
Software Case Marking Language Definition

Deliverable D4.3, version 1.00, 20.11.2007

IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Software Case Marking Language Definition

Workpackage WP4
Task T4.3
Document number D4.3
Document type Deliverable
Title Software Case Marking Language Definition
Subtitle
Author(s) Daniel Bildhauer, Jürgen Ebert, Volker Riediger, Katharina Wolter,

Markus Nick, Andreas Jedlitschka, Sebastian Weber, Hannes
Schwarz, Albert Ambroziewicz, Jacek Bojarski, Tomasz Straszak,
Sevan Kavaldjian, Roman Popp, Alexander Szep

Internal Reviewer(s) Daniel Bildhauer, Hannes Schwarz, Katharina Wolter
Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP4_-

Technologies_for_reusable_cases/D4.3/ReDSeeDS_D4.3.00_Soft-
ware_Case_Marking_Language_Definition.tex

Version 1.00
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

20.11.2007

Software Case Marking Language Definition – D4.3
History of changes

ver. 1.00
20.11.2007

History of changes

Date Ver. Author(s) Change description
04.10.2007 0.01 Daniel Bildhauer, Jürgen

Ebert, Hannes Schwarz
Proposition of ToC

22.10.2007 0.02 Daniel Bildhauer First content for Chapter 4

23.10.2007 0.03 Katharina Wolter (UH) First content for Chapter 3

24.10.2007 0.04 Hannes Schwarz (UKo) Preface for chapter 5

26.10.2007 0.05 Hannes Schwarz (UKo) Contents for sections 1.1, 1.2, 1.4, 1.5

28.10.2007 0.06 Katharina Wolter (UH) Further content for Section 3.1, 3.2

31.10.2007 0.07 Hannes Schwarz (UKo) Preface for chapter 6

01.11.2007 0.08 Katharina Wolter (UH) Restructuring of Chapter 3 and further
content for 3.1, 3.2

02.11.2007 0.09 Katharina Wolter (UH) Content for Sections 3.3 and 6.1

06.11.2007 0.10 Albert Ambroziewicz
(WUT)

Content for Section 6.2

06.11.2007 0.11 Katharina Wolter (UH) Further content for Section 6.1

07.11.2007 0.12 Jacek Bojarski, Tomasz
Straszak (WUT)

Initial content for Section 6.3

07.11.2007 0.13 Daniel Bildhauer Further content for Chapter 6

08.11.2007 0.14 Katharina Wolter (UH) Additions and corrections for Sections 3.1,
3.3, 6.1 and citations

09.11.2007 0.15 Daniel Bildhauer Added initial content for conclusion and
summary

09.11.2007 0.16 Katharina Wolter (UH) Added Section 6.2.1

09.11.2007 0.17 Hannes Schwarz Added section 5.2

13.11.2007 0.18 Albert Ambroziewicz
(WUT)

Additions to section 6.2

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III

Software Case Marking Language Definition – D4.3
History of changes

ver. 1.00
20.11.2007

Date Ver. Author(s) Change description
13.11.2007 0.19 Sevan Kavaldjian, Roman

Popp, Alexander Szep
(TUW)

Added Section 6.2.3

14.11.2007 0.20 Hannes Schwarz Modified chapter 2 and summary

14.11.2007 0.21 Daniel Bildhauer Added missing content for section 3.3

15.11.2007 0.22 Sebastian Weber, Markus
Nick, Andreas Jedlitschka

Added section 5.1

16.11.2007 0.23 Hannes Schwarz Additions to section 5.3

20.11.2007 1.00 Hannes Schwarz Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV

Software Case Marking Language Definition – D4.3
Summary

ver. 1.00
20.11.2007

Summary

This document deals with the definition of a mechanism for identifying and marking the results
of a query. A query in ReDSeeDS includes requirements stemming from a current project (a
current software case). These requirements are compared to the requirements of past software

cases stored in a repository. In order to enable such a comparison, a mapping between the
requirements of the two software cases is defined. On the basis of this mapping, approaches
for visualising the differences between the requirements are described, enabling the ReDSeeDS
user to select a set of requirements for reuse.

The selected requirements serve as starting point for the computation of a so-called partial soft-

ware case containing those elements of a past software case’s architecture, design and code
which are related to the requirements and thus eligible for reuse, too. In this document, ap-
proaches for the computation of past software cases as well as for their visualisation are pre-
sented.

Note that the title of this document, Software Case Marking Language Definition, stems from
the ReDSeeDS project contract’s annex “description of work”. In fact, the title can be mislead-
ing, for this document does not define a language, but rather a coherent concept for identifying
and marking the results of a query serving as foundation for the development of the ReDSeeDS
engine which is to be developed in workpackage 5 of the ReDSeeDS project.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V

Software Case Marking Language Definition – D4.3
Table of contents

ver. 1.00
20.11.2007

Table of contents

History of changes III

Summary V

Table of contents VI

List of figures VIII

List of tables IX

1 Scope, conventions and guidelines 1
1.1 Document scope . 1
1.2 Conventions . 1
1.3 Related work and relations to other documents 2
1.4 Structure of this document . 2
1.5 Usage guidelines . 3

2 Introduction 4

3 Mapping Information for the Solution Marking 5
3.1 Weighted Mapping of Requirement Model Elements 5
3.2 Information provided by Similarity Measures 6

3.2.1 Overview of Similarity Measures . 6
3.2.2 Suitability of Similarity Measures for Mapping Calculation 7

3.3 Data Structure for the Mapping Information 10

4 Selection of the requirements set to reuse 12
4.1 General concept . 12
4.2 Automatic selection of the requirements set 13
4.3 Manual adjusting of the requirements set . 14

5 Partial software cases 16
5.1 Notion of partial software cases . 16
5.2 Computation of partial software cases . 18

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI

Software Case Marking Language Definition – D4.3
Table of contents

ver. 1.00
20.11.2007

5.2.1 Basic principles . 19
5.2.2 Taking into account nesting relationships 20
5.2.3 Taking into account traceability link types 21
5.2.4 Taking into account other structures 23
5.2.5 Summary of the slicing approach . 24
5.2.6 Computation using GReQL . 24

5.3 Sample computation of a partial software case 25

6 Visualisation of differences 31
6.1 Known approaches . 31

6.1.1 Integrated parallel visualisation . 32
6.1.2 List of local differences . 33
6.1.3 Visualisation in a common model . 33
6.1.4 Ontology difference visualisation . 34

6.2 Visualisation of differences between requirements 35
6.2.1 Comparing similarity of past cases with a query 35
6.2.2 Differences between use cases . 36
6.2.3 Differences between use cases visualised by scenarios 37
6.2.4 Differences between ConstrainedLanguageScenarios 38
6.2.5 Differences between requirements . 42

6.3 Visualisation of partial software cases . 42
6.3.1 Information which should be visualised 42
6.3.2 Additional information useful for analysing partial software case 44
6.3.3 Idea of 4-tree view . 44

7 Conclusion 49

Bibliography 50

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII

Software Case Marking Language Definition – D4.3
List of figures

ver. 1.00
20.11.2007

List of figures

3.1 Comparison of Similarity measures with respect to their application in ReDSeeDS. 9
3.2 Data structure for the mapping information between two (partial) RSL require-

ments models. 11

4.1 Requirements TreeView with checkboxes . 15

5.1 The entirety of all artefacts composes the whole software case. As an example,
the highlighted artefacts are part of a partial software case. Arrows constitute
traceability links between the artefacts. 17

5.2 Two kinds of R-A-D-C traces . 18
5.3 Basic principles of the slicing approach: Based on the element on the require-

ments level serving as slicing criterion, the coloured elements are included in
the slice. Elements are represented as dots which are connected by traceability
links (lines). 20

5.4 Design of the GoPhone Elegance messaging functionality 26
5.5 Abstract syntax graph for the “GoPhone Elegance” software case excerpt in 5.4

including a partial software case. For the sake of clarity, some elements, e.g.
RequirementRepresentations, Operations, etc. are omitted. 28

5.6 Design part of the partial software case on the basis of the Requirement “SetSM-
SRecipient” . 29

6.1 Integrated parallel visualisation . 32
6.2 Integrated parallel visualisation in tabular view 32
6.3 Local difference visualisation in tabular view 33
6.4 Common model view . 34
6.5 PromptViz shows differences between ontologies using treemaps (taken from:

http://webhome.cs.uvic.ca/c̃hisel/imgs/promptviz/koala_screenshot.gif). 35
6.6 AlViz provides two different views on each ontology (taken from: [LS06]). . . 36
6.7 Data structure for the mapping information between two (partial) RSL require-

ments models. 37
6.8 UseCase TreeView with similarity indicators. The uses cases containing “repo”

in their name belong to the past software case rom the repository, all other ones
come from the current software case. 38

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII

Software Case Marking Language Definition – D4.3
List of tables

ver. 1.00
20.11.2007

6.9 Illustration of differences between use cases visualised by scenarios 39
6.10 Example of coloured diff-like display of similarities of ConstrainedLanguageSce-

nario instances for two compared use cases . 41
6.11 Inter-layer dependencies . 43
6.12 Slice Visualisation legend . 46
6.13 Slice Visualisation . 47

List of tables

5.1 Examples of nesting relationships to be considered by the slicing approach . . . 21
5.2 Traceability link types considered in slicing approach 23
5.3 Other structures considered in slicing approach 24
5.4 Excerpt of the software case for the product “GoPhone Elegance”. 26
5.5 Partial software case on the basis of the Requirement “SetSMSRecipient” . . . 29

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IX

Software Case Marking Language Definition – D4.3
Scope, conventions and guidelines

ver. 1.00
20.11.2007

Chapter 1

Scope, conventions and guidelines

1.1 Document scope

This document provides an overview of the solution marking mechanism used to identify and
visualise those parts of a past software case which are reusable in the current case. To this end, it
is described how to employ the similarity measures introduced in ReDSeeDS deliverable D4.2
[WKB+07] to create a mapping between requirements of the current and a past software case.
Based on the similar, thus reusable requirements of the past software case, it is then possible to
retrieve related parts of the case’s architecture, design and code. This activity is pursued on the
basis of traceability information manifesting the relations between the mentioned parts.

