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Abstract 

This work deals with fail-safe applications in a railway context and describes a way to 

produce safety-relevant software more efficiently. Fail-safe systems in this context have to be 

shut down if they produce erroneous results in order to guarantee that neither material nor 

people are harmed. Those errors have to be detected. Safety-critical applications run on 

operating systems, operating systems provide interfaces to the hardware those systems run 

on. Hence not only those applications themselves, but also operating systems as well as 

hardware are possible sources of failure. As they are potential sources of failure, they have to 

be validated and verified, their functionality has to be monitored, which is costly in terms of 

man hours and increases time-to-market for the considered products. 

Currently whole operating systems and their specific functions have to be verified line by line 

by experts. Nowadays operating systems get more and more complex and change rapidly. For 

every system or version change they have to be evaluated again. Complex hardware tests 

have to be written to match the different architectures. When used hardware changes, tests 

have to be re-written and re-verified. 

The approach used in this work is to provide end-to-end checking by creating a layer between 

the safety-relevant applications and the operating system interface. This safety supervision 

layer offers the applications functions enriched with fault detection features. The ultimate 

goal of the layer is to provide the application developer with the guarantee that every fault 

situated in the layers below – may it either be somewhere in the operating system or the 

hardware – is detected and the system is shut down in order to prevent hazardous situations. 

The end-to-end checking approach is a generic way to check for failures as it checks if a 

given result is plausible respective to a given specification. To stay on this generic track the 

layer is intended to be above the Portable Operating System Interface, which is implemented 

by many systems. As there are faults that may not be checked in that end-to-end way directly 

when calling a function, a watchdog structure is suggested in this work.  



 

Kurzfassung 

Diese Arbeit behandelt Fail-Safe Eisenbahn-Applikationen. Fail-Safe Systeme kennen einen 

sicheren Zustand, in den sie im Fehlerfall gebracht werden und abgeschaltet werden können, 

ohne Menschen oder Material zu gefährden. Diese Fehler müssen von Seiten des Systems 

erkannt werden. Sicherheitskritische Anwendungen laufen auf Betriebssystemen, 

Betriebssysteme laufen auf Hardware. Daher sind nicht nur die Anwendungen selbst, sondern 

auch Betriebssystem und Hardware potentielle Fehlerquellen. Weil sie mögliche 

Fehlerquellen darstellen, müssen sie sorgfältig verifiziert und validiert werden, ihr 

Funktionieren überwacht. Dies ist sehr teuer, was den Personalaufwand betrifft, und erhöht 

die Entwicklungszeit für die betreffenden Produkte. 

Zur Zeit müssen ganze Betriebssysteme und ihre Funktionen Zeile für Zeile von Experten 

verifiziert werden. Heutzutage werden diese immer komplexer und ändern sich schnell. Für 

jede neue Version oder Änderung wird der Code erneut überprüft. Komplexe Hardware-Test 

werden entwickelt werden, um unterschiedlichen Architekturen zu genügen. Ändert sich die 

zu überprüfende Hardware, müssen die komplexen Tests neu geschrieben werden. 

Als Lösungsvorschlag beschreibt diese Arbeit einen Safety-Layer zwischen den 

Applikationen und dem Betriebssystem. Diese Schicht bietet den Zugriff auf herkömmliche 

System Calls über Wrapper-Funktionen, die mit Features zur End-to-End-Fehlerdetektion 

angereichert sind. Das ultimative Ziel dieses Layers ist, dem Entwickler die Garantie zu 

bieten, dass alle Fehler, die ihren Ursprung unterhalb dieser Schicht haben, verlässlich 

erkannt werden. Die Anwendung wird davon mittels Signalen in Kenntnis gesetzt und kann 

das System in einen sicheren Zustand bringen, um Gefahrensituationen zu vermeiden. 

Dieser End-to-End-Ansatz überprüft, ob ein geliefertes Ergebnis plausibel im Sinne einer 

Spezifikation ist. Um diesen allgemeinen Anspruch weiter zu führen, setzt die Schicht auf 

dem Portable Operating System Interface auf. Zusätzlich zu den Fehlererkennungs-

Funktionen wird eine Watchdog-Struktur für generelle Systemfehler vorgeschlagen.  
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1 Introduction 

Currently and in the future people get more and more influenced by electromechanical 

systems. They have conquered their space in our everyday life and this space is about to grow 

in the coming years and decades. Those systems provide outstanding possibilities and may 

radically change a society’s lifestyle as the car, the airplane and train revolutionized old 

traffic systems. But as we learn from history every technological innovation introduces new 

dangers and – obviously – resulting catastrophes, while the most serious of them have 

occurred in the past 30 years [Lev95, p.7]. 

In the United States, technological hazards account for 15 to 25 percent of human mortality 

and have significantly surpassed natural hazards in impact, cost and general importance 

[Lev95, p.4]. We generally tolerate those risks because in most cases the advantages that 

come with a new technology exceed the risks they bring. Nevertheless this circumstance 

creates new challenges for engineers to build safer systems and for governmental 

organizations to decide, whether a system should be admitted to public use or not. IEC 61508 

describes these triangular relationships and mutual influences as can be seen in Figure 1.  

 

Figure 1: Triangular safety relationship. 
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One of the most important steps in a safety-critical development process is to act pro-

actively. Hazard analysis techniques have to be applied to identify possible risks and find 

series of events that may possibly lead to accidents. They have their place in the centre of a 

safety-related system as shown in Figure 2. The figure is taken from [Lev95, p.288] and was 

amended with the development bubble, as requested by my colleagues at the project partner. 

A more detailed description of hazard analysis techniques is given in the safety chapter. 

 

Figure 2: Hazard analysis as a central entity in a safety assurance program [Lev95, p.288]. 

So Hazard Analysis is really a crucial part to avoid accidents and control incidents. 

Nevertheless people had to learn that there is no risk-free life and the only thing we can do is 

just to reduce the risks to an acceptable level. On the other hand there’s always a big outcry 

when serious accidents occur. Companies as well as authorities are brought to trial and safety 

guidelines are discussed, scrutinized and adapted which leads us to a spiral of safety increase 

and an incremental evolution of safety standards whose fulfilment consumes a major part of 

the development budgets and time-to-market. Figure 3 visualizes the relationships that lead to 

a circular improvement of observed safety-critical standards. 

 

Figure 3: Safety standard improvement circle after incidents or accidents have occurred. 
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Systems have to comply those standards, although their implementation gets more and more 

expensive and often has to be rewritten and rechecked as a whole if small changes according 

hard- or software are undertaken.  

So while complexity continuously increases the industry yaws for technologies that help to 

contain the exploding costs. One considerable option to reach this goal is to use Commercial-

Off-The-Shelf components and Open Source software – like operating systems – to generate 

reusable solutions. My work sketches up a portable, reusable and testable safety layer that’s 

based on the standardized “Portable Operating System Interface” that contains functionality 

and patterns to solve identified hazards to enforce safety criteria and save time and – 

depending on the environment and applicability of the components - money. 

1.1 Problem Statement 

As systems grow in complexity and size it is desired to build them out of previously written 

software. Reuse and the use of COTS Software can increase product quality and reduce 

development time [YBB99, p.1]. Those components must not influence the whole system in a 

safety-critical way. 

