
Reusable Case Transformation Rule
Specification

Deliverable D3.3, version 1.0, 31.07.2007

IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide-Matrix S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Reusable Case Transformation Rule Specification

Workpackage WP3
Task T3.3
Document number D3.3
Document type Deliverable
Title Reusable Case Transformation Rule Specification
Subtitle
Author(s) Audris Kalnins, Elina Kalnina, Edgars Celms, Agris Sostaks,

Hannes Schwarz, Albert Ambroziewicz, Jacek Bojarski, Wiktor
Nowakowski, Tomasz Straszak, Sevan Kavaldjian, Jürgen Falb

Internal Reviewer(s) John Paul Brogan, Albert Ambroziewicz, Jacek Bojarski, Wiktor
Nowakowski, Tomasz Straszak, Hermann Kaindl, Daniel Bildhauer,
Hannes Schwarz, Kizito Ssamula Mukasa

Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP3_Re-

usable-case_specification_language/D3.3/ReDSeeDS_D3.3_Re-
usable_Case_Transformation_Rule_Specification.pdf

Version 1.0
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

31.07.2007

Reusable Case Transformation Rule Specification – D3.3
History of changes

ver. 1.0
31.07.2007

History of changes

Date Ver. Author(s) Change description
06.06.2007 0.01 Audris Kalnins Proposition of ToC

03.07.2007 0.02 Audris Kalnins Changed structure of chapter Providing

models to be transformed

16.07.2007 0.03 Audris Kalnins Added initial content for chapter 4

16.07.2007 0.04 Audris Kalnins Added initial content for chapters 2 and 5

17.07.2007 0.05 Hannes Schwarz Added content for parts of section 5.2

18.07.2007 0.06 The UL team Added content for 2.2, 2.3, 5.2.2

18.07.2007 0.07 Hannes Schwarz Added content for section 5.4

20.07.2007 0.08 The WUT team Added initial content for sections 3.1, 3.2
and 3.4

25.07.2007 0.09 The UL team Added MOLA procedures for 4.2

26.07.2007 0.10 The TUW team Added initial content for section 3.3

27.07.2007 0.11 The WUT team Added content for sections 3.1, 3.2 and 3.4

27.07.2007 0.12 John Paul Brogan HWU Conducted document language check and
document update.

30.07.2007 0.13 The UL team Added MOLA procedures for chapter 4.4

31.07.2007 0.14 Audris Kalnins Added Conclusion

31.07.2007 0.15 TUW team Added content for section 4.3

31.07.2007 0.16 John Paul Brogan HWU Conducted document language check and
document update.

31.07.2007 0.17 TUW team Minor changes to section 4.3.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III

Reusable Case Transformation Rule Specification – D3.3
Summary

ver. 1.0
31.07.2007

Summary

This deliverable has a relatively narrow focus on using model transformations for building a
software case in ReDSeeDS. These software cases are assumed to be built according to the
principles of model-driven software development. According to these principles, several models
are built one after another as artefacts of this software case. This building should be performed
according to a well defined design methodology, of which we currently are interested only as a
set of precisely defined rules, what model elements should be used at which artefacts, what are
the naming and structuring rules, what are the desired dependencies between the artefacts and
similar issues. It should be specially noted that the starting point of a software case is also a
well defined artefact - it is the requirements model in RSL.

Model-driven software development includes as one of the basic principles the use of automatic
transformations between design steps whenever this is possible. Thus only the initial version of
the next model is obtained, which is then extended manually.

The above mentioned facts on software case development in ReDSeeDS enables the transfor-
mations there to have a significantly greater role than in many standard MDSD applications.
In many cases the use of automated transformations can be a critical enabler for building a
software case according to a strictly defined design methodology in ReDSeeDS.

According to previous deliverables, the SCL includes a special language for defining such trans-
formations - the model transformation language MOLA.

This deliverable illustrates a consistent use of model transformations on an example design
methodology, which is based on a 4-layer architecture. For transitions from requirements to
architecture model and from architecture to design model initially natural informal transforma-
tion rules are provided. Then these rules are implemented in the model transformation language
MOLA. For the chosen example methodology, the part of the next model generated by trans-
formations can be especially large. Finally, it is briefly discussed, what is necessary to integrate

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV

Reusable Case Transformation Rule Specification – D3.3
Summary

ver. 1.0
31.07.2007

the model transformations with other tools and support features for software case development.
The full solution of these technology issues goes to Workpackage 5.

It should be noted, that transformations developed in this deliverable are not specific to one
software case, but to any case built according to the selected example methodology.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Reusable Case Transformation Rule Specification – D3.3
Table of contents

ver. 1.0
31.07.2007

Table of contents

History of changes III

Summary IV

Table of contents VI

List of figures VIII

1 Scope, conventions and guidelines 1
1.1 Document scope . 1
1.2 Conventions . 2
1.3 Related work and relations to other documents 3
1.4 Structure of this document . 3
1.5 Usage guidelines . 4

2 Introduction 5
2.1 Role of transformations in ReDSeeDS Software Case development 5
2.2 Automatic transformations and manual development 7
2.3 SCL elements where transformations have the most value 8

3 Informal description of transformation rules 10
3.1 Transformation-ready SCL architecture example 10

3.1.1 4-layer architecture model in SCL . 12
3.1.2 Example of 4-layer architecture in SCL 14

3.2 Transformations from RSL (requirements model) to architecture model 23
3.2.1 Generating architectural details . 26
3.2.2 Naming of architectural model elements 29
3.2.3 Manual editing of generated model by an architect 29

3.3 Transformations of UI elements in RSL . 32
3.3.1 Dialog generation . 34

3.4 Transformations to detailed design model . 39
3.4.1 Generation of Application Logic . 42
3.4.2 Generation of Business Logic . 43

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Reusable Case Transformation Rule Specification – D3.3
Table of contents

ver. 1.0
31.07.2007

3.4.3 Generation of Data Access Layer . 44
3.4.4 Generating data transfer objects (DTOs) 46
3.4.5 Generating relationships between layers 46

4 Formal definition of transformations in MOLA 48
4.1 Source and target metamodels . 50

4.1.1 RSL metamodel for transformations 50
4.1.2 Metamodel of UML subset . 51

4.2 Transformations from RSL to architecture model 59
4.3 Transformations of UI elements in RSL . 93

4.3.1 Source and target metamodels for UI transformations 93
4.3.2 Generating dialog structures . 94

4.4 Transformations from architecture to detailed design 103

5 Providing models to be transformed 112
5.1 Obtaining source models for transformations from JGraLab 114
5.2 Storing transformation results to JGraLab . 115

5.2.1 JGraLab XML-RPC server . 116
5.2.2 MOLA transformation XML-RPC client 116

5.3 Storing of traceability information . 117

6 Conclusion 118

Bibliography 119

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII

Reusable Case Transformation Rule Specification – D3.3
List of figures

ver. 1.0
31.07.2007

List of figures

3.1 Transformations between models defined on different levels of abstraction . . . 11
3.2 Example of 4-layer architecture generated from requirements model 13
3.3 4-layer architecture model example - actors 14
3.4 4-layer architecture model example - Presentation layer components with inter-

faces . 15
3.5 4-layer architecture model example - Application Logic layer components with

interfaces . 15
3.6 4-layer architecture model example - Business Logic layer components with

interfaces . 15
3.7 4-layer architecture model example - Data Access layer components with inter-

faces . 16
3.8 4-layer architecture model example - sequence diagram for basic path scenario

of Enter Facility Use Case . 17
3.9 4-layer architecture model example - sequence diagram for 1st alternate path

scenario of Enter Facility Use Case . 18
3.10 4-layer architecture model example - sequence diagram for 2nd alternate path

scenario of Enter Facility Use Case . 19
3.11 4-layer architecture model example - sequence diagram for basic path scenario

of Browse An Offer And Reserve Use Case 20
3.12 4-layer architecture model example - sequence diagram for 1st alternate path

scenario of Browse An Offer And Reserve Use Case 21
3.13 4-layer architecture model example - sequence diagram for 2nd alternate path

scenario of Browse An Offer And Reserve Use Case 22
3.14 4-layer architecture generation overview . 24
3.15 4-layer architecture generation - interfaces . 25
3.16 4-layer architecture generation - sequence diagrams 27
3.17 4-layer architecture generation - methods of interfaces 30
3.18 Overview of the UI component’s detailed design model 33
3.19 Example of a UI component’s detailed design model 34
3.20 A conceptual GUI meta-model . 35
3.21 UI storyboard for “Make facility reservation” scenario 38
3.22 Reservable facility list dialog structure . 38

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII

Reusable Case Transformation Rule Specification – D3.3
List of figures

ver. 1.0
31.07.2007

3.23 Facility reservation summary dialog . 39
3.24 Customer wants to make facility reservation UI scenario. 40
3.25 Overview of detailed design model generated from architectural model 41
3.26 Generation of Application logic detailed design 42
3.27 Generation of Business logic detailed design 43
3.28 Generation of Data access layer detailed design 45

4.1 Top RSL metaclasses in MOLA-ready metamodel 52
4.2 Constrained language sentences for activity scenario elements 53
4.3 Phrases and terms used in MOLA-ready metamodel 54
4.4 Notions and their relationships . 55
4.5 The used fragment of UML Kernel package 57
4.6 Metamodel fragment for classes . 58
4.7 The simplified Interactions package . 60
4.8 Traceability elements used for transformations 61
4.9 Main procedure of the transformation . 62
4.10 Main procedure for building the static structure 63
4.11 Static package creation . 64
4.12 Procedure building the Application logic elements 65
4.13 Procedure building the data transfer objects 66
4.14 Procedure building UML actors . 67
4.15 Procedure building data access objects . 68
4.16 Procedure building business logic components 69
4.17 Procedure managing the behaviour . 70
4.18 Main procedure for behaviour processing . 71
4.19 Procedure distinguishing scenario kinds . 72
4.20 Procedure processing activity scenarios . 73
4.21 Initialiser procedure for activity graph traversing 74
4.22 Procedure building lifelines . 75
4.23 Procedure traversing the activity graph . 76
4.24 Procedure processing invocation messages . 77
4.25 Procedure building invocation lifelines . 78
4.26 Procedure distinguishing message kinds . 79
4.27 Procedure generating actor-to-system messages 80
4.28 Procedure generating lifeline . 81
4.29 Procedure generating system-to-actor messages 82
4.30 Procedure generating system-to-system messages 83
4.31 Procedure generating system (“business”) lifeline 84
4.32 Procedure initialising interaction for constrained language scenario 85

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IX

Reusable Case Transformation Rule Specification – D3.3
List of figures

ver. 1.0
31.07.2007

4.33 Procedure processing constrained language scenarios 86
4.34 Main procedure for behaviour processing . 87
4.35 Procedure for deletion of unused interfaces . 88
4.36 Utility procedure providing verb phrase text 89
4.37 Utility procedure providing operation name 90
4.38 Utility procedure converting string to UpperCamelCase 91
4.39 Utility procedure providing interaction name prefix 92
4.40 UI elements and relationships . 93
4.41 UI behaviour representations . 94
4.42 Procedure generating GUI dialogs together with traceability links 95
4.43 Decision between different UI elements . 96
4.44 Procedure generating GUI elements for input UI elements 97
4.45 Procedure generating GUI elements for selection UI elements 98
4.46 Procedure generating GUI elements for trigger UI elements 100
4.47 Procedure generating GUI widgets together with traceability links. 101
4.48 Procedure generating factory methods for retrieving dialogs. 102
4.49 Procedure generating additional methods for the UI class. 102
4.50 Main procedure for detailed design . 104
4.51 Static package creation for detailed design . 105
4.52 Procedure generating layers . 106
4.53 Procedure generating data access layer . 107
4.54 Procedure generating relationships between layers 108
4.55 Procedure copying data transfer objects . 109
4.56 Procedure copying interfaces . 110
4.57 Procedure copying value specifications . 111

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page X

Reusable Case Transformation Rule Specification – D3.3
Scope, conventions and guidelines

ver. 1.0
31.07.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document describes transformation rules required for building a software case in ReD-
SeeDS software case language (SCL). The provided rules are based on an example design
methodology, which in turn is based on a 4-layer architecture for the target system.

On the one hand, this architecture is very typical for information systems nowadays and there-
fore can successfully be applied to many software cases. The architecture is described by means
of an appropriately chosen subset of UML, some methodology elements prescribe a natural way
how these UML elements should be used to define a model, including some naming conven-
tions. On the other hand, this architecture (and the design methodology based on it) is well
suited for applying transformations for transition from one step to the next one. In particular, a
significantly greater part of the next model can be built by means of automatic transformations,
than it is for standard model driven software development. However, a manual refinement of
the obtained model is still required at each step.

The deliverable contains a short description of the selected architecture. Then an informal
description of the relevant transformation algorithms is provided. A detailed transformation
description is given for the following steps:

• transition from requirements in RSL to architecture model in UML

• transition from the architecture model to the detailed design model (both in UML)

• transformation of user interface elements in RSL (directly to detailed design).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Reusable Case Transformation Rule Specification – D3.3
Scope, conventions and guidelines

ver. 1.0
31.07.2007

Other places where transformations could be applied in software case development are only
briefly sketched in this deliverable.

The informal transformation algorithms are implemented in the model transformation language

MOLA, which is also part of SCL. They support transitions from requirements to architecture
model and from the architecture model to detailed design model. The transformation definitions
provided in this deliverable have undergone a certain validation, though a complete testing of
them will be done in Workpackage 5, when data will be available from the RSL tool. The
chosen steps are the most basic ones for demonstrating the ReDSeeDS approach to software
case development.

This deliverable discusses also basic principles, which should be used for obtaining models to
be transformed from the software case repository and placing the transformation results back to
this repository.

The transformations described in this deliverable only depend on the chosen 4-layer architecture
and methodology elements related to it. Therefore they are applicable to any software case in
ReDSeeDS, which is being developed according to this architecture and methodology elements.

The transformations in this deliverable are typical in the sense that they could serve as exam-
ples for transformation development for similar architectures. Especially, the solutions used in
MOLA procedures could serve as design patterns for similar situations.

1.2 Conventions

Whenever possible, the language descriptions in this document are based on the correspond-
ing metamodels. The metamodels, in turn, have been developed in accordance with the meta
modelling guidelines in deliverable 3.1.

Lowest level package descriptions use the following notation conventions:

• sans-serif font is used for names of classes, attributes and associations, e.g. Requirement

• if a class name is used in description of package other than the one it is included in, it
is preceded with package name and a double colon (“::”), e.g. RequirementsSpecifica-

tions::Requirement

• bold/italics font is used for emphasised text, e.g. Abstract syntax

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Reusable Case Transformation Rule Specification – D3.3
Scope, conventions and guidelines

ver. 1.0
31.07.2007

Class colours used on the diagrams indicate membership of the packages. The introduction
of colours is intended to enhance readability of diagrams which contain classes from different
packages (e.g. a blue colour denotes that classes are from Requirement packages, yellow are
from RequirementRepresentation package and green are from DomainElement package). Refer
to deliverable 2.4.1 for more information about RSL packages and colours.

MOLA elements are notated in the way used in the initial version of MOLA tool. Metamodels
in the MOLA tool use a different colour coding than in SCL definitions. MOLA elements are
provided according to the MOLA syntax definition in deliverable 3.2.1.

1.3 Related work and relations to other documents

Model driven development of software has become the de-facto standard for software develop-
ment in practise, though actually only few books (see e.g.,[KWW03], [SV06]) provide a theoret-
ical background for it. Therefore the systematic transformation based approach in ReDSeeDS
to building software cases is quite a pioneering work in this area. The specific transformations
to a significant degree depend on the chosen architecture, therefore no close comparison to other
sources is possible. A more or less complete description of used transformations for a system
development is provided in [KWW03], but a non-standard model transformation language is
used there.

Since all languages constituting SCL are defined by means of metamodels, this deliverable
significantly relies on deliverable 3.1, where the meta modelling principles for ReDSeeDS were
defined. The languages being parts of SCL are described in detail in deliverable 3.2.1. The
transformation language MOLA also has a complete description in this deliverable. Therefore
the notation and syntax used in this deliverable completely relies on deliverable 3.2.1.