Once the potentially reusable parts of a software case have been retrieved, they have to be dis-
played to the user, including a visualisation of the similarity mapping between the requirement
specifications. This document presents different techniques in order to accomplish this task.

1.2 Conventions

The following notation conventions are used throughout this document:

• Italics font is used for emphasised text, e.g. Web Ontology Language.

• Sans-serif font is used for names of model elements such as classes, attributes and asso-
ciations, e.g. Requirement.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1

Software Case Marking Language Definition – D4.3
Scope, conventions and guidelines

ver. 1.00
20.11.2007

• Package names are separated from class names by two colons (“::”). If the package a
class belongs to can be gathered from the context, the package name may be omitted for
brevity.

• Keywords or other elements of textual language such as the Software Case Query Lan-
guage or SQL are written using typewriter font.

1.3 Related work and relations to other documents

The first issue discussed in this document, the mapping between the requirements of the current
and a past software case, relies upon similarity measures which are based on case-based reason-
ing, information retrieval, graph theory, and description logics. These measures are introduced
in deliverable D4.2 [WKB+07], where other related work can be found, too.

The notion of a software case is described by Jedlitschka and Nick in [JN06]. The terminology
used in the approach for computing partial software cases as well as its elementary ideas are
roughly based on the concept of program slicing introduced in [OO84, Wei84].

Related work leading to the approaches for visualising differences between requirements and
partial software cases includes the diff -algorithm [HM76] and the visualisation of ontologies
and ontology alignments, e.g. described in [FSH02, LS06].

1.4 Structure of this document

Following this chapter on scope, conventions and guidelines, chapter 2 gives a general intro-
duction on work already done which is relevant for the contents of this document. Further on,
it makes central assumptions affecting the scope of following chapters.

Based on a brief summary of the results of deliverable D4.2 [WKB+07], chapter 3 describes
the mapping of requirements originating from two different software cases.

While chapter 4 illustrates how requirements from a past software case can be selected in order
to reuse them in a current case, chapter 5 introduces the notion of partial software cases which
are computed based on this requirements selection.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2

Software Case Marking Language Definition – D4.3
Scope, conventions and guidelines

ver. 1.00
20.11.2007

Chapter 6 deals with the visualisation of the concepts described in previous chapters: differ-
ences between requirements and partial software cases. Selected requirements in a software
case are considered to be contained within the partial software case they originate.

Finally, Chapter 7 summarises the whole document.

1.5 Usage guidelines

The description of the solution marking mechanism should be used as a book that guides the
reader through the basic technologies, ideas and concepts of the solution marking mechanism to
mark similar cases in the software case repository. Therefore, this document is mainly intended
for members of workpackage 5 of the ReDSeeDS project who are implementing the ReDSeeDS
system prototype.

The document could also be useful for advanced ReDSeeDS users who wish to understand the
background and main concepts of the marking mechanism.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3

Software Case Marking Language Definition – D4.3
Introduction

ver. 1.00
20.11.2007

Chapter 2

Introduction

The fourth work package of the ReDSeeDS project addresses the development of concepts and
technologies facilitating the retrieval of software cases or parts thereof. The choice of retrieved
artefacts is based on a complete or partial requirement specification given as argument of some
query to the repository holding the software cases (see deliverable D4.1.1 [BEK+07]). A query
engine has to compare the requirements given as argument of the query to requirements of
software cases stored in the repository.

This document deals with the definition of a mechanism for marking the results of a query.
These include a mapping between the requirements given in the query, i.e. the requirements
of a current software case, and the requirements of a past software case in the software case
fact repository. On the basis of this mapping, the differences and commonalities between the
requirements specification of the two software cases could be displayed to the user. Thus he is
enabled to review and potentially modify the requirements the ReDSeeDS engine has selected
for reuse. It is important to understand that such a mapping is binary in nature, i.e. a past
software case is mapped to the current software case only. The engine does not establish some
kind of relation between past software cases whatsoever.

Following the selection of a set of requirements for reuse, a partial software case has to be
computed. A partial software case contains those elements of the architectural, design and
code parts of a (complete) software case which are related to the selected requirements and
which consequently are candidates for reuse themselves. Once a partial software case has been
computed, it also has to be visualised to the user so that he can manually modify it if required.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

Chapter 3

Mapping Information for the Solution
Marking

In this chapter, the results of deliverable D4.2 “Software Case Similarity Measure Definition”
[WKB+07] are related to the solution marking mechanism defined in this deliverable.

The first section 3.1 defines the information the solution marking requires. Section 3.2 gives a
short overview of the similarity calculation algorithms described in detail in deliverable D4.2
and then determines whether the algorithms provide the information needed for the solution
marking.

Finally, in Section 3.3, the data structure for the mapping is described.

3.1 Weighted Mapping of Requirement Model Elements

In order to support the reuse of past software cases it is necessary to mark similarities and
differences between a retrieved past software case (PC) and the current software case (CC) or
a query. The information needed for this marking is a mapping between the elements of the
current software case (or query) and a past software case or more generally speaking a mapping
between two (partial) RSL requirements models. This mapping should relate an element of one
requirement model with an element of the other requirement model if the elements are equal or
similar. Elements that cannot be mapped constitute the differences between the models.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

The mapping is a relation R over the set of elements of the CC and the set of elements of the
PC with a corresponding similarity value. The relation is not functional since one element of
the CC may have the same similarity to two elements of the PC. Furthermore, the relation is not
left-total since not all elements of the CC can be mapped to elements of a PC and not right-total
for analogical reasons.

Since the mapping defines equal and similar model elements it suggests itself to use similarity
measures to determine the mapping between two (partial) requirements models. The similarity
calculation algorithms described in deliverable D4.2 [WKB+07] differ in their suitability for
this mapping task. The next section first summarises the main characteristics of these similar-
ity calculation algorithms and then motivates which algorithms can be used to determine the
mapping.

3.2 Information provided by Similarity Measures

3.2.1 Overview of Similarity Measures

In ReDSeeDS an (initial) requirements specification is used to retrieve similar software cases
from the fact repository. Thus, a similarity measure is needed that compares a query with the
requirements models of Past Software Cases. A query can specify:

• a set of Terms

• a set of DomainElements

• a set of DomainElementPackages

• a complete DomainSpecification

• a set of sentences with associated DomainSpecification

• a set of Requirements with associated DomainSpecification

• a set of RequirementsPackages with associated DomainSpecification

• a complete requirements model (containing a RequirementsSpecification and a Domain-

Specification

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

Measures that capture the similarity of artefacts have been developed in many research areas
and for different types of artefacts. In deliverable D4.2 [WKB+07] we provided a detailed in-
troduction of similarity measures that are relevant for the ReDSeeDS project, namely measures
from the following research areas:

• Information Retrieval (IR),

• Case-based Reasoning (CBR),

• Description Logics (DL) in combination with CBR and

• Graph-based Similarity.

ReDSeeDS supports different types of requirements representations: descriptive representations
and model-based representations. Due to the diversity of representations a combination of sim-
ilarity measures is needed to compare a query with a software case. The similarity measures
have different preconditions and provide different results. Information Retrieval, for example,
can be used for any document containing a significant amount of text. However, conventional IR
measures only consider the lexicographic similarity of terms or phrases. Graph-based similarity
requires querying and cases in a graph representation consistent with a given metamodel, while
description logics in our application require query and cases in OWL representation consistent
with the RSL metamodel. All measures provide a similarity value, i.e. a double value between
0 and 1. Additionally, the graph-based similarity provides a result table that contains matched
element pairs and their similarity.

3.2.2 Suitability of Similarity Measures for Mapping Calculation

Based on the brief overview of similarity calculation algorithms we now determine which mea-
sures provide the mapping information between query elements and elements of past software
cases needed by the solution marking.

Information retrieval and CBR do not consider the RSL type of elements (e.g. Notion, Noun,
Verb, Actor, etc.) contained in the current software case and a past software case, nor the
structure between these elements. The approaches mainly compare the strings contained in the
cases. The following two sentences illustrate that this is not sufficient for the solution marking
mechanism:

The system displays the print options.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

The user can overview all options on the display.

A mapping based on these similarity measures would map the Verb displays in the first sentence
with the SystemElement display in the second sentence. Thus, these similarity measures are not
appropriate to define a mapping between the elements of a query and a Past Software Case.

The graph-based similarity measure does consider the RSL type of elements. As stated above
the graph-based similarity measure provides a result table with matched element pairs and their
similarity. Thus, this algorithm provides the needed information.

The similarity measure based on description logics does not provide the needed mapping infor-
mation itself. However, the main goal of ontology alignment systems is to provide a mapping
between elements belonging to different ontologies and that share the same or a similar seman-
tics [Euz04]. A detailed formal definition of ontology alignment can be found in [Bou05]. In
[ES04] the authors define a ontology mapping function as follows:

map : Oi1 → Oi2 (3.1)

map(ei1 j1) = ei2 j2, if sim(ei1 j1,ei2 j2) > t(threshold) (3.2)

Thus, ontology alignment systems could also be applied to compute the needed mapping infor-
mation. An extensive overview of tools can be found in [Euz04, ES07].

