..*

{redefines

representations}

representations

1..*

{redefines representations}

description

0..1

general

1

{redefines target}

specific

1

{redefines source}

0..*

Figure 14.8: Notions

Package

Notion

RepresentableElementsPackage

DomainElements::

DomainElementsPackage

NotionsPackage

RepresentableElement

DomainElements::

DomainElement

RepresentableElementsPackage

DomainElements::

DomainSpecification

notions

*

{redefines elements}

0..1

nestedPackage

*

{redefines

nestedPackage}

0..1

domainElementsPackages
*

{redefines elements}

0..1

nestedPackage

*

{redefines

nestedPackage}

0..1

domainElements

*

{redefines elements}

Figure 14.9: NotionsPackages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 146

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

DomainStatement

Semantics. DomainStatement is a wiki-like description of an element of the domain of the
system to be developed with its context - noun with modifiers, verbs and other nouns. Domain-

Statements are grouped in Notion in a role of statements, which are forming a container for all
Phrases :: Phrases related to Notion that this statements are component of.
Abstract syntax. DomainStatement is kind of Kernel :: RepresentableElement. The inherited
name attribute is redefined by Phrases :: Phrase. It consists of DomainElementRepresentations.
DomainStatement is associated with Phrases :: PhraseHyperlink.

NotionAttribute

Semantics. A NotionAttribute is used for attaching Notion specific properties to domain vocab-
ulary notions. Those properties have descriptions represented similarly to DomainElements.
Abstract syntax. A NotionAttribute is a component of a Notion and consists of DomainElement-

Representation as its description.

NotionGeneralisation

Semantics. A NotionGeneralisation allows parent-child relationships between two Notions: a
more general Notion and more specific Notion.
Abstract syntax. A NotionGeneralisation is a kind of RepresentableElementRelationship. It
links two Notions - specific and general.

NotionPackage

Semantics. A NotionPackage is used for grouping Notions in packages, which can be included
in requirements specification.
Abstract syntax. NotionPackage is a kind of DomainElements :: DomainElementsPackage. It
can have other NotionPackages included in it. NotionPackage consists of Notions.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 147

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

NounLink

Semantics. A NounLink is a entity hyperlinking Notion to Terms :: Noun and therefore giving
Notion a name.
Abstract syntax. NounLink is a kind of Terms :: TermHyperlink that, as a component of Notion,
links it with Terms :: Noun.

14.3.3 Concrete syntax

Notion. The basic representation of Notion is denotated by a rectangle with its name inside it
(see Figure 14.11). Another form of representation is a rectangle divided into three parts by
two horizontal lines. The name of Notion is placed in the upper part. The middle part includes
hyperlinked names of DomainStatements, each in its own rectangle (see Figure 14.12). The
bottom part contains list of NotionAttrbiutes attached to the Notion (see Figure 14.14). Notions
can be presented in diagram as both of their forms of representation. Notion can also be pre-
sented as a tree structure with a minimized icon. An example of concrete syntax for the tree
view of Notion can be found in Figure 14.10.

Figure 14.10: Notion’s tree view example

customer

time schedule

exercises

sign-up

sign-up summary dialog

timeavailability

DomainElementRelationship

Figure 14.11: Notion’s diagram example - notions and their associations

DomainStatement. Concrete syntax includes the name of DomainStatement as a hyperlink to
Phrases :: Phrase or one of its subclasses and description as RequirementRepresentations ::

NaturalLanguageHypertext. It can be represented in the form of a “source” or “view” of wiki-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 148

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

sign-up summary dialog

sign-up summary dialog

show sign-up summary dialog

exercises

cyclic exercises

sporadic exercises

check availability of exercises

submit sign-up for exercises

want to sign up for exercises

sign up customer for exercises

exercises

customer

customer

returning customer

sign up customer

time schedule

time schedule

choose time from time schedule

time

time

choose time
availability

availability

check availability

sign-up

sign-up

submit sign-up

DomainElementRelationship

directed DomainElementRelationship

1..*

1

DomainElementRelationships with multiplicities

Figure 14.12: Notion’s diagram example - extended view of notions

sign up : customer : for : exercises

Customer’s interaction, when customer
sign up for exercises chosen from
available : exercises list.

Wiki-like view

[[v:sign up n:customer p:for n:exercises]]

[[n:Customer]]’s interaction, when customer
sign up for exercises chosen from
[[m:available n:exercises list]].

Wiki-like source

Figure 14.13: DomainStatement example

like hyperlinked sentence. Example of concrete syntax of DomainStatement can be found in
Figure 14.13.

NotionAttribute. It can be presented along with notion it is attached to, in the bottom notion’s
compartment which is separated from phrases compartment by horizontal line. Attributes are
listed in a form of

attribute name1 = value1
attribute name2 = value2
. . .
attribute nameN = valueN

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 149

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

where “attribute name” is a hyperlink (see Figure 14.14).

NotionGeneralisation. The concrete syntax is similar to UML :: Kernel :: Generalisation. No-

tionGeneralisation is shown as a line with hollow triangle as an arrowhead between symbols
representing involved Notions. The arrowhead points to the symbol representing the general
Notion – see Figure 14.14 (based on [Obj05b], p. 68).

Figure 14.14: Notion’s diagram example - attributes and generalisations

NotionPackage. The concrete syntax of this class is inherited from UML :: Kernel :: Package

(see [Obj05b], p. 104). In addition NotionPackages can be presented in a tree-view form (see
Figure 14.10).

NounLink. Concrete syntax is inherited from the Elements :: Hyperlink meta-class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 150

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

14.4 System elements

14.4.1 Overview

This package contains the part of the RSL meta-model that deals with the representation of
those domain elements that are not actors. If the system under development is the fitness club
software system, its system elements are for instance “terminal” or “reception desk”.

14.4.2 Abstract syntax and semantics

The diagrams in Figures 14.15 and 14.16 describes the part of RSL that is related to the repre-
sentation of the composite system under development. The classes introduced in this Figures
are described in the following sections.

SystemElement

RedefinableElement

UML:Kernel::

Classifier

ConstrainedLanguageSentence

Phrases::Phrase

ElementRepresentation

DomainElementRepresentations::

DomainElementRepresentation

RepresentableElement

DomainElements::

DomainElement

{SystemComponent

contains a pure Phrase,

not its specialization}
name

1

{redefines name}

representations
1..*

{redefines representations}

Figure 14.15: System elements

SystemElement

Semantics. This class is the most important class in this package. Every part of the application
domain of the composite system that is referred to in the requirements specification as a “black

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 151

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Classifier

SystemElement

RepresentableElement

DomainElements::

DomainElement

RepresentableElementsPackage

DomainElements::

DomainElementsPackage

SystemElementsPackage

RepresentableElementsPackage

DomainElements::

DomainSpecification

systemElements

*

{redefines

domainElements}

0..1

domainElements

*

{redefines elements}

nestedPackage

*

{redefines

nestedPackage}

0..1

domainElementsPackages
*

{redefines elements}

0..1

nestedPackage *

{redefines nestedPackage}

0..1

systemUnderDevelopment

1

Figure 14.16: System package

box” is modelled as an instance of SystemElement. If requirements for a fitness club system
are specified, system elements may for instance be “terminal”, “database”, or “reception com-
puter”. System components can be referred in functional and non-functional requirements.
Abstract syntax. The class SystemElement is derived from the classes Classifier from the
UML 2.0 Superstructure and the class DomainElements :: DomainElement. The aggregation
toElements :: HyperlinkedSentence, which specifies the name of an Elements :: Element, is re-
defined, thus the name of a SystemElement may only be a Phrases :: Phrase. The constraint is
added to this redefined aggregation because a system’s name should be for example “terminal”
but not a Phrases :: VerbPhrase like “take”.

SystemElementsPackage

Semantics. A SystemElementsPackage is used to group SystemElements in the requirements
specification.
Abstract syntax. SystemElementsPackage is a kind of DomainElements :: DomainElementsPack-

age, it may contain other SystemElementsPackages as nestedPackages. Further, a SystemEle-

mentsPackage may contain SystemElements by the redefined aggregation derived from Do-

mainElement :: DomainElementsPackage.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 152

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

14.4.3 Concrete syntax

SystemElement. A SystemElement occuring in an interaction or a use case representation is
depicted as a rectangular UML object (see Figure 14.17). The Phrases :: Phrase that defines
the name of the SystemElement is written in the rectangle. If a SystemComponent is refered to
in a textual description, it is represented only by the Phrases :: Phrase that defines its name.

class FitnessClubSystem

Terminal :

SystemElement

ReceptionComputer :

SystemElement

Figure 14.17: The concrete syntax of system elements and coresponding packages.

SystemElementsPackage. The concrete syntax of a SystemElementsPackage is similar to the
concrete syntax of packages in UML 2.0, as illustrated by the package in Figure 14.17.

14.5 Actors

14.5.1 Overview

This package contains that part of the RSL metamodel that deals with the representation of
actors in the requirements specification. Actors are for instance “customer” or “fitness club
employee”, they can be refered in every type of requirement representation.

14.5.2 Abstract syntax and semantics

The diagrams in Figures 14.18 and 14.19 describe the RSL part that is related to actors and
packages containign actors. The two classes Actor and ActorsPackage which are introduced in
this Figure are described in the following sections.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 153

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Actor

ConstrainedLanguageSentence

Phrases::Phrase

{Actor contains a pure

Phrase, not its

specialization}

RedefinableElement

UML:Kernel::

Classifier

ElementRepresentation

DomainElementRepresentations::

DomainElementRepresentation

RepresentableElement

DomainElements::DomainElement

name

1

{redefines name}

1

representations
1..*

{redefines representations}

Figure 14.18: Actor metamodel part

Classifier

Actor

RepresentableElement

DomainElements::DomainElement

RepresentableElementsPackage

DomainElements::

DomainElementsPackage

ActorsPackage

RepresentableElementsPackage

DomainElements::

DomainSpecification

actors

{redefines elements}

domainElements

*

{redefines elements}

nestedPackage *

{redefines nestedPackage}

0..1

domainElementsPackages
*

{redefines elements}

0..1

nestedPackage *

{redefines nestedPackage}

0..1

Figure 14.19: Actors package metamodel part

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 154

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Actor

Semantics. This class is the most important class in this package. Every actor that is referred to
in the requirements specification is modelled as an instance of Actor. If requirements for a fit-
ness club system are specified, actors may for instance be “customer”, “system administrator”,
or “staff member”. Actors participate in scenarios and use cases on the one hand, but they may
also be referred to in other functional and even non-functional requirements.
Abstract syntax. The class Actor is derived from the classes Classifier from the UML 2.0 Su-
perstructure and the class DomainElements :: DomainElement.. The aggregation to Elements

:: HyperlinkedSentence, which specifies the name of an Elements :: Element is redefined, thus
the name of an Actor may only be a Phrases :: Phrase. The constraint is added to this redefined
aggregation because an actor’s name should be for example “a customer” but not a Phrases ::

VerbPhrase like “take”.