One big chunk of possibly being reused software is operating systems. Operating systems 

suitable for safety-critical environment are expensive, relatively rare and often they don’t 

provide the desired features.  As there are many Off-The-Shelf operating systems available, 

open source as well as commercial ones, it would be necessary if developers could just use 

those as platforms for they safety-critical applications without spending too much work on 

the layers below. They could explicitly concentrate on the application logic of the actual 

critical project itself and wouldn’t have to worry about which OS version they’re working 

with and if the hardware they use working according to specification. 
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Figure 4: Current safety assurance techniques for operating systems. 
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evidence from widespread use, some numeric reliability data, observed reliability growth, the 
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the approach selected in [HSE02] is suitable for other standards as well. 
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1.2 Related Work 

To paint a big picture of what work has been done so far, those theses may be classified into 

three categories of research that this text is based on. Its mission is to combine theories of 

required general safety features of component based software, common pitfalls and best 

practices, as well as techniques of how operating systems used in safety related environments 

and pictures of hardware systems are based on has to be proved functional during a product’s 

lifetime. 

1.2.1 General Dependability Issues 

One starting point for this work was “Fundamental concepts of dependability”, a commonly 

known paper by Laprie et al. [Avi01] that defines common terms and techniques that may be 

used to construct dependable computing systems. It sketches the picture of how relevant 

fields of research like safety, security, fault tolerance and others work together to guarantee 

working systems. 

Very useful for this work was “Safeware” [Lev95], a book written by Nancy Leveson in 

1995, which gives a comprehensive picture of safety and provides an intensive historical 

overview of safety design drivers and how generic techniques have evolved over the last 50 

years. It shows as well what happens when system architects aren’t aware of grown 

technologies and that safety is more than just a technical, but often more an organizational 

issue, numbering and explaining series of commonly known industrial accidents. 

For the practical part I used the book Software fault tolerance techniques and implementation 

[Pul01] by Laura Pullum. This book explains approaches for reaching fault tolerant systems 

by software techniques, which I intensively made use of in designing the safe message 

passing and watchdog functions in the safety supervision layer. 

1.2.2 Off-the-Shelf Components in Safety-Related Environments 

[Aas07] gives a number of definitions according Off-The-Shelf (OTS) components and 

explains potentials and possible pitfalls for systems making use of them. Apart from that it 

shows possibilities of how to guarantee Safety Integrity Levels in those systems. [Skram05] 

deals with the reuse of Commercial-Off-The-Shelf (COTS) components and Software of 

Unknown Pedigree (SOUP). The fact that safety standards have strict requirements to how 

software has to be developed and tested, and most do not explicitly allow the use of COTS 

components or SOUP is stated and ways to deal with these circumstances are stated. [Ye04b] 

gives a schematic overview of what has to be considered, when selecting components for 

safety-related systems from market monitoring to COTS Acquisition contract. [Ye04a] 
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examines ways to analyze the criticality of COTS software components using commonly 

known technologies like System Hazard and Fault Tree Analysis. 

The papers stated above deal with software safety. Safety Supervision Watchdog deals with 

ways to check for failures that cannot or hardly be detected directly when using the respective 

functionality. Many of them deal with hardware and low-level operating system faults. 

[Tam07] and [Arl02] deal with testing, error detection and fault analyses for those. 

1.2.3 Requirements to Safe Operating Systems 

[HSE02] states requirements to safe operating systems assessing Linux. It states techniques 

and issues heavily using proven-in-use that have to be used when deciding whether a given 

operating system may be in safety critical environments. They also show how the results of 

such assessments can be mapped to required Safety Integrity Levels. Other more generic 

sources are provided by the CENELEC standards stated below that exactly prescribe required 

features in the railway problem domain. 

1.3 Motivation 

“There is an increasing interest in acquiring commercial-off-the-shelf (COTS) functionality 

for safety-critical applications” [Ye04b, p.1]. It is commonly known that many advantages 

come along with Software Reuse. Depending on the surrounding circumstances it can reduce 

time-to-market and probably reduce costs. Those do not emerge on their own, as a component 

based approach may also lead to pitfalls like faulty components, incomplete specifications 

and interface mismatches. Nevertheless an advantage that may be generated by consequently 

using carefully selected COTS Software is that those pieces of software get proven-in-use. 

Evolution may take place improving the components’ code, documentation and proneness to 

errors. 

Release Operating System Million SLOC 

1998-07-24 Debian Linux 2.0 Hamm 37.41 [16] 

1999-03-09 Debian Linux 2.1 Slink 70.6 [16] 

2000-08-15 Debian Linux 2.2 Potato 55-59 [LoCDeb2.2, 

LoCDeb3.x] 

2002-07-19 Debian Linux 3.1 Woody 104 [LocDeb3.x] 

2005-06-06 Debian Linux 3.2 Sarge 215 [LocDeb3.x] 

Table 1: Growth of debian linux distributions in SLOCs. 
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Furthermore the starting point for this work was seeing whole operating systems as OTS 

components and probably find ways to reduce costs for writing tests and fault detection 

facilities and expensive verification and validation efforts. Currently operating systems have 

to be checked for each version, function by function, line by line by experts. As operating 

systems constantly grow in size, these efforts get more and more expensive and impractical. 

Source Lines of Code is a reasonable complexity metric for software just counting the lines 

the system is compiled of. The size of the Linux kernel itself has continuously increased from 

10,239 SLoCs in September 1991 to 5,929,913 in December 2003. Table 1 shows the growth 

in size in terms of SLoCs of the debian linux distributions to visualize this evolution. 

In safety-relevant systems every version and configuration has to be checked in depth, which 

– in times of rapidly emerging software – gets more and more costly. Hence there would be 

numerous advantages in finding structures to decouple safety-critical applications from the 

layers used by the application such as hardware and operating system. This work presents an 

approach without a claim for completeness but considers itself to be a step in the desired 

direction. 
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2 Domain Issues 

To get a picture of what this work is all about, the reader needs some basic knowledge of the 

work an thesis taken by this work as starting points. Generally those items are dependability, 

fault hypotheses and fault tolerance as well as basic safety-relevant techniques and technical 

standards. When it comes to fault tolerance, the main focus is on fault detection, as in fail-

safe systems, it is rather important to simply detect faults and shut down a system und 

consideration than to compensate the detected faults and keep the system running. 

2.1 Dependability 

When we talk about Safety, it is crucial to specify exactly what we mean, which is often not 

easy in this problem domain. Remember that e.g. Fault Tolerance deals with unintended 

system behaviours which are often hard to describe, or faults in Human-Machine-Interface 

design. Hence it is important to clearly define the terminology that is used in Safety literature 

and in my work.  

 

Figure 5: The dependability tree [Avi01]. 
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However it is important to understand the environment the safety research domain is situated 

in, as it is a part of the Dependability discipline. [Avi01] gives a concise overview of the 

concepts, techniques and tool that have evolved over the past 40 years in the field of 

dependable computing and fault tolerance. Figure 5 gives a systematic exposition of the 

concepts of dependability in three parts: threats, attributes and means. According to [Avi01] 

Computing systems are characterized by five fundamental properties: functionality, usability, 

performance, cost, and dependability. It defines dependability of a computing system as the 

ability to deliver service that can justifiably be trusted, while a service delivered by a system 

in this context is meant defined as its behaviour as it is perceived by its users. Safety is 

considered as a sub-discipline and described as “absence of unauthorized disclosure of 

information” [Avi01]. 