Figure 3.1 shows the similarity measures. For each measure the table shows which types of
artefacts are compared, which input is required and which results are provided. The last row
states whether the results provided by each similarity measure is sufficient for the solution
marking.

The table in Figure 3.1 shows that two different methods can be applied to determine the map-
ping information. Independent from the method the mapping information should be stored in
the data structure described in the next section.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

A
pp

ro
ac

h
In

fo
rm

at
io

n
R

et
rie

va
l /

Ve

ct
or

 S
pa

ce
 M

od
el

St

ru
ct

ur
al

 C
B

R

D
es

cr
ip

tio
n

Lo
gi

c
G

ra
ph

-b
as

ed

Si
m

ila
rit

y
El

em
en

ts
 c

om
pa

re
d

te
xt

-b
as

ed
 d

oc
um

en
ts

st
ru

ct
ur

e
is

 n
ot

 a
na

ly
se

d
by

 s
ta

te
-

of
-th

e-
ar

t a
pp

ro
ac

he
s

ca

se
s

of
 id

en
tic

al
 s

tru
ct

ur
e

(a
ttr

ib
ut

es
) w

ith
 d

iff
er

en
t

va
lu

es
 fo

r t
he

 a
ttr

ib
ut

es

co

nc
ep

t d
ef

in
iti

on
s

th
at

 a
re

co

ns
is

te
nt

 w
ith

 R
S

L
m

et
am

od
el

 (c
on

ta
in

ed
 in

TB

ox
)

gr

ap
hs

 o
f a

ny
 s

tru
ct

ur
e

In
pu

t r
eq

ui
re

d

ve

ct
or

 re
pr

es
en

ta
tio

n
fo

r q
ue

ry

an
d

ca
se

s

ca
se

 re
pr

es
en

ta
tio

ns
 n

ee
de

d

au
to

m
at

ed
 g

en
er

at
io

n
of

re

pr
es

en
ta

tio
ns

 p
os

si
bl

e

ad
di

tio
na

l i
nf

or
m

at
io

n
ca

n
be

ad

de
d

O

W
L

re
pr

es
en

ta
tio

n
of

 q
ue

ry

an
d

ca
se

s
ne

ed
ed

Jg
ra

La
b

->
 O

W
L

co
nv

er
te

r
ha

s
be

en
 d

ev
el

op
ed

 b
y

U
ni

ve
rs

ity
 o

f K
ob

le
nz

gr

ap
h

re
pr

es
en

ta
tio

n
of

 q
ue

ry

an
d

ca
se

s
ne

ed
ed

R
es

ul
t p

ro
vi

de
d

va
lu

e
in

 [0
..1

]

va
lu

e
in

 [0
..1

]

va

lu
e

in
 [0

..1
]

va

lu
e

in
 [0

..1
]

ta

bl
e

of
 m

at
ch

ed
 e

le
m

en
t

pa
irs

 w
ith

 s
im

ila
rit

y
va

lu
e

Su
ita

bl
e

fo
r s

ol
ut

io
n

m
ar

ki
ng

le
xi

co
gr

ap
hi

c
si

m
ila

rit
y

is
 n

ot

su
ffi

ci
en

t f
or

 th
e

so
lu

tio
n

m
ar

ki
ng

le
xi

co
gr

ap
hi

c
si

m
ila

rit
y

is
 n

ot

su
ffi

ci
en

t f
or

 th
e

so
lu

tio
n

m
ar

ki
ng

on

to
lo

gy
 a

lig
nm

en
t p

ro
vi

de
s

th
e

m
ap

pi
ng

 in
fo

rm
at

io
n

pr

ov
id

es
 th

e
ne

ed
ed

 m
ap

pi
ng

in

fo
rm

at
io

n

Fi
gu

re
3.

1:
C

om
pa

ri
so

n
of

Si
m

ila
ri

ty
m

ea
su

re
s

w
ith

re
sp

ec
tt

o
th

ei
ra

pp
lic

at
io

n
in

R
eD

Se
eD

S.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

3.3 Data Structure for the Mapping Information

The mapping information consists of three main parts: the two requirements models that are
mapped and a mapping table. This mapping table contains a set of mappings. A mapping
consists of two RSL elements, one from each requirements model and a similarity value (double
value between 0 and 1).

Thus, the mapping can be described by a small metamodel as depicted in figure 3.2. The whole
mapping information is depicted by the class MappingInformation which is composed of two
SoftwareCases and one MappingTable. One of the SoftwareCases contains the RSL Repre-

sentableElements of the query. The other RepresentableElements stem from a past software
case stored in the fact repository. The mapping table consists of several MappingEntrys, each
describing the mapping of one RepresentableElement of the query to one RepresentableEle-

ment of the past software case. Additionally, each MappingEntry contains a similarity value,
whose most important part is a double value in the interval [0,1]. A more detailed description
of the similarity can be found in deliverable 4.2 [WKB+07].

As a design decision, this mapping information is not part of the requirements model itself,
but stored separately. The main advantages of this approach are, that the requirements models
must not be updated every time a new mapping is computed and that the RSL meta model
needs not to be changed. This helps to keep different concerns separate and thus to keep the
systems architecture as simple and understandable as possible. There are several alternatives
to store the mapping information. For example, a relational database could be used as well as
a separate graph or an OWL file. Alternatively, the mapping could be stored as a set of Java
mapping objects. As requirements are already stored as graphs in the fact repository, which
is JGraLab as decided in deliverable D4.4 [BER+07], there is already a Java object for each
requirement in the fact repository. Thus, it seems to be reasonable to use these objects and
to create a separate Java class Mapping. Instances of this class would have references to two
RepresentableElement vertices stored in the fact repository, which are in fact Java objects.
Hence, no additional technology or separate “mapping repository” is necessary to store the
mapping, which is by the way only temporarily needed and therefore needs not to be stored
permanently.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10

Software Case Marking Language Definition – D4.3
Mapping Information for the Solution Marking

ver. 1.00
20.11.2007

MappingInformationSCL::SoftwareCase MappingTable

Mapping

SimilarityValue

- similarit y: double

SCLE lement

«abstract»

Elements::

RepresentableElement

{abst ract}

«abstract»

Elements::

RepresentableE lementsPackage

{abst ract}

SCLE lement

«abstract»

SCL::

SCLElementsPackage

{abst ract}

- name: St ring

12

similarity 1

1

0. .1 nestedPackage

0..*

{union, subsets

nestedPackage}

1 element

0..*

{union, subsets

element }

0. .1

nestedPackage

0..*

{union, subsets

element }

0. .1

currentElement1

0. .1

pastE lement 1

Figure 3.2: Data structure for the mapping information between two (partial) RSL requirements
models.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11

Software Case Marking Language Definition – D4.3
Selection of the requirements set to reuse

ver. 1.00
20.11.2007

Chapter 4

Selection of the requirements set to reuse

Whereas the previous chapter has depicted the mapping between requirements elements as a
result of the similarity calculation, the focus of this chapter is the selection of the requirements
elements that should be reused. Section 4.1 gives a detailed introduction why this selection
is necessary, while section 4.2 describes how this set of requirements could be calculated au-
tomatically. The last section in this chapter 4.3 explains how the automatic selection can be
adjusted.

4.1 General concept

The goal of ReDSeeDS is the reuse of software cases stored in a repository on the basis of
the requirements. To reach this goal, requirements of the current software case are compared
with the requirements of the stored software cases. One result of this comparison is a similarity
mapping which maps at most one requirement of the past software cases to each requirement
of the current software case. This mapping is based on the similarity values calculated for the
requirements. Each requirement of the current software case is mapped to the most similar one
in the past software cases.

In the reuse step, the requirements of the past software cases that are mapped to at most one
requirement of the current software case are the starting point for reuse. The parts of the archi-
tecture, detailed design and code that are associated to these requirements by traceability links
are then computed by the ReDSeeDS engine. These calculated parts are candidates for reuse in
the current software case.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12

Software Case Marking Language Definition – D4.3
Selection of the requirements set to reuse

ver. 1.00
20.11.2007

Obviously, the number and kind of the artefacts that are candidates for reuse highly depends on
the requirements that are part of the mapping. Hence, to get a valuable selection of reuse candi-
dates, the requirements set of the mapping must be of good quality, i.e. match the requirements
of the current software case to a maximum degree. To ensure this quality, there are two non-
exclusive alternatives. One is a permanent test and improvement of the similarity calculation
algorithms. The other is to allow the ReDSeeDS user, i.e. the developer of the current software
case, to adjust the set of chosen requirements. On the one hand, the test and improvement of
the algorithms can not guarantee that the “right” requirements are mapped in every case. Thus,
the manual adjusting of the mapping must be possible. On the other hand, also the manual
adjusting may lead to mistakes and a complete manual adjusting will take too much time and
human resources. Hence, both alternatives are of great value. The following two sections will
describe both alternatives.

4.2 Automatic selection of the requirements set

The introduction has already explained why a automatic selection of the requirements to reuse
is necessary. This section will describe the details of the selection. One result of a query to the
fact repository formulated in the Software Case Query Language (SCQL) is a mapping between
the requirements of the past software cases stored in the repository and the requirements of the
current software case. The set of requirements that is the starting point for reuse of a past
software cases corresponds to the requirements that are part of this mapping. To only get the
artefacts that are of a reasonable value for reuse, it is necessary to only include the requirements
with a high enough similarity to one of the requirements of the current software case in this set.