ActorsPackage

Semantics. A ActorsPackage is used to group Actors in the requirements specification.
Abstract syntax. ActorsPackage is a kind of DomainElements :: DomainElementsPackage, it
may contain other ActorsPackages as nestedPackages. Further, a ActorsPackage may contain
Actors by the redefined aggregation derived from DomainElement :: DomainElementsPackage.

14.5.3 Concrete syntax

Actor. An Actor occurring in an interaction or a use case representation is depicted as a stylised
stick figure (see Figure 14.20), though not only a person can be an actor, but also external
software systems interacting with the system in development. The actor’s ‘name’ is written
below the stick figure.

ActorsPackage. Analogous to DomainElementsPackage and SystemElementsPackage the con-
crete syntax of a SystemPackage is similar to the concrete syntax of packages in UML 2.0, as
illustrated by the package in Figure 14.20.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 155

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

class FitnessClubActors

Customer

Member

Staff Member

Administrator Teacher

Customer

Member

Staff Member

Administrator Teacher

Figure 14.20: The concrete syntax of actors and actors packages.

14.6 Domain element representations

14.6.1 Overview

The package DomainElementRepresentations contains the classes DomainElementRepresentation

and DomainElementHyperlinkedSentence that model the textual representation for all DomainEle-

ments :: DomainElements like Actors :: Actors, Notions :: Notions and SystemElements :: Sys-

temElements.

14.6.2 Abstract syntax and semantics

The diagram in Figure 14.21 shows the abstract syntax of the classes in the package Domain-

ElementRepresentations. The following sections describe semantics and abstract syntax for
these classes.

DomainElementRepresentation

Semantics. This is a textual representation for all DomainElements :: DomainElements (Actors

:: Actors, Notions :: Notions and SystemElements :: SystemElements) in form of wiki-like de-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 156

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Elements::

HyperlinkedSentence

Elements::Hyperlink

DomainElementRepresentation

DomainElementHyperlinkedSentence

Phrases::

PhraseHyperlink

Elements::

ElementRepresentation

sentences

1..*

{ordered}

0..1

hyperlinks 0..*

sentences

1..*

{redefines sentences}

0..1

hyperlinkes

0..*

{redefines

hyperlinks}

Figure 14.21: Domain element representations

scription (it can contain a set of hyperlinked sentences). DomainElementRepresentation can
also build up a textual description of Notions :: NotionAttributes.
Abstract syntax. DomainElementRepresentation is concrete specialisation of abstract Elements

:: ElementRepresentation. It redefines sentences derived from its superclass with DomainEle-

mentHyperlinkedSentence. Every DomainElements :: DomainElement contains at least one
DomainElementRepresentation as its representations. DomainElementRepresentation can be
also contained in Notions :: NotionAttributes as its description.

DomainElementHyperlinkedSentence

Semantics. A DomainElementHyperlinkedSentence is used in a description of a DomainEle-

ments’ subclasses. DomainElementHyperlinkedSentence uses wiki-like hyperlinks in the sen-
tence, pointing to other vocabulary elements. If the sentence does not contain any Hyperlink, it
is simply free text.
Abstract syntax. DomainElementHyperlinkedSentence is kind of Elements :: HyperlinkedSen-

tence. It redefines hyperlinks with Phrases :: PhraseHyperlink. It is also aggregated by Do-

mainElementRepresentation in role of sentences.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 157

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

RepresentableElement

Semantics. Every entity that is related to the system under development is represented by a
RepresentableElement and has a name. Since such elements can be represented in different
ways, every element has at least one representation.
Abstract syntax. RepresentableElement is the abstract base class for all elements related to the
system under development that are represented in the requirements specification, such as Re-

quirementSpecification :: Requirement, DomainElements :: DomainElement or Actors :: Actor.
Every RepresentableElement has a name, which is a BasicRepresentations :: HyperlinkedSen-

tence, so it may contain BasicRepresentations :: Hyperlinks that refer to Phrases :: Phrases and
Terms::Terms in the terminology. In addition to the name, the RepresentableElement is rep-
resented by at least one ElementRepresentation, as the aggregation between these two classes
indicates.

ElementRepresentation

Semantics. Every ElementRepresentation is one possible representation of a RepresentableEle-

ment. Due to this, a RepresentableElement may contain one or more representations. All those
representations in the requirement specification, for instance InteractionRepresentations :: Ac-

torLifeline, which is introduced in section 7.7 “ScenarioRepresentation” of D2.1 “Behavioural
Requirements Language Definition”, are derived from ElementRepresentation.
Abstract syntax. The class ElementRepresentation is the base class for all representations such
as e.g. BasicRepresentations :: RequirementsRepresentation or InteractionRepresentations ::

ActorLifeline. The aggregation to BasicRepresentations :: HyperlinkedSentence shows that a El-

ementRepresentation contains BasicRepresentations :: HyperlinkedSentences, but as the way
these aggregation is realized differes from representation to representation, it is redefined in
most of them. These sentences are typically ordered and may be used to build up the textual
description of the element the ElementRepresentation describes, but there are also other types
of containment relations between ElementRepresentation and BasicRepresentations :: Hyper-

linkedSentence, for instance in the InteractionRepresentations :: InteractionScenario described
in section 12.6.

14.6.3 Concrete syntax

RepresentableElement. ElementRepresentation. These classes are abstract, and they do not
introduce any concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 158

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

DomainElementRepresentation. DomainElementHyperlinkedSentence. DomainElementRep-

resentation is a description of DomainElement. Its concrete syntax depends on the context in
which DomainElementRepresentation is presented to the user. It can be represented in the form
of a purely textual “source”, or in a “view” form of DomainElementHyperlinkedSentence with
underlined wiki-like links. In source, DomainElementRepresentation consists of text with a
double pair of square brackets (“[[]]”) surrounding text to be hyperlinked in view mode. In
view form, contained BasicRepresentations :: Hyperlinks are represented as coloured and un-
derlined text (see Figure 14.22).

Source: View:

[[Customer]]'s interaction, when customer Customer's interaction, when customer
signs up for exercises chosen from signs up for exercises chosen from
[[available exercises list]]. available exercises list.

Figure 14.22: DomainElementRepresentation’s concrete syntax example

14.7 Phrases

14.7.1 Overview

The Phrases package contains language entities that allow for formulating phrases in a struc-
tured language. These Phrases represent Terms :: Nouns associated with other Terms (e.g.
Terms :: Verbs). A generic Phrase is always put in the context of a Terms :: Noun and is (possi-
bly) associated with a Determiner and/or Modifier. Another kind of Phrase is VerbPhrase which
describes the context of a Verb.

14.7.2 Abstract syntax and semantics

The abstract syntax of this package is presented in figures 14.23 and 14.24.

Phrase

Semantics. A Phrase describes an expression involving a given Terms :: Noun.
Abstract syntax. Phrase is a kind of RepresentationSentences :: ConstrainedLanguageSen-

tence. Phrase consists of an Object (a Terms :: TermHyperlink to a Terms :: Noun) and option-
ally of a Modifier or Determiner linking to Terms :: Modifier or Terms :: Determiner, respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 159

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

ConstrainedLanguageSentence

Phrase

ComplexVerbPhrase SimpleVerbPhrase

Term

Terms::Noun

VerbPhrase

Term

Terms::Verb

Term

Terms::

Preposition

TermHyperlink

Modifier

TermHyperlink

Determiner

TermHyperlink

Object

TermHyperlink

PhraseVerb

TermHyperlink

PhrasePreposition

Term

Terms::Modifier

Term

Terms::Determiner

0..1

1

1

1

0..11

0..1

1

1

1

0..1

0..1

0..*

linkedTerm

1
{redefines linkedTerm}

0..*

linkedTerm

1
{redefines linkedTerm}

0..*

linkedTerm

1
{redefines linkedTerm}

0..*

linkedTerm

1
{redefines linkedTerm}

0..*

linkedTerm

1
{redefines linkedTerm}

Figure 14.23: Phrases

A Phrase represents the “name” of a DomainElements :: DomainElement. Phrase contains a
hyperlinked description. It is used for referencing the vocabulary of different requirement rep-
resentations (controlled grammars, wiki-like descriptions).

VerbPhrase

Semantics. This expression describes an operation that can be performed in association with
the Object described by a Terms :: Noun.
Abstract syntax. VerbPhrase is an abstract kind of Phrase. It exists in two concrete classes:
SimpleVerbPhrase and ComplexVerbPhrase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 160

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

SimpleVerbPhrase

Semantics. SimpleVerbPhrase has the semantics of VerbPhrase and can be used as the VO part
in an SVOSentences :: SVOSentence.
Abstract syntax. SimpleVerbPhrase, in addition to a Phrase, includes a PhraseVerb (a Phrases

:: TermHyperlink to a Terms :: Verb). It may also contain a PhrasePreposition. SimpleVerb-

Phrase is a concrete subclass of VerbPhrase.

ComplexVerbPhrase

Semantics. ComplexVerbPhrase can be used as VOO (SVOSentences :: SVOSentence with
direct and indirect object) part in an SVOSentences :: SVOSentence. ComplexVerbPhrase

describes a behavioural relation between a direct and an indirect object.
Abstract syntax. ComplexVerbPhrase extends SimpleVerbPhrase with an additional Terms ::

Noun (indirect object). It is a kind of VerbPhrase pointing to a SimpleVerbPhrase. It also
includes a PhrasePreposition. ComplexVerbPhrase is a concrete subclass of VerbPhrase.

Modifier

Semantics. A Modifier combines with an Object and indicates how it should be interpreted in
the surrounding context. In this way it creates a Phrase that distinguishes this Object’s meaning
from its main vocabulary entry.
Abstract syntax. Modifier is a kind of a Terms :: TermHyperlink. It points to the Terms :: Modifier

used in a given Phrase.

Determiner

Semantics. A Determiner combines with Object and expresses their reference, e.g. “this” or
“that”. This includes quantity (e.g. “some”, “a”, “every”, “two”) and variability, that is the
extent to which a Terms :: Noun holds over a range of things.
Abstract syntax. Determiner is a kind of a Terms :: TermHyperlink. It points to the Term ::

Quantifier used in a given Phrase.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 161

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Object

Semantics. An Object points to the Terms :: Noun specific for this Object’s Phrase.
Abstract syntax. Object is a kind of a Terms :: TermHyperlink.

PhraseVerb

Semantics. A PhraseVerb points to the Terms :: Verb specific for this Phrase.
Abstract syntax. PhraseVerb is a kind of a Terms :: TermHyperlink.

PhrasePreposition

Semantics. A PhrasePreposition points to the Terms :: Preposition used to connect a Phrase-

Verb with its direct and indirect Objects.
Abstract syntax. PhrasePreposition is a kind of a Terms :: TermHyperlink.

PhraseHyperlink

Elements::Hyperlink

HyperlinkedSentence

RepresentationSentences::

ConstrainedLanguageSentence

Phrase
RepresentableElement

Notions::

DomainStatement

PhraseHyperlink

0..*

linkedPhrase

0..1
{redefines
linkedElement}

name

1
{redefines name}

1

Figure 14.24: PhraseHyperlink

Semantics. PhraseHyperlink expresses a reference from a sentence in a DomainElementRepre-

sentation to an element of the domain vocabulary. By using PhraseHyperlinks, domain vocab-
ulary elements can be used in the content of DomainElementRepresentation without copying
their names, but by pointing to their definitions.
Abstract syntax. PhraseHyperlink is a kind of Elements :: Hyperlink and can reference a single

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 162

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Notion :: DomainStatement. It can be part of a DomainElementRepresentations :: DomainEle-

mentHyperlinkedSentence.