The 4-layer architecture and some transformations related to it were also already used as an ex-
ample in deliverable 3.2.1. Here they are significantly extended and given a complete descrip-
tion, in order to provide a systematic support for software case development in ReDSeeDS.

1.4 Structure of this document

Chapter 2 is an introduction to the topic of this work. It describes the general role of transfor-
mations in ReDSeeDS Software Case development.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Reusable Case Transformation Rule Specification – D3.3
Scope, conventions and guidelines

ver. 1.0
31.07.2007

Chapter 3 describes the selected 4-layer software architecture model and the defined informal
transformation algorithms: from requirements to architecture model, from architecture to de-
tailed design and user interface related transformations (from requirements to design).

Chapter 4 provides the formal transformation definitions in MOLA (from requirements to ar-
chitecture and from architecture to detailed design).

Chapter 5 discusses the possible solutions for obtaining models to be transformed from the
software case repository and placing the transformation results back to this repository. Only the
situation when models are stored in JGraLab based repository is discussed currently.

1.5 Usage guidelines

The transformation rule specification document should be used as a book that supplies the soft-
ware architect with the basic information on transformations applicable for software case de-
velopment. This document offers one specific 4-layer architecture and methodology elements
related to it. If a software case is being developed according to this architecture then the docu-
ment provides ready-to-use transformations from requirements to architecture model and from
architecture to detailed design, as well as transformations for building user interface elements.
Complete descriptions of transformations in the MOLA language allow for the modification of
some transformation details if required.

If another architecture is selected for the software case, transformations in this document can
be used as an example and guidelines for new transformation development for this case.

Users of the this document are expected to know the basics of meta modelling and MOF (Meta
Object Facility) specification [Obj06], as well as the syntax and semantics of the MOLA trans-
formation language described in deliverable 3.2.1.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Reusable Case Transformation Rule Specification – D3.3
Introduction

ver. 1.0
31.07.2007

Chapter 2

Introduction

2.1 Role of transformations in ReDSeeDS Software Case development

Due to the requirement of high reusability, software cases in ReDSeeDS should be developed
according to well defined design methodologies. Currently there is one such example method-
ology, based on the 4-layer software architecture model. Most probably, there will be several
such methodologies within the ReDSeeDS project. A design methodology prescribes how ex-
actly the vast possibilities of SCL (software case language) should be used at various software
design steps. In particular, it provides also guidelines how RSL should be used for require-
ments definition. Just to avoid terminological confusions, by methodology we here understand
its part directly related to the development rules and suggested structure of design artefacts, not
its broader sense in ReDSeeDS, which involves also human aspects of the design process.

The existence of a well defined methodology provides an important side effect. Since all design
steps are built as SCL artefacts in the corresponding subsets of SCL under a strong method-
ological guidance, there are natural and well defined dependencies between these artefacts in
consecutive design steps. These dependencies can be expressed as precise transformation algo-
rithms, how the initial version of the next artefact in the chain can be obtained automatically
from the previous one. Certainly, then this initial version of the artefact is manually extended
by the software case designer.

The above-mentioned fact ensures a much greater role of automatic transformations in ReD-
SeeDS software case development, than it is in a standard model driven software development
(MDSD). In standard MDSD situations transformations frequently are applied only to some
steps - typically from PIM to PSM and from PSM to code skeletons [KWW03]. On the con-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Reusable Case Transformation Rule Specification – D3.3
Introduction

ver. 1.0
31.07.2007

trary, in the ReDSeeDS approach transformations can be successfully applied also to the first
step - from precisely defined requirements in RSL to the initial architecture model in UML.
Also the next steps from the architecture model to detailed design (which plays the role of PIM
in ReDSeeDS) and further to code can be well supported by automatic transformations.

Therefore a special component has been included in SCL for the development of automatic
transformations - the transformation language MOLA. The MOLA language is used to define
transformations in a well documented and readable way.

Transformations in ReDSeeDS may be of two kinds. A part of them is dependent on the chosen
design methodology only and is relevant for all software cases, which have been developed
according to this methodology. Other transformations may be software case dependent, which
refine the general transformation algorithms for a specific software case (and, consequently, are
part of this case). Up to the moment, only transformations of the first kind have been developed.

Automatic transformations have an important role for bolstering case reuse in ReDSeeDS. They
guarantee a strict application of the chosen design methodology and, what is especially im-
portant, the precise use of automatically generated traceability links. In many situations, the
methodology can be strictly adhered to (including all naming conventions) only by means of
automatic transformations.

Taking all this into account, the goal of this deliverable is to provide a first set of executable
transformations, which would be practically usable for the example design methodology, whose
development was started within deliverable 3.2.1 and is continued in this deliverable.

Certainly, the practical value of developed MOLA transformations to a great degree depends
on the informal transformation algorithms, inspired by the chosen design methodology. First
such algorithms were developed already in the deliverable 3.2.1. Now these algorithms have
been refined and cover not only transition from requirements in RSL to architecture in UML,
but also transition from architecture model to detailed design. Accordingly, the example based
methodology has been extended to fully cover the detailed design step. The set of informal
algorithms is quite natural and intuitive, well harmonised with the proposed model structure
itself. Therefore, it could be expected that practical application of the developed transformations
will be successful.

In order to have practical value, the developed transformations must be well integrated with
other software case design tools in ReDSeeDS. Mainly, these are editors for different parts
of SCL. While the UML part is expected to be supported by Enterprise Architect, currently
there is no clear vision of RSL support in ReDSeeDS. To have at least something tangible, the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Reusable Case Transformation Rule Specification – D3.3
Introduction

ver. 1.0
31.07.2007

prototype version of JGraLab repository based editor is taken as a possible counterpart. Though
it will have limited functionality (only textual representations) and it is not ready yet, it has one
essential positive aspect. It will directly support RSL according to the tool-ready metamodel of
RSL, specified already in deliverable 3.2.1. The exact choice of source and target metamodels
is crucial for developing transformation procedures in MOLA. The facilities for transferring
models from JGraLab repository and back are also investigated in this deliverable, because this
is a crucial precondition for developed transformations to be applied to real models.

2.2 Automatic transformations and manual development

In the classic MDSD approach the automatic transformation based approach is always combined
with the manual extension of the generated model by the designer. The same situation is in the
ReDSeeDS approach. It is completely universally accepted not to expect a transformation which
would be able to generate a software case from its requirements.

Therefore within each software case design methodology it is assumed, that transformations
provide only the initial version of the next artefact in the chain. Then this initial version is man-
ually extended within the relevant SCL sublanguage - mainly, UML or code (Java). The initial
version provided by transformations must be “user friendly” enough to be easily understood
and extended by designers.

The percentage of the automatically generated part of the next artefact with respect to its full
contents depends on chosen design methodology and the step within it. Thus, in the provided
example design methodology a very significant part of the architecture model (when measured
against the number of classes, interfaces and messages in sequence diagrams) is generated au-
tomatically by transformations provided in this deliverable. However, a significant manual fine
tuning of the generated architecture model is required. For example, in most cases the param-
eters and return types of generated operations (except those for Business Logic layer services)
can only be adequately selected by the architect manually.

For the transition from architecture model to detailed design model in the above-mentioned
methodology the percentage of the automatically generated part most probably will be lower,
but still the static structure of the model can be generated mostly automatically. Only various
manual decisions on additional class operations and more associations should be implemented
manually after the initial model generation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Reusable Case Transformation Rule Specification – D3.3
Introduction

ver. 1.0
31.07.2007

One more aspect which could enhance the automatically generated part is the possibility for the
designer to annotate the current model. These annotations have no direct semantic meaning for
the current model, but are specially oriented towards guiding the transformations the desired
way. One such example could be the grouping of RSL notions into packages. However, in
standard MDSD practise such annotations frequently are based on simple extensions of the
modelling language - UML in this case. UML has the simple stereotype concept (having the
name only) and the tagged value concept for this. Strictly speaking, these are not UML 2.0
features (UML 2.0 has a much more advanced and complicated stereotype concept), but most
of the UML tools, including Enterprise Architect, support these simple ad-hoc concepts. Then
they can be used in a simple way to guide the transformations. Most probably, such a simple
extension facility should be added also to RSL.

For automatic generation and manual extension to coexist in the best way, it is necessary to
provide also the update mode for transformations, which update the target artefact (model),
when the source one is modified. But these update transformations must not overwrite the
manual extensions to the target model (unless they are made explicitly obsolete by the source
modification, e.g., a deletion of a class or use case). Therefore these update transformations
are more complicated than the initial generation ones, more semantic issues must be taken into
account. In this deliverable only the initial generation transformations have been provided,
because even the example methodology is not stable enough yet to invest the required effort.

2.3 SCL elements where transformations have the most value

As it was already noted, automatic transformations in the given design methodology have dif-
ferent value and power in transitions from different steps. Currently only the above mentioned
example methodology can be analysed. But results could be similar for other methodologies
too.

In this methodology the most important transformations are those from requirements in RSL to
architecture model in UML, a significant part of the architecture model is generated by trans-
formations. Partially it is due to specially selected structure and naming conventions within the
architecture model (which appeared already in deliverable 3.2.1). However, these conventions
are quite natural and acceptable in practise. Therefore it is expected, that transformations from
requirements to architecture model will be of high value for many design methodologies. This
fact is important for ReDSeeDS in general, because software cases will be compared by their
requirements, and precisely defined (by transformations) dependencies of architecture from re-
quirements will help to identify required changes.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Reusable Case Transformation Rule Specification – D3.3
Introduction

ver. 1.0
31.07.2007

Transformations from architecture model to detailed design typically can have a lesser ratio of
generated part in the target model. This step frequently will be the most creative one. However,
for the chosen example methodology the generated part actually is quite large. The main role
of transformations could be in guaranteeing precise traceability and naming conventions for
the generated parts, which is hardly achievable by other means. It should be noted that user
interface part of a system can be directly transformed from requirements to detailed design if
the requirements are described in sufficient detail.

The last step is the transition from detailed design to code. In a sense, this step is quite similar
to the standard step from the PSM model to code in MDSD. Typically, code skeletons (class
signature with attributes and methods) are generated in the relevant language (Java, C#). This
feature is supported in most UML tools, including Enterprise Architect.

However, the ReDSeeDS approach can offer more. The well organised sequence diagram struc-
ture in the detailed design model (it is especially visible in the example methodology) permits
to generate the control structure part of method bodies as well. Currently no standard UML tool
offers this (there was a similar attempt in earlier versions of Borland Together).

The existence of easily modifiable transformations in MOLA permits to adapt to various code
styles, which is the main issue in standard tools. The SCL definition in ReDSeeDS includes also
Java metamodel, which makes the application of MOLA possible for this task. The remaining
step is to obtain the Java code from its model (abstract syntax), for which there are several
solutions based on standard template languages. This step is not analysed in any great detail in
this deliverable.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Chapter 3

Informal description of transformation
rules

3.1 Transformation-ready SCL architecture example

The Software Case Language (SCL) contains descriptions for requirements, architecture, de-
tailed design and code models. From pure functional requirements based on domain speci-
fication we can obtain a code model by use of transformations between intermediate models
(architecture, detailed design). SCL specifies rules for transformations of these models (see
Figure 3.1). Intermediate models may be analysed and edited in order to include information
omitted during transformation (e.g non-functional requirements).

The architectural model, which is a result of transformation from requirements model, is built
with some subset of the UML, as transformation rules are limited to such elements of UML as
[KSC+07] defines:

• for static’s description: Component, Interface, Dependency, Class, Package

• for dynamic’s description: Lifeline, Message

A generated model should be corrected and completed by a software architect. There is com-
plete freedom of using UML elements not limited by any rules, but there must be kept a con-
sistency with the requirements specification. Having the architectural model, transformation
rules to detailed design model can be applied. The source of these transformations should be

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Requirements model in RSL

Architecture model in SDSL

Detailed design model in SDSL

transformation Transformation
rules

CIM

PIM

PSM

transformation Transformation
rules

Figure 3.1: Transformations between models defined on different levels of abstraction

an architectural model encapsulating crucial points of the developed software system. It can
either be a pure result of a transformation from the requirements model, a result of transforma-
tions from the requirements model with some corrections or a complete new architectural model
made by a software architect. Transformation rules, based on defined elements of UML used
for expressing both static and dynamic descriptions of architecture [KSC+07], while applied
on the architecture model, result in a draft of the detailed design model of a developed system.
This draft is described, the same as the architectural model, only with some subset of the UML.
Elements of the UML used in detailed design model are [KSC+07]:

• for static’s description: Class, Interface, Association, Realisation, Dependency

• for dynamic’s description: Lifeline, Message, Combined fragments

Generated detailed design models should be analysed and, if needed, edited according to the
specifics of the expected results. The skeleton of a detailed design model can be enhanced by
the use of any UML elements. From a detailed design model code can be generated by most of
the CASE tools.

Having an architectural model based on requirements, there is no need to use a requirements
specification to generate a detailed design model. All necessary information is included in the
architectural model. The pattern of such an architectural model and an example is presented
below, in sections 3.1.1 and 3.1.2.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

3.1.1 4-layer architecture model in SCL

As a typical example of an architecture model in SCL, the model of 4-layer architecture will
be used. It is the most common multi-layer architecture in today’s business software, mostly
because of the possibility to distribute logical layers among several machines (servers). The
model describes both the static structure - by component and class diagrams, and the system
behaviour - by sequence diagrams.

Presentation Tier (UI) - one UI component with one interface is built for the whole application.
It mediates between a user and the system, “translating” user-system interaction to calls to the
Application Logic tier. Although some logic can be implemented in the UI (like some com-
mon sense validation of data entered by user), it is recommended to avoid realising functional
requirements in this layer.

The Application Logic layer is responsible for the realisation of rules described in functional
requirements of the system. No business logic should be implemented at this tier, only the
logic that is needed to control the flow of functional requirements (e.g. Use Cases). The layer
structure is designed using component and class diagrams. The application logic layer con-
sists of components, which correspond to logically related groups of use cases. Each use case
corresponds to an interface of the corresponding component. Interface contents (operations)
are described by means of class diagrams. A components’ creation is based on grouping log-
ically related functional requirements. This layer uses Data Transfer Objects (DTOs) for data
exchange with the Business Logic layer.

The Business Logic layer is a tier where all business rules of the system are implemented. The
above layer, Application Logic, calls interfaces of this tier to retrieve and process data needed
to facilitate the flow of user-system interaction. The Business Logic layer calls the Data Access
layer for basic objects operations used in performing high-level business data manipulation (for
instance validation of sets of data against some aggregated data). The Business logic layer
consists of components, which correspond to related groups of domain concepts - notions. For
each notion’s corresponding interface of this component is created if there are any business
methods resulting from functional requirements concerning this notion. This interface is treated
as a service providing business methods.

The Data Access layer is a direct access to data source (like database or flat file) of the system.
Please note that there can be more than one data source for a given system. In this tier interfaces
exposing basic CRUD (Create/Read/Update/Delete) operations on data access objects (DAOs)
are implemented for every notion.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Presentation layer

Appl ication logic layer

Business logic layer

Data Access layer

Application Logic::Logical
component 1

UseCase1
Interface

UseCase2
Interface

UseCase3
Interface

User Interface::UI component

UI Interface

Business Logic::Business
component 1

Notion1
Interface

Notion2
Interface

Notion3
Interface

Business Logic::Business
component 2

Notion4
Interface

Notion5
Interface

Data Access::Data Access
Component 1

Notion1 DAO Notion2 DAO Notion3 DAO

Data Access::Data Access
Component 2

Notion4 DAO Notion5 DAO

Figure 3.2: Example of 4-layer architecture generated from requirements model

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

3.1.2 Example of 4-layer architecture in SCL

A part of an architectural model based on the Fitness Club System requirements specification is
presented in this section. It is the result of transformations whose the rules are widely described
in the sections below. The rules have been applied using an automatic technique, but without
using any scripting/transformation tool (by manual editing of the architectural model).

The source for the presented transformation was the RSL Elaborate Example, which is a com-
plete requirements specification written in the RSL for an imaginary Fitness Club software
concept. The specification contains 36 requirements – high-, low-level and non-functional,
among these are 12 Use Cases, which have several scenarios. The vocabulary part consists of
45 notions with 122 domain statements.