To reach this goal, an internal threshold which ensures that only the requirements that are of
a reasonable value for reuse are selected. To specify an exact value for this threshold, further
experiments with the ReDSeeDS prototype are needed. It is not sufficient to fix the threshold
to, say, 0.5, for there are two problems with the threshold value. On the one hand, there is
no possibility to reuse something if there are no requirements that have a similarity which is
greater than the threshold. This will lead to the development of a completely new software case
without reusing anything. On the other hand, if all requirements are selected for reuse, there
are too much artefacts that should be reused but have no real value for the current software
case. Thus, the threshold value should be a result of detailed experiments with the ReDSeeDS
prototype.

It is possible that these experiments show that a fixed threshold value is not sufficient. Instead of
this, a dynamic threshold depending on the number and similarities of the several requirements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13

Software Case Marking Language Definition – D4.3
Selection of the requirements set to reuse

ver. 1.00
20.11.2007

may be needed. Which algorithm is used to calculate such a threshold can only be guessed at
this point in the course of the ReDSeeDS project, especially as it is not clear if it is necessary
at all. Thus, the calculation algorithm can only be a result of detailed experiments with the
ReDSeeDS prototype.

As described in chapter 3 of deliverable 4.1.1 [BEK+07], SCQL supports the specification of
a threshold value by the ReDSeeDS user. This value is used to filter complete software cases,
i.e. to use only the requirements of software cases that have a minimum similarity to the query.
This is useful since the reuse of great parts of a small number of software cases probably needs
less effort than the reuse of small parts of a great number of software cases. Besides this usage,
the threshold specification of SCQL could possibly be used to specify the threshold for the
requirements selection. Probably it is not sufficient to use the same threshold value for software
case search and requirements selection, but the SCQL-threshold could be used as one input of
an automatic adjusting of the threshold for the requirements selection.

As a third alternative, the user should be able to specify a separate threshold for the requirements
selection. It should be possible to define such a threshold globally in the ReDSeeDS tool for
all requirement selections as well as separately for each selection. The definition for the current
selection should override the global setting and the global setting should override the internal
threshold definition as well as the automatic threshold calculation.

4.3 Manual adjusting of the requirements set

Whereas the previous section has depicted the possibilities of adjusting the set of requirements
to reuse by (semi)automatic mechanisms, this section explains which possibilities a ReDSeeDS
user should have to change the selection of the requirements to reuse. As mentioned above, the
automatic selection of the requirements and the selection intended by the ReDSeeDS user may
differ, independently of the quality of the selection algorithms. Thus, the ReDSeeDS user must
be able to change the selection, e.g. remove or add requirements from or to the selected set.

To allow the user to change the requirement selection, the list of selected requirements must be
presented to the user. One possible variant is to display a tree view of the requirements and the
packages the requirements are grouped in. To display the selected requirements and to allow
modifications of the selection, every requirement should be displayed with a checkbox in front
of it. For convenience, also the requirements packages should be displayed with a checkbox.
By checking or unchecking such a checkbox, the user can (de)select the requirement or all the
requirements in the package, respectively.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14

Software Case Marking Language Definition – D4.3
Selection of the requirements set to reuse

ver. 1.00
20.11.2007

Figure 4.1: Requirements TreeView with checkboxes

The screenshot in figure 4.1 shows how such a presentation of requirements may look like. The
requirements that are checked are included in the set of requirements that should be reused.
Further, also all requirements in checked packages are included in the set to reuse.

By default, the selection in this view should represent the automatic selection described in
section 4.2. After the user has adjusted the automatic selection to fit his needs, the reuse of the
software artefacts connected to the selected requirements by traceability links starts. The first
step that is performed to reuse the artefacts is the computation of the partial software case. This
step is described in the next chapter in detail.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Chapter 5

Partial software cases

The previous chapter 4 deals with the selection of a set of requirements of a past software
case which are eligible for reuse in a current software case. This selection can be done either
manually, automatically on the basis of calculated similarities measures between requirements
of the current case and the past case, or by a combination thereof.

This chapter deals with partial software cases, also called slices. A slice denotes those parts
of a complete software case which are, generally speaking, somehow related to a particular set
of elements of that software case, the slicing criterion. These relationships are recorded by
traceability links. In the context of ReDSeeDS, the slicing criterion corresponds to the above-
mentioned set of requirements. Consequently, the elements of a partial past software case are
candidates for reuse in the current software case.

Section 5.1 details the notion of partial software cases more specifically. Section 5.2 gives
information on how to compute such a slice starting from a selected set of requirements. The last
section 5.3 of this chapter contains an example of a partial software case and its computation.

5.1 Notion of partial software cases

A naive top-level representation schema for software cases would be to link requirements and
other software artefacts that compose a software case according to the refinement during the
software development process. Artefacts can be requirements (R), architectural items (A), de-
sign items (D) and code items (C) which are part of the R-A-D-C ’abstraction levels’. To
allow software artefacts to be part of several partial software cases, many-to-many relation-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Figure 5.1: The entirety of all artefacts composes the whole software case. As an example,
the highlighted artefacts are part of a partial software case. Arrows constitute traceability links
between the artefacts.

ships between the artefacts are necessary. This allows selecting partial software cases using
requirements. The ’whole’ software case, i.e. the complete software system which comprises
all software artefacts created during the complete software development process, consists of the
entirety of all partial software cases (confer figure 5.1).

Looking at a whole software system using a kind of reusable software case view, i.e., R-A-D-C
traceability links from requirements over architecture item, detailed design item to code item,
this could show (1) rather hierarchical R-A-D-C traceability links or (2) rather ’Spaghetti’ R-A-
D-C traceability links (see figure 5.2). We expect that the hierarchical traceability links make
the reused parts better maintainable because each partial software case could be replaced with-
out affecting another reused partial software case. With the ’Spaghetti’ traceability links, the
replacement of the software case for one requirement would affect overlapping partial software
cases, e.g., an overlap in the code would lead to a conflict because two cases require different
versions or variants of the same code item. Although the first variant would be the ideal case
in reality an architectural artefact has to fulfil more than one requirement. The same statement
can be applied to code artefacts. As a result, like in figure 5.1, one artefact of one level can
have multiple traceability links to the next level. This across-the-level relationships are called
’inter-level’ traceability links. ’Intra-level’ traceability links are between artefacts on the same
level.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Figure 5.2: Two kinds of R-A-D-C traces

Modifications (defect removal, improvements, adaptation) lead to issues of variants and ver-
sions. This means that software cases will overlap regarding the software artefacts they con-
sist of. Like in software product lines, reusable software cases will have parts that they share
(commonalities) and parts where they are different (variations). If the problem of versions and
variants was to be addressed, a version/variant relationship on reusable software case would
be needed. Furthermore, a version/variant relationship on the artefact types (requirements, ar-
chitecture item, detailed design item, code) would be needed as well. Such a version/variant
relationship has to be able to describe (1) chains of versions, (2) branches by variants, and (3)
merges of variants. The chains require 1:1 relationship. While the branches require a 1:n rela-
tionship, the mergers require n:1 relationships.
In ReDSeeDS this version/variant problem is not addressed.

5.2 Computation of partial software cases

This section deals with the computation of a partial software case. This activity is also called
slicing (of a complete software case). Analogously, a partial software case can be referred to as
a slice.

The term “slicing” stems from the concept of program slicing introduced by Weiser in [Wei84].
Given a so-called slicing criterion in the shape of a distinguished program statement and a set
of variables used in the program, the original program slicing approach intends to find those
statements prior to the one specified in the slicing criterion which influence the value of at least
one variable in the set. It can be said that program parts which are not needed for computing the
values of the variables are “sliced away”. This is comparable to the slicing of software cases in
ReDSeeDS, where only reuseable parts of the case shall be extracted.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

In the context of ReDSeeDS, a slice is computed on the basis of a set of previously selected
requirements. Analogous to program slicing, the basis of a slice, i.e. the set of elements of a
past software case similar to a set of elements of the current software case, is also called slicing

criterion henceforth. However, the approach given below allows for slicing criteria to include
arbitrary parts of a software case. It is not restricted to requirements only.

The slicing approach is presented incrementally. Section 5.2.1 describes the basic principles of
the approach, which solely rely on the existence of traceability links interconnecting the various
elements of a software case. Each of the following sections adds a layer of complexity. Section
5.2.2 specifies the treatment of nesting relationships, e.g. how to deal with a class which is a
member of a package included in a slice. In section 5.2.3, the different types of traceability
links are included in the approach. Section 5.2.4 considers other structures such as generali-
sation/specialisation relationships which are not traceability links, but which play an important
role all the same. Section 5.2.5 gives a summary of the slicing approach. Finally, 5.2.6 describes
the usage of GReQL, the query language integrated with the prospective repository technology
JGraLab, for slicing software cases.

5.2.1 Basic principles

Disregarding the type of traceability links, a slice includes all software case elements reachable
from the starting criterion by traversing of traceability links. An important constraint is that
each boundary between two abstraction levels of the software case may be crossed only once,
i.e. at least one path between two arbitrary elements in the slice must contain at most one inter-
level traceability link connecting the same two abstraction levels. More precisely, referring to
the link types defined in deliverable D3.2 [KSC+07], such a path must contain at most one link
of types SCL :: IsAllocatedTo or SCL :: Satisfies and at most one link of type SCL :: Implements.
The same is true for links of type Dependencies :: Abstraction originating from the Software
Development Specification Language, which includes UML.