14.7.3 Concrete syntax and examples

Source: View:

[[n:customer]] customer

[[m:registered n:customer]] registered : customer

Figure 14.25: Phrase concrete syntax examples

Source: View:

[[v:sign up n:customer]] sign up : customer

Figure 14.26: SimpleVerbPhrase concrete syntax examples

Source: View:

[[v:sign up n:customer p:for
n:exercises]]

sign up : customer : for : exercises

Figure 14.27: ComplexVerbPhrase concrete syntax examples

Object. Modifier. Determiner. PhraseVerb. PhrasePreposition. Their concrete syntax depends
on the context in which they are presented to the user. They can be represented in source or
view form. In the source form, they consist of the linked terms’ names preceded by a letter
with a colon (“:”) indicating the term type (“n:” for noun (Object), “m:” for Modifier, “d:”
for Determiner, “v:” for PhraseVerb, “p:” for PhrasePreposition). In view form, they are
represented as the linked terms’ names separated by colons (see figures 14.25, 14.26, 14.27).

Phrase. SimpleVerbPhrase. ComplexVerbPhrase. These are represented by sequences of
Terms :: TermHyperlinks. Their concrete syntax is described in the above paragraph (see Figures
14.25, 14.26, 14.27). Regular expressions for the order of the Terms :: TermHyperlinks in
Phrases are depicted in figure 14.28

PhraseHyperlink. Its concrete syntax depends on the context in which PhraseHyperlink is
presented to the user. It can be represented in the form of a purely textual “source”, or in a
“view” form of underlined wiki-like links. In source form, PhraseHyperlink consists of a double
pair of square brackets (“[[]]”) surrounding the hyperlinked text. In view form, PhraseHyperlink

is represented as coloured and underlined text (see Figure 14.29).

VerbPhrase. As an abstract meta-class, VerbPhrase does not have a concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 163

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Phrase ::== [Determiner] [Modifier] Object
SimpleVerbPhrase ::== PhraseVerb [PhrasePreposition] [Determiner]

[Modifier] Object
ComplexVerbPhrase ::== SimpleVerbPhrase [PhrasePreposition]

[Determiner] [Modifier] Object

Figure 14.28: Regular expressions for Phrase and its subclasses. Optional elements are denoted
by square brackets.

Source:

[[d:The n:Fitness Club]] a:should [[v:provide n:bracelets]].

c:If [[d:a n:customer]] [[v:signs up p:for d:a n:course]], [[d:the
n:system]] a:must [[v:bill d:this n:customer]].

View:

The : Fitness Club : should : provide : bracelets.

If : a : customer : signs up : for : a : course : , the : system : must : bill : this : customer.

Figure 14.29: PhraseHyperlink concrete syntax example

14.8 Terms

14.8.1 Overview

This package describes terms, its structure, inflection and terms’ hyperlinks.

Terminology is the main package structure containing all Terms. Every Term has to have at
least one Lexeme. Lexeme consists of its Lemma and Inflections. Such a structure allows for
presenting Term in more than one national language. Terms are used by another parts of RSL
through a TermHyperlink.

Every term is a distinguished part of speech. Note that “term” is not necessarily a single word
(e.g. some modal verbs – see note on the Diagram 14.30). We also treat phrasal verbs as Verb

class objects. Terms from Terminology are used for building Phrases.

14.8.2 Abstract syntax and semantics

Figure 14.30 shows the specialisation hierarchy of the different types of Terms, which are Con-

ditionalConjunction, ModalVerb, Verb, Noun, Modifier, Determiner and Preposition.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 164

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Verb Noun

Term

PrepositionModalVerb

M odal verb in Engl ish:
wi l l and would
shal l and should
m ay and m ight
can and could
m ust and have to
ought to and had better
in m ore archaic use, dare and need
by som e accounts, do

Package
Terminology

ConditionalConjunction Modifier Determiner

Determ iner and M odi fier can
be d i fferent parts of speech in
di fferent languages.

Exam ples in Engl ish:
a, the, these, that,
som e, every, no, any,
one, ten

0..*
{redefines
ownedM em ber}

Figure 14.30: Term and its specialisations.

Figure 14.31 shows the structure for forms of the Term. This construction consists of Lexeme

which includes only one Lemma and can have some Inflections.

Figure 14.32 shows the TermHyperlink and all its subclasses.

Terminology

Semantics. Terminology is a structure containing all the Terms, with their forms, inflections,
cases etc. as well as their relations between each other (see section 14.9). These relations define
the semantics of the Terms.
Abstract syntax. Terminology is a kind of Package. It contains Terms.

Term

Semantics. Term is a unit of language that native speakers can identify as a meaning-coherent
notion. It is a block from which a phrase is made. A Term usually has different grammar forms.
It can have forms for different national languages.
Abstract syntax. Term is a class, that contains at least one Lexeme. Terms are grouped in a
Terminology.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 165

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Term Lexeme

- language: String

Lemma

Inflection

- type: In flectionT ype

«enum eratio...
InflectionType

«enum »
 gender
 person
 tense
 num ber
 case
 m ood

1..*1

0..*

1

11

Figure 14.31: Inflections of the Term.

Elements::Hyperlink Term

Phrases::Object

Phrases::Modifier Phrases::
Determiner

Phrases::
PhraseVerb

Phrases::
PhrasePreposition

SVOSentences::
ModalVerb

Notions::NounLink

TermHyperlink

SVOSentences::
ConditionalConjunction

0..*

l inkedTerm

0..1
{redefines

l inkedElement}

Figure 14.32: TermHyperlink and its subclasses

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 166

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Lexeme

Semantics. Lexeme is an abstract unit of morphological analysis in linguistics. It is character-
istic for national language. It can be understood as a set of forms, inflections of the same Term.
Abstract syntax. Lexeme is a component of Term. It consists of only one Lemma and some In-

flections. This class has an attribute “language” of type String determining the national language
of the Lexeme.

Lemma

Semantics. Lemma represents the canonical form of a Lexeme.
Abstract syntax. This class is a component of Lexeme. Lexeme can have only one Lemma.

Inflection

Semantics. Inflection is modification of a Term (or more precisely Lemma) reflecting a gram-
matical information. Grammatical form is constrained by InflectionType gender, tense, number,
person, case, mood.
Abstract syntax. This class is a composite of Lexeme. Lexeme has at least one Inflection, the
Lemma.

InflectionType

Semantics. InflectionType determines type of Term’s inflection type. Possible types of inflec-
tions are: gender, tense, number, person, case, mood.
Abstract syntax. InflectionType is an enumerator which defines values: gender, tense, number,
person, case, mood.

ConditionalConjunction

Semantics. A ConditionalConjunction is a Terminology element used for combining two sen-
tences into a conditional or state descriptive structure.
Abstract syntax. ConditionalConjunction is a kind of a Term.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 167

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

ModalVerb

Semantics. A ModalVerb (also modal, modal auxiliary verb, modal auxiliary) is a type of aux-
iliary verb that is used to indicate a provision of syntax that expresses the predication of an
action, attitude, condition, or state other than that of a simple declaration of fact.
Abstract syntax. ModalVerb is a kind of Term.

Modifier

Semantics. A Modifier is a type of Term that combines with a Noun and indicates how it should
be interpreted in the surrounding context. Modifier can be different parts of speech in different
languages (e.g.Ṁodifier in Lithuanian can be adjective, pronoun, pronoun+adjective, participle,
pronoun+participle, in Polish it is an Adjective sourcing from a Noun).
Abstract syntax. Modifier is a kind of Term.

Determiner

Semantics. A Determiner is a type of Term that combines with a Noun and indicates how it
should be interpreted in the surrounding context. This includes quantity and variability, that
is the extent to which Noun holds over a range of things. Determiner can be different parts of
speech in different languages (e.g. Determiner in Polish can be Zaimek (Pronoun)).
Abstract syntax. Determiner is a kind of Term.

Noun

Semantics. A Noun is a type of Term that names objects (e.g. a person, place, thing, quality,
action or data).
Abstract syntax. Noun is a kind of Term.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 168

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Preposition

Semantics. A Preposition is a type of Term that combines with Phrases :: Phrases and indicates
how they should be interpreted in the surrounding context.
Abstract syntax. Preposition is a kind of Term.

Verb

Semantics. A Verb is a type of a Term that expresses action or state of being.
Abstract syntax. Verb is a kind of a Term.

TermHyperlink

Semantics. A TermHyperlink denotes a reference to a Term. Using instances of the various sub-
classes of TermHyperlink, Terms can be used in Phrases, SVOSentences, Notions by pointing
to them.
Abstract syntax. The abstract meta-class TermHyperlink is a kind of Elements :: Hyperlink. It
can reference a single Term.

14.8.3 Concrete syntax and examples

Terminology. It is a semantic structure that holds Terms. This structure should allow for
semantic-based reuse of organisation-specific Terms. The concrete syntax is equivalent to the
concrete syntax of the DomainVocabulary (compare Figure 14.33 and Figure 14.7) which is
based on Kernel :: Package. More important is the tree view presentation of the Terminology as

Figure 14.33: Package view: Terminology’s concrete syntax.

depicted in Figure 14.34. Please note that the tree view depicts only the specialisation relations.
Therefore relations between Terms are not shown.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 169

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Figure 14.34: Terminology tree view example

Term. It is a string of letters and white spaces having a logical meaning in a specific natural
language. The name of the Term is delivered by the Lexem. Examples (for English): “car”,
“buy”, “look for”, “buy ticket button”, “at”, “must”, “every”.

Lexeme. It is a string of letters and white spaces having a logical meaning in a specific natural
language. The name of the Lexeme is delivered by the Lemma. Lexeme can be marked with
the national language shortcut. Examples (for English): “EN: car”, “EN: buy”, “EN: look for”,
“EN: buy ticket button”, “EN: at”, “EN: must”, “EN: every”. Examples (for Polish): “PL:
samochód”, “PL: kupić”, “PL: szukać”, “PL: przycisk kupowania biletu”, “PL: przy”, “PL:
musieć”, ‘’PL: każdy”.

Lemma. It is a string of letters and white spaces having a logical meaning in a specific natural
language. Lemma should be marked with a key-word “basic form”. Examples (for English):

“basic form: car”, “basic form: buy”, “basic form: look for”, “basic form: buy ticket button”,
“basic form: at”, “basic form: must”, “basic form: every”.

Inflection. It is a string of letters and white spaces having a logical meaning in a specific natural
language. Inflection should be marked with a key-word corresponding to InflectionType. Exam-

ples (for English): “singular: car”, “plural: cars”, “third person: buys”, “ infinitive: looking
for”.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 170

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

InflectionType. It is a string of letters and white spaces finished with a colon “:”, used in formu-
lating a key-word used in describing Inflection. Examples (for English): “singular:”, “plural:”,
“third person:”, “infinitive:”.