As this context is a rather abstract one to talk about, it is especially important to clearly define 

the terms and paradigms that are under consideration. When we talk about fault tolerance, the 

basic approach is, to distinct between faults, failures and errors. 

 

Figure 6: Relationship between faults, failures and errors. 

According to [Lev95, p.172] a fault is: “A requirements, design, or implementation flaw or 

deviation from a desired or intended state. “ “A fault is the adjudged or hypothesized cause of 

an error. A fault may be active when it produces an error, otherwise it is dormant” according 

to [Avi01]. Figure 6 shows the relationship between faults, failures and errors. In developing 

fault-tolerance it is important to know what faults, more precisely, what kind of faults we 

want to tolerate or detect, as we generally don’t know what fault will exactly influence our 

system. Otherwise we could eliminate it a priori. Therefore it is important to specify 

generically what we want to prevent to be able to implement suitable counter-measures. 

Basically faults can be classified in design faults, physical faults and interaction faults. Faults 

can be described by their attributes. The following points are taken from [Avi01]: 

• Phase of creation or occurrence: Determines if the fault originates from the development 
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• System boundaries: Specifies whether an operational fault is caused from somewhere 

within the system or brought in from outside like attacks or input mistakes. 

Developmental faults are by nature considered as internal faults. 

• Domain describes whether it is a software or hardware fault. 

• Phenomenological Cause: Is the fault a human-made mistake or attack or is it 

unforeseeably influencing the system by nature or vis maior. 

• Intent: Does some intelligence stand behind a fault or is it caused by unintended. If it is 

intended, we have to distinguish between attacks and actions that are undertaken bona 

fide but result in a fault.  

• Persistence: Faults may happen every time a certain service is performed – permanently 

- or they can happen several times, but don’t occur on other pseudo-randomly - transient. 

Transient errors may be unexpected hardware errors originating in older chips or human-

made faults by e.g. tired operators that perform a task in a false way from time to time, 

while taking the right actions most of the time. 

Figure 7 provide a detailed overview of how fault classes and their attributes may be linked to 

a consistent concept. 

 

Figure 7: Combined fault classes [Avi01, p.6]. 

An error is a design flaw or deviation from a desired or intended state [Lev95, p.172]. In this 

context it is important that an error is just the deviation from a system’s internal state and 
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may not necessarily produce improper service. When an error reaches the service interface 

and alters the service, it produces a failure [Avi01, p.3]. 

According to [Lev95, p.172] a failure is the non-performance or inability of the system or 

component to perform its intended function for a specific time under specified environmental 

conditions. This is quite similar to the [IEEE 610.12-1990] definition: “The inability of a 

system to perform its required functions within specified performance requirements. “ In this 

work Leveson’s definition is used, as it is more detailed and it announces temporal and 

environmental constraints namely. 

As a system not always fails the same way, [Avi01, p.3] states the classification of failure 

modes that can be ranked by failure severities. The paper characterizes incorrect service 

according to four viewpoints: 

• failure domain 

• controllability of failures 

• consistency of failures, when a system has two or more users 

• consequences of failures on the environment. 

 

Figure 8: Failure modes according to [Avi01, p.3]. 

A special case of a failure symptoms are so-called Byzantine failures. They are inconsistent, 

malicious and asymmetric: In a multiple receiver scenario, the different receivers see 

differing, possibly incorrect, possibly correct, results. Those failures are especially a problem 

because they are hard to detect. An example of a Byzantine failure would be a clock sending 

one component the right time while sending another an incorrect timing value. 

As stated above a fault may be dormant, which means that it doesn’t cause unintended 

changing of the state. This can happen, if e.g. there is a fault in a function but the execution 

branch the fault is contained in is never called or it is correct for data that is handled over 

most of the time. If this execution branch is then called with the data it is improper for, it 

leads to improper result, the fault is so-called activated. This leads to an error in the result 
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computed or the action taken. If this erroneous state is passed through to the service interface 

of the system or component we call this a failure of a system or component. Failures of 

components – e.g. an algorithm is used and yields the wrong result – can be the cause for a 

fault in another component that relies on the faulty one. These phenomena build a chained 

action as sketched by Figure 9.  It is a fundamental goal of fault tolerant systems to detect 

those errors a supervise component states in order to break that chain. 

 

Figure 9: The fundamental chain of dependability threats [Avi01, p.14]. 

A system consists of a set of interacting components, therefore the system state is the set of 

its component states [Avi01, p.14]. As components often rely on each other faults occurring 

in one component are often handled over to the next component that relies on computations 

done or actions taken by the failed. As operating systems may be seen as so-called Off-The-

Shelf components one crucial mission of my safety supervision facility for operating systems 

is amongst others to detect erroneous operating system functionality and prevent it from 

leading to wrong and possibly hazardous malfunctions of applications relying on it. Figure 10 

shows the relationship between component and system failures. 

 

Figure 10: Error propagation in component-based systems [Avi01, p.13]. 

2.2 Fault Hypothesis 

To be able to detect failures they have to be clearly stated and specified in the system 

specification. This has to be done by producing a so-called Fault Hypothesis. The Fault 
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Hypothesis has to state the assumptions about the type and number of faults that the fault-

tolerant system has to tolerate [Kop06]. An important property of a Fault Hypothesis is the 

assumption coverage, which states to what extent these assumptions are met by reality. The 

assumption coverage limits the dependability of a perfect fault-tolerant system [Kop06]. 

Hence a fault-tolerant system can never be better than its Fault Hypothesis intentionally. 

[Kop06] also states that without a precise specification of the Fault Hypothesis it is 

impossible to 

• investigate whether the assumption coverage is realistic 

• and to test the correctness of implemented fault-tolerance mechanisms. 

 

 

Figure 11: System states of a fault tolerant system [Kop06]. 

Basically, in this context faults are classified into three types: primary faults, secondary faults 

and command faults [Lev95, p.173]. 

• In a primary fault (and failure) the component fails within the design envelope or 

environment. Or - in other words – it is covered by the fault hypothesis and Fault-

Tolerance mechanisms can be used to hoist the system back into the current state. 

• Secondary faults are problematic because they aren’t covered by system recovery 

mechanisms. Secondary faults occur when components fail because of excessive 

environmental stresses that exceed the requirements specification or design environment 

[Lev95, p.173]. Events that lead to secondary faults have to be rare events. 
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• Command faults involve the inadvertent operation of the component because of a failure 

of a control element-the component operates correctly, but at the wrong time or place 

[Lev95, p.173]. 

Another classification can be found according to [Kop06] in Level-1 and Level-2 faults 

whilst the first are covered by the Fault-Hypothesis and the second are not. [Kop06] also 

states that if during the test and installation phase it is found out that Level-2 faults are not 

rare events 

• either the fault-hypothesis is wrong  

• or the implementation is deficient. 

2.3 Fault Tolerance 

To increase the reliability of a system beyond the intrinsic reliability of a technology there are 

two strategies described [Kop06]. 

• Use of ultra-high quality components. This attempt has the advantage that no other 

structures have to be built in, but the major disadvantage that the cost increase in relation 

to component quality is exponential (e.g., early space program). 

• Use of fault tolerance. This has the disadvantage that further ostensibly unproductive 

structures have to be built in. But it has the big advantage that the reliable system may be 

built of less-reliable components. Quite early – in the 1950s – J. von Neumann, E. F. 