Given a set of requirements, this approach is supposed to find elements on other abstraction
levels satisfying or implementing these requirements. Without the restriction on the crossing
of abstraction level boundaries explained in the last paragraph, other requirements, which are
also satisfied or implemented, would be yielded, too. Moreover, the restriction also prevents the
slice from getting too large. See figure 5.3 for an illustration: although the black element on the
requirements level is reachable from the slicing criterion, it is not included in the slice.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Figure 5.3: Basic principles of the slicing approach: Based on the element on the requirements
level serving as slicing criterion, the coloured elements are included in the slice. Elements are
represented as dots which are connected by traceability links (lines).

5.2.2 Taking into account nesting relationships

Employing the slicing approach described in section 5.2.1, only elements reachable via trace-
ability links from the slicing criterion are included in the slice. If another element is nested
within an element reachable that way, it is not included unless it is reachable by traceability
links itself. Therefore, the slicing approach also has to consider such nesting relationships,
e.g. packages or classes (which contain attributes and operations). Of course, transitive nesting
relationships are eligible, too.

Often, but not always, nested structures are recognisable by the use of compositions in the meta
model of the Software Case Language. One exception is, for instance, a Feature in UML,
which is part of the SDSL. Features, e.g. operations, are connected to Classes by simple asso-
ciations, which in fact possess compositional semantics. Another example are SVOSentences:
it’s Phrases acting as Subject or Predicate is connected via a Hyperlink.

Since a comprehensive enumeration of all elements denoting a nesting relationship is beyond
the scope of this document, only some examples taken from the SCL meta model are given
in table 5.1. For each element in its left column, the right column indicates possible nested
elements which are to be included in the slice.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Language Element Possible nested elements
RSL RequirementsPackage RequirementsPackage, Requirement

Requirement RequirementRepresentation
SentenceList HyperlinkedSentence
ConstrainedLanguageScenario ConstrainedLanguageSentence
DomainElement DomainElementRepresentation
SVOSentence Subject, Predicate

SDSL Element Element (in the role of ownedElement)
Classifier Feature

Java Block Member
JavaPackage JavaPackage, TranslationUnit
ForStatement Statement

Table 5.1: Examples of nesting relationships to be considered by the slicing approach

5.2.3 Taking into account traceability link types

The slicing approach hitherto described builds a slice by adding every element reachable via
traceability links, regardless of the latter’s type. However, links of particular types in SCL are
not suited for inclusion in the slicing approach due to their semantics. Consequently, they are
not to be traversed by the slicing algorithm. Other link types may only be traversed in one
specific direction. In the following, such constraints applying to traceability link types in SCL
are discussed in detail. Table 5.2 summarises the results. See deliverable D3.2 [KSC+07] for
the semantics of the different types.

Inter-level link types

Links of these types, including IsAllocatedTo, Satisfies, Implements and Abstraction connect
elements from two different abstraction levels. Their semantics can be summarised by “the
target element is an abstraction from the source element” (or vice versa for IsAllocatedTo). Thus,
they are traversable in both directions. Note that this is not true for links of one of Abstraction’s
subtypes, as these denote intra-level links (see below).

Requirements-level link types

The intra-level links on the requirements abstraction level can be separated into two categories:
links between arbitrary Requirements and links only used in conjunction with a RSLUseCase.

Links between two arbitrary Requirements:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

• ConflictsWith: Links of this type shall not be traversed for building the slice. Actually, the
existence of such a link could indicate an inconsistency in the software case.

• Constrains: If the slice already comprises the target Requirement, the source Require-

ment shall also be included. The source Requirement may impose a restriction for the
reusability of elements satisfying or implementing the target Requirement.

• DependsOn: If the slice already comprises the source Requirement, the target Require-

ment shall also be included. The elements satisfying or implementing the target Require-

ment may be needed by those satisfying or implementing the source Requirement.

• DerivesFrom: Similar to DependsOn.

• Elaborates: Similar to DependsOn.

• IsSimilarTo: Links of this type are traversable in both directions.

• MakesPossible: If the slice already comprises the target Requirement, the source Re-

quirement shall also be included. The elements satisfying or implementing the source
Requirement may be needed by those satisfying or implementing the target Requirement.

• Operationalizes: Similar to MakesPossible.

Links involving at least one RSLUseCase:

• Fulfils: Links of this type are traversable in both directions.

• InvocationRelationship: If the slice already comprises the source RSLUseCase, the target
RSLUseCase shall also be included. The elements satisfying or implementing the target
RSLUseCase may be needed by those satisfying or implementing the source RSLUse-

Case.

• Participation: These links between an Actor and a RSLUseCase shall not be traversed for
building the slice. An Actor possibly participates in many RSLUseCases which are not
related to each other. Incorporating these links would thus lead to very large slices.

• Usage: Similar to Participation.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Abstraction Level Link type Possible direction(s) of traversal
(Inter-level) IsAllocatedTo both

Satisfies both
Abstraction (without subtypes) both
Implements both

Requirements ConflictsWith none
Constrains source← target
DependsOn source→ target
DerivesFrom source→ target
Elaborates source→ target
IsSimilarTo both
MakesPossible source← target
Operationalizes source← target
Fulfils both
InvocationRelationship source→ target
Participation none
Usage none

Architecture & Dependency (without Abstractions) client→ supplier
Design Realization client→ supplier

Table 5.2: Traceability link types considered in slicing approach

Architecture- and design-level link types

• Dependency: If the slice already comprises the client NamedElement, the supplier Na-

medElement shall also be included. The supplier NamedElement is needed by the client
NamedElement. Note that this is not true for links of Dependency’s Abstraction subtype,
as these denote inter-level links (see above).

• Realization: If the slice already comprises the client NamedElement, the supplier Named-

Element shall also be included. The supplier NamedElement is implemented by the client
NamedElement.

5.2.4 Taking into account other structures

Besides traceability links and nesting relationships, there are other structures which have to be
taken into account by the slicing approach. For instance, a Generalization relationship between
two Classifiers denotes that the specialised classifier inherits the properties of the generalised
classifier. Thus, if a slice comprises the former, the latter has to be included, too.

As with nesting relationships, a comprehensive overview would be out of scope in this docu-
ment. Therefore, table 5.3 only contains some examples.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Abstraction Level Structure Possible direction(s) of traversal
Architecture & Generalisation specific→ general
Design PackageImport importingNamespace→ importedPackage

PackageMerge receivingPackage→ mergedPackage

Table 5.3: Other structures considered in slicing approach

Another structure to be considered is the caller/callee relationship between two methods on the
code level. As yet, the Java part of the SCL meta model does not offer the means to express
such a relationship.

5.2.5 Summary of the slicing approach

This section summarises the various aspects of the slicing approach presented in sections 5.2.1
to 5.2.4.

First, a slicing criterion in the shape of elements of a software case has to be selected. It
constitutes the basis for computing the slice, i.e. the slice will contain all elements of a software
case which are related to the slicing criterion. In ReDSeeDS, the slicing criterion will be a set of
elements from the requirements level of a past software case which is similar to a requirements
specification of a current software case.

Starting from the slicing criterion, the slice contains all elements reachable by traversing

• traceability links as given in table 5.2,

• nesting relationships between elements exemplified in table 5.1, and

• other relationships as exemplified in table 5.3

Furthermore, the restriction on traversing a specific inter-level traceability link only once has to
be obeyed (see also section 5.2.1).

5.2.6 Computation using GReQL

The slicing approach described in sections 5.2.1 to 5.2.5 operates on the abstract syntax graphs
of software cases and suggests traversal as a means of accessing their elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

In the course of the ReDSeeDS project, JGraLab seemed to emerge as the technology of choice
for the fact repository containing past software cases (see also [BER+07]). It is capable of
storing their abstract syntax graphs as TGraphs [EF95] and offers the means to traverse them
as needed by the slicing approach. An equally powerful, but more concise way of retrieving
information from the repository is querying. Querying can be performed by employing the
Graph Repository Query Language (GReQL, which is closely integrated with JGraLab. As an
example, consider the following query realising the retrieval of all elements of a software case
connected to a slicing criterion via traceability links:

from

sc : V{Requirement}, v : V{SCLElement}

with

sc.uid = "Req42" and sc <->{TraceabilityLink}* v

report

v

end

This simple GReQL-query returns all vertices v of type SCLElement which are connected to
the vertex sc of type Requirement with the attribute uid set to Req42, constituting the slicing
criterion.

5.3 Sample computation of a partial software case

This section describes an example how to slice a partial software case out of an existing software
case. This example arose from a case study from the mobile phones domain: GoPhone – A

Software Product Line in the Mobile Phone Domain1. Based on a software case for the mobile
phone product line “GoPhone Elegance”, which is an advanced device, a further software case is
sliced out of it. The “GoPhone Elegance” mobile phone is able to receive and display messages
with multiple content (text, pictures, sound). For the partial software case it is assumed that
a requirement stating that a user must be able to set the recipient of a SMS message shall be
reused. Thus, this requirement serves as slicing criterion.

Table 5.4 shows an excerpt of the software case for the “GoPhone Elegance” for the messaging
part only. Table 5.5 describes the partial software case for the “SetSMSRecipient” functionality.

1http://www.software-kompetenz.de/?21618

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25

http://www.software-kompetenz.de/?21618

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

ABSTRACTION LAYER CONTENTS

Requirements

. . .
RequirementsPackage Messaging

Requirement HandleEMails: The system must be able to han-
dle e-mails.

Requirement HandleSMSMessages: The system must be able
to handle SMS-messages.

Requirement HandleMMSMessages: The system must be able
to handle MMS-messages.