Conditional Conjunction. It is a string of letters and white spaces used in formulating con-
ditional or state descriptive clauses. Examples (for English): “if”, “when”, “upon”, “after”,
“during”.

ModalVerb. It is a string of letters and white spaces used in formulating a modal form. Examples

(for English): “will”/“would”, “shall”, “should”, “may”/“might”, “can”/“could”, “must”, “have
to”, “ought to”.

Modifier. is a string of letters and white spaces used in describing (modifying the meaning of)
a Noun. Examples (for English): “registered”, “fast”, “common”.

Determiner. is a string of letters and white spaces used in formulating a quantity and a variabil-
ity of a Noun. Examples (for English): “every”, “one”, “each”.

Noun. It is a string of letters and white spaces used in formulating an objects’ description.
Examples (for English): “user”, “system”, “buy ticket button”, “accessibility”, “saving”

Preposition. It is a string of letters and white spaces used in formulating Phrases :: Phrases’

context. Examples (for English): “on”, “of”, “to”, “for”, “inside”, “next to”, “in accordance
with”

Verb. is a string of letters and white spaces used in formulating an action description. Examples

(for English): “add”, “show”, “save”, “start”, “provide”, “look for”, “choose between”

TermHyperlink. As an abstract meta-class, TermHyperlink does not have a concrete syntax.

14.9 TermsRelations

14.9.1 Overview

This package describes subclasses, that form the basic structure for thesaurus and ontology.
TermSpecialisationRelation as well as HasSynonym and HasHomonym relations are seen as the
main semantic information for Terms :: Term.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 171

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

The TermSpecialisationRelation structures the terms in a taxonomical hierarchy. This semantic
definition is organisation-specific and is specified by extending the term structure (see Figures
14.37 and 14.38 for an example).

14.9.2 Abstract syntax and semantics

Figure 14.35 introduces two bi-directional relations that can be defined between two Terms,
namely HasHomonym and HasSynonym.

Terms::Term

Package
Terms::

Terminology

HasHomonym

HasSynonym

UML:Kernel::
Relationship

*
1

*1

0..*
{redefines
ownedMember}

1

isHomonym *

1 isSynonym *

Figure 14.35: Synonym and homonym Terms’s relations.

Figure 14.36 also contains all the specialisations of Term mentioned above. This figure focuses
on the relationships that can be defined between two terms of the same type (only in between two
Nouns, between two Verbs, etc.). All relations are specialisations of TermSpecialisationRelation

and thus define a directed taxonomic relation.

HasHomonym

Semantics. A HasHomonym relates two Terms :: Terms that have the same character string as
“name” attribute but that have different meanings.
Abstract syntax. HasHomonym is a kind of Relationship from UML :: Kernel package [Obj05b].
HasHomonym inherits concrete syntax from Relationship.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 172

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

Term
Terms::Verb

Term
Terms::Noun

Term
Terms::Determiner

Term
Terms::

Preposition

Term
Terms::ModalVerb

Term
Terms::Modifier

Term
Terms::

ConditionalConjunction

NounSpecialisationRelation

VerbSpecialisationRelation

ModalVerbSpecialisationRelation

ModifierSpecialisationRelation

DeterminerSpecialisationRelation

PrepositionSpecialisationRelationCondConjunctionSpecialisationRelation

TermSpecialisationRelation

UML:Kernel::
DirectedRelationship

UML:Kernel::
Relationship

1

Determ inerSpecia l ised

*

1

Preposi tionSpecial ised

**

VerbGenera l ised

1 1

Modi fierSpecia l ised

*

1

ModalVerbSpecia l ised

*

1

VerbSpecial ised

*

1

NounSpecial ised

*

*

CCGeneral ised

1

*

Modi fierGenera l ised

1

*

ModalVerbGenera l ised

1

*

Preposi tionGenera l ised

1

*

Determ inerGenera l ised

1

*

NounGeneral ised

11

CCSpecial ised

*

Figure 14.36: Specialisation Relations of terms from the same type.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 173

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

HasSynonym

Semantics. A HasSynonym relates two Terms :: Terms that have the same meaning but a
different character string as “name” attribute.
Abstract syntax. HasSynonym is a kind of Relationship from UML :: Kernel package [Obj05b].
HasSynonym inherits concrete syntax from Relationship.

TermSpecialisationRelation

Semantics. TermSpecialisationRelation is an abstract class that defines semantics for all other
relation classes in this package other than HasHomonym and HasSynonym. TermSpecialisa-

tionRelation inherits concrete syntax from DirectRelationship. The subclasses of TermSpecial-

isationRelation are: CondConjunctionSpecialisationRelation, ModalVerbSpecialisationRelation,
NounSpecialisationRelation, ModifierSpecialisationRelation, DeterminerSpecialisationRelation,
PrepositionSpecialisationRelation. These relations define specific specialisation relations for
the diverse types of terms. Those subclasses ensure that the source and the target of the re-
lationship are of the same kind of Terms :: Term. The source of each relationship should be
different from its target - Terms :: Term cannot be associated with itself.
Abstract syntax. TermSpecialisationRelation is a kind of DirectRelationship from the UML ::

Kernel package [Obj05b].

CondConjunctionSpecialisationRelation

Semantics. A CondConjunctionSpecialisationRelation relates one Terms :: ConditionalConjunc-

tion (as the source of the relationship) to another Terms :: ConditionalConjunction (the target of
the relationship).
Abstract syntax. CondConjunctionSpecialisationRelation is a kind of TermSpecialisationRela-

tion.

ModalVerbSpecialisationRelation

Semantics. A ModalVerbSpecialisationRelation relates one Terms :: ModalVerb (as the source
of the relationship) to another Terms :: ModalVerb (the target of the relationship).
Abstract syntax. ModalVerbSpecialisationRelation is a kind of TermSpecialisationRelation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 174

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

VerbSpecialisationRelation

Semantics. A VerbSpecialisationRelation relates one Terms :: Verb (as the source of the rela-
tionship) to another Terms :: Verb (the target of the relationship).
Abstract syntax. VerbSpecialisationRelation is a kind of TermSpecialisationRelation.

NounSpecialisationRelation

Semantics. A NounSpecialisationRelation relates one Terms :: Noun (as the source of the rela-
tionship) to another Terms :: Noun (the target of the relationship).
Abstract syntax. NounSpecialisationRelation is a kind of TermSpecialisationRelation.

ModifierSpecialisationRelation

Semantics. A ModifierSpecialisationRelation relates one Terms :: Modifier (as the source of the
relationship) to another Terms :: Modifier (the target of the relationship).
Abstract syntax. ModifierSpecialisationRelation is a kind of TermSpecialisationRelation.

DeterminerSpecialisationRelation

Semantics. A DeterminerSpecialisationRelation relates one Terms :: Determiner (as the source
of the relationship) to another Terms :: Determiner (the target of the relationship).
Abstract syntax. DeterminerSpecialisationRelation is a kind of TermSpecialisationRelation.

PrepositionSpecialisationRelation

Semantics. A PrepositionSpecialisationRelation relates one Terms :: Preposition (as the source
of the relationship) to another Terms :: Preposition (the target of the relationship).
Abstract syntax. PrepositionSpecialisationRelation is a kind of TermSpecialisationRelation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 175

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

14.9.3 Concrete syntax and examples

HasSynonym. HasSynonym is presented in tree view as subelement (leaf) of Terms :: Term

(see Figure 14.34).

HasHomonym. HasHomonym is presented in tree view as subelement (leaf) of Terms :: Term

(see Figure 14.34).

TermSpecialisationRelation. As an abstract meta-class, TermSpecialisationRelation does not
have a concrete syntax. All specialisation classes of TermSpecialisationRelation are depicted as
a package with a subpackages in the tree view of the Terminology (see Figure 14.34).

Figures 14.37 and 14.38 show the abstract syntax of a terminology with domain-specific exten-
sions (for ProDV related terms in this case). Figure 14.37 depicts the noun related part of the
terminology, while Figure 14.38 shows the verb related part respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 176

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

ProDVNoun :Noun

Data :NounPerson :Noun Thing :Noun

Admin :Noun ClubMember :NounStaffMember :Noun

ProDVtoPerson :

NounSpecialisationRelation

ProDVtoThing :

NounSpecialisationRelation

ProDVtoData :

NounSpecialisationRelation

PersontoNoun :

NounSpecialisationRelation

PersontoClubMember :

NounSpecialisationRelation

PersontoStaffMember :

NounSpecialisationRelation

ProDVTerm :Term

ProDVTermtoNoun :

TermSpecialisationRelation

Figure 14.37: Part of a Terminology in abstract syntax with organisation-specific extension (only
Nouns are presented in this figure.)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 177

Requirements Specification Language Definition – D2.4.1
Domain elements

ver. 1.00
28.02.2007

ProDVVerb :Verb

change :Verb

update :Verb change :Verb modify :Verb

input :Verb

enter :Verb type :Verb

ProDVtoChange :

VerbSpecialisationRelation

ProDVtoInput :

VerbSpecialisationRelation

ChangetoUpdate :

VerbSpecialisationRelation

ChangetoChange :

VerbSpecialisationRelation

ChangetoModify :

VerbSpecialisationRelation

Inputtoenter :

VerbSpecialisationRelation

InputtoType :

VerbSpecialisationRelation

ProDVTerm :Term

ProDVTermtoVerb :

TermSpecialisationRelation

Figure 14.38: Part of a Terminology in abstract syntax with organisation-specific extension (only
Verbs are presented in this figure).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 178

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

Chapter 15

User interface elements

15.1 Overview

This chapter provides detailed description of the RSL elements for the representation of the user
interface. Figure 15.1 shows dependencies of packages containing these elements. The main el-
ement for the UI structure is UIElement. The abstract syntax, the semantics and concrete syntax
of these elements are given in the following sections. Examples of their concrete representation
are also given.

UIElements

NotionsElements

UIBehaviourRepresentations

«import»

«import»

« import»

« import»

Figure 15.1: Overview of packages containing elements for the representation of the user inter-
face

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 179

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

15.2 Abstract syntax and semantics

Figure 15.2 shows model-based elements for defining the user interface with the RSL. All user
interface elements are subclasses of UIElement. These UIElements are general, meaning that
they are not bound to any implementation toolkit.