Moore, and C. E. Shannon, and their successors developed theories of using redundancy 

that proved that reliable logical structures can be built of less reliable components 

[Avi01]. 

In high reliability systems a combination the above strategies may need to be used. 

As the need for reliability and robustness are crucial parts of safety-critical systems fault-

tolerant mechanisms have to be implemented. Nearly every technical system fails in its 

period of use and it often can’t be prevented when it fails in what way. There are studies 

dealing with fault prevention and failure rates. An important model that came out of those 

studies is the bathtub curve describing failure rates of electro-technical circuits. The bathtub 

curve consists of three periods: an infant mortality period with a decreasing failure rate 

followed by a normal life period (also known as "useful life") with a low, relatively constant 

failure rate and concluding with a wear-out period that exhibits an increasing failure rate [4]. 
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Figure 12: The bathtub curve taken from [4]. 

2.3.1 Fault-Tolerant Programming Paradigms 

Development of fault tolerant system is not a trivial task. The trend toward increasing 

complexity and size, distribution on heterogeneous platforms, diverse accidental and 

malicious origins of system failures, the consequences of failures, and the severity of those 

consequences combine to thwart the best human efforts at developing these applications 

[Pul01]. In the environment of Fault-Tolerance a series of technologies have evolved able to 

compensate faults of system component. This chapter explains the most important of the 

paradigms and techniques used in fault-tolerant system development. 

To understand why certain technologies are invented one has to understand the problems they 

try to solve. One of them is the so-called Similar Errors or Lack of Diversity [Pul01, p.60-62] 

problem. As faults may be nested in applications themselves, just copying or replicating the 

application will just replicate the error as well, so it is not sufficient for detecting such faults. 

Hence there is a need for diversity. Diversity allows the system to be able to detect faults 

using multiple versions of software and an adjudicator [Pul01, p.44-45].  An adjudicator is 

used to compare the compare the results to check them for errors. Nevertheless there is the 

possibility that 2 versions of an algorithm yield the same wrong result. [Pul01, p.60] states 

typical floating-point arithmetic calculations that may offer similar results within certain 

tolerance borders. In order to prevent this, the versions have to divert heavily in their method 

of resolution. There are two failure modes in this relationship defined by: If the variants fail 

on the same input case, than a coincident failure is said to have occurred. “If the actual 

measured probability of coincident variant failures is significantly different from what would 

be expected by chance occurrence of these failures, then the observed coincident failures are 

correlated or dependent” [Pul01, p.61]. In fault-tolerant systems – while it is crucial to detect 

failures – it is important to avoid such dependent failure modes. 
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Another basic problem is the Consistent Comparison Problem (CCP). The CCP limits the 

generality of the voting approach for error detection. The problem occurs as a result of finite-

precision arithmetic and different paths taken by the variants based on specification-required 

computations [Pul01, p.62-68]. When N versions operate independently it is not clear that 

they consistently make the same decisions. 

Another problem that is faced in backward recovery systems is the domino effect. This refers 

to the successive rolling back of communicating processes when a failure is detected in any 

one of the processes [Pul01, p.68-70]. As this is not a big problem in primitive sequential 

systems it gains importance in concurrent, distributed systems. Here these effects may cause 

the system to fall into an inconsistent state. A consistent state allows the system to achieve an 

error-free state that leads to no contradictions and conflicts within the system and its 

interfaces. All communications between processes and their order of occurrence are taken 

into account. To support consistency, some restrictions on the communication system must be 

enforced. 

The following paragraphs describe some of those constraints and common programming 

constructs used in reliability engineering. 

2.3.1.1 Assertions 

An executable assertion is a statement that checks whether a certain condition holds among 

various program variables, and, if that condition does not hold, takes some action [Pul01, 

p.78-80]. This definition shows that assertions are a construct that allows us to check if a 

system state satisfies certain reasonableness conditions, which define a correct, consistent 

system state. 

2.3.1.2 Checkpointing 

Checkpoints are points in time where a consistent system state is stored. If there is an error 

detected after that checkpoint it is possible to perform a rollback of the system state to it and 

perform the desired action again. Checkpoints may be part of a never-give-up strategy and are 

not explicitly used in my practical work as it rather deals with error detection than with fail-

operational environments. 

2.3.1.3 Atomic Actions 

Atomic Actions are sets of commands that are performed fully or not. They are used 

preferably in concurrent distributed systems for error recovery. There are three characteristics 

describing this constructs. They are according to [Pul01, p.84-88]: 

• Indivisible: Either all the steps in the atomic action complete or none of them dows, that 

is, the “all-or-nothing” property. 
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• Serializable: All computation steps that are not in the atomic action either precede or 

succeed all the steps in the atomic action. 

• Recoverable: The external effects of all the steps in the atomic action either occur or not; 

that is, either the entire action completes or no steps are completed. 

2.3.2 Design Diversity 

Design diversity is the provision of identical services through separate design and 

implementations [Pul01, p.29-35].  

2.3.2.1 Manual Design Diversity 

This denotes techniques to detect failures by trying to reach the desired functionality by 

implementing a system or subsystem more then once. In the *-Version Programming 

technique [Pul01, p.12-14] software is produced in diverse ways by different people and – 

ideally – using different techniques. The certain versions are executed in parallel and their 

results are compared and adjudicated. There is a lot of literature comparing advantages and 

disadvantages of putting all effort into the production of “one good version” versus using an 

N-Version approach. What can be said is that these techniques yields the best results if it is 

applied from the very beginning – before the specification – to the very end of a component’s 

development cycle. 

2.3.2.2 Automated Design Diversity 

This denotes that diversity is reached through redundant structures according the control flow 

and the constructs used. [PUL01, p.29-35] gives some examples for automated design 

diversity: 

• Utilization of different processor registers in different versions; 

• Transformation of mathematical expressions; 

• Different implementations of programming structures; 

• Different memory usage; 

• Using complementary branching conditions in the variants by transforming the branch 

statements; 

• Different compilers and libraries; 

• Different optimization and code-generation options. 
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2.3.3 Data Diversity 

Data diverse techniques use different representations of data to perform computations on 

them. Data re-expression algorithms are used in determined points of time and decision 

algorithms are used to adjudicate the output. Examples for reasonable fields of use of data 

diversity are: 

• Detecting data transmission errors like bit flips; 

• Detecting errors in floating point computations; 

• Rounding errors; 

Apart from data and design diversity there exist several other diversity techniques like 

temporal diversity, but those are not relevant for my work. 

2.4 Hazard Analysis 

In order to prevent catastrophic events pragmatic approaches are needed and dangerous 

situations and their precursors have to be identified to find measures to prevent them from 

leading to serious losses. To reach this goal, safety engineers commonly use the term Hazard. 

2.4.1 Accident and Incident 

A straight forward approach to engineering safety is to classify events by their result 

concerning the potential damages they cause. [Lev95, p.175-176] differentiates those events 

into accidents and incidents. 

She defines an accident as “an undesired and unplanned (but not necessarily unexpected) 

event that results in (at least) a specified level of loss”.  

The first part of this definition “undesired and unplanned” is quite common what natural 

language means by an accident. But natural language means something unexpected as well 

which could be fatal in a safety engineering context. In a safety related environment it is 

crucial to identify unexpected, but possible, events that may lead to accidents as well in order 

to be able to provide counter-measures to minimize damages caused by an accident.  