The output of the example transformation is divided into the 4-layer architecture as described in
the example from 3.1.1. The resulting model contains 16 components with 62 interfaces having
213 methods and using 40 data transfer objects (DTOs). This gives satisfactory results from
the perspective of method-per-interface and interface-per-component ratios. Please note that
most of the components and interfaces exist in the Data Access layer, which also has the most
complex components (in terms of number of interfaces).

The components with interfaces for all layers are presented in figures 3.4 – 3.7.

The example also contains a few sequence diagrams for selected use cases, that are shown in
figures 3.8 – 3.13.

 Customer Receptionist Administrator

User

Figure 3.3: 4-layer architecture model example - actors

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

UI Component

UI

Figure 3.4: 4-layer architecture model example - Presentation layer components with interfaces

Common

IBrowseAnOffer

IChangeDisp layCri teria

IRegisterACustomer

CustomerService

IIssueAnIdCard IRegisterPaymentFromCustomer

FacilityManagement

IBrowseFaci l i tyConfiguration

ICreateFaci l i ty

IDe leteFaci l i ty

IModi fyFaci l i tyDeta i ls

FacilityUsage

IEnterFaci l i ty ILeaveFaci l i ty

Reservations

IBrowseAnOfferAndReserve

Figure 3.5: 4-layer architecture model example - Application Logic layer components with
interfaces

CustomersServices

ICustomerRegistrationData ICustomer

FacilitiesServices

IFaci l i tyDetai ls

IFaci l i tyDisp layCri teria

IFaci l i ty

FacilityUsesServices

IFaci l i tyEntry IFaci l i tyLeave

DevicesServices

IBracelet IFaci l i tyGate

Figure 3.6: 4-layer architecture model example - Business Logic layer components with inter-
faces

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Fa
ci
lit
ie
sD
at
aA
cc
es
s

IF
ac

ili
tie

sC
on

fig
ur
at
io
nD

A
O

IF
ac

ili
ty
D
A
O

IF
ac

ili
ty
D
et
ai
ls
D
A
O

IF
ac

ili
ty
D
is
pl
ay

C
rit
er
ia
D
A
O

IF
ac

ili
ty
Li
st
D
A
O

IF
ac

ili
ty
M
an

ag
em

en
tD
A
O

IF
ac

ili
ty
P
ric

eD
A
O

IF
ac

ili
ty
T
yp

eD
A
O

IM
an

ag
er
ia
lR
ep

or
tD
A
O

IO
ffe

rD
A
O

IR
es
er
va

bl
eF

ac
ili
ty
Li
st

IS
er
vi
ce

D
A
O

IT
im

et
ab

le
D
A
O

C
us
to
m
er
sD
at
aA
cc
es
s

IA
cc
ou

nt
B
al
an

ce
D
A
O

IA
cc
ou

nt
D
A
O

IC
us
to
m
er
D
A
O

IC
us
to
m
er
D
at
aD

A
O

IC
us
to
m
er
R
eg

is
tra

tio
nD

at
aD

A
O

IR
eg

is
te
re
dC

us
to
m
er
Li
st
D
A
O

D
ev
ic
es
D
at
aA
cc
es
s

IB
ra
ce

le
tD
A
O

IB
ra
ce

le
tR
ea

de
rD
A
O

IF
ac

ili
ty
G
at
eD

A
O IId

C
ar
dD

A
O

IId
C
ar
dD

at
aD

A
O

P
ay
m
en
ts
D
at
aA
cc
es
s

IB
ill
D
A
O

IP
ay

m
en

tD
A
O

M
es
sa
ge
D
at
aA
cc
es
s

IC
on

fir
m
at
io
nD

A
O

IC
on

fir
m
at
io
nM

es
sa
ge

D
A
O

IE
rro

rM
es
sa
ge

D
A
O

IIn
fo
rm

at
io
nM

es
sa
ge

D
A
O

IR
ej
ec

tio
nM

es
sa
ge

D
A
O

Fa
ci
lit
yU
se
sD
at
aA
cc
es
s

IC
us
to
m
er
A
ct
iv
ity

D
A
O

IC
us
to
m
er
E
nt
ra
nc

eD
A
O

IC
us
to
m
er
E
xi
tD
A
O

IF
ac

ili
ty
E
nt
ry
D
A
O

IF
ac

ili
ty
Le

av
eD

A
O

IF
ac

ili
ty
R
es
er
va

tio
nD

A
O

IF
ac

ili
ty
R
es
er
va

tio
nS

um
m
ar
yD

A
O

IF
ac

ili
ty
R
es
er
va

tio
nT

im
eD

A
O

IR
es
er
va

tio
nD

A
O

Fi
gu

re
3.

7:
4-

la
ye

ra
rc

hi
te

ct
ur

e
m

od
el

ex
am

pl
e

-D
at

a
A

cc
es

s
la

ye
rc

om
po

ne
nt

s
w

ith
in

te
rf

ac
es

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

C
us

to
m

er

(fr
om

 A
ct

or
s)

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
Fa

ci
lit

yU
sa

ge
::I

E
nt

er
Fa

ci
lit

y
«i

nt
er

fa
ce

»
D

ev
ic

es
S

er
vi

ce
s:

:IB
ra

ce
le

t
«i

nt
er

fa
ce

»
D

ev
ic

es
S

er
vi

ce
s:

:IF
ac

ili
ty

G
at

e
«i

nt
er

fa
ce

»
Fa

ci
lit

yU
se

sS
er

vi
ce

s:
:IF

ac
ili

ty
E

nt
ry

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

in
se

rts
 b

ra
ce

le
t i

nt
o

th
e

br
ac

el
et

 re
ad

er

in
se

rtB
ra

ce
le

tIn
to

T
he

B
ra

ce
le

tR
ea

de
r()

va
lid

at
e(

br
ac

el
et

)

[b
ra

ce
le

t v
al

id
]:

op
en

(fa
ci

lit
yG

at
e)

pa
ss

es
 fa

ci
lit

y
ga

te

pa
ss

Fa
ci

lit
yG

at
e(

)

re
gi

st
er

(fa
ci

lit
yE

nt
ry

)

cl
os

e(
fa

ci
lit

yG
at

e)

Fi
gu

re
3.

8:
4-

la
ye

ra
rc

hi
te

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

rb
as

ic
pa

th
sc

en
ar

io
of

E
nt

er
Fa

ci
lit

y
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

C
us

to
m

er

(fr
om

 A
ct

or
s)

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
Fa

ci
lit

yU
sa

ge
::I

E
nt

er
Fa

ci
lit

y
«i

nt
er

fa
ce

»
D

ev
ic

es
S

er
vi

ce
s:

:IB
ra

ce
le

t

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

in
se

rts
 b

ra
ce

le
t i

nt
o

th
e

br
ac

el
et

 re
ad

er

in
se

rtB
ra

ce
le

tIn
to

T
he

B
ra

ce
le

tR
ea

de
r()

va
lid

at
e(

br
ac

el
et

)

[b
ra

ce
le

t i
nv

al
id

]:
em

itR
ej

ec
tio

nM
es

sa
ge

()

Fi
gu

re
3.

9:
4-

la
ye

ra
rc

hi
te

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

r1
st

al
te

rn
at

e
pa

th
sc

en
ar

io
of

E
nt

er
Fa

ci
lit

y
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

C
us

to
m

er

(fr
om

 A
ct

or
s)

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
Fa

ci
lit

yU
sa

ge
::I

E
nt

er
Fa

ci
lit

y
«i

nt
er

fa
ce

»
D

ev
ic

es
S

er
vi

ce
s:

:IB
ra

ce
le

t
«i

nt
er

fa
ce

»
D

ev
ic

es
S

er
vi

ce
s:

:IF
ac

ili
ty

G
at

e

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

in
se

rts
 b

ra
ce

le
t i

nt
o

th
e

br
ac

el
et

 re
ad

er

in
se

rtB
ra

ce
le

tIn
to

T
he

B
ra

ce
le

tR
ea

de
r()

va
lid

at
e(

br
ac

el
et

) op
en

(fa
ci

lit
yG

at
e)

[ti
m

e
ou

t]:
 c

lo
se

(fa
ci

lit
yG

at
e)

Fi
gu

re
3.

10
:4

-l
ay

er
ar

ch
ite

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

r2
nd

al
te

rn
at

e
pa

th
sc

en
ar

io
of

E
nt

er
Fa

ci
lit

y
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

C
us

to
m

er

(fr
om

 A
ct

or
s)

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
R

es
er

va
tio

ns
::I

B
ro

w
se

A
nO

ffe
rA

nd
R

es
er

ve
«i

nt
er

fa
ce

»
C

us
to

m
er

sS
er

vi
ce

s:
:IC

us
to

m
er

«i
nt

er
fa

ce
»

C
om

m
on

::I
C

ha
ng

eD
is

pl
ay

C
rit

er
ia

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

w
an

ts
 to

 m
ak

e
fa

ci
lit

y
re

se
rv

at
io

n

w
an

tT
oM

ak
eF

ac
ili

ty
R

es
er

va
tio

n(
)

sh
ow

R
es

er
va

bl
eF

ac
ili

ty
Li

st
()

[re
qu

es
t]:

 w
an

ts
 to

 c
ha

ng
e

fa
ci

lit
y

di
sp

la
y

cr
ite

ria

[re
qu

es
t]:

w
an

tT
oC

ha
ng

eD
is

pl
ay

C
rit

er
ia

()

se
le

ct
s

fa
ci

lit
y

se
le

ct
Fa

ci
lit

y(
)

as
kT

oS
el

ec
tF

ac
ili

ty
R

es
er

va
tio

nT
im

e(
)

se
le

ct
s

fa
ci

lit
y

re
se

rv
at

io
n

tim
e

fro
m

 ti
m

e
ta

bl
e

se
le

ct
Fa

ci
lit

yR
es

er
va

tio
nT

im
eF

ro
m

T
im

et
ab

le
()

as
kT

oC
on

fir
m

Fa
ci

lit
yR

es
er

va
tio

n(
)

co
nf

irm
s

fa
ci

lit
y

re
se

rv
at

io
n

co
nf

irm
Fa

ci
lit

yR
es

er
va

tio
n(

)

re
se

rv
eF

ac
ili

ty
(c

us
to

m
er

,fa
ci

lit
y)

sh
ow

Fa
ci

lit
yR

es
er

va
tio

nS
um

m
ar

y(
)

Fi
gu

re
3.

11
:4

-l
ay

er
ar

ch
ite

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

rb
as

ic
pa

th
sc

en
ar

io
of

B
ro

w
se

A
n

O
ff

er
A

nd
R

es
er

ve
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
R

es
er

va
tio

ns
::I

B
ro

w
se

A
nO

ffe
rA

nd
R

es
er

ve
«i

nt
er

fa
ce

»
C

us
to

m
er

sS
er

vi
ce

s:
:IC

us
to

m
er

«i
nt

er
fa

ce
»

C
om

m
on

::I
C

ha
ng

eD
is

pl
ay

C
rit

er
ia

C
us

to
m

er

(fr
om

 A
ct

or
s)

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

w
an

ts
 to

 m
ak

e
fa

ci
lit

y
re

se
rv

at
io

n

w
an

tT
oM

ak
eF

ac
ili

ty
R

es
er

va
tio

n(
)

sh
ow

R
es

er
va

bl
eF

ac
ili

ty
Li

st
()

[re
qu

es
t]:

 w
an

ts
 to

 c
ha

ng
e

fa
ci

lit
y

di
sp

la
y

cr
ite

ria

[re
qu

es
t]:

 w
an

tT
oC

ha
ng

eD
is

pl
ay

C
rit

er
ia

()

[li
st

 is
 e

m
pt

y]
: s

ho
w

In
fo

rm
at

io
nM

es
sa

ge
()

[in
se

rt]
: w

an
tT

oC
ha

ng
eD

is
pl

ay
C

rit
er

ia
()

[re
jo

in
]:

sh
ow

R
es

er
va

bl
eF

ac
ili

ty
Li

st
()

Fi
gu

re
3.

12
:4

-l
ay

er
ar

ch
ite

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

r1
st

al
te

rn
at

e
pa

th
sc

en
ar

io
of

B
ro

w
se

A
n

O
ff

er
A

nd
R

es
er

ve
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

C
us

to
m

er

(fr
om

 A
ct

or
s)

U
se

r I
nt

er
fa

ce
::U

se
rIn

te
rfa

ce
«i

nt
er

fa
ce

»
R

es
er

va
tio

ns
::I

B
ro

w
se

A
nO

ffe
rA

nd
R

es
er

ve
«i

nt
er

fa
ce

»
C

us
to

m
er

sS
er

vi
ce

s:
:IC

us
to

m
er

«i
nt

er
fa

ce
»

C
om

m
on

::I
C

ha
ng

eD
is

pl
ay

C
rit

er
ia

IU
se

rIn
te

rfa
ce

(fr
om

 U
se

r I
nt

er
fa

ce
)

w
an

ts
 to

 m
ak

e
fa

ci
lit

y
re

se
rv

at
io

n

w
an

tT
oM

ak
eF

ac
ili

ty
R

es
er

va
tio

n(
)

sh
ow

R
es

er
va

bl
eF

ac
ili

ty
Li

st
()

[re
qu

es
t]:

 w
an

ts
 to

 c
ha

ng
e

fa
ci

lit
y

di
sp

la
y

cr
ite

ria

[re
qu

es
t]:

 w
an

tT
oC

ha
ng

eD
is

pl
ay

C
rit

er
ia

()

se
le

ct
s

fa
ci

lit
y

se
le

ct
Fa

ci
lit

y(
)

as
kT

oS
el

ec
tF

ac
ili

ty
R

es
er

va
tio

nT
im

e(
)

se
le

ct
s

fa
ci

lit
y

re
se

rv
at

io
n

tim
e

fro
m

 ti
m

e
ta

bl
e

se
le

ct
Fa

ci
lit

yR
es

er
va

tio
nT

im
eF

ro
m

T
im

et
ab

le
()

as
kT

oC
on

fir
m

Fa
ci

lit
yR

es
er

va
tio

n(
)

di
sc

ar
ds

 fa
ci

lit
y

re
se

rv
at

io
n

di
sc

ar
dF

ac
ili

ty
R

es
er

va
tio

n(
)

[re
jo

in
]:

sh
ow

R
es

er
va

bl
eF

ac
ili

ty
Li

st
()

Fi
gu

re
3.

13
:4

-l
ay

er
ar

ch
ite

ct
ur

e
m

od
el

ex
am

pl
e

-s
eq

ue
nc

e
di

ag
ra

m
fo

r2
nd

al
te

rn
at

e
pa

th
sc

en
ar

io
of

B
ro

w
se

A
n

O
ff

er
A

nd
R

es
er

ve
U

se
C

as
e

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

3.2 Transformations from RSL (requirements model) to architecture model

The purpose of requirements-architecture transformations is generating a draft of an architec-
tural model based on the precise requirements specification. Rules of these transformations
should fulfil following criteria:

• the result architecture model should conform to good practises of creating such models
(proper granularity of components, good ratio of interfaces per component and methods
per interface, etc.)

• changes in source model should have predictable impact on result (target) model

• the rules should be flexible (customisable in part at least)

The precise requirements specification should be the result of collective activities of an ana-
lyst and an architect. Some analytical decisions have an important influence on the architectural
model and should be made during creation of requirements specification (e.g. grouping vocabu-
lary notions into vocabulary packages and functional requirements into requirements packages).

Having precise, RSL-compliant requirements specification as a source of transformation, a draft
of a 4-layer architecture (transformation target, the significance of all tiers of 4-layer architec-
tures is described in section 3.1.1) can be generated by applying following rules1 (see Fig. 3.14,
3.15):

• every vocabulary package is transformed into one business component and one data ac-
cess component

• every notion used in an SVO sentence is transformed into a data transfer object (DTO).
Notions which occur only in “high-level requirements” and system vision are ignored.
Every relation between notions is transformed into association between corresponding
DTO classes. Associations between DTO classes reflects direction and multiplicities of
notions’ relations (if present).

• for every notion used in an SVO sentence, a DAO interface is generated in the corre-
sponding data access component. This interface will provide CRUD operations for any
given notion.