Notion

UIElement

hasAutoContent: boolean

isMandatory: boolean

InputUIElement

dataValidation: String

OptionUIElement

isReSelectable: boolean

SelectionUIElement

maximumSelectableOptions: int

sortCriterion: String

sortOrder: String

TriggerUIElement

executionTime: int

isStatelessTrigger: boolean

UIContainer

UIPresentationUnit

0..*

0..*

{"isReSelectable" must have the same value}

Figure 15.2: UIElements

UIElement

Semantics. UIElement is the general element for representable user interface elements. User
interface elements are all elements that facilitate the interaction or communication between a
user and the CBS to be developed. Concrete user interface elements may be visible, hearable,
touchable etc. They can be implemented as software, e.g., widgets like button, checkbox, table,
window, form etc., or hardware, e.g, gadgets or their components like touch screen, keyboard,
mouse, microphone etc.
Abstract syntax. UIElement is a specialization of Notions :: Notion. It extends this with the
Attributes

• isMandatory whose value indicates that a UIElement is mandatory (true) or optional
(false) and

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 180

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

• hasAutoContent for determining whether the value of an Element can be generated auto-
matically (true) or not (false).

that are common to all user interface elements. UIElement must have at least one representation.
This can be defined by the class UIElementRepresentation. It is also associated with element
PresentationOrder that defines the ordering of UIElements. UIElement can also associated with
many InputOutputDevices for specifying hardware devices required for proper interaction with
UIElement objects. The twofold association with UIBehaviourRepresentations :: UserAction re-
flects the role of UIElement in a user action; UIElement can be a sources of many UIBehaviour-

Representations :: UserActions and a UIBehaviourRepresentations :: UserAction can be a target
of many UIElements. Regarding interaction, a user interface element can trigger a use case. For
this purpose UIElement is associate with at least one RequirementsSpecifications :: UseCase.
To allow for usage oriented definition of the user interface, UIElement is specialized into In-

putUIElement, TriggerUIElement, OptionUIElement, SelectionUIElement and UIContainer. The
last one aggregates UIElements. Figure 15.3 shows UIElement and all its direct and extended
relationships.

TriggerUIElement

Semantics. A TriggerUIElement is a user interface element with which users can trigger func-
tions, operations etc. Example of concrete elements include buttons and toggle buttons most
used in graphical user interfaces.
Abstract syntax. A TriggerUIElement is a special UIElement for direct triggering of operations.
It extends UIElement by defining an integer attribute executionTime that can be used to specify
the time that should elapse before the triggered operation starts and a boolean attribute isState-

lessTrigger that can be used to specify whether the trigger element should maintain its state
after triggering or not (see Figure 15.2).

InputUIElement

Semantics. A InputUIElement is a user interface element for data input. Text field and text area
are examples of such elements on graphical user interfaces.
Abstract syntax. A InputUIElement is a special UIElement for entering new data into the system.
It extends UIElement by defining an String attribute dataValidation that holds data validation
constraints or other conditions as informal text (see Figure 15.2).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 181

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

UIElement

- hasAutoContent: boolean

- isMandatory: boolean

DomainElement

Package

Notions::Notion
InputOutputDevice

- deviceId: String

InputUIElement

- dataValidation: String

OptionUIElement

- isReSelectable: boolean

PresentationOrder

SelectionUIElement

- maximumSelectableOptions: int

- sortCriterion: String

- sortOrder: String

TriggerUIElement

- executionTime: int

- isStatelessTrigger: boolean

UIContainer

ElementRepresentation

UIElementRepresentation

Requirement

UseCase

RequirementsSpecifications::

UseCase

UIBehaviourRepresentations::

UserAction

UIPresentationUnit

InputOutputType

- description: String

0..*

{"isReSelectable"

must have the

same value}

0..*

+source

1..*

{subsets

representations}

+representations

0..1

0..*

+temporalOrder

0..*

0..*

{ordered}

1..*

0..*

+target 0..*

+triggeredUseCase 0..1

0..*

+device 0..*

+spatialOrder

0..*

0..*

{ordered}

Figure 15.3: Relationships with UIElement

OptionUIElement

Semantics. A OptionUIElement is a user interface element for defining a single selectable op-
tion. This can be for example a checkbox or a radio button used for graphical user interfaces.
The main difference between the two examples is that while a check box can be directly selected
and deselected, a radio button can only be directly selected.
Abstract syntax. OptionUIElement is a specialization of UIElement. It extends UIElement by
defining a boolean attribute isReSelectable for determining whether the option can be directly
deselected after selection and vice versa (see Figure 15.2).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 182

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

SelectionUIElement

Semantics. A SelectionUIElement is use interface element that presents a list of options to the
user for selection. Depending on the settings, the user can select one or multiple options. Con-
crete examples include drop down lists or list.
Abstract syntax. SelectionUIElement is a specialization of UIElement. It extends UIElement by
defining an Aggregation of options out of which some or all can be selected at once. The maxi-
mum number of options allowed can be specified in an integer attribute maximumSelectableOp-

tions. All OptionUIElements in the aggregation must have the same value for the attribute isReS-

electable. Moreover SelectionUIElement defines a String Attribute sortCriterion for specifying
the criterion for sorting the options and sortOrder for specifying the order for sorting these
options (see Figure 15.2).

UIContainer

Semantics. A UIContainer groups other UIElements. Such a group can be used as a structuring
element or it can facilitate the manipulation and presentation of its elements. When a container
is deleted from the user interface, all its contents are also deleted. A concrete examples for a
UIContainer is a JPanel, from the Java Swing component.
Abstract syntax. A UIContainer is a special UIElement that can be used to define a group of
other UIElements. This is indicated by the aggregation. The elements in a container may be
organized in a certain order by using the element PresentationOrder (see Figure 15.2).

UIPresentationUnit

Semantics. A UIPresentationUnit groups elements that logically belong together and should be
presented as a unit to the user. It is equivalent to a logical window that presents a view of in-
formation to a user [Lau05]. Therefore elements in a UIPresentationUnit should always be kept
intact. Of course a PresentationUnit can contain elements organized in several UIContainers as
subgroups. Concrete examples include dialogue windows, application windows or tabs win-
dows.
Abstract syntax. A UIPresentationUnit is a special UIContainer that can be component of
UIScene.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 183

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

PresentationOrder

Semantics. User interface elements might need to be arranged in a certain order either in a con-
tainer or as a flow of containers. This class defines occurrence order of the UIElement in parent
one. Through PresentationOrder, UIElements can be ordered according to time (time sequence)
or space (layout). PresentationOrder can not be used with root UIElement (element which is not
included by any other).
Abstract syntax. PresentationOrder is associated with UIContainer, which includes same UIEle-

ments. It also has two associations to UIElement for defining the time sequence (temporalOrder)
and layout (spatialOrder). See Figure 15.4.

Notion

UIElement

hasAutoContent: boolean

isMandatory: boolean

UIContainer

PresentationOrder

0..*

0..1

0..*

temporalOrder

0..*
0..*

{ordered}

spatialOrder

0..*0..*

{ordered}

Figure 15.4: Ordering Element for UI Elements

UIElementRepresentation

Semantics. UIElementRepresentation is a possible representation of the UIElement (another
is DomainElementRepresentations :: DomainElementRepresentation, while UIElement is kind
of Notions :: Notion). It may be expressed in most appropriate manner for concrete UIElement.
Basically it is exhibiting an UIElement in some visible image (screenshot) or another form (icon,
file, voice).
Abstract syntax. UIElementRepresentation is a kind of Elements :: ElementRepresentation. It
is a part of UIElement and forms its “representations”. See Figure 15.5.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 184

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

UIElement

hasAutoContent: boolean

isMandatory: boolean

UIElementRepresentation

DomainElement

Package

Notions::Notion

Elements::ElementRepresentation

1..*

{subsets

representations}

representations

Figure 15.5: Representatinos of UI elements

InputOutputDevice

Semantics. InputOutputDevice gives a possibility to express a external device connected with
the UIElement. Such device facilitates the interaction of the user with UIElements. For example
user interface elements with drop mechanism like "drop down list", require pointing interaction
devices like the "mouse" for proper interaction [ZK99].
Abstract syntax. InputOutputDevice is a specialisation of Notions :: Notion. Due to this spe-
cialisation, InputOutputDevice has representation of Notions :: Notion and is stored in Notions

:: NotionsPackage. InputOutputDevice can be associated with many UIElements by “device”
attribute and InputOutputTypes. It should have a unique identifier “device_id”that can be stored
as a String. See Figure 15.6.

InputOutputType

Semantics. InputOutputType represents the style of interaction between user and element of
user interface, which is supported by InputOutputDevice. A device may have some specific in-
teraction styles. For example a mouse can best support the interaction types “selection”, “drag
and drop”, “scrolling”, etc.
Abstract syntax. InputOutputType is a specialisation of DomainElement. Due to this specialisa-
tion, InputOutputType has DomainElement’s representation and is stored in DomainVocabulary.
InputOutputType is a class of InputOutputDevice types. Attribute description gives details of
InputOutputDevice. An InputOutputType should be supported by at least one InputOutputDevice

(see Figure 15.6).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 185

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

InputOutputDevice

deviceId: String

InputOutputType

description: String

UIElement

hasAutoContent: boolean

isMandatory: boolean

DomainElement

Package

Notions::Notion

1..*

0..*

device 0..*

Figure 15.6: Devices for UI elements

15.3 Concrete syntax and examples

The concrete syntax of UIElements should consist of prototype oriented domain specific pre-
sentations that can be easily understood by users. This facilitates their communication the
requirement analyst and allows early evaluation. This can be done by defining domain specific
stereotypes and associating them with UIElements.

UIElement. The concrete syntax of UIElement depends on the context in which it is presented
to the user. It can be represented like other Notions :: Notions at DomainElement’s diagram, in
tree view with nodes categorised in related UserActions, InputOutputDevices, UIElementRepre-

sentations and PresentationOrders, as a wiki-like description (see Section 14.3) or as a stand
alone icon. Figure 15.7 shows two examples of the concrete syntax of UIElement. The repre-
sentation is an icon consists of the element name and the symbol indicating the element type.
Moreover the symbol can indicate whether the UIElement is mandatory, critical etc. The tree
view representation shows all elements associated with the UIElement in categeries described
above. Additionally, each category has an icon for easy identification.

Other UIElements. Since TriggerUIElement, InputUIElement, OptionUIElement, SelectionUIEle-

ment, UIContainer and PresentationUnit are special UIElements, they can also be represented by
using the concrete syntax shown above. However an other icons indicated in Figure 15.8 are
used in order to visually differentiate them from each other.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 186

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

Figure 15.7: Examples of UIElement Concrete Syntax

Figure 15.8: Examples of Concrete Syntax for other UIElements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 187

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

PresentationOrder. This class is presented in the form of table. It has three columns:

• child UIElement’s name,

• spatial order,

• temporal order.

The first row of this table includes names of columns and further rows includes concrete data.
Example of concrete syntax for this class can be found at the Figure 15.9.

Figure 15.9: UIPresentationOrder concrete syntax example

Figure 15.10: UIElementRepresentation concrete syntax example

InputOutputDevice. Its concrete syntax depends on the context in which InputOutputDevice is
presented to the user. It can be represented like Notions :: Notion at DomainElement’s diagram,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 188

Requirements Specification Language Definition – D2.4.1
User interface elements

ver. 1.00
28.02.2007

in tree view or as a wiki-like description (see Section 14.3). In user interface preview diagram
it is presented as rectangle with a stereotype name describing device (see Figure 15.10). For
predefined stereotypes, InputOutputDevice is presented as appropriate icon (see A.2).

InputOutputType. Its concrete syntax depends on the context in which InputOutputType is
presented to the user. It can be represented like Notions :: Notion at DomainElement’s diagram,
in tree view or as a wiki-like description (see Section 14.3).