The second part of this definition says that an accident always relates to a “specified level of 

loss”.  This is an important topic for damage reduction to determine what level of concern has 

to be taken in order to prevent such an event. Typically those situations are classified into 

minor, serious and catastrophic events [Lev95, p.175]. 

The definitions of accidents are very important as they strongly influence the way counter-

measures are taken to control those situations and increase safety. “For example, if an 
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accident is defined as an unwanted or uncontrolled release of energy, then prevention 

methods should focus on energy controls and barriers between possibly harmful energy flow 

and the things damaged by it.” [Lev95, p.176] This states that engineers are able to provide 

measures to minimize damage if they know what can happen. 

Another term in this context is incident. “A near miss or incident is an event that involves no 

loss (or only minor loss) but with the potential for loss under different circumstances.” 

[Lev95, p.176] The concept of the incident is very important to find failures that probably 

lead to serious accidents.  

Note that the difference between incident and accident is just the result. The prerequisite of 

an incident not being an accident is that just the circumstances under which a failure has 

happened didn’t lead to a catastrophic event.  For example the steering of an airplane is 

transiently defiant so that the pilot is not able to pull up for 5 minutes flying in a height of 9 

kilometres. This would be an incident that has to be investigated and the failure has to be 

found and eliminated, as an event like this would certainly lead to an accident if it happened 

when the plane would have been flying just in front of a mountain. 

2.4.2 Hazards 

To prevent accidents and near misses designers have to know what they have to be aware of. 

In other words, they have to know the detailed precursors that lead to situations that are 

potentially dangerous in specific environments. This is what the safety community created 

the term hazard for. 

[Lev95, p.177] provides the following definition: A hazard is a state or a set of conditions of 

a system (or an object) that, together with other conditions in an environment of the system 

(or the object), will lead inevitably to an accident (loss event). 

There are two things to note about that definition: 

• A hazard is always defined in relation to its environment 

• What constitutes a hazard depends upon where the boundaries of the system are drawn 

(Lev95, p.177). 

Another term that is important in this context is risk. Risk is the hazard level combined with 

the likelihood of the hazard leading to an accident (sometimes called danger) and hazard 

exposure or duration (sometimes called latency) (Lev95, p.179), while hazard level is itself a 

combination of hazard severity and likelihood of its occurrence. 
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2.4.3 Hazard Analysis Process 

The goals of safety analysis are related to three general tasks (taken from [Lev95, p.289]), 

while the first two are basically to making systems safer and the last is to convince 

management and authorities that a system is safe: 

• Development: the examination of a new system to identify and assess potential hazards 

and eliminate or control them. 

• Operational management: the examination of an existing system to identify and assess 

hazards in order to improve the level of safety, to formulate a safety management policy, 

to train personnel, and to increase motivation for efficiency and safety of operation. 

• Certification: the examination of a planned or existing system to demonstrate its level of 

safety and to be accepted by the authorities or the public. 

2.4.4 Relevant Fault Analysis Models 

In literature a large number of fault and hazard analysis techniques can be found [Lev95, 

p.344-346, p.317-326, p.497-507] [Avi01] [7] [8]. Many of them may be used alternatively, 

but mostly some of them are used additionally to ensure all possible faults are examined. The 

main difference of the structured techniques is the starting point – simplistic: the cause or the 

effect. Such analyses may be reasonably augmented with certain problem domain specific 

checklist approaches to ensure that nothing known is overseen. For example such checklists 

exist for aviation, chemical industry and many more. For this work, especially for the safe 

message passing library, two common analysis techniques are used: Fault Tree Analysis 

(FTA) and Failure Mode and Effects Analysis (FMEA). FMEA is used in an adapted form as 

numerical analyses are hard to perform on software. 

2.4.4.1 Fault Tree Analysis 

Fault Tree Analysis (FTA) is a technique for reliability and safety analysis. Bell Telephone 

Laboratories developed the concept in 1962 for the U.S. Air Force for use with the 

Minuteman system. It was later adopted and extensively applied by the Boeing Company [7]. 

Fault Tree diagrams are logical block diagrams that represent the state of a system as a 

combination of its component states using logical Boolean gates. They are built so-called top-

down strategy from the undesired event connecting the causes that lead to the causing base 

events through logical gates. 

[8] as well as other references in literature describe the fault tree analysis process as follows: 

• Definition of the system, the top event (the potential accident), and the boundary 

conditions 

• Construction of the fault tree 
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• Identification of the minimal cut sets 

• Qualitative analysis of the fault tree 

• Quantitative analysis of the fault tree 

• Reporting of the results 

Figure 13 show the items such diagrams consist of. 

 

Figure 13: Fault tree diagram symbols [8]. 

In order to be able to generate a Fault Tree analysis it is important to have fully understood 

how the system under consideration works. Usual Figures to reach this are system block 

diagrams. Figure 14 shows how a fault tree is built for a subsystem consisting of a valve and 

two redundant water pumps of a fire pump system. 
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Figure 14: Fault tree diagram example given by [8]. 

Fault trees show relationships between events and are snap shots of a system’s state. [Lev95, 

p.317] states, that they have originally been developed to calculate quantitative probabilities, 

although it is more commonly used qualitatively. The book also notes that “simply 

developing the tree, without analyzing it, forces system-level examination beyond the context 

of a single component or subsystem”. Nevertheless they are a good visualization and provide 

a solid base for further analyses and solution development. 

2.4.4.2 Failure Modes and Effects Analysis 

Failure Mode and Effects Analysis (FMEA) is  risk assessment technique for systematically 

identifying potential failures in a system or a process. It is commonly used in the industry in 

various phases of the product life cycle. Failure modes means the ways, or modes, in which a 

system under consideration might fail. Failures are any errors or defects, especially ones that 

affect persons or material. Effects analysis refers to studying the consequences of those 

failures. 

The FMEA process was originally developed by the US military in 1949 to classify failures 

"according to their impact on mission success and personnel/equipment safety". FMEA has 

been used on the 1960s Apollo space missions. In the 1980s it was used by Ford Motor 

Company to reduce risks after a car model suffered a design flaw that failed to prevent the 

fuel tank from rupturing in a crash, leading to the possibility of the vehicle catching on fire. 

FMEA is effective for analyzing single units or single failures to enhance individual item 

integrity. It can be used to identify redundancy and fail-safe design requirements, single-point 

failure modes, and inspection points and spare part requirements [Lev95, p.341-343]. It was 

originally developed to be able to generate mathematical predictions about failure rates. 

Statistical data about software failure rates is hard to get in my field of work so the failure 
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modes and effects analysis in this thesis concentrates on the effects, leaving the expected 

component failure rates besides. 

Basically Failure Modes and Effects Analyses contain a tabular compilation of the possible 

failure modes and their effects. Consequentially the possible failure modes are given IDs and 

counter measures are proposed. In general those documents contain numerical data for 

probability and criticality quantifiers, but those data are hard, sometimes impossible to get for 

software. There is no standardized procedure to generate those Analyses as their form 

changes from company to company. An example is shown below in Figure 15. 

 

Figure 15: Failure Modes and Effects Analysis example taken from [9]. 