1This set of rules is refined from [KSC+07]

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Presentation layer

Appl ica tion logic layer

Business logic layer

Data Access layer

Application Logic::Logical
component 1

UseCase1
Interface

UseCase2
Interface

UseCase3
In terface

Application Logic::Logical
component 2

UseCase4
Interface

UseCase5
Interface

User Interface::UI component

UI Interface

Business Logic::Business
component 1

Notion1
Interface

Notion2
Interface

Notion3
Interface

Business Logic::Business
component 2

Notion4
In terface

Notion5
In terface

Business Logic::Business
component 3

Notion6
Interface

Notion7
In terface

Data Access::Data Access
Component 1

Notion1 DAO Notion2 DAO Notion3 DAO

Data Access::Data Access
Component 3

Notion6 DAO Notion7 DAO

Data Access::Data Access
Component 2

Notion4 DAO Notion5 DAO

Functional requirements package 1

+ Use Case 1
+ Use Case 2
+ Use Case 3

Functional requirements package 2

+ Use Case 4
+ Use Case 5

Vocabulary notions package 1

+ Notion 1
+ Notion 2
+ Notion 3

Vocabulary notions package 2

+ Notion 4
+ Notion 5

Vocabulary notions package 3

+ Notion 6
+ Notion 7

Figure 3.14: 4-layer architecture generation overview

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

«interface»
Notion3 DAO

+ create(Notion3) : void
+ delete(Notion3) : vo id
+ read(Notion3) : vo id
+ update(Notion3) : vo id

«interface»
Business Logic::Notion1 Interface

+ verb(object) : vo id

«interface»
Application Logic::UseCase1 Interface

+ actorPredicate() : vo id
+ in i tia lActorPredicate() : vo id

«interface»
Application Logic::UseCase2 Interface

+ in i tia lPredicate() : void

«interface»
User Interface::UI Interface

+ systemCondi tionalPredicate() : vo id
+ systemPredicate() : vo id

Presenta tion layer

App l ica tion log ic layer

Business logic layer

Data Access layer

Application Logic::Logical
component 1

UseCase1
In terface

UseCase2
In terface

UseCase3
In terface

Application Logic::Logical
component 2

UseCase4
Interface

UseCase5
In terface

User Interface::UI component

UI In terface

Business Logic::Business
component 1

Notion1
In terface

Notion2
In terface

Notion3
In terface

Business Logic::Business
component 2

Notion4
Interface

Notion5
In terface

Business Logic::Business
component 3

Notion6
In terface

Notion7
In terface

Data Access::Data Access
Component 1

Notion1 DAO Notion2 DAO Notion3 DAO

Data Access::Data Access
Component 3

Notion6 DAO Notion7 DAO

Data Access::Data Access
Component 2

Notion4 DAO Notion5 DAO

Figure 3.15: 4-layer architecture generation - interfaces

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• a notion in a given vocabulary package is transformed into one interface provided by a
business component. An interface corresponding to this vocabulary notion is generated
only if the method for this notion is called on a business component (in the scenario we
have self message with this notion in predicate).

• every functional requirements package is transformed into one application logic compo-
nent; it is important to keep the number of functional requirements in packages low (for
instance: less than 4), to prevent creation of too complex components with too many
interfaces (see also next rule)

• every UseCase (functional requirement) is transformed into one interface provided by
application logic component

• one UI component with one interface is generated for the whole application; further divi-
sion of this component can be done by an architect at a later stage, when storyboards are
ready and UIElements are placed in the vocabulary

• all actors are transferred with no changes to architectural model

3.2.1 Generating architectural details

To generate further architectural detail, a sequence diagram from a requirements specification
needs to be transformed into a sequence diagram for the generated architecture.

In requirements sequence diagram we have several types of messages:

• initial actor predicate - the first message from an actor to the system

• actor’s predicate - every message from actor to the system (Every sentence with actor as
subject)

• system predicate - every message from the system to the actor (Every sentence with sys-
tem as subject, followed by sentence with Actor as subject)

• System’s “self-message” - every message from the system to itself (Every sentence with
system as subject, followed sentence with system as subject)

Based on the above terminology we should apply the following rules of transformation to create
a more detailed architectural model (see Fig. 3.16):

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Actor

System

Use Case 2

precond i tionprecond i tion

successsuccess

in i tia l actor p red ica te

<<invoke/insert>>

system pred icate

actor pred ica te

se l f p red icate

[cond i tion]: system cond i tional p red icate

Actor

User In te rface::UI com ponent « in te rface»
Appl ication Logic::UseCase1

Inte rface

« in terface»
Appl i ca tion Logic::UseCase2

Interface

«in terface»
Business Logic::Notion1

In terface

UI In terface

(from User In terface)

in i tia l actor pred icate

in i tia l acto r pred ica te

invoke m essage

system pred icate

actor p red icate

actor p red icate

se l f pred icate

[cond i tion]: system condi tiona l pred ica te

Figure 3.16: 4-layer architecture generation - sequence diagrams

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• initial actor predicate (description of an action that initiates a UseCase) is transformed
into two calls: one from Actor to presentation layer component and the other one from
presentation layer component to application logic component 2. Also, a dependency be-
tween the presentation layer component and the application logic component’s interface
used in this call should be created.

• each actor predicate is transformed analogously to initial actor’s predicate

• every system predicate (description of an action that is a system’s response to Actors
activity) is transformed into call from application logic layer component to presentation
layer component

• every “invoke” construct is transformed into call from “current” application logic layer
component (the one for “current” UseCase) to application logic layer component of in-
voked UseCase

• every System’s “self-message” is transformed into call from application logic layer com-
ponent to business layer component; this business layer component corresponds to a no-
tion which occurs in a predicate in an object. For this call a dependency between “source”
application logic layer component and “target” business layer component’s interface used
in this call should be created in the architectural model.

• each of the above calls is transformed into a method of a related interface

• calls to business logic layer component’s interface should correspond to verb phrases of
Notion which forms this interface (see Fig. 3.17):

– if verb phrase in predicate is a simple verb phrase, then verb is used for the method’s
name, and object part of predicate is a method’s parameter (example: [[v: add n:
user]] => add(User))

– if phrase is a complex one, then verb and direct object form method’s name and both
direct and indirect objects are method’s parameters (example: [[v: add n: user p: to
n: user list]] => addUser(User, UserList))

• actors in architectural models should be separated from actors from the requirements
model (but they should have same names, the architectural model actors are just “copies”
of actors used in requirements)

• calls to UI interface are asynchronous by default (but can be changed later by an architect
to synchronise if needed)

• no returns are shown on architectural sequence diagrams

2Both components are specific for this UseCase - see above

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• methods do not return anything - return types should be set at a later stage by an architect

3.2.2 Naming of architectural model elements

Although for names of architectural model elements the RSL requirements model element
names could be used, we propose also a set of rules for renaming elements resulting from
notions, use cases, verb phrases, etc.:

• all element names should be converted to UpperCamelCase (aka PascalCase), e.g. user

list => UserList

Exceptions:
(1) calls between actor and presentation layer should remain in a form of SVO sentences
(2) method names should follow CamelCase naming pattern

• in Business Logic layer all component names should have word “Services” added at the
end, e.g. FacilityUses => FacilityUsesServices

• in all layers all interface names should have letter “I” added at the front, e.g. FacilityDe-

tails => IFacilityDetails

• in Data Access layer all component names should be in plural form and have words
“DataAccess” added at the end, e.g. Device => DevicesDataAccess

• in Data Access layer all interface names should have additionally acronym “DAO” added
at the end, e.g. Account => IAccountDAO

• all notions (which form data transfer objects) should have names ending with acronym
“DTO”, e.g. RejectionMessage => RejectionMessageDTO

These rules allow model names to be more conforming to the software naming standards. The
rule set should be customisable in the ReDSeeDS tool, as no design pattern or platform specific
naming should be enforced on ReDSeeDS framework users.

3.2.3 Manual editing of generated model by an architect

The above transformations aim to generate platform independent model (PIM in the MDA ter-
minology). The platform specific detailed design model can be generated/designed based on

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

«interface»
Business Logic::Notion1 Interface

+ verb(object) : vo id

«interface»
Application Logic::UseCase1 Interface

+ actorPredicate() : void
+ i n i tia lActorPredicate() : vo id

«interface»
Application Logic::UseCase2 Interface

+ in i tia lPredicate() : vo id

«interface»
User Interface::UI Interface

+ systemCondi tionalPredicate() : vo id
+ systemPredicate() : vo id

Actor

User In terface::UI com ponent « interface»
Appl ication Logic::UseCase1

Interface

«interface»
Appl ication Logic::UseCase2

Interface

«interface»
Business Logic::Notion1

Interface

UI In terface

(from User In terface)

in i tia l actor predicate

in i tial actor predicate

invoke m essage

system predicate

actor predicate

actor predicate

self predicate

[condi tion]: system condi tional predicate

Figure 3.17: 4-layer architecture generation - methods of interfaces

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

a given architecture (see 3.4), which the architect should carefully examine and improve. For
this purpose the architect can use any elements of UML, but should have in mind the fact, that
only the SCL-compliant UML subset can be used for later transformation (from architecture to
detailed design).

Some of the decisions made by an architect after generation of the architecture model should
take into account difficulties with determining which of the notions should have corresponding
DAOs in the final architectural model (e.g. collections for existing DAOs should be removed,
as typical, auto-generated CRUD methods do not make sense for lists of objects).

In the ReDSeeDS tool a feature should be implemented to mark an architect’s changes in the fi-
nal model, so re-generating the model again from requirements (for example: after requirement
changes) would not overwrite the architect’s work. The solution could be based on keeping
traces between the generated model and the final model. The example of such a link could
be IsAllocatedTo ([KSC+07], p. 214). Also, changed elements in a model should be indicated
with some kind of “change flag”. During re-generation of architecture the architect would be
prompted for overwriting their changes. Of course there are still few problems to solve: for
example if an architect splits a component into two new components, and after generation a
new method appears in the original component, the decision has to be taken: to which of the
resulting two components the new method should be added.

Presented transformation rules are appropriate for generating 4-layer architecture. For other
architectures (like for the real time systems, service-oriented architectures or client-server ar-
chitecture) different transformation rules should be proposed. In fact we need a “family” of
transformations which probably should be customisable.

While 4-layer architecture seems to be most illustrative for purpose of creating transformation
rules, transforming to other architectures following the layer architectural design patterns could
be based on rules presented above; e.g. transforming to 3-layer architecture could be very simi-
lar with exception of merging UI and application logic layers (calls between UI and application
logic become UI layer self-messages).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

3.3 Transformations of UI elements in RSL

According to the 4-layer architecture described in section 3.1.1 the presentation layer consists
only of one UI component with one interface on the architectural level. Therefore, the transfor-
mations described in this section transform the UI elements in RSL to a detailed design model
of this generated UI component. This step requires that storyboards are ready and UI elements
are placed in the vocabulary, otherwise the detailed design model of the UI component has to
be done manually by a designer.

The transformation into a detailed design model consists of two steps. First, an overall struc-
ture is generated containing factories, dialogs and interface elements to the application logic.
Second, RSL UI elements and storyboards are used to generate the dialog structures.

The following rules describe the transformation into the overall presentation logic structure:

• for the presentation layer one UI factory is created. It is a static class with name “UIFac-
tory”.

– for the UI interface in the UI component a method returning a realisation of this
interface is generated. The method name is composed of the prefix “get” and the
component name: “getUI”.

• for the UI interface in the presentation layer a corresponding interface and implementation
class are generated together with a realisation relation. The name of the interface gets the
prefix “I” and will be “IUI” and the implementation class will be called “UI”.

– interface methods are the same as in the architectural model. These are methods
corresponding to system predicates.

– for the implementation class also methods corresponding to actor predicates are
added, since the UI class also acts as a port to the application logic layer for all
other UI classes.

• for the UI factory dependencies to the UI implementation class and to all dialogs and
windows are generated.

• for each RSL UI presentation unit contained in a UI scene a dialog class or frame class
(depends on whether the UI scene attached SVO scenario sentence contains the modifier
“modal” or not) together with its structure and layout are generated. The dialog or frame
gets the name of the UI presentation unit in CamelCase notation suffixed with “Dialog”

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

UIFactory

UI component::
Dialog1

UI component::
Dialog2

UI component::
Dialog3

Application Logic::
ApplicationLogicFactory

«interface»
Application Logic:

:IUseCase1

Application Layer

Presentation Layer

UI component::UI

«interface»
UI component::IUI

Figure 3.18: Overview of the UI component’s detailed design model

or “Frame” (e.g. ReservableFacilityListDialog). Detailed rules for generating the dialog
and frame structure are described in section 3.3.1

• for each dialog or frame in the UI component a static method returning a single instance
of this dialog or window is generated. This method implements the Singleton-Pattern and
its name is composed of the “get” prefix and the dialog’s or frame’s name (e.g. getReserv-
ableFacilityListDialog).

• for each system predicate with the verb “show” the method added to the UI class retrieves
the dialog from the UIFactory and displays it to the user. The object part of the predicate
shall correspond to the UI presentation unit and thus to the dialog’s name.

Figure 3.18 shows the structure of the UI components detailed design model generated accord-
ing to the rules above and Figure 3.19 illustrates an example for a generated detailed design
model.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

UIFactory

+ getFacilityReservationSummaryDialog() : FacilityReservationSummaryDialog
+ getInformationMessageDialog() : InformationMessageDialog
+ getReservableFacilityListDialog() : ReservableFacilityListDialog
+ getUI() : UI

«interface»
UI component::IUI

+ askToConfirmFacilityReservation() : void
+ askToSelectFacilityReservationTime() : void
+ showFacilityReservationSummary() : void
+ showInformationMessage() : void
+ showReservableFacilityList() : void

UI component::UI

+ askToConfirmFacilityReservation() : void
+ askToSelectFacilityReservationTime() : void
+ confirmFacilityReservation() : void
+ selectFacility() : void
+ selectFacilityReservationTimeFromTimetable() : void
+ showFacilityReservationSummary() : void
+ showInformationMessage() : void
+ showReservableFacilityList() : void
+ wantToMakeFacilityReservation() : void

«Dialog»
UI component::

ReservableFacilityListDialog

+ show() : void

«Dialog»
UI component::

InformationMessageDialog

+ show() : void

«Dialog»
UI component::

FacilityReservationSummaryDialog

+ show() : void

Presentation Logic - Detailed design model

Figure 3.19: Example of a UI component’s detailed design model

To be able to generate a dialog or frame a GUI meta-model is necessary that describes possible
structures of dialogs and frames. The GUI meta-model is based on desktop application UI pat-
tern. The next section describes this meta-model followed by an explanation of the generation
of dialogs and frames out of RSL UI elements.

3.3.1 Dialog generation

The target of the second transformation step is a GUI model specifying the structure of dialogs
and frames. The GUI model conforms to a GUI meta-model describing an abstract GUI toolkit.
The GUI meta-model presented here is based on the Java Swing Model but is generalised in a
way to be easily adaptable to other GUI toolkits like Windows Forms (e.g., we omit the “J” in
front of each class name). It should be mentioned that the GUI meta-model presented here is
not part of the RSL and the SCL.

The GUI meta-model provides a possible way for specifying the structure of dialogs and frames
contained in the User Interface::UI component and the GUI, respectively. It organises all GUI
widgets in the form of a tree as common to current GUI toolkits. The GUI meta-model is
represented as a UML class diagram. It also supports the possibility to establish traceability

links.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Dialog

LabelComboBox

TextField Button

PanelWindow

Frame

AbstractButton

MenuItem

Widget

TextComponent

TextArea

LayoutManager

FlowLayout

GridBagLayout

GridBagConstraint

Presentation Logic::UI component::UI

+ actorPredicate() : void
+ systemPredicate() : void
+ initialActorPredicate() : void
+ systemConditionalPredicate() : void

«interface»
Presentation Logic::UI component::IUI

+ systemPredicate() : void
+ systemConditionalPredicate() : void

0..*

+usedLayout

0..1

0..1

1

+parent 1
{ordered}

+child
0..*

+parent
1 {ordered}

+child

0..*

Figure 3.20: A conceptual GUI meta-model

Figure 3.20 shows the GUI meta-model relevant to generating the detailed design of dialogs.
The classes and structure of the meta-model are mainly derived from Java Swing. The base
class for all widgets is the abstract class Widget. The specialised classes Window, Dialog, Frame

and Panel in the left part of Figure 3.20 depict GUI containers that aggregate other widgets.
Since in Java Swing each component is also a container, the conceptual GUI meta-model pre-
sented here also does not explicitly distinguish between container and non-container elements.
Conforming to Java Swing, all GUI widgets can be associated with a LayoutManager, but usu-
ally it makes sense to attach layout managers only to GUI containers. Some layout managers
like GridBagLayout assign additional constraints (e.g., row, column, padding, etc.) to the GUI
widgets aggregated in the associated GUI container. Other layout managers like FlowLayout

only depend on the order the widgets are added to the container. This order is assured by the
order constraint of the aggregation between panels or windows and their child widgets.