UIElementRepresentation. UIElementRepresentation is presented as rectangle with the upper
right corner “note symbol” and name of the representation in the center. It is an external item,
which is used for additional description UIElement. Composition relation between UIElemen-

tRepresentation and UIElement is expressed by simple line. For example see Figure 15.10.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 189

Requirements Specification Language Definition – D2.4.1
User interface behaviour representation

ver. 1.00
28.02.2007

Chapter 16

User interface behaviour representation

16.1 Overview

This package describes the general structure of UI elements that are used to describe behaviour
of user interface. UIBehaviourRepresentations :: UIStoryboard as the main element presenting
behaviour of user interface includes UIScenes connected to ScenarioSenteces :: SVOScenar-

ioSentence. Each UIScene is built from UIElements :: UIPresentationUnit enriched by descrip-
tion and scene number. UIScenes are related through UserActions which represent the actions
of users in interaction with the system.
UIPresentationUnit is a snapshot of the user interface of the system (in form of graphic, text,
etc.) at each specific step of interaction between the user and the system. This is a part of the
concrete syntax of UIScene. The other part is the textual description and the number of the
scene. A connection between UIScenes is presented as an arrowed line. All these elements
together create the concrete syntax of UIBehaviourRepresentations :: UIStoryboard.

16.2 Abstract syntax and semantics

Abstract syntax for the UIBehaviourRepresentations package is described in Figure 16.1.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 190

Requirements Specification Language Definition – D2.4.1
User interface behaviour representation

ver. 1.00
28.02.2007

UIStoryboard

ConstrainedLanguageRepresentation
ConstrainedLanguageRepresentations::

ConstrainedLanguageScenario

UIScene

sceneDescription: String
sceneNumber: int

ScenarioSentences::
ScenarioSentence

seqNum ber: int

ScenarioSentences::
SVOScenarioSentence

UserAction Notion
UIElements::UIElement

hasAutoContent: boolean
isM andatory: boolean

UIContainer
UIElements::

UIPresentationUnit

ConstrainedLanguageSentence
SVOSentences::SVOSentence

Requirement
UseCase

RequirementsSpecifications::
UseCase

1..* {ordered}

scenarioSteps

1..*
{redefines
sentences}

1..*

successor

1 0..1

predecessor

screenshot

target

0..*

0..*

source

triggeredUseCase 0..1

scenarios

0..*
{subsets representations}

Figure 16.1: UIBehaviour representation

UIStoryboard

Semantics. UIStoryboard is a series of scenes displayed in sequence for the purpose of previsu-
alizing user interface (UI) appearance from the perspective of behaviour.
Abstract syntax. UIStoryboard is a component of ConstrainedLanguageRepresentations :: Con-

strainedLanguageScenario. UIStoryboard contains ordered set of one or more UIScenes.

UIScene

Semantics. UIScene represents the state of the user interface of the system corresponding to
ScenarioSenteces :: SVOScenarioSentence. Transitions between UIScenes are adequate to a
user’s actions in the use case scenario. UIScenes structured in an ordered list are part of the
UIBehaviourRepresentations :: UIStoryboard.
Abstract syntax. UIScene includes one UIElements :: UIPresentationUnit and can be pointed
to by no more than one ScenarioSenteces :: SVOScenarioSentence. It is a component of
UIStoryboard. Each UIScene has its own number sceneNumber of type integer and can have
a description sceneDescription of type string. UIScenes related through UserAction form an
ordered list.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 191

Requirements Specification Language Definition – D2.4.1
User interface behaviour representation

ver. 1.00
28.02.2007

UserAction

Semantics. UserAction represents user activity results in transition from one UIScene to another
(predecessor and successor). Interaction of UserAction is triggered by connected ScenarioSen-

teces :: SVOScenarioSentence. This action is performed on one source UIElement in predeces-
sor UIScene and can influence some target UIElements in successor UIScene.
Abstract syntax. UserAction is associated with SVOSentence :: SVOSentence and two UIScenes
in roles of predecessor and successor. It has also associations with source and target UIEle-

ments.

16.3 Concrete syntax and examples

Figure 16.2: UIStoryboard concrete syntax example

UIStoryboard. A Storyboard is a series of screenshots with additional textual information
about them (UIScenes). A UIStoryboard representation must contain the name of a Require-

mentsSpecifications :: UseCase, which scenario it is illustrating. The description of contained
UIScenes should consist of a scene number and short textual descriptions of scenes (they may
include scenario sentences expressions with additional information specific to the UI concepts).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 192

Requirements Specification Language Definition – D2.4.1
User interface behaviour representation

ver. 1.00
28.02.2007

Figure 16.3: UIStoryboard concrete syntax example (2)

Figure 16.2 depicts how a scenario containing 5 sentences is illustrated with a storyboard. All
but one of the sentences have screenshots in the storyboard (for sentence number 4 no scene
is needed as it does not describe any user – UI interaction). Note that numbers of scenes does
not correspond with UseCase sentences numbers. The descriptions of UIScenes include partial
or full text of sentences scenarios, completed with additional UI-specific information (e.g. last
scene’s description depicts a confirmation window and the first scene’s description specifies
how the user can initiate the interaction).

Storyboards do not necessarily relate to Graphical User Interfaces (GUIs). Figure 16.3 shows
an example of UIStoryboard presenting textual user interface.

Figure 16.4: UIScene concrete syntax example

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 193

Requirements Specification Language Definition – D2.4.1
User interface behaviour representation

ver. 1.00
28.02.2007

UIScene. The concrete syntax of this class consists of two main parts. One is a figure presenting
the state of the system - UI elements. The other part is a textual description of this figure with
the number of the UIScene’s in a UIStoryboard. Ilustration of concrete syntax of a UIScene can
be found in Figure 16.4 which presents a consolidated example for UIBehaviour elements.

UserAction. The concrete syntax of this class is an arrowed line between two UIScene’s in the
UIStoryboard with ScenarioSenteces :: SVOScenarioSentence text above (see Figure 16.4).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 194

Requirements Specification Language Definition – D2.4.1
Conclusion

ver. 1.00
28.02.2007

Chapter 17

Conclusion

This deliverable presents a new requirements specification language named RSL. It integrates a
behavioural and a structural part, and even a part for user-interface specifications.

The behavioural part of this language is special because of its clear distinction between Func-
tional and Behavioural Requirements as well as its precise definition of their relationships. Its
conceptual definition is new in its clear distinction between requirements and representations

of requirements. This distinction is important for the use of this language as a basis for reuse
based on requirements, since only representations can actually be reused. This language is
also unique through its explicit distinction between descriptive and model-based requirements
representations.

The structural part of this language is special because of its explicit inclusion of objects ex-
isting in the domain (environment) of the software system to be built — domain objects. A
conceptual Domain Model (to-be) can be represented in newly defined domain entity diagrams.
Additionally, descriptions are possible in a newly defined representation of vocabulary, which
is organised as a terminology representation that integrates a dictionary with a thesaurus. Both
kinds of domain representations facilitate a better understanding of the requirements per se.

The part of this language for user-interface specifications is special because of its explicit bind-
ing between behavioural representations of requirements (e.g., scenarios in Use Cases) with
user-interface elements. It can be used to describe user interfaces in a platform-independent
way. The user interfaces can be textual or graphical, and with various types of access (limited,
voice-triggered etc.). Features specific to culture and region are also supported.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 195

Requirements Specification Language Definition – D2.4.1
Conclusion

ver. 1.00
28.02.2007

The user-interface specifications may contain textual descriptions as well as screenshots or
drawings illustrating the appearance of user-interface elements. With the envisioned tool sup-
port, the graphical representation will allow visualising interaction of a user with a software
system even before any prototype is available.

A major contribution of our work is the coherent integration of all these parts of RSL. In par-
ticular, textual descriptions in user-interface specifications can be written according to the same
grammars as the textual descriptions in structural and behavioural specifications.

Our language is the first requirements specification language intimately integrated with UML
and defined using the same metamodelling approach as used for UML itself (using MOF).

This deliverable also presents and explains the complete language definition, from abstract
down to concrete syntax.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 196

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Appendix A

Profiles for User Interface Representation

This annex describes the predefined standard stereotypes for User Interface Representation. The
standard stereotypes are specified in two separate profiles. These profiles can be applied to a
user model elements just like any other profile.

The stereotypes belonging to the profile are described using a compact tabular form rather than
graphically. The first column gives the name of the stereotype label corresponding to the stereo-
type. The actual name of the stereotype is the same as the stereotype label except that the first
letter of each is capitalised. The second column identifies the metaclass to which the stereo-
type applies and the third column provides a description of the meaning of the stereotype. The
last column contains a figure that symbolises redefined concrete syntax of class that stereotype
applies to.

A.1 Profile for user interface elements

This profile provides concrete syntax for various types of graphical user interface elements in
information systems. The images are suggestions and they can be changed accordingly. The
first two lines are general symbols that can be used to explicitly mark mandatory and critical

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 197

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

visual user interface elements.
Name Applies to Description Concrete syntax

Mandatory
symbol

UIElements

:: UIElement

A symbol used to indicate
that a ui element is manda-
tory on the user interface.
Valid input must be provided
before moving to another ui
element.

The mandatoryness of an ele-
ment can be represented by a
red exclamation mark:

Critical
symbol

UIElements

:: UIElement

A symbol used to indicate
that the interaction with such
a ui element has critical ef-
fects to the system. For
example shutting down the
system, deleting data, etc.
Therefore, the user should
be careful before interacting
with such an element.

A red circle with a white X in-
dicated that a ui element is crit-
ical:

User in-
terface
element

UIElements

::UIElement

A user interface element is
a mediator between the user
and the system. It takes user
inputs into the system and
makes system outputs avail-
able to the user.

A generic ui element is repre-
sented by a quad that is pene-
trated with two lines in both di-
rections to indicate the interac-
tion nature of ui elements:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 198

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Mandatory
user in-
terface
element

UIElements

:: UIElement

see above. Adding a mandatory symbol to
a ui symbol indicates that it is
mandatory:

Critical user
interface el-
ement

UIElements

:: UIElement

see above. Adding a critical symbol to a ui
symbol indicates that it is criti-
cal:

Button UIElements

:: Trigger

A button is used to trigger
an operation. It immediately
returns in its normal state
thereafter.

A squared labelled "OK" repre-
sents a button:

Toggle But-
ton

UIElements

:: Trigger

A toggled button maintains
its triggered state after trig-
gering. Its is therefore possi-
ble to visually know if it but-
ton has been pressed or not.

A squared with two parts with
different labels and colours
symbolises the states of a tog-
gled button. The transition be-
tween the states is indicated by
two opposite but equal arrows:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 199

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Radio But-
ton

UIElements

:: Option

A radio button allows only
selecting an option. Once
an option has been selected,
it can not be deselected di-
rectly.

A radio button is symbolized
by a circle with a black point
at the centre. The label "Opt"
emphasises that a radio button
should be labelled:

Check Box UIElements

:: Option

A check box allows un-
limited and direct selecting
and deselecting of an option.
This means that the actions
of selecting and deselecting
an option can be repeated un-
limitedly.