. . .
Requirement SetSMSRecipient: The user must be able to set

the recipient of a SMS-message.
. . .

Architecture No architectural relevant information for ’Messaging’
Design see picture 5.4
Code see Listing 5.1

Table 5.4: Excerpt of the software case for the product “GoPhone Elegance”.

Consider that those issues related to multimedia-based message content are not adopted in the
new software case.

Figure 5.5 shows an excerpt of the abstract syntax graph for the messaging part of the “GoPhone
Elegance” software case, including the partial software case which is sliced from it. Starting
from the slicing criterion illustrated by the Requirement with the thick border, the application
of the approach described in section 5.2 results in the partial software case indicated by the
cloloured elements.

Figure 5.4: Design of the GoPhone Elegance messaging functionality

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Listing 5.1: Code for the messaging functionality of “GoPhone Elegance”
1 public abstract class Message {

2
3 public final static String SMS = "SMS";

4 public final static String MMS = "MMS";

5 public final static String EMAIL = "EMS";

6 protected String _recipient = "";

7 protected String _content = "";

8 protected String msgType = null;

9 protected int[] maxSize = {0, 0, 0};

10
11 public Message(String msg) {

12 for (int i = 0; i <= msg.length(); i++) {

13 if (msg.charAt(i) == ’R’) {

14 int recLength = Integer.parseInt(msg.substring(0, i));

15 i++;

16 _recipient = msg.substring(i, (i + recLength));

17 msg = msg.substring(i + recLength);

18 break;

19 }

20 }

21 for (int i = 0; i <= msg.length(); i++) {

22 if (msg.charAt(i) == ’C’) {

23 int conLength = Integer.parseInt(msg.substring(0, i));

24 i++;

25 _content = msg.substring(i, (i + conLength));

26 break;

27 }

28 }

29 }

30
31 public String getRecipient() {

32 return _recipient;

33 }

34
35 [...]

36 }

37
38 public class SMSMessage extends Message {

39 public SMSMessage() {

40 super();

41 msgType = Message.SMS;

42 maxSize[0] = 25;

43 maxSize[1] = 160;

44 }

45
46 [...]

47 }

48
49 public class MMSMessage extends Message {

50 // Name of the image file.

51 private String _image = "";

52
53 public MMSMessage() {

54 super();

55 msgType = Message.MMS;

56 maxSize[0] = 25;

57 maxSize[1] = 500;

58 }

59
60 [...]

61 }

62
63 public class EMailMessage extends Message {

64
65 private String _subject = "";

66 private Vector _attachementList = new Vector();

67
68 public EMailMessage() {

69 super();

70 msgType = Message.EMAIL;

71 maxSize[0] = 35;

72 maxSize[1] = 70;

73 maxSize[2] = 1000;

74 }

75
76 [...]

77 }

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

Figure 5.5: Abstract syntax graph for the “GoPhone Elegance” software case excerpt in 5.4
including a partial software case. For the sake of clarity, some elements, e.g. RequirementRep-
resentations, Operations, etc. are omitted.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

ABSTRACTION LAYER CONTENTS

Requirements
RequirementsPackage Messaging

Requirement HandleSMSMessages: The system must be able
to handle SMS-messages.

Requirement SetSMSRecipient: The user must be able to set
the recipient of a SMS-message.

Architecture No architectural relevant information for ’Messaging’
Design see picture 5.6
Code see Listing 5.2

Table 5.5: Partial software case on the basis of the Requirement “SetSMSRecipient”

Figure 5.6: Design part of the partial software case on the basis of the Requirement “SetSM-
SRecipient”

Listing 5.2: Reused Code
1 public abstract class Message {

2
3 protected String _recipient = "";

4 protected String _content = "";

5 protected int[] maxSize = {0, 0, 0};

6
7 public Message(String msg) {

8 for (int i = 0; i <= msg.length(); i++) {

9 if (msg.charAt(i) == ’R’) {

10 int recLength = Integer.parseInt(msg.substring(0, i));

11 i++;

12 _recipient = msg.substring(i, (i + recLength));

13 msg = msg.substring(i + recLength);

14 break;

15 }

16 }

17 for (int i = 0; i <= msg.length(); i++) {

18 if (msg.charAt(i) == ’C’) {

19 int conLength = Integer.parseInt(msg.substring(0, i));

20 i++;

21 _content = msg.substring(i, (i + conLength));

22 break;

23 }

24 }

25 }

26
27 public String getRecipient() {

28 return _recipient;

29 }

30
31 [...]

32 }

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29

Software Case Marking Language Definition – D4.3
Partial software cases

ver. 1.00
20.11.2007

33
34 public class SMSMessage extends Message {

35 public SMSMessage() {

36 super();

37 msgType = Message.SMS;

38 maxSize[0] = 25;

39 maxSize[1] = 160;

40 }

41
42 [...]

43 }

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Chapter 6

Visualisation of differences

Following the identification of similar requirements in a past software case, these results must be
presented to the ReDSeeDS user. More precisely, the requirements specification of the current
software and its counterpart in the past software case have to be juxtaposed in order to allow
the user to check the outcome of the automatic similarity mapping. Then he could decide on
manually discarding requirements from the computed set or on including requirements not yet
taken into account.

Based on the final set of requirements selected for reuse, a partial software case has to be
computed and its contained elements and relationships shown to the user.

After an introduction to existing visualisation approaches in section 6.1, section 6.2 describes
how to visualise differences between requirements. Section 6.3 deals with the visualisation of
partial software cases.

6.1 Known approaches

Similarity calculation, its algorithms and visualisation approaches are known at least since the
Unix diff-tools in the early 1970s. Since then, various other approaches were published. This
section gives an overview about different visualisation strategies rather than about concrete
algorithms. Besides the strategy used by the diff tool and its successors to display the difference
as a sequence of edit operations there are also strategies which display the difference in a format
more convenient for the user.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

6.1.1 Integrated parallel visualisation

One of those approaches is called (integrated) parallel visualisation. Both documents are dis-
played in a separate view and the differences and similarities are highlighted using different
colours. Figure 6.1 shows a small example. The classes named Class1 and Class3 are part of
both models while class Class2 is only part of the first model and Class4 is only part of the
second model. The colours green and red are used to visualise the elements that are deleted in
model two or that are added in model two relative to model one. Another variant of the inte-
grated parallel visualisation is the tabular view. Figure 6.2 shows a small example of the tabular
view of the two models depicted in figure 6.1.

Class1

- id: int

- name: St ring

Class2

- x: int

- y: int

Class3

- length : int

- size: int

Class1

- id: int

- name: St ring

Class3

- length : int

- size: int

Class4

- selected : boolean

Figure 1:

1

Figure 6.1: Integrated parallel visualisation
Tabelle1

Seite 1

Model 1 Model 2
Class1 Class1

Class2

Class1 Class1

Class4

id: int id: int
name: String name: String

x: int
y: int

id: int id: int
name: String name: String

selected: boolean

Figure 6.2: Integrated parallel visualisation in tabular view

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

6.1.2 List of local differences

A list of local differences can be seen as a mixture of the difference or similarity visualisation
using sequences of edit operations and integrated parallel visualisation. Whenever integrated
parallel visualisation is not possible or not appropriate for a task, the differences between two
models can be visualised using a list of local differences. The list should contain a simple, small,
and human-understandable description of the differences which could be supported using small
cutouts of the original model. The table in figure 6.3 shows a tabular view of local differences
for the example already used above.

Tabelle1

Seite 1

Description Cutout

Class2 removed

Class4 added

Figure 6.3: Local difference visualisation in tabular view

6.1.3 Visualisation in a common model

Besides the approaches depicted above, it is also possible to show both models in a common,
unified form. Both models are presented as one merged model, differences are highlighted by
different colours, for instance red for all elements that are only part of model one and green for
all elements that are only part of model two. Figure 6.4 shows an example of a unified view
of the two models already depicted above. In contrast to the other two visualisation strategies
depicted above, this view needs a very sophisticated merging algorithm, hence it is barely used
in practise.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Class1

- id: int

- name: St ring

Class3

- length : int

- size: int

Class2

- x: int

- y: int

Class4

- selected : boolean

Figure 6.4: Common model view

6.1.4 Ontology difference visualisation

As stated in Section 3.2 ontology alignment / mapping tools can be applied to determine the
mapping information needed for solution marking. Visualisation of ontologies is an active
research field [FSH02, Ker06, Ala03, SNM+02]. However, according to [LS06], only few
ontology alignment tools provide a visualisation of their results: OLA [ELTV04], PromptViz
[NM03] and their own tool AlViz. The authors point out that the list of matched element pairs
provided by most tools is not sufficient for human understanding.

The OLA (OWL Lite Alignment) tool uses a graph-based approach for visualising ontologies.
The tool displays two aligned ontologies side by side in order to allow for the comparison of
their structures. Thus, this tool uses the integrated parallel visualisation described in Section
6.1.1.

PromptViz is a plug-in for Protégé and visualises differences between different versions of
ontologies. The plug-in uses treemaps in order to provide an overview of large ontologies (see
Figure 6.5 for an example). Colour is used to mark added, deleted, changed and relocated items.

Like PromptViz, AlViz is a plug-in for Protégé. AlViz provides two types of views for com-
paring ontologies: J-Trees display the hierarchical structure and small world graphs provide
clustering of nodes according to the selected level of detail (see Figure 6.6 for an example).
Colour is used in both types of views to represent the similarity of concepts.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Figure 6.5: PromptViz shows differences between ontologies using treemaps (taken from:
http://webhome.cs.uvic.ca/c̃hisel/imgs/promptviz/koala_screenshot.gif).