The content of a window (dialog or frame) is determined by the following rules. If a detailed
specification of an RSL UI presentation unit is available, the following rules apply:

• Every RSL UI container is transformed into a Panel. By default, a FlowLayout is associ-
ated with the Panel. The name of the generated panel and flow layout will be the name
of the UI container suffixed with “Panel” and “FlowLayout” respectively. All RSL UI
elements contained in the RSL UI container get processed in the order defined by the
associated RSL presentation order. The following rules are applied to the contained RSL

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

UI element depending on their specialisation type. Each generated widget is then added
to the Panel.

• Every RSL input UI element is transformed into a TextField and an associated Label. If
it is possible to determine the type of data through the associated SVO scenario sentence,
it is possible to generate a text area, spinner, date/time picker, gauge or slider instead
of a text field. The default text of the generated label will be the predicate of the SVO
sentence. If the associated SVO sentence is an actor predicate, an input change method
is generated, that calls the application logic method via the UI class. The name of the
generated text field and label will be the name of the input UI element suffixed with
“TextField” and “Label” respectively.

• Every selection UI element is transformed into either a ComboBox, ListBox, CheckBox or
RadioButtons depending on the number of contained RSL option UI elements and on the
allowance of multiple selection. For each RSL option UI element a single CheckBox or
a single RadioButton is generated depending on the value of the isReSelectable attribute.
Additionally, an associated Label is generated. The default text of the generated label
will be the predicate of the SVO sentence. If the associated SVO sentence is an actor
predicate, a selection change method is generated, that calls the application logic method
via the UI class (e.g. SelectFacility). The name of the generated input widget will be the
name of the input UI element suffixed with the type name. The name of the generated
Label Widget will be the name of the label element suffixed with “Label”.

• Every RSL trigger UI element associated with an RSL user action results in the corre-
sponding specialisation of AbstractButton and an action method assigned to the button
that triggers the actor predicate associated with the RSL user action. If the SVO sentence
is an initial actor predicate, a MenuItem specialisation will be generated. The name of
the generated specialisation of abstract button will be the name of the trigger UI element
suffixed with “Button” or “MenuItem”.

If no detailed specification of an RSL UI presentation unit is available, the following rules can
be used to generate a first prototype for the detailed design model of the dialogs contained in
the UI component. Those rules enforce the use of English in writing requirements. They can be
a guideline for the designer. The detailed design model needs to be manually reworked by the
designer:

• Every SVO sentence attached to an RSL UI scene where the subject refers to the system
and the verb denotes a required selection by the user like “offer” is transformed into a
Label representing the object and either a ComboBox, ListBox, CheckBox or RadioButtons

depending on the number of contained data and if multiple selection is allowed or not.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• Every SVO sentence attached to an RSL UI scene where the subject refers to the system
and the verb denotes gathering information from the user like “ask” or “request” is trans-
formed into a Panel containing a list of pairs of Label and input widgets. These widgets
represent the domain information referred to by the object of the sentence. The name of
the domain element is transformed into the Label and the type of the domain element de-
termines the type of the input widget. By default, the type of the input widget is TextField

allowing to enter any kind of information.

• Every SVO sentence attached to an RSL UI scene where the subject refers to the system
and the verb denotes the presentation of information like “inform” is transformed into a
Label representing the information denoted by the object of the sentence.

• Every SVO sentence attached to an RSL user action where the subject refers to the user
of the system results in the creation of a Button that allows submission of information that
the user entered based on other SVO sentences attached to predecessor RSL UI scene of
the RSL user action. If there is also a conditional sentence associated with the RSL user
action, the condition evaluation is also included in the action method of the generated
button.

Figure 3.21 shows an RSL storyboard for the “Make facility reservation” scenario used as an
example throughout these sections. The storyboard consists of RSL UI scene, each attached
with a list of SVO sentences and an RSL presentation unit displaying the envisioned dialog
structure. Each RSL UI presentation unit gets transformed into dialogs according to the rules
above. The generated dialog structure for the “Reservable Facility List Dialog” and the “Facility
Reservation Summary Dialog” are shown in Figure 3.22 and Figure 3.23.

The ReservableFacilityListDialog in Figure 3.22 is composed of two Labels, two ComboBoxes
and two Buttons. The “UI presentation order” is transformed to an instance of FlowLayout

assigned the ReservableFacilityListDialog. The order is given by the order constraint of the
aggregation specified in the GUI meta-model. The flow layout places everything in one row
until there is not enough space in the row which leads to switching to the next row. In the
reservable facility list dialog only the buttons are placed on the same line.

Figure 3.23 illustrates the GUI Model for the “Facility Reservation Summary Dialog”, which
results from the UI presentation unit shown in scene 4 in Figure3.21. The dialog is invoked by
the “show facility reservation summary” system predicate. The FacilityReservationSummaryDi-

alog is composed of a Label displaying the status and a Button arranged with a FlowLayout.

Figure 3.24 shows a typical sequence for the “Make facility reservation” scenario. The “wants
to make facility reservation” initial actor predicate leads to the system predicate “show reserv-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Reservable Facility List

Information Message

Facility Reservation Summary

facility list

facility reservation time

reservecancel

No facility is currently available!

ok

You successfully reserved facility xy.

ok

7. Customer confirms facility reservation.
[Facility available]

7. Customer confirms facility reservation.
[Facility not available]

2. FCS shows reservable facility list.
3. Customer selects facility.
4. FCS asks to select facility reservation
time.
5. Customer selects facility reservation
time from timetable.
6. FCS asks to confirm facility
reservation.

Fitness Club System

File Services Help

Make facility reservation

Scene 1

Scene 2

Scene 3

Scene 4

1. Customer wants to make facility reservation.

8. FCS shows facility reservation status.

8. FCS shows facility reservation status.

facility list:

facility reservation time:

Figure 3.21: UI storyboard for “Make facility reservation” scenario

«Button»
ReserveButton

«Dialog»
UI component::ReservableFacilityListDialog

+ show() : void

«ComboBox»
FacilityListComboBox

«ComboBox»
ReservationTimeComboBox

«Button»
CancelButton

«Label»
FacilityListLabel

«Label»
ReservationTimeLabel

«FlowLayout»
ReservableFacilityListFlowLayout

Figure 3.22: Reservable facility list dialog structure

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

«Dialog»
UI component::

FacilityReservationSummaryDialog

+ show() : void

«Button»
OkButton

«Label»
ReservationStatusLabel

«FlowLayout»
FacilityReservationSummaryFlowLayout

Figure 3.23: Facility reservation summary dialog

able facility list” which is transformed into a call on the UI class instance. This instance con-
tacts the UI factory and retrieves the “ReservableFacilityListDialog” that is displayed to the
user afterwards. The change of the “FacilityListComboBox” leads immediately to a method
call corresponding to the “select facility” actor predicate. The following “ask to select facility
reservation time from timetable” system predicate updates the selectable items of the “Facility
ReservationTimeComboBox” according to the selected facility. After the user selects a reser-
vation time, the OKButton gets enabled with the next system predicate “ask to confirm facility
reservation”. A click on the OKButton closes the dialog and sends the actor predicate “confirm
facility reservation”. This SVO sentence is associated with the corresponding RSL user action
leading to the next scene in the UI storyboard.

3.4 Transformations to detailed design model

As one of main objectives of the MDA approach is to separate the specification of functional-
ity from the specification of the implementation of that functionality on a specific technology
platform [MM03], only after PIM architecture is ready (generated from requirements and en-
hanced by an architect) it can be transformed into PSM detailed design. Below a set of rules
for transformations of every tier in 4-layer architecture is presented. The transformation pro-
cess uses only information contained in the architectural model, assuming that transformation
from requirements to architecture extracted all possible information for generating the detailed
design model.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

P
re

se
nt

at
io

n
Lo

gi
c

A
pp

lic
at

io
n

Lo
gi

c

C
us

to
m

er

:U
I

M
ak

e
Fa

ci
lit

y
R

es
er

va
tio

n
:M

en
uI

te
m

«i
nt

er
fa

ce
»

:IB
ro

w
se

A
nO

ffe
rA

nd
R

es
er

ve
:U

IF
ac

to
ry

R
es

er
va

bl
eF

ac
ili

ty
Li

st
D

ia
lo

g
:D

ia
lo

g
Fa

ci
lit

yL
is

tC
om

bo
B

ox
:C

om
bo

B
ox

Fa
ci

lit
yR

es
er

va
tio

nT
im

eC
om

bo
B

ox
:C

om
bo

B
ox

O
kB

ut
to

n
:B

ut
to

n

se
le

ct

W
an

tT
oM

ak
eF

ac
ili

ty
R

es
er

va
tio

n(
)

W
an

tT
oM

ak
eF

ac
ili

ty
R

es
er

va
tio

n(
)

S
ho

w
R

es
er

va
bl

eF
ac

ili
ty

Li
st

()

ge
tR

es
er

va
bl

eF
ac

ili
ty

Li
st

D
ia

lo
g(

) :
R

es
er

va
bl

eF
ac

ili
ty

Li
st

D
ia

lo
g

sh
ow

()

sh
ow

up
da

te
Ite

m
s(

)

se
le

ct
 it

em
 fr

om
 fa

ci
lit

y
co

m
bo

 b
ox

S
el

ec
tF

ac
ili

ty
()

S
el

ec
tF

ac
ili

ty
()

A
sk

T
oS

el
ec

tF
ac

ili
ty

R
es

er
va

tio
nT

im
e(

)

up
da

te
Ite

m
s(

)

tim
et

ab
le

 u
pd

at
ed

se
le

ct
 it

em
 fr

om
 fa

ci
lit

y
re

se
rv

at
io

n
tim

e
co

m
bo

 b
ox

S
el

ec
tF

ac
ili

ty
R

es
er

va
tio

nT
im

eF
ro

m
T

im
et

ab
le

()

S
el

ec
tF

ac
ili

ty
R

es
er

va
tio

nT
im

eF
ro

m
T

im
et

ab
le

()

A
sk

T
oC

on
fir

m
Fa

ci
lit

yR
es

er
va

tio
n(

)

en
ab

le
()

en
ab

le
d

cl
ic

k

C
on

fir
m

Fa
ci

lit
yR

es
er

va
tio

n(
)

C
on

fir
m

Fa
ci

lit
yR

es
er

va
tio

n(
)

Figure 3.24: Customer wants to make facility reservation UI scenario.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

AL

BL

DAL

«in te rface»
IChangeDisplayCriteria

« in te rface»
IRegisterACustomer

« in te rface»
IBrowseAnOfferAndReserveChangeDisplayCriteria

RegisterACustomer

BrowseAnOfferAndReserve

ApplicationLogicFactory

CommonFactory ReservationsFactory

« in te rface»
ICustomer

Customer

« in te rface»
IFacility

Facility

BusinessLogicFactory

CustomerFactory FacilityFactory

« in te rface»
IFacilityDAO

« in te rface»
ICustomerDAO

« in te rface»
ICustomerDataDAO

CustomerDAO

CustomerDataDAO

FacilityDAO

DataAccessFactory

CustomerDataAccessFactory FacilityDataAccessFactory

ConnectionFactory

+custom er

+faci l i tyDAO
+cutomerDAO

Figure 3.25: Overview of detailed design model generated from architectural model

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Appl ica tion Log ic - Arch i tectura l m odel

App l ica tion Log ic - Deata i led design m odel

Application logic::Common

IChangeDisp layCri te ria IReg isterACustom er

Application logic::Reservations

IBrowseAnOfferAndReserve

« interface»
Common::IChangeDisplayCriteria

+ EnterFaci l i tyDisp layCri te ria() : vo id
+ WantToChangeDisp layCri te ria () : vo id

«interface»
Common::IRegisterACustomer

+ EnterCustomerRegistra tionData() : vo id
+ WantToRegisterACustomer() : vo id

«in terface»
Reservations::IBrowseAnOfferAndReserve

+ Confi rmFaci l i tyReservation() : vo id
+ DiscardFaci l i tyReservation() : vo id
+ SelectFaci l i ty() : vo id
+ SelectFaci l i tyReservationTimeFromTimetab le() : vo id
+ WantToMakeFaci l i tyReservation() : vo id

Common::ChangeDisplayCriteria

+ EnterFaci l i tyDisp layCri te ria () : vo id
+ WantT oChangeDisp layCri te ria () : vo id

Common::RegisterACustomer

+ EnterCustom erRegistrationData() : vo id
+ WantT oRegisterACustom er() : vo id

Reservations::BrowseAnOfferAndReserve

+ Confi rm Faci l i tyReservation() : void
+ DiscardFaci l i tyReservation() : vo id
+ SelectFaci l i ty() : void
+ SelectFaci l i tyReservationT im eFrom T im etab le() : vo id
+ WantT oM akeFaci l i tyReservation() : vo id

Application Logic::ApplicationLogicFactory

+ getCom m onFactory() : Com m onFactory
+ getReservationsFactory() : ReservationsFactory

Common::CommonFactory

+ getIChangeDisp layCri teria () : IChangeDisp layCri teria
+ getIReg isterACustom er() : IReg isterACustom er

Reservations::ReservationsFactory

+ getIBrowseAnOfferAndReserve() : IBrowseAnOfferAndReserve

Figure 3.26: Generation of Application logic detailed design

3.4.1 Generation of Application Logic

Below we present rules for generation of the application logic layer elements, including their
naming patterns and relationships that may exist among them.

• for the application logic layer one application logic factory is created. It is a static class
with name “AppLogicFactory”.

– for every component in the application logic layer a method returning a component
factory is generated. The method name is composed of “get” prefix and component
name (e.g. getReservationsFactory)

• for each component in the application logic layer a corresponding component factory is
created. They are static classes with a name composed of a component name + “Factory”
suffix (e.g. ResevervationsFactory)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Business Logic - Archi tectural m odel

Business Logic - Detai led design model

Business logic::CustomersServices

ICustomer

Business logic::FacilitiesServ ices

IFaci l i ty

«interface»
CustomersServices::ICustomer

+ AssignIdCard(CustomerDTO, IdCardDTO) : void
+ Register(CustomerDTO) : void
+ ReserveFaci l i ty(CustomerDTO, Faci l i tyDTO) : void

CustomersServices::Customer

+ AssignIdCard(Custom erDT O, IdCardDT O) : void
+ Register(CustomerDT O) : void
+ ReserveFaci l i ty(Custom erDT O, Faci l i tyDT O) : void

«interface»
FacilitiesServices::IFacility

+ Create(Faci l i tyDTO) : void
+ Delete(Faci l i tyDTO) : void
+ getReservableFi l tered(String) : L ist<Faci l i tyDTO>
+ getTimeSlots(Facil i tyDTO) : L ist<TimeSlotDTO>

FacilitiesServ ices::Facility

+ Create(Faci l i tyDTO) : void
+ Delete(Faci l i tyDTO) : void
+ Facil i ty()
+ getReservableFi l tered(String) : L ist<Faci l i tyDT O>
+ getT im eSlots(Faci l i tyDT O) : L ist<T im eSlotDT O>

Business Logic::BusinessLogicFactory

+ getCustom erFactory() : CustomerFactory
+ getFacil i tyFactory() : Faci l i tyFactory

CustomersServices::
CustomerFactory

+ getICustom er() : ICustom er

FacilitiesServices::
FacilityFactory

+ getIFaci l i ty() : IFaci l i ty

Figure 3.27: Generation of Business logic detailed design

– for every interface in a given component a method returning a realisation of this
interface is generated. The method name is composed of “get” prefix and interface
name (e.g. getIBrowseAnOfferAndReserve)

• for each interface in the application logic layer a corresponding interface and implemen-
tation class are generated (with realisation relation)

– interface methods are the same as these in architectural model

– generated interface has the same name as in the architectural model (e.g. IBrowseAnOf-
ferAndReserve)

– generated implementation class has the same name as interface without “I” prefix
(e.g. BrowseAnOfferAndReserve)

• for the application logic factory, dependencies to component’s factories are generated

• for each component factory dependencies to implementation classes are generated. These
dependencies point at each class implementing an interface of this component.