A check box is indicated by a
symbol with two boxes. One
box contains an x indication the
selected state and another box
is empty indicating the unse-
lected state. The arrows be-
tween the boxes symbolise the
sate change. The label "Opt"
emphasises that a check box
should be labelled:

Combo Box UIElements

:: Selection

A combo box is used to
present a list of options to the
user. The user can only select
one option at a time. Only
the selected option is visible
after selection. Other options
are hidden in the drop down
list. That’s why a combo
box can also be referred to as
drop down list. Should the
user want to change her/his
selection, she/he has to open
the drop down list.

An icon with a label "Opt" fol-
lowed with an arrow pointing
down symbolises a combo box.
An additional to that, a labelled
dotted box is attached to this
icon to indicate a hidden drop
down list of options:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 200

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
List UIElements

:: Selection

A list displays an open list of
more that one option that it
contains. Depending on its
size, all options can be al-
ways visible to the user. De-
pending on the configuration,
more than one option can be
selected from a list at a time.

A list is represented by a boy
containing bullets as indicators
for list options:

Radio List UIElements

:: Selection

A radio list is a group of ra-
dio buttons. Only one option
can be selected at a time. The
selection of a different ele-
ment automatically deselects
a previously selected option.

An icon of a box containing
radio buttons symbolises a ra-
dio list. One option is selected
to indicate that only one option
can be selected at a time:

Check List UIElements

:: Selection

A radio list is a group of
check boxes. Depending on
the configuration, more than
one option can be selected
from a check list at a time.

An icon of a box contain-
ing check boxes symbolises a
check list. Two options is
selected to indicate that more
than one option can be selected
at a time:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 201

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Menu UIElements

:: Selection

A menu is used to structure
system functions and make
them visible to the user as
a list of options. Menus
are commonly presented as
drop down list that are dis-
played after opening a menu
(see combo box). Contrary
to combo boxes, a drop down
menu hides all its options
(also the selected ones) af-
ter selection has been per-
formed.

An icon with three horizon-
tal buttons and a drop down
list symbolizes a menu. The
open list indicates a selected
and hence rolled out menu:

Text Field UIElements

:: Input

A text field is used to en-
ter single line text input into
the system. Default text can
be provided, that can then be
overwritten by the new input.

Since a text field is for entering
text input, a box with a T, dot-
ted points and a pencil is used
for symbolizing this element:

Text Area UIElements

:: Input

A text area is used to enter
multiple line text input into
the system. Default text can
be provided, that can then be
overwritten by the new input.

The same icon like for text field
but with two dotted lines for
symbolizing multiple lines is
used:

Label UIElements

:: UIElement

A label is used as a caption
for other ui elements. The
text contained in a label can
not be edited.

An icon containing the text
"Tt" and with a grey back-
ground colour symbolizes a la-
bel:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 202

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Panel UIElements

:: UICon-

tainer

A panel is used to group (log-
ically related) user interface
elements. The type and or-
dering of elements in a panel
is irrelevant.

A box containing different ele-
ments symbolizes a panel:

Tree UIElements

:: UICon-

tainer

A tree is a container of hier-
archically ordered user inter-
face elements, which are its
nodes. The topmost node is a
root of a tree. All other nodes
are siblings of the root node.
The deepest node of each tree
path (i.e., a way from the root
to any other node) is a leaf. A
leaf has not siblings. A tree
node can be expanded to dis-
play its siblings or collapsed
to hide them.

An icon of a tree of nodes with
the root node open symbolizes
this ui element:

Layout UIElements

:: UIPresen-

tationOrder

Layout is not a ui element. It
is the result of ordering ui el-
ements in a spatial order.

Layout is represented by three
elements aligned on a line to
symbolize their spatial order:

Flow UIElements

:: UIPresen-

tationOrder

Flow is not a ui element. It is
the result of ordering ui ele-
ments in a temporal order.

Flow is represented by three el-
ements connected with arrows
to symbolize their time order:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 203

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Form UIElements

:: UICon-

tainer

A form is used to collect
and display. It does so
by using controls like text
fields, combo buttons etc (see
above).

A form is represented by ti-
tled tab that contains elements
to symbolize the controls in the
form:

None ar-
bitrary
Resizable
Window

UIElements

:: UIPresen-

tationUnit

A window is a floatable,
movable and closable con-
tainer of ui elements. A
none arbitrary resizable win-
dow has one standard size
and can only be maximized
to occupy the whole allo-
cated space on the screen or
minimized to hide it from the
screen.

This window is represented by
a titled window icon with but-
tons for minimize, maximize
and close:

Resizable
Window

UIElements

:: UIPresen-

tationUnit

A resizable window has a
standard size but it can be re-
sized to any arbitrary size al-
lowed. Moreover maximiz-
ing and minimizing it is pos-
sible.

This window is represented
by an icon resembling that of
none arbitrary resizable win-
dow. A dotted triangle is added
at the bottom left corner to indi-
cate the possibility for resizing
(for example by pulling with a
mouse):

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 204

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
Multi Doc-
ument
Interface
Window

UIElements

:: UIPresen-

tationUnit

A multi document interface
window can display other
windows as its children. This
is very applicable for Multi
Document Interface (MDI)
Applications. It is there-
fore possible to open many
documents of the same type
within the same applica-
tion window. The opposite
are Single Document Inter-
face (SID) Applications that
can have only one document
opened at a time. The open
document must be closed be-
fore opening another docu-
ment.

A MDI-Window is represented
by a window icon containing
another window icon as a sym-
bol for the parent window and
child window:

Dialog UIElements

:: UIPresen-

tationUnit

A dialog is a small window
for presenting messages to
the user. It can not be re-
sized. System dialogs are
system modal, i.e., no user
interaction can be performed
with other windows in the
system as long as a dialog
is displayed. Most applica-
tion dialogs are application
modal, meaning that no user
interaction can be performed
within the application other
than with a displayed dialog.

A Dialog is represented by a ti-
tled window containing buttons
for "Ok", "Cancel" and a close
symbol:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 205

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

A.2 Profile for devices

This profile allows changing concrete syntax for various types of input and output devices used
in computer based systems. Note that images in table below are only suggestions of depicting
devices for UI.

Name Applies to Description Concrete syntax
card reader UIElements :: In-

putOutputDevice

Used for devices communicating with
various types of cards (magnetic,
memory). This kind of device can be
used as a system input (e.g. read data
from a magnetic card) or output (e.g.
store data on memory card).

An icon de-
picting a card
reader:

joystick UIElements :: In-

putOutputDevice

A joystick is a system input device
consisting of a handheld stick that piv-
ots about one end and transmits its an-
gle in two or three dimensions to a
computer based systems. Joystick can
also contain a number of buttons and
switches.

An icon depict-
ing a joystick:

keyboard UIElements :: In-

putOutputDevice

Keyboard is an input device that is an
arrangement of buttons, which allow
triggering commands in computer sys-
tem or correspond to letters of alphabet
and other written symbols.

An icon depict-
ing standard
computer key-
board:

microphone UIElements :: In-

putOutputDevice

A microphone is a voice input device. An icon
depicting a
microphone:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 206

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
mouse UIElements :: In-

putOutputDevice

A mouse is a computer pointing de-
vice. It is designed to detect two-
dimensional motion relative to its sup-
porting surface. Mouse consists of
a small case, to be held under one
of the user’s hands, buttons (typically
one or two) and/or other elements (like
scrolling wheel). The mouse’s motion
typically translates into the motion of
a pointer on a display.

An icon depict-
ing a mouse:

printer UIElements :: In-

putOutputDevice

A printer is an input-output device.
Printer used as output device allows
producing hard copies of data from
computer system. Printer used as input
allows transmitting commands to com-
puter system (mainly concerning print-
ing process).

An icon depict-
ing a printer:

screen UIElements :: In-

putOutputDevice

A screen is a system output device. It
consists of monitor (CRT, LCD) which
allows display of graphics, text etc. for
the user.

An icon depict-
ing a computer
monitor – CRT
display or
LCD screen:

speaker UIElements :: In-

putOutputDevice

A speaker is an output voice device of
computer system.

An icon depict-
ing a speaker
or speaker set:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 207

Requirements Specification Language Definition – D2.4.1
Profiles for User Interface Representation

ver. 1.00
28.02.2007

Name Applies to Description Concrete syntax
touchscreen UIElements :: In-

putOutputDevice

A touchscreen (also touch screen,
touch panel or touchscreen panel) is
input output device. A touchscreen is
display overlay which have the ability
to display and receive information on
the same screen.

An icon de-
picting a touch
screen:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 208

Requirements Specification Language Definition – D2.4.1
List of abbreviations

ver. 1.00
28.02.2007

Appendix B

List of abbreviations

ACE Attempto Controlled English
AIO Abstract Interaction Objects
ATM Automatic Teller Machine
CASE Computer Aided Software Engineering
CBS Computer-Based System
CHI Computer Human Interaction
CIO Concrete Interaction Objects
DM Domain Model
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
INTERACT International Conference on Human Computer Interaction
IUI International Conference on Intelligent User Interfaces
MB-UID Model Based User Interface Development
MOF Meta Object Facility
OMG Object Management Group
OOA Object Oriented Analyses
RE Requirements Engineering
RSL Requirements Specification Language
RUP Rational Unified Process
SVO Subject Verb Object
SysML System Modelling Language
TORE Task and Object Oriented Requirements Engineering

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 209

Requirements Specification Language Definition – D2.4.1
List of abbreviations

ver. 1.00
28.02.2007

UbiComp International Conference on Ubiquitous Computing
UC Use Case
UI User Interface
UIDL User Interface Description Language
UML Unified Modeling Language
XML Extensible Markup Language
XUL XML User Interface Language

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 210

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

Bibliography

[AH02] M Abrams and J Helms. UIML v3.0 Draft Specification, 2002.

[Ant96] Annie I. Antón. Goal-based requirements analysis. In ICRE ’96: Proceedings of

the 2nd International Conference on Requirements Engineering (ICRE ’96), page
136, Washington, DC, USA, 1996. IEEE Computer Society.

[BI96] Barry Boehm and Hoh In. Identifying quality-requirement conflicts. IEEE Soft-

ware, 13(2):25–35, 1996.

[BMT90] Richard Beckwith, George A Miller, and Randee Tengi. Design and implementa-
tion of the wordnet lexical database and searching software. International Journal

on Lexicography, 3(4):62–77, 1990.

[BPG+01] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Modeling early requirements in tropos: A transformation based ap-
proach. In AOSE, pages 151–168, 2001.

[Bro03] Der Brockhaus Computer und Informationstechnologie. Brockhaus, Mannheim,
2003.

[CdPL04] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Nonfunctional re-
quirements: from elicitation to conceptual models. IEEE Transactions on Software

Engineering, 30(5):328–350, May 2004.

[CEE+04] Kai-Uwe Carstensen, Christian Ebert, Cornelia Endriss, Susanne Jekat, and Ralf
Klabunde, editors. Computerlinguistik und Sprachtechnologie. Elsevier Spektrum
Akademischer Verlag, 2004.