6.2 Visualisation of differences between requirements

This section describes the proposed variants for displaying differences between elements of
RSL-compliant requirements specifications. Differences can be examined on different levels of
abstraction. Section 6.2.1 shows how few past cases can be compared regarding their similarity
with the query. Then, Sections 6.2.2 and 6.2.3 describe how the use cases of the current case can
be compared with use cases from one selected past case. Finally, the comparison on the level
of ConstrainedLanguageScenarios is shown in Section 6.2.4. For details on how requirements
themselves are visualised see section 4.3. Visualisation of elements dependent on requirements
is described in section 6.3.

6.2.1 Comparing similarity of past cases with a query

The result of a query is a list of past cases ordered by similarity values. This overall similarity
value is not sufficient for selecting the most appropriate past case(s). Figure 6.7 shows a diagram
that allows the ReDSeeDS user to compare few past cases.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Figure 6.6: AlViz provides two different views on each ontology (taken from: [LS06]).

The diagram visualises to which query elements a selected past case is similar and to which not.
Examining the diagram, the ReDSeeDS user can for instance easily recognise if two past cases
together cover the query elements better than any single case.

6.2.2 Differences between use cases

This section describes proposed variants for displaying differences between a “current” software
case (currently edited by a user and used in a query to the repository in a “WHERE” clause -
see [BEK+07], p.12) and one retrieved from the software case repository (a “past” one).

During the comparison only use cases, as highly structured and precisely defined requirements,
are shown. The similarity display for a use case model presents the current model in form of a

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

1

0

0,5

Elements
contained in query
(e.g. use cases)

Similarity value of most
similar element in case x

Past Case #45

Past Case #101

Past Case #23

Use Case #
4

Use Case #
32

N
otion #

17

Use Case #
33

Use Case #
46

N
otion #

22

Input O
utput D

evice #
1

Q
ualityRequirem

ent #
5

Figure 6.7: Data structure for the mapping information between two (partial) RSL requirements
models.

tree with use cases contained in the past software cases attached to the corresponding (in terms
of similarity) “current” use cases (see Figure 6.8). Only a subset of “past” use cases matching
“current” use cases with a score above the similarity threshold set during the definition of a
query is displayed (see [BEK+07], p.14). The similarity score is displayed next to an every
“past” use case in form of a partially filled horizontal bar (fill-ratio depends on the value of the
similarity score) along with a numerical expression of the similarity.

6.2.3 Differences between use cases visualised by scenarios

This section describes how differences between one use case which is represented by an ac-
tivity diagram and another one which is represented by a couple of sequence diagrams can be
visualised. To make it more understandable, the fitness club example is used. The left part of
Figure 6.9 illustrates the simplified scenarios of the “Make Reservation” use case of the “past”
design. It is described by an activity diagram which outlines the steps for making a reservation.
The decision point is used to model different activities depending on the selection of the user.
The right part of Figure 6.9 illustrates the scenarios of the “Make Reservation” use case of the

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

85%

69%

38%

19%

15%

46%

Figure 6.8: UseCase TreeView with similarity indicators. The uses cases containing “repo” in
their name belong to the past software case rom the repository, all other ones come from the
current software case.

“current” design. Two Sequence diagrams are used to describe the scenarios. The upper one is
equal to the path of the activity diagram for selecting a course. The lower one is equal to the
path of the activity diagram for selecting a court. The part of the activity diagram which is not
covered by the sequence diagrams is marked red. It is also possible that sequence diagrams exist
which are not covered by the activity diagram. In that case, which is not shown in Figure 6.9,
the additional sequence diagram can be marked green. It should be clarified that this approach
is only an optional visualisation type.

6.2.4 Differences between ConstrainedLanguageScenarios

When one of the “past” use cases attached to a “current” use case is selected, a difference
between details of the “current” and the chosen “past” use case is displayed. Only textual
scenario representation (ConstrainedLanguageScenario – see [KSS+07]) is used when showing
details of the selected use cases’ similarity. For that, coloured diff-like notation is used (see
Figure 6.10). The meaning of text-background colours used in this notation is as follows:

• no colouring – information is the same

• yellow colouring – information differs in this part

• red colouring – a sentence or part of a sentence is missing

• green colouring – added a sentence or part of a sentence

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

ActivityInitial

System provides
reservable items

User selects item

System informs user
about reserved court

number

ActivityFinal

System confirm´s
users reservation of

the course

ActivityFinal

System confirms
user reservation for

the exercise

ActivityFinal

item

[exercise]
[course]

[cou rt]

SystemUser

provides reservable items()

selects item()

confirms user`s reservation of the course()

SystemUser

provides reservable items()

selects item()

informs user about reserved court number()

Figure 6.9: Illustration of differences between use cases visualised by scenarios

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Please note that any of the “current” scenarios can be compared to any of the “past” ones for
two selected use cases and displayed using the coloured diff.

To present requirements differences depicted in Figures 6.8 and 6.10, local similarities informa-
tion is used (see equation 6.1 in [WKB+07]), namely a group of local similarities for require-
ments.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Fi
gu

re
6.

10
:E

xa
m

pl
e

of
co

lo
ur

ed
di

ff
-l

ik
e

di
sp

la
y

of
si

m
ila

ri
tie

s
of

C
on

st
ra

in
ed

L
an

gu
ag

eS
ce

na
ri

o
in

st
an

ce
s

fo
rt

w
o

co
m

pa
re

d
us

e
ca

se
s

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

6.2.5 Differences between requirements

Differences for other requirements types may be visualised in a way similar to the approach
presented above, as long as requirements are represented by descriptive representation (textual
comparison is used then). Sole textual representation differences are depicted using diff-like
display (see sections 6.2.2 and 6.2.4 for details).

6.3 Visualisation of partial software cases

Chapter 5 introduced the notion of partial software cases and a mechanism for slicing a partial
software case from a complete software case based on the set of selected requirements. A partial
software case is composed of a set of selected requirements together with elements originating
from lower layers (architecture, design and code) connected by intra- and inter-layer traceabil-
ity links. Intra-layer traceability links are a set of elements of the requirement layer, which
selected requirements depend on (for example vocabulary elements used inside of selected re-
quirement representation). Inter-layer dependencies are elements of lower layer models which
are connected with the selected requirements through traceability links.

Figure 6.11 presents all model layers of a complete software case. Arrows represent inter-layer
dependencies of particular model elements. A partial software case is a subset of these elements
interconnected through inter- and intra-layer dependencies. Such an amount of information
should be visualised in a suitable form, thus giving the ability to navigate through elements of
a computed partial software case.

6.3.1 Information which should be visualised

As it was stated earlier that a partial software case is defined through software case model
elements and dependencies between them. In order to visualise a partial software case, we have
to show all elements of a computed slice together with the dependencies constituting a slice.
Such a visualisation should show a slice in the context of the complete software case.

Slice visualisation should allow for browsing and navigating through the elements constituting
a slice:

• selected requirements

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

C

R

A

D

Figure 6.11: Inter-layer dependencies

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

• nested elements

• intra- and inter-layer dependencies of selected element

• other related elements not included directly in computed slice

Selected requirements, nested elements and intra- and inter-layer dependencies of selected re-
quirements constitute a minimum slice (computed partial software case). Additionally, direct
dependencies of slice elements which are not mandatory but can be useful for reuse should be
emphasised. Such elements, which are not included in a computed partial software case, could
be manually attached to a slice by the reuse engineer. A minimum slice completed with all
directly related elements constitutes a maximum slice. Slice visualisation should visualise all
elements of a minimum slice in the context of a complete software case. Additionally, it should
emphasise all potential slice elements which could be attached manually to a slice (maximum
slice).

6.3.2 Additional information useful for analysing partial software case

To emphasise the level of complexity of a selected slice, we can support the presented informa-
tion with the number of elements and dependencies and other suitable statistics.:

• number of nested elements

• number of directly related elements

• number of indirectly related elements

• other statistics

Such additional information should be helpful for estimating the complexity of a partial soft-
ware case selected for possible reuse.

6.3.3 Idea of 4-tree view

According to previous sections, the main expectation for visualisation of a software case slice
(partial software case) is the possibility of viewing the whole slice as a set of related require-
ments specification items, architecture items, detailed design items and code items (R-A-D-C).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

These items can be packages, subpackages and package elements. User of the SC browser,
which allows to navigate through the whole SC, should have an opportunity to easily navigate
through the all SC artefacts in order to view a computed slice (elements of the slice together
with dependencies constituting it) in the context of a complete SC. Taking into account above
features, the form of a SC slice visualisation should enable presenting traced elements:

• in the context of all SC elements,

• in the perspective of complete requirements specification, architecture, detailed design
and code,

• in nested structures (packages, subpackages),

• with trace/relation type,

• with other information which can be helpful for estimating the complexity of partial soft-
ware case selected for possible reuse.

To realise all postulates above, the "4-tree View" was introduced as a possible way for slice
visualisation. It mixes the tree form for presenting models’ structure with a marking style used
for depicting elements specified and linked by traces. The proposed “4-tree View” visualisation
is composed of two main parts:

• Artefacts Browser,

• Properties View.

The artefacts Browser is a space where the structure of each (R, A, D, C) artefact can be pre-
sented in form of a tree. The user may select artefacts to be shown. There is also the possibility
to set an order and a layout of these views. Elements of the slice computed for some require-
ments item (starting point), as well as other elements which are directly related to slice elements,
are distinguished on each lower layer tree view. The type of the element distinction (e.g. differ-
ent colours) denotes if an element is included in a minimum slice or in a maximum slice (see
section 6.3.1). Packages which contain traced elements in any level of nesting should also be
marked.