2.5 The Railway Domain 

In my work I concentrated on railway specific problems in depth, as it is the project partner’s 

main interest. Most safety related railway systems are so called fail-safe, which basically 

means that we can always switch to a safe state – mostly “system is shut down” – in case of a 

failure where the system stays stable and there’s the guarantee that no safety-critical situation 

can be initiated. The circumstance that we can switch to this means that the most important 

part is error detection, as just turning off the system isn’t very complicated. The opposite of 

fail-safe are fail-operational systems where one would have to guarantee a specific service 

level under which the system must never get, e.g. an airplane has to reach the next airport in 

case of an error. 

A crucial part of my work is to guarantee safe message passing, because the platform I am 

talking of is a network of distributed control nodes which mustn’t lose communication 

between each other. 
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2.6 CE�ELEC 

CENELEC - European Committee for Electro-Technical Standardization - is one of the three 

biggest standardization organizations in Europe. It has evolved from a series of earlier 

European standardization organizations since the second half of the 19th century and was 

actually founded in 1973. “CENELEC is developing and achieving a coherent set of 

voluntary electro-technical standards as a basis for the creation of the Single European 

Market/European Economic Area without internal frontiers for goods and services”. [1] 

Besides other issues it prescribes the safety requirements technical systems have to fulfil to 

be admitted for public use in most of Europe.  

2.7 CE�ELEC 50159 Standard 

As for other problem domains it worked out CENELEC 50159 which defines requirements to 

methods for message passing, where [CEN50159-1] specifies the target in so called closed 

systems, CENELEC 50159-2 is related to open systems. 

In case of faults that may compromise safety, the fault must be detected an a suitable reaction 

has to be initiated. It says that for the safety requirements defined in the standard a single 

physical transmission path is sufficient. Safety critical faults are detected through safety 

procedures and redundant safety codes that interact above the unsafe protocol of the 

transmission system. Reliability is not a topic in the standard but has to be reminded in order 

to build safe systems. In our use case the application of [CEN50159-1] for closed systems is 

applicable. 

According to the standard the following prerequisites to a communication system have to be 

fulfilled for it to be considered as a closed system: 

• Only authenticated access is allowed. 

• There exist a known maximal number of communication participants. 

• The transmission media is known and specified properly. 

The standard explicitly omits the definition of the transmission system, the devices plugged 

to the transmission system, specific solutions or which kinds of data are safe from a signal 

technical point of view. 

2.7.1 The Grey Channel 

The essence of the standard in short is to sketch how signal technical transmission functions 

may be plugged on a signal technical transmission channel to provide fault detection. The 

goal is to see the communication system as a grey channel. This means that the EN 50159 
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standard allows the attachment of signal technical unsafe communication media to signal 

technical safe systems. In such a case when an unsafe media is used for safe communications 

the transmission functions have to ensure correct communication. It has to be guaranteed that 

the failures done by the unsafe communication channel are detected by the safe transmission 

functions and safety reactions are initialized. Therefore the standards define common failure 

modes and requirements to those functions. Figure 16 shows the concept of how to wrap a 

possibly unsafe communication channel at the end points using techniques like checksums 

sequencing, checking of timely constraints and other common methods. 

 

Figure 16: Wrapping an unsafe communication channel with safety techniques. 

In our case everything below the POSIX layer can not be classified in any CENELEC Safety 

Integrity level as the pedigree is not known and the code has not run through validation and 

verification. So for the Safe Message Passing chapter everything starting from the message 

passing system calls below is seen as a grey channel and the Safe Message Passing Library 

implements the techniques demanded by [CEN50159-1] for closed communication systems. 
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2.7.2 Safety Assurance Technologies Covered by the Standard 

[CEN50159-1] defines the following cases that are mandatory to be covered by a standard 

compliant system. 

• Sender error ( authentication) 

• Data type error 

• Data value error 

• Discovery of old data or data that has not been received in specified timely constraints. 

• Detection of communication losses 

• Assurance of functional independence between the unsafe transmission media layer and 

the safe transmission functions 

So as the list shows there are generally two types of errors identified - Data errors and timing 

errors. Data errors cover all types of influence according the information of sent messages, 

such as electro-magnetic influence, errors in header fields such as the descriptor specifying 

the originator of a message, etc., whereas timing errors describe problems according points of 

time messages are sent or received, respectively. This can be errors detected by the 

timestamps attached or discovered discontinuities in the sequence of the messages. 

Overall six functional as well as fourteen safety requirements are formulated by [CEN50159-

1]. These requirements are described in depth and possible technologies are enumerated. The 

project partner’s railway safety platform is a system for which Safety Integrity Level 4 is 

required. Although the standard does not define any concepts for guaranteeing reliability, it 

provides methods for calculating the resulting system’s estimated Mean Time between 

Failure (MTBF). A comprehensive discussion of how I implemented the specifications 

required by the standard is provided in the “Safety Library” Chapter.  

In 5- Safe POSIX Message Passing a full Failure Modes and Effects Analysis is provided and 

compared to the standard. This yields strong arguments for justifying the Safe Message 

Passing library. 

2.8 Safety Integrity Levels 

Safety Integrity Levels describe standards systems have to be built after and are an indicator 

of the possible divergence of the systems behaviour from the intended. They are introduced 

by standardization or governmental organizations and embody a measure of whether the 

system is to be admitted or not. There is no common set of SILs over all standards that deal 

with safety-critical system. A number of standards define their own requirements, as the risks 

and needs crucially depend on the problem domain. SILs do not only describe what measures 
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have to be undertaken, but also state certain requirements to the development and risk 

assessment process. 

In [IEC 61508] and in some other standards, mappings are provided between the tolerable 

hazard occurrence rate (for continuous or high demand systems) and the target Safety 

Integrity Level [HSE02]. Safety related functions are given extensive reliability requirements 

to provide risk reduction. As stated above Components used in a system may have higher or 

lower reliability that the overall system. In the second case reliability has to be hoisted by 

implemented redundant structures described in the fault-tolerance chapter. 

The following description is given for this relationship by [HSE02, p.6]: “For a software 

component (either a complete software system running on one computer, or one element in a 

partitioned software system), the SIL of the software is determined by its apportioned failure 

rate using a mapping from target ranges of failure rate to SIL. In some standards such as DO-

178B the equivalent of the SIL is derived from failure consequence rather than risk, but this 

makes little difference to the overall principle.” 

2.9 Other Industry Standards for Railway Systems 

Beneath other standards there are a family of CENELEC standards that define terms and 

landmarks for railway systems. They define a series of technical terms and suggest a number 

of measures to be taken. For this work, besides the 50159-1 suggestions the following three 

standards had to be taken into account [EN50126], [EN50128], [EN50129]. 

2.9.1 E� 50126 

This subsumes proposals for the specification and approval of Reliability, Availability, 

Maintainability and Safety (RAMS) for railway applications. The first paragraphs give 

definitions of important safety terms, the following prescribe a process based on the system 

lifecycle and its activities concerning RAMS management. The paper announces specific 

railway problems, but does not prescribe rules or processes for the certification or process for 

approval of railway components. 
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Figure 17: Safety relevant failure states [E�50126]. 

Figure 17 shows how failures are seen within the operational context. The elements of RAMS 

for railway systems are identified as safety, dependability, maintainability and operation. 

Factors influencing it are classified under system, operation and maintenance conditions. 

Furthermore a risk assessment technology is proposed for railway systems, linking the 

commonness of the failure to the hazardousness and effect of the state it initiates. 