3.4.2 Generation of Business Logic

Below we present rules for generation of Business Logic layer elements, in a way similar to
rules for application logic.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• for business logic layer one business logic factory is created. It is a static class with the
name “BusinessLogicFactory”.

– for every component in the business logic layer a method returning component fac-
tory is generated. The method name is composed of a “get” prefix and a component
name (e.g. getCustomerServicesFactory)

• for each component in the business logic layer a corresponding component factory is
created. They are static classes with the name composed of component name + “Factory”
suffix (e.g. CustomerServicesFactory)

– for every interface in a given component, method returning realisation of this inter-
face is generated. The method name is composed of “get” prefix and interface name
(e.g. getICustomer)

• for each interface in the business logic layer a corresponding interface and implementa-
tion class are generated (with realisation relation)

– interface methods are the same as these in the architectural model

– a generated interface has the same name as in the architectural model (e.g. ICus-
tomer)

– a generated implementation class has the name as interface without “I” prefix (e.g.
Customer)

• for business logic factory dependencies to component’s factories are generated

• for each component factory dependencies to implementation classes are generated. These
dependencies point at each class implementing an interface of this component.

3.4.3 Generation of Data Access Layer

The rules for the data access layer are analogous to the rules presented in previous sections.

• for the data access layer one data access factory is created. It is a static class with name
“DataAccessFactory;”.

– for every component in the data access layer a method returning component factory
is generated. The method name is composed of a “get” prefix and a component
name (e.g. getCustomerDataAccessFactory)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Data Access Layer - Architectural model

Data Access Layer - Detai led design m odel

Data Access layer::CustomersDataAccess

Custom erDAO CustomerDataDAO

Data Access layer::FacilitiesDataAccess

Faci l i tyDAO

«interface»
FacilitiesDataAccess::IFacilityDAO

+ create(Faci l i tyDTO) : void
+ get(Faci l i tyDTO) : void
+ getAl l () : List<Faci l i tyDTO>
+ getAl lFi l tered(String) : List<Faci l i tyDTO>
+ update(Faci l i tyDTO) : void

«in terface»
CustomersDataAccess::ICustomerDAO

+ create(CustomerDTO) : void
+ delete(CustomerDTO) : void
+ read(CustomerDTO) : void
+ reserveFacil i ty()() : void
+ update(CustomerDTO) : void

«interface»
CustomersDataAccess::ICustomerDataDAO

+ create(CustomerDataDTO) : void
+ delete(CustomerDataDTO) : void
+ read(CustomerDataDTO) : void
+ update (CustomerDataDTO) : void

CustomerDAO

+ create(CustomerDT O) : void
+ delete(Custom erDTO) : void
+ read(CustomerDT O) : void
+ reserveFaci l i ty()() : vo id
+ update(Custom erDT O) : void

CustomerDataDAO

+ create(CustomerDataDT O) : vo id
+ dele te(CustomerDataDT O) : void
+ read(Custom erDataDTO) : void
+ update(Custom erDataDT O) : void

FacilitiesDataAccess::FacilityDAO

+ create(Faci l i tyDT O) : void
+ get(Faci l i tyDT O) : void
+ getAl l () : List<Faci l i tyDT O>
+ getAl lFi l tered(String) : List<Faci l i tyDTO>
+ update(Faci l i tyDT O) : void

DataAccessFactory

+ getCustomerDataAccessFactory() : Custom erDataAccessFactory
+ getFaci l i tyDataAccessFacto ry() : Faci l i tyDataAccessFacto ry

CustomerDataAccessFactory

+ getICustom erDAO() : ICustom erDAO
+ getICustom erDataDAO() : ICustomerDataDAO

FacilityDataAccessFactory

+ getIFaci l i tyDAO() : IFaci l i tyDAO

ConnectionFactory

Figure 3.28: Generation of Data access layer detailed design

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

• for each component in the data access layer a corresponding component factory is created.
They are static classes with a name composed of component name + “Factory” suffix (e.g.
CustomerDataAccessFactory)

– for every interface in a given component a method returning realisation of this inter-
face is generated. The method name is composed of a “get” prefix and an interface
name (e.g. getICustomerDataDAO)

• for the data access layer one connection factory is created. It is a static class with name
“ConnectionFactory”

• for each interface in the data access layer a corresponding interface and implementation
class are generated (with a realisation relation)

– interface methods are the same as those in the architectural model

– generated interfaces have the same name as in the architectural model (e.g. ICus-
tomerDataDAO)

– generated implementation classes have the same name as the interface without “I”
prefix (e.g. CustomerDataDAO)

• for data access factory dependencies to component’s factories are generated

• for each component factory dependencies to implementation classes are generated. These
dependencies point at each class implementing an interface of this component.

3.4.4 Generating data transfer objects (DTOs)

All DTOs from the architectural model are copied with associations between them to the de-
tailed design model

3.4.5 Generating relationships between layers

Associations between all layers are generated based on sequence diagrams. Messages between
elements of the application logic layer and business logic layer are generated automatically
from requirements. Messages between elements of the business logic layer and the data access
layer are not generated during transformation from requirements and can be set manually by an
architect.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Reusable Case Transformation Rule Specification – D3.3
Informal description of transformation rules

ver. 1.0
31.07.2007

Relationships between the application logic layer and the business logic layer

• for each class implementing an interface in the application logic layer, which uses the
business logic layer, a dependency to the business logic factory is generated

• each message between the application logic layer interface and the business component
interface in architectural model is transformed into an association between implementa-
tion classes in the application logic layer and the business interface in the detailed design
model. The source of the association is a class implementing interface which is the source
in the sequence diagram.

Relationships between the business logic layer and the data access layer

• for each class implementing interface in the application logic layer, which uses the data
access layer, dependency to the data access factory is generated

• each message between the business logic layer interface and the data access layer interface
in the architectural model is transformed into an association between the implementation
class in the business logic layer and the data access interface in the detailed design model.
The source of association is a class implementing interface which is the source in the
sequence diagram.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Chapter 4

Formal definition of transformations in
MOLA

This chapter describes the MOLA implementations of transformations described informally in
the previous chapter. Again, the content of this chapter is a further development of ideas from
deliverable 3.2.1, in order to obtain a practically usable set of transformations for experimental
evaluation of the approach in the next deliverables.

The informal transformations in the chapter 3 are based on one of the possible solutions for
software case architecture in ReDSeeDS. It is the 4-layer software architecture model intro-
duced already in deliverable 3.2.1. Chapter 3 of this deliverable refines further this model. In
particular, sufficient details are added to the detailed design model.

Precise transformations defined in MOLA can be applied to all design steps of a software case
in ReDSeeDS, wherever some automatic transition from one model to another is possible. How-
ever, the value and applicability of transformations significantly depend on the informal trans-
formation algorithms and principles which have been designed for that step. These algorithms
must reflect natural design dependencies of some model elements upon the corresponding frag-
ment of the previous model. Therefore MOLA transformations in this deliverable have been
built only for those steps, where approved informal algorithms exist.

The most important and also the most elaborated currently are transformations from the Re-
quirements model to the Architecture model, applicable to the above mentioned 4-layer archi-
tecture. They are a further refinement of the informal transformations provided as an example
in deliverable 3.2.1. According to this, the corresponding MOLA transformations are also es-
sential improvements of the MOLA transformation example in section 6.5 of deliverable 3.2.1.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

In addition to activity representations, textual representations of use cases by SVO sentence
scenarios can also be used as a source for these transformations. However, the most important
fact is that these MOLA procedures now represent complete descriptions of transformations,
without any omissions. The new features of informal algorithms, such as the generation of de-
pendencies between components and interfaces and associations between DTO classes, are also
implemented in the transformation. Transformations are also partially tested now on some test
model instances, using the initial version of MOLA tool execution facilities. The main goal of
transformation development in this deliverable is to provide solutions, which could be used as
a base for testing the whole approach on real examples within the next deliverables. Certainly,
some updates may be required, when the first prototype of the RSL tool really appears. These
improved transformations from RSL to Architecture model are described in detail in section
4.2.

Chapter 3 in this deliverable now provides also an initial version of informal transformations
from the architecture model to detailed design model. They are defined in the context of the
same proposed 4-layer software architecture model. The architecture model is assumed to be
refined manually by a software architect, after an initial version of it was generated by trans-
formations from requirements. Some of these refinements are crucial for these transformations.
The static structure of the detailed design model (actually, a set of class diagrams) to a signifi-
cant degree can be generated from the refined architecture model. The corresponding informal
algorithms in chapter 3 provide a clear picture of these transformations, sufficient for imple-
mentation, though they are more complicated than for transition to the architecture model. Ac-
cording to the provided algorithms, an initial version of the respective MOLA transformations
is given in section 4.4. Since the informal descriptions of the algorithms may not be completely
stable yet, the corresponding MOLA procedures are not complete in this deliverable, only the
most essential solutions are provided. These transformations differ from the above ones by the
fact that both source and target models are UML based.

This chapter concludes with a brief sketch of other situations, where transformations in MOLA
would be required for the support of building a software case. In particular, problems of code
skeleton generation are briefly sketched.

Thus this chapter describes a possible set of transformations which is required for support of
software case building according to a specific software architecture model - the 4-layer software
architecture model. Certainly, if this model changes both the informal algorithms and formal
transformations in MOLA must be adapted. However, the basic transformation principles would
remain the same. The implemented transformations are adapted to support integration to soft-
ware case repository, details of this adaptation are described in chapter 5.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

One more issue not addressed in this deliverable is the update versions of transformations.
Currently only the initial version of the corresponding target model is generated. The update
version of transformations must be aware of possible manual extensions of the existing part of
the target model, which must not be overwritten. The structure of transformation implementa-
tion in MOLA and the generated traceability links are sufficient to incorporate also this aspect.
However, the corresponding update branches have not been implemented yet, because it would
increase the size of transformations, but no new solutions would be required. Their implemen-
tation is delayed till the next deliverable, when some initial RSL tool would really be available,
because some modifications of algorithms are possible in relation to this.

4.1 Source and target metamodels

Each MOLA transformation must have a precisely defined source and target metamodels, which
must be specified in accordance to MOLA MOF requirements, which have been described
already in deliverables 3.1 and 3.2.1. If a chain of transformations is to be defined, then the
target model (and metamodel, respectively) becomes the source for the next transformation in
the chain. Therefore metamodels in this section are structured according to the language they
define. Section 4.1.1 describes the used version of RSL metamodel. Section 4.1.2 describes
a metamodel for a subset of UML, which is used both as a source and target metamodel for
respective transformations.

4.1.1 RSL metamodel for transformations

As it was already mentioned, MOLA MOF requires some restrictions to meta modelling, basi-
cally, those of EMOF [Obj06] and in addition, currently single inheritance only. The previous
deliverable 3.2.1, in its section 6.5.1, already contained such an adaptation of the relevant subset
of the general tool-ready metamodel for RSL. However, the tool-ready metamodel for RSL it-
self has been slightly updated since then, to remove the found design errors. On the other hand,
the chosen subset of RSL has been extended too, to include also the textual representation of
use cases. Therefore the MOLA-ready metamodel for the relevant RSL subset must be repeated
in this deliverable, in order to make the transformations readable.

The RSL subset currently usable for transformations includes use cases and their “formal”
representations (activity and SVO sentences), use case packaging and relations, notions, their
grouping and relations and, finally, phrase and term related elements which define the textual
structure of the previously mentioned RSL elements. The selected subset of the tool-ready RSL

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

metamodel was converted according to EMOF requirements and multiple inheritance (actively
used in the tool-ready RSL) was excluded. During that process those abstract superclasses,
which provide no new attributes and whose associations are redefined at a lower level, have
been simply eliminated. In addition, to ease writing of MOLA rules, role names have been
added to many empty association ends in the original metamodel.

The provided MOLA-ready metamodel is semantically equivalent to the current version of the
tool-ready RSL metamodel for the chosen RSL subset. The equivalence is at the instance level
- if a software case repository is consistent to the tool-ready RSL metamodel, then instances of
classes and associations in the subset can be exported to/from MOLA repository without any
loss of information (see details in chapter 5). However, small modifications to this metamodel
may be required when RSL tools become available within workpackage 5.

Similarly to the version in deliverable 3.2.1, the MOLA-ready RSL metamodel is represented
by several class diagrams (figures 4.1 to 4.4). Each diagram shows related classes in some of
the RSL packages.

The current version of the metamodel contains also temporary updates, which are necessary for
transformations. First, the name attribute has been added to RequirementRepresentation class,
in order to have names for different scenarios within a use case. Second, a string-typed attribute
tag is added to RSLActivityEdge class, in order to have a place for a requirements designer to
comment, which outgoing edge in branch node corresponds to which path (or scenario). Both
these are issues, which must be solved in the context of an RSL tool, but since there are no clear
visions of this tool yet, temporary solutions are offered.

4.1.2 Metamodel of UML subset

As it was already mentioned, the metamodel for a UML subset may play several roles for trans-
formations. It is the target metamodel for transformations from RSL to architecture model. For
transformations from architecture to detailed design model it is both source and target meta-
model. Therefore this metamodel has been significantly extended with respect to its previous
form in deliverable 3.2.1, though the approach is the same.

Several decisions have been made in relation to the used subset of UML and its version, in
order to harmonise it with requirements from other possible ReDSeeDS tool components and
with design styles used in the selected design architecture.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.1: Top RSL metaclasses in MOLA-ready metamodel

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.2: Constrained language sentences for activity scenario elements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 53

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.3: Phrases and terms used in MOLA-ready metamodel

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 54

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.4: Notions and their relationships

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 55

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Firstly, UML 2.0 is used as the base version of the metamodel. However, a relatively small
subset is selected, containing only the basic UML notations typically used for software design
specification. This is done to make the transformation writing in MOLA manageable. On
the other hand, this subset is sufficient for the design style, proposed for design examples in
ReDSeeDS.

The original UML 2.0 metamodel [Obj05] heavily uses CMOF [Obj06] elements. Therefore
it had to be transformed in a way similar to the RSL metamodel, to make it MOLA-ready. It
should be noted, that a similar approach is used internally for several professional UML tools,
including RSA by IBM Rational [SCG+05]. There UML 2.0 metamodel is reduced to EMOF
and single inheritance too.

The static structure part of UML includes support for all elements typically used in class dia-
grams: classes, interfaces, associations, data types etc. They are mainly contained in the Kernel
package. The main elements for component modelling are also included (from the package
BasicComponents). Since components in the proposed ReDSeeDS software architecture are
used in a quite restricted way, UML elements meant for description of deployment components
currently are not included. The subset of UML 2.0 elements for static structure modelling is in-
cluded in a way which is semantically equivalent (instance equivalent) to the original UML 2.0
metamodel. Therefore it will be possible to use the original UML 2.0 metamodel for the soft-
ware case repository definition and have a complete data-preserving import/export to MOLA
repository. If in the future it would occur that more UML elements would be used in trans-
formations then the metamodel for the subset is easily extendable to required features, without
the need to modify the existing part. The only element which has been simplified with respect
to the UML 2.0 standard, is a simplified stereotype concept, applicable to any UML element
(without profiles and profile application, the same way as it is in Enterprise Architect and many
other tools). Figures 4.5 and 4.6 show the static structure part of the used metamodel.