Properties View is a text field containing basic information about the place of the selected
element in the SC slice, as well as some additional information which might be helpful in
browsing the slice. All this information can be presented in the form of a table. Such a table
can contain the following information:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Figure 6.12: Slice Visualisation legend

• basic properties

– source of traceability link (minimum slice)/other dependency (maximum slice) for
a selected element with its type,

– list of targets of traceability links (minimum slice)/other dependencies (maximum
slice) for selected elements with their types,

• additional properties

– number of nested elements,

– number of traced elements constituting a minimum slice,

– number of related elements constituting a maximum slice,

– other statistics.

User should be allowed to select appropriate properties and to set their order.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

Fi
gu

re
6.

13
:S

lic
e

V
is

ua
lis

at
io

n

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47

Software Case Marking Language Definition – D4.3
Visualisation of differences

ver. 1.00
20.11.2007

The concept of SC slice visualisation is presented in figures 6.12 and 6.13. The main part of
figure 6.13 presents the artefacts browser. The starting point of the slice is depicted by a rect-
angle with thick borderline filled with blue colour. All elements which constitute a minimum
slice are marked with a blue rectangle without borderline. A red rectangle without borderline is
used for depicting elements which are included in a maximum slice.
Packages which are marked with blue or red rectangles are parts of the slice without their con-
tent. A black dot on a package icon means that this particular package contains some packages
or child elements which are part of a slice, but the package itself is not.
The text field on the bottom of figure 6.13 is the properties view. This view is a combined list
of basic and additional properties listed above. This information describes an element of the
slice selected in the artefacts browser. The selected element is depicted by a rectangle with thin
borderline filled with dark blue or red colour.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48

Software Case Marking Language Definition – D4.3
Conclusion

ver. 1.00
20.11.2007

Chapter 7

Conclusion

This document has described the strategies and mechanisms that are used to mark the reusable
parts of the software cases stored in the fact repository.

To describe the whole solution marking mechanism, the process is divided into several steps.
The starting point for the process is the similarity mapping which is a result of the algorithms
defined in deliverable D4.2 “Software Case Similarity Measure” [WKB+07]. The mapping and
its relevance for the solution marking mechanism is described in chapter 3.

The next step in the process is the selection of the requirements set to reuse. The importance
of this step as well as the automatic selection and the interaction with the user is described in
chapter 4.

Chapter 5 depicts the notion of a partial software case. This is that part of a case that is calcu-
lated on base of the requirements selected in the previous step. The calculation of this partial
software case, which is also called a slice of a case, is depicted in theory as well as with a small
example in this chapter.

As the last step in the solution marking process, the slice is visualised in a human-understand-
able way. Existing approaches for such kind of visualisation and a proposal for a visualisation
in the ReDSeeDS engine are depicted in chapter 6.

All things considered, this document provides essential concepts for the development of the
ReDSeeDS engine which is to be developed in workpackage 5 of the ReDSeeDS project.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49

Software Case Marking Language Definition – D4.3
Bibliography

ver. 1.00
20.11.2007

Bibliography

[Ala03] Harith Alani. TGVizTab: An ontology visualisation extension for Protégé. In
Proceedings Visualizing Information in Knowledge Engineering (VIKE’03), 2003.

[BEK+07] Daniel Bildhauer, Jürgen Ebert, Thorsten Krebs, Markus Nick, Sören Schneickert,
and Hannes Schwarz. Software case query language definition. Project Deliverable
D4.1.1, ReDSeeDS Project, 2007. www.redseeds.eu.

[BER+07] Daniel Bildhauer, Jürgen Ebert, Volker Riediger, Thorsten Krebs, Markus Nick,
Hannes Schwarz, Audris Kalnins, Elina Kalnina, Markus Nick, Sören Schneick-
ert, Edgars Celms, Katharina Wolter, Albert Ambroziewicz, and Jacek Bojarski.
Repository selection report. Project Deliverable D4.4, ReDSeeDS Project, 2007.
www.redseeds.eu.

[Bou05] Paolo Bouquet. Specification of a common framework for characterizing
alignemnt. Technical report, KWEB EU-IST-2004-507482, 2005.

[EF95] Jürgen Ebert and Angelika Franzke. A Declarative Approach to Graph Based Mod-
eling. In E. Mayr, G. Schmidt, and G. Tinhofer, editors, Graphtheoretic Concepts

in Computer Science, number 903 in LNCS, pages 38–50, Berlin, 1995. Springer
Verlag.

[ELTV04] Jérôme Euzenat, David Loup, Mohamed Touzani, and Petko Valtchev. Ontology
Alignment with OLA. In Proceedings of the 3rd EON Workshop, 2004.

[ES04] Marc Ehrig and York Sure. The Semantic Web: Research and Applications, chapter
Ontology Mapping - An Integrated Approach. Springer, 2004.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, 2007.

[Euz04] Jérôme Euzenat. State of the art on ontology alignment. Technical report, KWEB
EU-IST-2004-507482, 2004.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50

Software Case Marking Language Definition – D4.3
Bibliography

ver. 1.00
20.11.2007

[FSH02] Christiaan Fluit, Marta Sabou, and Frank van Harmelen. Visualizing the Semantic

Web, chapter Ontology-based Information Visualization, pages 36–48. Springer,
2002.

[HM76] James W Hunt and M Douglas McIlroy. An algorithm for differential file compar-
ison. Computing Science Technical Report 41, Bell Laboratories, June 1976.

[JN06] Andreas Jedlitschka and Markus Nick. Scenarios, representation, and usage issues
for software case-oriented comprehensive reuse. In Proceedings of the Interna-

tional Workshop on Model Reuse Strategies (MoRSe 2006), pages 1–4, 2006.

[Ker06] Mick Kerrigan. WSMOViz: An Ontology Visualization Approach for WSMO. In
Proceedings of the Information Visualization (IV’06), 2006.

[KSC+07] Audris Kalnins, Agris Sostaks, Edgars Celms, Elina Kalnina, Albert Am-
broziewicz, Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak, Volker Riedi-
ger, Hannes Schwarz, Daniel Bildhauer, Sevan Kavaldjian, Roman Popp, and
Jurgen Falb. Reuse-oriented modelling and transformation language definition.
Project Deliverable D3.2.1, ReDSeeDS Project, 2007. www.redseeds.eu.

[KSS+07] Hermann Kaindl, Michał Śmiałek, Davor Svetinovic, Albert Ambroziewicz, Jacek
Bojarski, Wiktor Nowakowski, Tomasz Straszak, Hannes Schwarz, Daniel Bild-
hauer, John P Brogan, Kizito Ssamula Mukasa, Katharina Wolter, and Thorsten
Krebs. Requirements specification language definition. Project Deliverable D2.4.1,
ReDSeeDS Project, 2007. www.redseeds.eu.

[LS06] Monika Lanzenberger and Jennifer Sampson. AlViz - a Tool for Visual Ontology
Alignment. In IV ’06: Proceedings of the conference on Information Visualization,
2006.

[NM03] N.F. Noy and M.A. Musen. The prompt suite: interactive tools for ontology merg-
ing and mapping. Int. Journal of Human-Computer Studies, 59:983–1024, 2003.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a
software development environment. In Proceedings of the first ACM SIGSOFT-

/SIGPLAN software engineering symposium on Practical software development

environments (SDE 1), pages 177–184, New York, NY, USA, 1984. ACM.

[SNM+02] Margaret-Anne Storey, Natasha F. Noy, Mark Musen, Casey Best, Ray Fergerson,
and Neil Ernst. Jambalaya: an interactive environment for exploring ontologies.
In IUI ’02: Proceedings of the 7th international conference on Intelligent user

interfaces, 2002.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51

Software Case Marking Language Definition – D4.3
Bibliography

ver. 1.00
20.11.2007

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10:352–357, 1984.

[WKB+07] Katharina Wolter, Thorsten Krebs, Daniel Bildhauer, Markus Nick, and Lothar
Hotz. Software case similarity measure. Project Deliverable D4.2, ReDSeeDS
Project, 2007. www.redseeds.eu.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52

	History of changes
	Summary
	Table of contents
	List of figures
	List of tables
	Scope, conventions and guidelines
	Document scope
	Conventions
	Related work and relations to other documents
	Structure of this document
	Usage guidelines

	Introduction
	Mapping Information for the Solution Marking
	Weighted Mapping of Requirement Model Elements
	Information provided by Similarity Measures
	Overview of Similarity Measures
	Suitability of Similarity Measures for Mapping Calculation

	Data Structure for the Mapping Information

	Selection of the requirements set to reuse
	General concept
	Automatic selection of the requirements set
	Manual adjusting of the requirements set

	Partial software cases
	Notion of partial software cases
	Computation of partial software cases
	Basic principles
	Taking into account nesting relationships
	Taking into account traceability link types
	Taking into account other structures
	Summary of the slicing approach
	Computation using GReQL

	Sample computation of a partial software case

	Visualisation of differences
	Known approaches
	Integrated parallel visualisation
	List of local differences
	Visualisation in a common model
	Ontology difference visualisation

	Visualisation of differences between requirements
	Comparing similarity of past cases with a query
	Differences between use cases
	Differences between use cases visualised by scenarios
	Differences between ConstrainedLanguageScenarios
	Differences between requirements

	Visualisation of partial software cases
	Information which should be visualised
	Additional information useful for analysing partial software case
	Idea of 4-tree view

	Conclusion
	Bibliography