2.9.2 E� 50128 

This standard for telecommunications, signalling and data processing systems defines an own 

set of five safety integrity levels for safety-critical software in railway system, of which level 

0 means that the software is not safety-critical at all and level 4 systems are of most 

criticality. In accordance with [EN50126] and [EN50129] it prescribe the creation of a 

requirements documentation, specification of a system’s safety requirements, description of a 

system’s architecture and a system safety plan. Figure 18 shows how the stated SILs are 

determined for a system under consideration. 

 

Figure 18: Safety Integrity Levels [E�50128]. 
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It enumerates and describes the development phases and the items that have to be produced in 

each phase. The document makes use of usual models like the V-model of software 

development and maps the certain product items to development stages. Furthermore 

mandatory personnel and roles are required depending on what safety integrity level is 

desired. Figure 19 gives a glance of what activities are prescribed to be done in which phase 

of the system’s lifecycle. 

 

Figure 19: Software safety route map [E�50128]. 

2.9.3 E� 50129 

[EN50129] defines the conditions a safety-relevant electronic railway system, subsystem or 

system under consideration is accepted as reasonably safe basically requiring three items: 

• Demonstration of Quality Management, which must show that the quality of the 

system can be guaranteed because of the measures that have been undertaken during 

development, and those that are planned to be performed during operation and 

maintenance. 
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• Demonstration of Safety Management, which has to declare measures like safety plan, 

test planning, organizational structure, hazard log strategy, reports and plans for safety 

reviews and safety argumentation. In short this declares that the process a product is 

developed and maintained after was suitable. 

• Demonstration of functional and technical Safety. Contains a demonstration of 

functional safety, specification of failure effects, external influence, application 

conditions and the proof that the system has been tested under operational conditions. 

Furthermore the definition of the system declaring precisely what the system does, as well as 

version number and change state, and requirements, design and application documentation. 

Also contained in the safety demonstration documentation are relations to other safety 

demonstrations for the subsystems. 
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3 Operating System Issues 

The proposed layer will be based upon the operating system layer. It is supposed to detect 

errors that occur below the operating system interface. Hence it is important to delimit the 

items and functionality that shall be tested. This chapter describes the operating systems and 

interfaces the Safety Supervision Layer has to be aware of. Furthermore important tasks 

according Linux operating systems and systems safety are elaborated. 

3.1 POSIX 

 

Figure 20: POSIX Portable Operating System Interface concept. 

As most software does many UNIX/ Linux applications use system calls to provide their 

functionality. System calls provide an interface to the underlying operating system. So a 

change of a system call would mean that one would have to change the kernel, which is 

obviously bad for reusability, increasing the cost of change and a the avoidance of undesired 

side effects gets hard to handle. 
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Figure 20 shows POSIX’s concept of encapsulation of the actual underlying operating system 

distribution by a standardized interface. 

This circumstance is all the more problematic as we know that even in so-called UNIX-like 

operating systems particularly these system calls may differ from distribution to distribution, 

which makes it hard to guarantee compatibility. 

In the 1980s several initiatives have been raised to master the rank growth of slightly 

differing UNIX versions and create standards that software developers could rely on. In 1986 

the Institute for Electrical and Electronic Engineers created some standards out this called 

Portable Operating System Interface. POSIX – the short name - is the collective name of a 

family of related standards specified by the IEEE to define the application programming 

interface for software compatible with variants of the UNIX operating system [2]. The first 

version of IEEE POSIX 1003.1 has been applied in 1988. Currently most UNIX operating 

systems support POSIX, but there exist others that support the standard as well. The family of 

POSIX standards is formally designated as IEEE 1003 and the international standard name is 

ISO/IEC 9945. 

POSIX documentation is available at IEEE and is divided into three parts (taken from [2]): 

• POSIX Kernel APIs (which include extensions for POSIX.1, Real-time Services, 

Threads Interface, Real-time Extensions, Security Interface, Network File Access and 

Network Process-to-Process Communications) 

• POSIX Commands and Utilities (with User Portability Extensions, Corrections and 

Extensions, Protection and Control Utilities and Batch System Utilities) 

• POSIX Conformance Testing 

A test suite for POSIX accompanies the standard. It is called PCTS or the POSIX 

Conformance Test Suite. 

The POSIX standard family has emerged continuously since its introduction in 1985. It has 

experienced important extensions and upgrades. Among those are some prerequisites for 

safety critical systems. The list below shows important POSIX upgrades. It is taken from [2]: 

• POSIX.1, Core Services (incorporates Standard ANSI C)  

o Process Creation and Control 

o Signals 

o Floating Point Exceptions 

o Segmentation Violations 

o Illegal Instructions 

o Bus Errors 
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o Timers 

o File and Directory Operations 

o Pipes 

o C Library (Standard C) 

o I/O Port Interface and Control 

• POSIX.1b, Real-time extensions  

o Priority Scheduling 

o Real-Time Signals 

o Clocks and Timers 

o Semaphores 

o Message Passing 

o Shared Memory 

o Asynch and Synch I/O 

o Memory Locking 

• POSIX.1c, Threads extensions  

o Thread Creation, Control, and Cleanup 

o Thread Scheduling 

o Thread Synchronization 

o Signal Handling 

 

Currently a significant number of commonly used operating systems comply to the IEEE 

1003 family. In order to avoid and eliminate portability problems – which is actually 

POSIX’s main purpose – system vendors have to take a rigid and expensive certification 

process to get their product officially certified. Currently certified common products are e.g. 

Microsoft Windows NT Kernel based systems, a number of Linux distributions, Solaris and a 

number of others. 

Since it is possible now to switch from one operating system to another without rewriting the 

code above, this standard is a huge leap forward for code reusability. We can simply change a 

POSIX compatible operating system with another POSIX compatible without being forced to 

change the application.  
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In our case the situation is a bit more complicated. As every bite of code has been verified 

and validated and further analyses have to be provided, the mission in case of an operating 

system change would be to do the safety proof for the whole operating system again, which is 

not a convenient solution. Operating systems get more and more complex, in Linux operating 

systems memory management testing get more and more costly, time consuming and 

complicated as cache level amount and lines of code increase. 

So a Safety Supervision Layer above the POSIX system call layer but below the application 

layer is desirable that encapsulates all the safety testing and possible faults that all POSIX 

operating systems have in common. This end-to-end approach is expected to save a lot of 

costs for verification and validation having the potential to provide better, because more 

understandable and comprehensive, safety solutions.  

3.2 Safety Problems faced using Open Standards 

So those are key advantages of using systems that are compliant to a broadly spread standard. 

But as one can reuse code across platform one often lacks good knowledge of the system 

implementation. You can never actually know if there are still systematic errors below your 

application level. So this circumstance is a possible safety threat and the issue where the 

supervision layer comes into play. It checks the required functionality in an End-to-End way, 

as independent of the implementation as the application that utilizes it. 

3.3 OTS Issues in Safety-Related Environments 

The main goals of off-the-shelf component based architectures are lower cost, increased 

quality, lower time-to-market and decreased development time. An idealistic solution is to 

use the components as a black box. As OTS development decreases development time it 

increases the amount of time to be invested into integration of the components. Apart from 

that it gets more difficult to demonstrate that a component fulfils given safety requirements 

and often it is impossible to give proof of a mature development process of a component, as 

the buyer of a commercial or user of an open source component often does not have insight to 

how the software evolved. ‘Proven in Use’ is often used as evidence for safety-critical 

components and their ability to fulfil the safety requirements when they are used. [Aas07]  

Another term that can be found in the literature is SOUP – Software of unknown pedigree: 

“Software, the pedigree of which is unknown or uncertain, which could in any way affect the 

correct operation of a safety-related system” [HSE01]. Increased quality as one main OTS 

architecture goal does not automatically give safer systems, but can give increased reliability. 