The situation with behaviour description is more complicated. The main requirement is to
support relatively complete sequence diagram notation. The solution is again based on the pre-
liminary solution in deliverable 3.2.1, however, a much wider set of sequence diagram features
are supported. The basic metamodel is close to UML 2.0 (its Interactions package), but with
some parts simplified. This is due to the fact of excessive complexity of Interactions package
(already discussed in deliverable 3.2.1), which would make the transformations unnecessary
complicated, without adding any modelling power. These excessive metamodel elements also
could not be transferred to Enterprise Architect in a reasonable way since it uses a custom meta-
model. Again, it should be noted, that the used solution is similar to that used in IBM Rational
RSA [SCG+05]. A special situation is with conditional messages. All existing sequence dia-
grams in ReDSeeDS examples use the traditional UML 1.4 guard notation, but not the UML

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 56

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.5: The used fragment of UML Kernel package

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 57

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.6: Metamodel fragment for classes

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 58

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

2.0 fragment notation. This is also easily possible in Enterprise Architect. Therefore the meta-
model uses the UML 1.4 style solution for conditional messages. If however in future it would
be decided to use true UML 2.0 fragments, they can easily be incorporated in the simplified
metamodel. Figure 4.7 shows the interaction part of the metamodel. It should be noted that the
repository metamodel also should be simplified in its Interactions package in a similar way, in
order to have instance compatibility for transferring interaction-related data.

For traceability feature definition and their use as mapping elements for MOLA transforma-
tions, the general SCL solution already approved in deliverable 3.2.1 is again used the same
way. It should be noted that it will also be the base for later incorporation of model update
transformations, already mentioned above.

4.2 Transformations from RSL to architecture model

The description of informal transformations from RSL to architecture model in chapter 3 is
only a slight improvement of the same algorithms in deliverable 3.2.1. They rely on the same
proposed 4-layer software architecture model. Therefore the algorithms to be implemented in
MOLA are nearly the same.

As it was already stated in the introductory part of this chapter, the main difference is a signif-
icantly more complete and practically usable implementation in MOLA. The transformations
described in this deliverable may be used for practical evaluation of the approach, if facilities for
data exchange between potential RSL tool repository and MOLA repository are implemented
too (see chapter 5).

The following features (missing in deliverable 3.2.1) have been implemented now:

• representation of use cases also by textual SVO scenarios

• allowing several edges to exit an activity node and to build several sequence diagrams in
the architecture model from one activity scenario accordingly (this construct is present in
model examples, but was not supported by transformations in 3.2.1)

• the use of rejoin construct in scenarios

• complete implementation of invocation of another use case

• implementation of all situations for sequences of consecutive SVO sentences with respect
to their subjects, relying on recipient association where appropriate

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 59

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.7: The simplified Interactions package

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 60

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.8: Traceability elements used for transformations

• implementation of some missing purely technical features, such as unnecessary instance
filtering in the generated static structure.

The basic structure of the transformation is the same as in section 6.5 of deliverable 3.2.1. In
particular, the building of static structure of the architecture model is nearly the same as in
the previous version (deliverable 3.2.1). The main extensions are in procedures building the
behaviour aspects.

MOLA procedures, which are nearly the same will be given in this deliverable without much
comments. In general, the comments will be mainly related to algorithm details, but not MOLA
constructs. Section 6.5 of deliverable 3.2.1 already has played the role of an additional MOLA
tutorial.

Similarly to the version in deliverable 3.2.1, the transformation consists of two parts - process-
ing the static structure and behaviour. The static structure building is practically the same as
in the previous version. It consists of procedures stc_Structure 4.10, stc_CreatePackages 4.11,
stc_ApplicationLogic 4.12, stc_DataTransferObject 4.13, stc_Actors 4.14, stc_DataAccessLayer

4.15 and stc_BusinessLogic 4.16. The procedures stc_DataTransferObject and stc_DataAccess-

Layer have been modified to generate DTO and DAO objects only for those notions, which ap-
pear in SVO sentences in the role of objects. The procedure stc_BusinessLogic still generates
interfaces for all notions, but the unused ones (those which have no operations generated) are
deleted at the end of transformation (by a new procedure flt_FilterServices 4.35). The dependen-
cies between the UIComponent and application logic layer interfaces are generated at the static

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 61

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.9: Main procedure of the transformation

structure step. Notion relationships are now analysed in the procedure stc_DataTransferObject
4.13. For each relationship a UML association is built. There currently is a problem in the RSL
metamodel, that role names cannot be provided for relationships, therefore associations will be
nameless now (this problem should be solved in the context of RSL tool).

The behaviour part is modified in several places due to the new functionality described above.
Firstly, it is the possibility to represent a use case behaviour either by activity scenario or con-
strained language scenario (if both are present, the former one is used). To implement this, the
main procedure for behaviour processing - bhv_SequenceDiagramms is modified in order to
support also text scenarios.

The processing of constrained language scenarios is similar to the processing of activity sce-
narios, in the sense that an activity scenario is interpreted as a sequence of SVO or control sen-
tences according to the sequence of nodes linked by edges, but a constrained language scenario
already is such a sequence. If an edge in the activity scenario has a condition sentence, then the
same condition sentence is inserted between the normal sentences in the constrained language
scenario. A constrained language scenario can have no branching, therefore one sequence dia-
gram is always generated from such a scenario. Otherwise the message building process is the
same, based on subject analysis of two consecutive SVO sentences, the processing of control
sentences is also the same.

Therefore the MOLA procedures for processing constrained language scenarios can be well
integrated with the processing of activity scenarios. Actually, procedures are slightly redefined,
so that after a common initial part processing a valid use case, the kind of its representation is
found and processed accordingly. However, the differences are only in the way how one or more
interaction (sequence diagram) instances are created and in the way how the current and the next

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 62

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.10: Main procedure for building the static structure

constrained language sentence (SVO or control sentence) is found in the scenario. The new
feature that an activity scenario may contain branching nodes, and consequently, several paths
corresponding to several interactions to be generated, is supported by a recursive procedure at
this level. The proper processing of sentences is common to both cases and actually is the same
as before.

Now, some more details of the restructured procedures.

A new important procedure for the behaviour part now is bhv_CreateUseCaseInteractions 4.19,
which analyses a use case and finds, whether it has an activity scenario or constrained language
scenario and decides, which kind of processing is required (if both are available, activity is
used).

In the case of activity scenario, the procedure bhv_CreateActivityScenarioInteraction 4.20 is
invoked for the given use case. It prepares the environment for a recursive traversal of the
complete activity graph. First, the initialiser procedure bhv_CreateEmptyInteraction 4.21 is
invoked, which creates an interaction with the static lifelines valid for all situations, including
the lifeline for the current application layer interface (for this use case). Then the recursive

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 63

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.11: Static package creation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 64

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.12: Procedure building the Application logic elements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 65

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.13: Procedure building the data transfer objects

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 66

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.14: Procedure building UML actors

traversal is started, by invoking bhv_ActivityScenarioTraversal 4.23 on the initial node and on
the empty interaction.

The recursive procedure bhv_ActivityScenarioTraversal is capable to process one node and add
the corresponding messages to the interaction (via bhv_GenerateMessages, required actor life-
lines are also created upon request). Then, if only one edge exits the node, the next node is found
and the same procedure invoked recursively on this node and the same interaction. If there is a
branch node with several edges exiting, a loop is organised, which for every exit creates a new
copy of the interaction and invokes the same procedure on this copy and the appropriate node.
The tag on the branch is stored, in order to build the correct name of the interaction (currently
the name of the last branch is used as a suffix to the use case name). If a final node (or rejoin

edge) is reached, the current interaction is finalised and this recursive procedure ended. It can
easily be seen, that this way the classical graph traversal algorithm is implemented and as many
interactions generated, as there are branches in the graph.

In the case of constrained language scenarios, the procedure bhv_CreateTextScenarioInteraction

4.32 initialises an interaction for each available scenario and invokes bhv_CreateTextInteraction-

Data 4.33 on this scenario and interaction. This procedure in turn processes language sentences
in the defined order and for each does the standard processing via bhv_GenerateMessages. The

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 67

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.15: Procedure building data access objects

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 68

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.16: Procedure building business logic components

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 69

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.17: Procedure managing the behaviour

only difference from the activity case is that a special construct (using variables) is required to
find also the next sentence.

The processing of one sentence by bhv_GenerateMessages (taking into account also the next
one) is the same in both cases and similar to the previous version, only all situations are now
processed adequately. Required actor lifelines must also be added on demand, because they can
differ for several scenarios of one use case. For messages to the system itself the corresponding
dependencies must also be built. But otherwise the structure of these procedures is nearly the
same as in deliverable 3.2.1 and will not be described in more detail.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 70

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.18: Main procedure for behaviour processing

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 71

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.19: Procedure distinguishing scenario kinds

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 72

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.20: Procedure processing activity scenarios

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 73

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.21: Initialiser procedure for activity graph traversing

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 74

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.22: Procedure building lifelines

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 75

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.23: Procedure traversing the activity graph

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 76

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.24: Procedure processing invocation messages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 77

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.25: Procedure building invocation lifelines

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 78

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.26: Procedure distinguishing message kinds

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 79

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.27: Procedure generating actor-to-system messages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 80

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.28: Procedure generating lifeline

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 81

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.29: Procedure generating system-to-actor messages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 82

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.30: Procedure generating system-to-system messages

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 83

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.31: Procedure generating system (“business”) lifeline

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 84

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.32: Procedure initialising interaction for constrained language scenario

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 85

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.33: Procedure processing constrained language scenarios

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 86

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.34: Main procedure for behaviour processing

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 87

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.35: Procedure for deletion of unused interfaces

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 88

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.36: Utility procedure providing verb phrase text

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 89

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.37: Utility procedure providing operation name

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 90

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.38: Utility procedure converting string to UpperCamelCase

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 91

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.39: Utility procedure providing interaction name prefix

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 92

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.40: UI elements and relationships

4.3 Transformations of UI elements in RSL

This section formalises the transformation of UI elements defined in section 3.3. MOLA
transformations require metamodels restricted basically to EMOF as already mentioned in sec-
tion 4.1. To be able to transform user interface requirements, a MOLA-ready version of the RSL
UI metamodel part and the GUI metamodel is required. Based on these MOLA-ready source
and target metamodels, additional MOLA transformation rules for the UI specification are de-
fined. The remainder of this section is organised as follows: First, the user interface specific
additions to the MOLA-ready version of RSL are explained, Second, the target GUI metamodel
is described. Third, MOLA rules which formalise the rules of section 3.3 are specified and in
the last step, MOLA rules that extend the behaviour of the UI component are defined.

4.3.1 Source and target metamodels for UI transformations

Figures 4.40 and 4.41 illustrate the MOLA-ready version of the user interface part. Since,
the UI part of RSL does not rely on CMOF constructs, the RSL UI elements and RSL UI
behaviour representation packages have been added to the MOLA-ready RSL version without
modifications. Only missing association role names had to be added to make them accessible
in the MOLA tool.

For the target metamodel we stick to the MOLA-ready UML version. The UML profile mech-
anism is used to describe target GUI models conforming to the GUI metamodel. In detail, only
UML stereotypes are used to specify instances of the GUI metamodel. It has to be noted that in
most projects and GUI frameworks the model-to-code transformation generates only one class
for each dialog, containing initialisation code building up the GUI structure according to the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 93

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.41: UI behaviour representations

GUI model. Hence, in contrast to the other parts of the design model, generated UML classes
with stereotypes conforming to the GUI metamodel except “Dialog” and “Frame” will be not
transformed into code classes.

4.3.2 Generating dialog structures

The following rules specify the generation of dialogs and their structure. The main procedure
is illustrated in Figure 4.42. It requires a UML package as input to which the generated classes
are added. This package is generated by rules generating the 4-layer architecture. The rules
described here already present a design for the UI component. Thus, they can be also executed
during detailed design transformation specified in the next section.

The procedure shown in Figure 4.42 generates a dialog for each UI presentation unit and a
traceability link (isAllocatedTo) between the UI presentation unit and the generated dialog. Fur-
thermore, the procedure adds recursively panels to the dialog that correspond to the UI container
hierarchy and makes the panels traceable to their UI container.

After generating the primary dialog structure, the procedure in Figure 4.43 processes all other
UI elements except UI containers. It distinguishes the different UI elements and calls type-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 94

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.42: Procedure generating GUI dialogs together with traceability links

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 95

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.43: Decision between different UI elements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 96

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.44: Procedure generating GUI elements for input UI elements

specific subprocedure and passes the element, its container and the UML package to the sub
procedure.

The procedure shown in Figure 4.44 is responsible for generating text fields out of input UI
elements. It simply calls the procedure responsible for generating the concrete widget with
an associated label. The procedure in Figure 4.44 selects the appropriate stereotypes and hands
them over to the subprocedure which then is able to generate correctly stereotyped UML classes.

The procedure shown in Figure 4.45 is similar to the prior procedure but responsible for selec-
tion UI elements. The threshold for distinguishing between radio buttons or check boxes and
list boxes on the other hand should be adapted to the needs in each project according to usability
guidelines. This procedure distinguishes between four cases:

• Only one option is selectable and there are less or equal options than defined by the
threshold. In this case the procedure loops over all options UI elements and generates for
each option a radio button.

• Only one option is selectable and there are more options than defined by the threshold.
In this this case only one list box is generated that will be populated with data during
runtime.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 97

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.45: Procedure generating GUI elements for selection UI elements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 98

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

• More than one option is selectable and there are less or equal options than defined by the
threshold. In this case the procedure loops over all options UI elements and generates for
each option a check box.

• More than one option is selectable and there are more options than defined by the thresh-
old. In this case only one list box is generated that will be populated with data during
runtime.

The procedure shown in Figure 4.46 generates either menu items or buttons for trigger UI
elements. The decision if a menu item or a button is generated depends on the attached SVO
sentence. If the attached SVO sentence is an initial actor predicate, a menu item is generated
that invokes the dialog, otherwise a button is generated.

The procedure shown in Figure 4.47 generates the actual widget and label and adds the appro-
priate UML stereotype. Both widgets are added to the corresponding panel. Additionally, the
procedure establishes traceability links between the UI element and both widgets (input wid-
get and label widget). After executing this procedure for all UI elements, the complete GUI
structure is generated.

To retrieve and instantiate a dialog a method is required in the UI factory. The procedure in
Figure 4.48 adds a get operation for each dialog, named “get”+dialog name+“Dialog” to the UI
factory. Furthermore, the procedure establishes a dependency link between the UIFactory class
and the dialog class.

The procedure in Figure 4.49 adds delegate methods for each actor predicate to the UI class that
implements the UI interface for decoupling the GUI widgets and the application logic. This
means that all widgets forward their actions (actor predicates) to the UI class which then calls
the method corresponding to the actor predicate on the application logic.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 99

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.46: Procedure generating GUI elements for trigger UI elements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 100

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.47: Procedure generating GUI widgets together with traceability links.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 101

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.48: Procedure generating factory methods for retrieving dialogs.

Figure 4.49: Procedure generating additional methods for the UI class.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 102

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

4.4 Transformations from architecture to detailed design

The algorithms for transition from the manually refined architecture model to the detailed de-
sign, described in the section 3.4, are quite straightforward, if the chosen example methodology
is used. They build the static structure of detailed design model - its packages, classes and in-
terfaces, with the relevant operations included. Wherever possible, the dependencies between
elements are built, realisations between an interface and the class realising it, and a certain
amount of associations. Only, because of the fact that the 4-layer architecture is to be used,
the number of elements to be generated is quite large. It is clear that without an automated
transformation support, such a model would be difficult to build correctly.

The implementation of these algorithms in MOLA to a degree would remind the structure while
building for architecture, but in a much more complicate way. Initially, the general package
structure of the detailed design model should be built, partly, in a fixed way or partly on the
basis of architecture model elements.

Then the building of classes and interfaces, their operations with full signatures and relevant
dependencies can be started.

For example, to build the Application logic package, in the subpackage for the current applica-
tion logic component in the architecture model, an interface and a class realisation are built for
each relevant interface in the architecture, with interface operations (with full signature) copied
in both.

Then for each architecture component a factory class is created, according to the given naming
rules. Then for each class in this package (generated as described above) a factory operation is
generated, with the name composed of the get prefix and the corresponding interface name, and
with the return type of the corresponding class. Finally, a factory class for the whole application
logic is built, with an operation for each component-related factory class.

Finally required dependencies are added - from component factory to interface realisation
classes and from the top factory to component factories.