[CKM01] Jaelson Castro, Manuel Kolp, and John Mylopoulos. A requirements-driven devel-
opment methodology. Lecture Notes in Computer Science, 2068, 2001.

[CKM02] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven
information systems engineering: The tropos project. To Appear in Information

Systems, Elsevier, Amsterdam, The Netherlands, 2002.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 211

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

[Coc97] Alistair Cockburn. Structuring use cases with goals. Journal of Object-Oriented

Programming, 5(10):56–62, 1997.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[DvLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20:3–50, 1993.

[EK02] Gerald Ebner and Hermann Kaindl. Tracing all around in reengineering. IEEE

Software, 19(3):70–77, 2002.

[FHK+05] Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold
Schneider. Attempto controlled english: A knowledge representation language
readable by humans and machines. Lecture Notes in Computer Science, 3564,
2005.

[Fow04] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling

Language, Third Edition. Addison-Wesley, 2004.

[Gli05] Martin Glinz. Rethinking the notion of non-functional requirements. In Proceed-

ings of the Third World Congress for Software Quality, Munich, Germany. Depart-
ment of Informatics, University of Zurich, September 2005.

[GM90] Derek Gross and Katherine J. Miller. Adjectives in wordnet. International Journal

on Lexicography, 3(4):265–277, 1990.

[GMP01] Fausto Giunchiglia, John Mylopoulos, and Anna Perini. The tropos software de-
velopment methodology. Technical Report No. 0111-20, ITC - IRST. Submitted to

AAMAS ’02. A Knowledge Level Software Engineering 15, 2001.

[GPM+01] Paolo Giorgini, Anna Perini, John Mylopoulos, Fausto Giunchiglia, and Paolo
Bresciani. Agent-oriented software development: A case study. In Proceedings

of the Thirteenth International Conference on Software Engineering & Knowledge

Engineering (SEKE01), 2001.

[GPS01] Fausto Giunchiglia, Anna Perini, and Fabrizio Sannicolo. Knowledge level soft-
ware engineering. In Springer Verlag, Editor, In Proceedings of ATAL 2001, Seattle,

USA. Also IRST TR 011222, Istituto Trentino Di Cultura, Trento, Italy, 2001.

[Hoe04] Stefan Hoefler. The syntax of attempto controlled english: An abstract grammar for
ace 4.0, technical report. Technical Report ifi-2004.03, Department of Informatics,
University of Zurich, 2004.

[Kai93] H. Kaindl. The missing link in requirements engineering. ACM Software Engineer-

ing Notes (SEN), 18(2):30–39, 1993.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 212

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

[Kai95] H. Kaindl. An integration of scenarios with their purposes in task modeling. In
Proceedings of the Symposium on Designing Interactive Systems: Processes, Prac-

tices, Methods, & Techniques (DIS ’95), pages 227–235, Ann Arbor, MI, August
1995. ACM.

[Kai96] H. Kaindl. Using hypertext for semiformal representation in requirements engi-
neering practice. The New Review of Hypermedia and Multimedia, 2:149–173,
1996.

[Kai97] H. Kaindl. A practical approach to combining requirements definition and object-
oriented analysis. Annals of Software Engineering, 3:319–343, 1997.

[Kai00] H. Kaindl. A design process based on a model combining scenarios with goals and
functions. IEEE Transactions on Systems, Man, and Cybernetics (SMC) Part A,
30(5):537–551, Sept. 2000.

[Kai05] Hermann Kaindl. A scenario-based approach for requirements engineering: Expe-
rience in a telecommunication software development project. Systems Engineering,
8(3):197–209, 2005.

[KGM02] Manuel Kolp, Paolo Giorgini, and John Mylopoulos. A goal-based organizational
perspective on multi-agent architectures. In ATAL ’01: Revised Papers from the 8th

International Workshop on Intelligent Agents VIII, LNCS 2333, pages 128–140.
Springer, 2002.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction, 3rd ed. Addison
Wesley, 2003.

[KS91] H. Kaindl and M. Snaprud. Hypertext and structured object representation: A uni-
fying view. In Proceedings of the Third ACM Conference on Hypertext (Hypertext

’91), pages 345–358, San Antonio, TX, December 1991.

[Kur04] Dominik Kuropka. Modelle zur Repräsentation natürlichsprachlicher Dokumente.
Logos Verlag Berlin, 2004.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Prentice Hall, Englewood Cliffs,
NJ, second edition, 2004.

[Lau02] Søren Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley,
Reading, MA, 2002.

[Lau05] Soren Lauesen. User Interface Design: A Software Engineering Perspective. Ad-
dison Wesley, 2005.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 213

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

[Lim04] Q Limbourg. Multi-Path Development of User Interfaces. PhD thesis, Université
catholique de Louvain, Louvain, 2004.

[MBF+90] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J Miller. Introduction to wordnet: An on-line lexical database. Inter-

national Journal of Lexicography, 3(4):235–244, 1990.

[MC00] John Mylopoulos and Jaelson Castro. Tropos: A framework for requirements-
driven software development. In J. Brinkkemper and A. Solvberg, Editors, Informa-

tion Systems Engineering: State of the Art and Research Themes. SpringerVerlag,
2000.

[MCL+01] John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric Yu.
Exploring alternatives during requirements analysis. IEEE Software, 18(1):92–96,
/2001.

[MCY99] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–37, 1999.

[Mil90] George A. Miller. Nouns in wordnet: a lexical inheritance system. International

Journal of Lexicography, 3(4):245–264, 1990.

[MKC01] John Mylopoulos, Manuel Kolp, and Jaelson Castro. UML for agent-oriented soft-
ware development: The tropos proposal. In UML 2001 - The Unified Modeling

Language.Modeling Languages, Concepts, and Tools: Fourth International Con-

ference, LNCS 2185, pages 422–441. Springer, 2001.

[MKG02] John Mylopoulos, Manuel Kolp, and Paolo Giorgini. Agent-oriented software de-
velopment. In Methods and Applications of Artificial Intelligence: Second Hellenic

Conference on AI, SETN, LNCS 2308, pages 3–17. Springer, 2002.

[MM03] Joaquin Miller and Jishnu Mukerji, editors. MDA Guide Version 1.0.1, omg/03-06-

01. Object Management Group, 2003.

[Mol04] P. Molina. A review to model-based user interface development technolgy. In Pro-

ceedings of the first Workshop on Making Model-Based User Interfaces Practical,
2004.

[MOW01] Pierre Metz, John O’Brien, and Wolfgang Weber. Against use case interleaving.
Lecture Notes in Computer Science, 2185:472–486, 2001.

[Moz02] Mozilla. XUL Programmer’s Reference, 2002.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 214

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

[Muk06] Kizito S Mukasa. Model-Based Generation of User Interface Prototypes - A De-

sign Tool for the formal Description of generic and consistent User Interfaces with

XML. PhD thesis, Kaiserslautern University of Technology, Kaiserslautern, Ger-
many, 2006.

[Obj03a] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,

Final Adopted Specification, ptc/03-10-04, 2003.

[Obj03b] Object Management Group. OCL 2.0, Final Adopted Specification, ptc/03-10-14,
2003.

[Obj05a] Object Management Group. Unified Modeling Language: Infrastructure, version

2.0, formal/05-07-05, 2005.

[Obj05b] Object Management Group. Unified Modeling Language: Superstructure, version

2.0, formal/05-07-04, 2005.

[Obj06a] Object Management Group. Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01, 2006.

[Obj06b] Object Management Group. Systems Modeling Language (SysML) Specification,

version 1.0, ptc/2006-05-03, 2006.

[PK03] B Paech and K Kohler. Task-driven requirements in object-oriented development.
volume 753 of The International Series in Engineering and Computer Science,
chapter 3, pages 45–68. Springer, 2003.

[SBNS05a] Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Sce-
nario construction tool based on extended UML metamodel. Lecture Notes in Com-

puter Science, 3713:414–429, 2005.

[SBNS05b] Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Writ-
ing coherent user stories with tool support. Lecture Notes in Computer Science,
3556:247–250, 2005.

[Sim99] A J H Simons. Use cases considered harmful. In Proceedings of the 29th Con-

ference on Technology of Object-Oriented Languages and Systems-TOOLS Eu-

rope’99, pages 194–203, Nancy, France, June 1999. IEEE Computer Society Press.

[SK94] M. Snaprud and H. Kaindl. Types and inheritance in hypertext. International Jour-

nal of Human-Computer Studies (IJHCS), 41(1/2):223–241, July/August 1994.

[Sze96] Pedro Szekely. Retrospective and challenges for model-based interface develop-
ment. Design, Specification and Verification of Interactive Systems., 1996.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 215

Requirements Specification Language Definition – D2.4.1
Bibliography

ver. 1.00
28.02.2007

[vLL00] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software Engineering,
26(10):978–1005, 2000.

[VPG99] Piek Vossen, Wim Peters, and Julio Gonzalo. Towards a universal index of mean-
ing. In Proceedings of SIGLEX (Special Interest Group on the Lexicon), 1999.

[ZK99] D. Zuehlke and L. Krauss. Human adapted design of machines and process user

interfaces based on WINDOWS. Shaker, 1999.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 216

	History of changes
	Summary
	Table of contents
	List of figures
	Scope, conventions and guidelines
	Document scope
	Approach to language definition and notation conventions
	Meta-modelling
	Defining languages using meta-modelling
	Relations to UML and SysML
	Structure of the language reference
	Notation conventions

	Related work and relations to other documents
	Model Based User Interface Development
	User Interface Description Languages
	Task and Object Oriented Requirement Engineering

	Structure of this Document
	Usage guidelines

	I Conceptual Overview of the Coherent Requirements Language
	Introduction
	Requirements for the requirements language
	Functional Requirements
	Constraint Requirements

	Requirements Model
	Requirements Model Overview
	Requirements Model Details
	Why No Goals?

	Requirements Representation Model
	Requirements Representation Model Overview
	Requirements Representation Model Details

	Domain entities
	Business entities
	System entities

	Representation of domains
	Overview
	Domain representations using conceptual models
	Domain representation using phrases
	Terminology

	Representing the user interface and its dynamics
	Elements of the user interface
	Behaviour of the user interface

	Discussion

	II Language Reference
	Kernel
	Overview
	Attributes
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Elements
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirements
	Overview
	Requirements specifications
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement relationships
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Use case relationships
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement representations
	Overview
	Requirement representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Natural language representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Constrained language representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Activity representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Interaction representations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Requirement representation sentences
	Overview
	Representation sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	SVO sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Scenario sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Activity sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Activity sentence constructs
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Interaction sentences
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Interaction sentence constructs
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Domain elements
	Overview
	Domain elements
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Notions
	Overview
	Abstract syntax and semantics
	Concrete syntax

	System elements
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Actors
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Domain element representations
	Overview
	Abstract syntax and semantics
	Concrete syntax

	Phrases
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Terms
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	TermsRelations
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	User interface elements
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	User interface behaviour representation
	Overview
	Abstract syntax and semantics
	Concrete syntax and examples

	Conclusion
	Profiles for User Interface Representation
	Profile for user interface elements
	Profile for devices

	List of abbreviations
	Bibliography