Thus the algorithm implementation in MOLA to a great degree can follow the informal descrip-
tion, only the correct order of instance generation must be chosen. However, taking into account
the MOLA metamodel details, the number of instances to be generated by the transformation is
quite large. And so will be the transformation program size.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 103

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.50: Main procedure for detailed design

Algorithms for other layers are similar.

According to the algorithm, associations (only between classes of different layers) are built
according to messages in sequence diagrams in the architecture, this occurs when a class in one
layer invokes an operation of an interface in another layer.

The described algorithm implementation in MOLA is quite straightforward and requires no
complicated constructs, however the size of transformation procedures can be quite large. The
complete implementation of these transformations will be provided later, when the issue of links
to possible UML tool (Enterprise Architect) will become clearer. Namely, the necessity to see
the generated classes and interfaces as readable class diagrams may impose some modifications
to the algorithm implementation.

MOLA procedures implementing transformations from architecture to detailed design model
are shown in figures 4.50 - 4.57.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 104

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.51: Static package creation for detailed design

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 105

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.52: Procedure generating layers

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 106

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.53: Procedure generating data access layer

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 107

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.54: Procedure generating relationships between layers

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 108

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.55: Procedure copying data transfer objects

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 109

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.56: Procedure copying interfaces

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 110

Reusable Case Transformation Rule Specification – D3.3
Formal definition of transformations in MOLA

ver. 1.0
31.07.2007

Figure 4.57: Procedure copying value specifications

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 111

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

Chapter 5

Providing models to be transformed

The current version of MOLA can only transform models which are in the MOLA repository.
The same way, the transformation results - target models are stored in the same repository. The
current version of MOLA uses a specific metamodel based repository with a well defined API
(in C++).

Therefore facilities have to be developed for transferring SCL models from/to repository where
they are built using the corresponding SCL editors to/from the MOLA repository. At the given
stage no final decision has been made on SCL editors and repositories they store the models.
However, one assumption has to be fixed already in this deliverable.

The models must be stored in their repositories according to the tool-ready SCL metamodel,
specified already in the deliverable 3.2.1. Only in this case transformations as specified in
this deliverable make sense. If models are stored by the corresponding editors according to
another metamodel, then it is much easier for MOLA to use this metamodel as a source or
target metamodel respectively. Especially, this refers to the RSL part of the complete SCL,
where much effort has been spent on fine tuning the tool-ready RSL metamodel.

Since currently no decision has been made as to how the RSL editor in ReDSeeDS will be
implemented, a temporal solution has to be provided. A prototype RSL editor (with textual rep-
resentation only) is being developed by UKo partner in ReDSeeDS, using JGraLab (described
in previous deliverables for software case repository implementation) as its repository. This
repository directly uses the tool-ready RSL metamodel as the repository schema. Therefore
this chapter mainly concentrates on the use of JGraLab as the repository, with which the source
and target models are exchanged by the MOLA repository. This includes also target or source

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 112

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

models in UML 2.0, which are expected to be stored in JGraLab and then transferred to/from
Enterprise Architect.

An alternative solution could be to use Enterprise Architect as a model repository. Then UML
models could be stored in this repository in a more direct way. The Enterprise Architect repos-
itory also has a well defined internal API for retrieving and storing models. Unfortunately,
Enterprise Architect as a repository does not support an arbitrary metamodel. This metamodel
has to be very close to UML (the same classes and associations, only the attribute set may be
extended). In addition, the metamodel version used is not UML 2.0, it is a custom version close
to UML 1.3 (though externally even UML 2.1 is supported by Enterprise Architect). All this
poses problems when trying to store RSL models in such a repository where this point of view
is derived from the tool-ready RSL metamodel. Besides it is the software case contained design
components that are required to be manipulated within Enterprise Architect by the software ar-
chitect. Therefore the use of Enterprise Architect as a software case design collection repository
is not discussed in more detail in this chapter.

This chapter describes model exchange solutions, which could be implemented with not large
efforts and consequently, could be used for experimental application of transformations to ex-
ample software models in ReDSeeDS.

The clearest and simplest problem is to import a model from the JGraLab repository to the
MOLA repository, with a requirement that the metamodel to be used by MOLA is a direct
subset of the metamodel used as the repository schema. Namely this is the situation with the
tool-ready RSL. The situation with UML 2.0 also can be reduced to this one. The proposed
solution is discussed in section 5.1. Namely this solution is the basis for some transformation
testing on real instances.

The opposite way - from MOLA to JGraLab is slightly more demanding, but still manageable.
It is based on the XML-RPC exchange between the tool components. The basic principles of it
are described in section 5.2.

Other subsections discuss some other issues related to model exchange between repositories.

One more issue is how to exchange UML models between JGraLab (where they are placed by
transformations in MOLA) and Enterprise Architect. Currently experiments show that this task
is solvable, but specific solutions to a great degree depend on the chosen architecture of the
ReDSeeDS tool in general. Therefore this issue is delayed to Workpackage 5.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 113

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

In the conclusion one remark should be provided. It is feasible to build a new version of MOLA
within ReDSeeDS, which would directly use JGraLab as it runtime repository (certainly, this
MOLA implementation would be Java based instead of C++ for the current one). Then transfor-
mations could be executed directly within the JGraLab repository. Another gain would be to get
rid of the single inheritance restriction in MOLA MOF, the EMOF restriction would still apply.
Since this solution is more effort demanding, it could be provided only within the workpackage
5, and not for the first evaluations of transformation technology in ReDSeeDS.

5.1 Obtaining source models for transformations from JGraLab

This section describes a relatively easy implementable solution, how models from JGraLab
repository can be transferred to MOLA repository, in order to be used as source models for
transformations. Certainly, the metamodel used in MOLA during transformation development
must be a direct subset of the metamodel used as the repository schema. However, it is feasible
also to have more metamodel elements in MOLA, simply they will not get any instances.

JGraLab repository is based on TGraphs as its metamodel formalism (see deliverable 3.1, sec-
tion 6.3). Currently a new simpler mapping between EMOF-based metamodel elements and
TGraphs has been defined. Each metamodel class corresponds to a VertexClass in TGraphs.
Each association corresponds to an EdgeClass (or CompositionClass). Class attributes corre-
spond to VertexClass attributes, attributes of EdgeClass (having no counterpart in EMOF) are
not used directly. Because of this simplified mapping model exchange has become much sim-
pler.

The instance import algorithm is quite straightforward. It has access to the corresponding meta-
model definitions both in MOLA and JGraLab repositories. The algorithm scans classes in
the MOLA metamodel. For each such class a VertexClass with the same (qualified) name is
sought in JGraLab. If it is found, all vertices (i.e., instances) of that class are transformed
into instances of the corresponding class in the MOLA repository (attribute correspondence is
straightforward). Then for each association in the MOLA metamodel the corresponding Edge-
Class in JGraLab is sought on the basis of role names (EdgeClass names are generated and
have no direct counterpart in MOLA), it is permitted to use more role names in MOLA than
in JGraLab. For each found correspondence all instances of the EdgeClass are converted into
corresponding association instances (links) in MOLA.

The only technical problem in the implementation of this algorithm is that JGraLab is in Java
and MOLA repository has a C++ API. The import application (GraMol) will be developed in

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 114

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

Java, and it will access both repositories simultaneously. The JNI (Java Native Interface) will
be used for accessing the MOLA repository with its C++ API. The application will directly
implement the above mentioned algorithm.

MOLA transformation execution, most probably, will be invoked from the ReDSeeDS engine.
Then the described import application (GraMol) will be invoked as a prologue to this execution.

This simple execution schema is oriented towards the first experimental applications of transfor-
mations in ReDSeeDS. Therefore the client-server aspect is completely ignored in this simple
approach.

For storing the transformation results (target model) back to the JGraLab repository, however,
a different technology, most probably, will be used. This technology is described in the next
section.

5.2 Storing transformation results to JGraLab

This section explores the possibilities of storing the results of transformations performed by a
compiled MOLA transformation to JGraLab. Basically, there are two concepts which can be
thought of. First, the MOLA transformation could store the resulting model only to its internal
repository. A separate converter tool would then have to read this model from the MOLA repos-
itory, convert it to the JGraLab format and then store it to the JGraLab repository. The other
notion requires the MOLA transformation to publish the operations which must be executed
on the source model in order to transform it to the target model (certainly, these operations are
executed also inside the MOLA repository in the standard way, this is required to ensure the
standard MOLA execution logic). These operations could then be immediately applied to the
JGraLab repository.

Closely connected to the two approaches described above is the question of how to access the
JGraLab repository. Besides the Java API offering the full range of graph and schema creation,
manipulation and traversal, JGraLab also provides an XML-RPC (XML Remote Procedure Call)
[Win99] interface for remote access. Although, at present, it only features the calling of proce-
dures to handle graphs, this is sufficient to map the results of transformations to the repository.

The following description is based on the assumption that in both issues, the second option is
chosen, i.e. the MOLA transformation directly changes the JGraLab repository via the XML-
RPC interface. This alternative seems to be advantageous due to two aspects: While JGraLab is

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 115

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

implemented in Java, MOLA is written in C++. Consequently, a converter tool would need to
employ JNI (Java Native Interface) [Lia99] in order to bridge this gap. However, the main prob-
lem with the converter approach is that no clear semantics can be defined for instance update
and delete semantics in JGraLab. It should be noted, that there are no such semantics problems
for instance import to MOLA. Furthermore, a current idea concerning the architecture of the
ReDSeeDS engine is to run the fact repository, i.e. JGraLab, on a server while the transforma-
tion engine resides on the client side. The realisation of this architecture requires a technology
to remotely access JGraLab’s methods.

The next section goes more into the details of the XML-RPC interface on the server side
(JGraLab). Afterwards, the client side (MOLA) is described.

5.2.1 JGraLab XML-RPC server

The server-side XML-RPC interface of JGraLab is based on the Java Servlet technology. Graphs
and their elements, i.e. vertices and edges are referenced by using numerical handles or IDs
returned by the server.

The following list shows a selection of JGraLab features which can be invoked by a client:

• creation, loading and saving of graphs

• creation and deletion of vertices and edges

• getting and setting of attribute values of vertices and edges

• traversal of graphs

As it can be seen, these features cover all the operations needed to perform changes as required
by a model transformation: creation, deletion and modification of graph elements. The latter
corresponds to the modification of attribute values.

5.2.2 MOLA transformation XML-RPC client

As it was already noted, to perform this simultaneous modification of JGraLab repository, the
MOLA transformation for each repository related operation (instance creation, instance dele-
tion, attribute modification, link creation/deletion) must perform the same operation on the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 116

Reusable Case Transformation Rule Specification – D3.3
Providing models to be transformed

ver. 1.0
31.07.2007

JGraLab repository. Since initially the MOLA repository was a copy of part of JGraLab repos-
itory, this synchronous execution of operations would guarantee, that at the transformation ex-
ecution end also the JGraLab repository would contain the target model.

Certainly, to achieve this, the MOLA compiler has to be extended to perform these duplicate op-
erations on the JGraLab repository, whenever there is such an operation in the native repository.
The size of extended code seems not to be very large.

These special operations will invoke the relevant JGraLab API operations via XML-RPC. Only
the graph (i.e., instance) modification operations are required in this approach. All these opera-
tions are supported by the XML-RPC client.

The main gain from this approach would be the completely safe instance management semantics
in JGraLab.

5.3 Storing of traceability information

The transformation of models requires traceability links to be created between corresponding
elements of the source model and the target model. For example, a Requirement specified by
an RSL model is connected to the architectural UML construct supposed to realise the Re-

quirement. This connection is established by a traceability link of type IsAllocatedTo. A design
model having its source in an architectural model is linked to the latter via an UML::Dependency.
Generated program code can be traced back to its source model by Implements links. See De-
liverable 3.2.1 for more details on different traceability link types.

The JGraLab repository holds a graph representation of artifacts contained in a Software Case.
Thus, it is also well suited to store information on traceability links as additional edges inter-
connecting the representation of related artifacts. Since the transformation engine is supposed
to create instances of traceability links along with the target model, these links could be stored
to the repository according to the concepts described in section 5.2.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 117

Reusable Case Transformation Rule Specification – D3.3
Conclusion

ver. 1.0
31.07.2007

Chapter 6

Conclusion

This document describes transformations to be used for software case development in ReD-
SeeDS. Possible generation of the initial version of the next model from the previous one is
covered for the basic transition steps in software case development.

This document offers one specific 4-layer architecture and methodology elements related to it,
where the part of the next model to be generated automatically is sufficiently high. If a software
case is being developed according to this architecture then the document provides ready-to-use
transformations from requirements in RSL to architecture model in a subset of UML and from
architecture to detailed design, as well as transformations for building user interface elements.
Both the informal transformation algorithms and their implementation in MOLA language are
provided in the document. Therefore the transformations can be used as is or easily be modified
if the software case requires some modifications to the architecture.

The transition step from the detailed design model to code is not covered in this document since
this requires some basic solutions in ReDSeeDS tool set to be made beforehand.

The document discusses also basic principles, which should be used for obtaining models to
be transformed from the software case repository and placing the transformation results back
to this repository. Currently only the version where models are taken from a JGraLab based
repository and placed back to such a repository is discussed. This version could be imple-
mented relatively easily. However, the final solution in this area also depends on some general
architecture principles for the ReDSeeDS tool set.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 118

Reusable Case Transformation Rule Specification – D3.3
Bibliography

ver. 1.0
31.07.2007

Bibliography

[KSC+07] Audris Kalnins, Agris Sostaks, Edgars Celms, Elina Kalnina, Albert Ambroziewicz,
Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak, Volker Riediger, Hannes
Schwarz, Daniel Bildhauer, Sevan Kavaldjian, Roman Popp, and Jurgen Falb.
Reuse-oriented modelling and transformation language definition. Technical report,
ReDSeeDS, 2007.

[KWW03] A G Kleppe, J B Warmer, and Bast W. MDA Explained, The Model Driven Archi-

tecture: Practice and Promise. Addison-Wesley, Boston, 2003.

[Lia99] Sheng Liang. The Java Native Interface. Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[MM03] Joaquin Miller and Jishnu Mukerji, editors. MDA Guide Version 1.0.1, omg/03-06-

01. Object Management Group, 2003.

[Obj05] Object Management Group. Unified Modeling Language: Superstructure, version

2.0, formal/05-07-04, 2005.

[Obj06] Object Management Group. Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01, 2006.

[SCG+05] P Swithinbank, M Chessell, T Gardner, C Griffin, J Man, H Wylie, and L Yusuf.
Patterns: Model-Driven Development Using IBM Rational Software Architect (IBM

Redbook SG24-7105-00). International Business Machines Corporation (IBM).,
2005.

[SV06] T Stahl and M Voelter. Model-Driven Software Development (Technology, Enge-

neering, Management). John Wiley & Sons, Ltd, 2006.

[Win99] Dave Winer. XML-RPC Specification, June 1999. http://www.xmlrpc.com/spec.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 119

	History of changes
	Summary
	Table of contents
	List of figures
	Scope, conventions and guidelines
	Document scope
	Conventions
	Related work and relations to other documents
	Structure of this document
	Usage guidelines

	Introduction
	Role of transformations in ReDSeeDS Software Case development
	Automatic transformations and manual development
	SCL elements where transformations have the most value

	Informal description of transformation rules
	Transformation-ready SCL architecture example
	4-layer architecture model in SCL
	Example of 4-layer architecture in SCL

	Transformations from RSL (requirements model) to architecture model
	Generating architectural details
	Naming of architectural model elements
	Manual editing of generated model by an architect

	Transformations of UI elements in RSL
	Dialog generation

	Transformations to detailed design model
	Generation of Application Logic
	Generation of Business Logic
	Generation of Data Access Layer
	Generating data transfer objects (DTOs)
	Generating relationships between layers

	Formal definition of transformations in MOLA
	Source and target metamodels
	RSL metamodel for transformations
	Metamodel of UML subset

	Transformations from RSL to architecture model
	Transformations of UI elements in RSL
	Source and target metamodels for UI transformations
	Generating dialog structures

	Transformations from architecture to detailed design

	Providing models to be transformed
	Obtaining source models for transformations from JGraLab
	Storing transformation results to JGraLab
	JGraLab XML-RPC server
	MOLA transformation XML-RPC client

	Storing of traceability information

	Conclusion
	Bibliography