Hence, if OTS components are used as they were intended in the system and the system 

context, this can give safer systems. [Aas07]  



 

35 

The most common safety standards, such as [IEC61508], [DO-178B], and [EN50128], have 

strict requirements to how software should be developed and tested. None of these standards 

explicitly allow the use of COTS. [Skram07] But there are ways to integrate those pieces of 

software safely. E.g. the supplier enforces a system architecture that is robust and reliable 

enough to fulfil the requirements and provides proofs given by commonly accepted fault 

analyses tools. [Skram07] suggests an architecture that uses diverse fault tolerant components 

with voters and redundant results. Another way could be to test the used components 

exhaustively, which may be really expensive and not feasible for huge component based 

systems. 

3.4 Linux in Safety-Critical Environments 

When examining the appropriateness of the application of Linux we have to first take a look 

at the characteristics of operating systems and the criteria they have to fulfil in order to be 

taken into consideration for a safety-critical environment. 

3.4.1 Linux – A Brief History 

Linux is a Unix-like operating system that has evolved and is further developed out of an 

Open-Source process for which it is one of the most prominent examples. The first Linux 

kernel has been released on September 17th 1991 for Intel x86 processors. It was enriched by 

standard utilities taken by the GNU project. Recently a broad range of so-called Linux 

distributions, which differ of Linux kernel distributions and available applications.  They are 

available from a great number of different vendors and may be tailored for a wide variety of 

use. Linux systems are taken for use as servers, routers, embedded systems, desktop 

computers and even mobile phones.  

Being a Unix-like system means that it behaves in a manner similar to a Unix system while 

not necessarily conforming to or being certified to any version of the Single UNIX 

Specification. [6] The term can include free software / open source operating systems 

inspired by Bell Labs’ Unix or designed to emulate its features, commercial and proprietary 

work-alikes, and even versions based on the licensed UNIX source code (which may be 

deemed so “Unix-like” that they are certified to bear the “UNIX” trademark). There is no 

formal standard for defining the term, and some difference of opinion is possible as to 

whether a certain OS is “Unix-like” or not. [5] There exist a number of “Unix-like” operating 

systems as you can see in Figure 21. 
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Figure 21: "Unix-like" operating systems pedigree [5]. 

The UNIX operating system has been developed in 1969 by a group of AT&T employees at 

Bell Labs. Prominent members of this group were Ken Thompson, Dennis Ritchie and 

Douglas McIlroy. The other Linux column, the GNU Project, started in 1984 and its goal was 

to create a POSIX-compatible operating system from entirely free software. In 1985, Richard 

Stallman created the Free Software Foundation and developed the GNU General Public 

License (GPLv1), in order to spread the software freely [3]. All other tools that are commonly 

required by a fully featured operating system such as programming libraries, editors, shells 

and GUIS were developed in the early 1990s and so nearly all required services were ready 

by that time. What was missing, were crucial parts like device drivers, daemons and – most 

important – the kernel. Linus Torvalds has said that if the GNU kernel had been available by 

that time, he would not have decided to write his own. 

Andrew S. Tanenbaum released MINIX in 1987, a Unix-like system intended for academic 

use, for which the source code was available, but own changes and modifications and 

redistribution was restricted. Furthermore it was designed for 16-bit design and not well 

adapted for the increasingly popular Intel 368 architecture. 



 

37 

For these reasons above, Linus Torvalds, a Finnish second-semester computer science 

student, decided to write his own non-commercial replacement of MINIX when he was at the 

University of Helsinki.  In August 25th 1991 Torvalds posted a message in the MINIX user 

group introducing his new project in order to gain feedback and proposals. Linux kernel 0.0.1 

was released in September 1991 and put on the net. At this time neither Torvalds himself nor 

the rest of the MINIX community thought it would be a big deal for computing. But people 

downloaded the code, tested and tweaked it and returned their changes to him. Torvalds 

included the changes and released new versions in periods of some weeks. The community 

grew and grew and the system was released under GNU General Public License, thus 

ensuring that the source codes will be free for all to copy, study and change. The next step 

was the emerging of vendors that provided distributable versions to ease the installation 

process and provide support for different platforms. Clustering technology was invented and 

the first Linux driven supercomputer connecting 68 PCs with cables running 19 billion 

calculations per second was built in 1996 by researchers as Los Alamos National Laboratory. 

Driven by the big and still emerging community Linux development process hasn’t changed 

far from the early days. People are still writing tweaks, ports and patches and send them over 

to be implemented in new kernel versions. There are few guidelines and restrictions to code 

as long as it runs. This makes those systems hard and expensive to use and is malicious to 

predictability. A famous code comment in the scheduling part of the kernel and a posting 

show that circumstance: 

“Dijkstra probably hates me”, Linus Torvalds, in kernel, sched.c 

"How should I know if it works?  That's what beta testers are for.  I only coded it."  

Attributed to Linus Torvalds, somewhere in a posting 

They show on the one hand that the development process may be not suitable in an 

environment where predictability and reliability are crucial. On the other hand they show a 

preference to proven-in-use. 

3.4.2 Operating Systems in Safety-Related Environments 

There are a number of practical problems with using an operating system in a safety related 

environment. There is no standardized way of specifying the overall safety related behaviour 

of software components overall. As noted in [HSE02], there is a major difference between an 

operating system and any other kind of pre-existing software component in that the operating 

system provides a layer between the application and the hardware. Failure of the services 

provided by the operating system to the application program will therefore inevitably result in 

application software failure. It states further that the operating system could have internal 

fault containment features and fault-tolerance techniques implemented as well. Therefore the 

application software cannot itself provide important defensive mechanisms. In some cases 

hardware takes the part of checking itself. 
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[HSE02] states that an operating system to be suitable for use in safety related systems, it 

must satisfy the following criteria: 

• The behaviour of the operating system must be known with sufficient exactness, in all 

relevant domains of behaviour, to provide adequate confidence that hazardous behaviour 

of the safety related application does not arise because of a mismatch between the belief 

of the application designer and the true behaviour of the operating system. 

• The behaviour of the operating system must be appropriate for the characteristics of the 

safety related application in all relevant domains of behaviour. 

• The operating system must be sufficiently reliable to allow the safety integrity 

requirements of the application to be met (when taken together with other system 

features). In other words, the likelihood of failures of the operating system features and 

functions used by the application must be sufficiently low. 

It is also important that while testing may be a useful tool to eliminate many failures caused 

by a mismatch of the designer’s opinion of how an operating system behaves and its 

behaviour in reality it is not guaranteed that all such mismatches can be eradicated and they 

do not lead to failures in operation. [HSE02] also states that the higher the integrity 

requirements to a system are, the higher is the importance of criteria 1. 

[HSE02] recites the domains of behaviour for a software system that are identified in general 

in a report called “Regulatory Objects for Software in Safety Related Air Traffic Services” by 

British Civil Aviation Authority: 

• Functionality 

• Timing and Performance 

• Capacity 

• Failure Behaviour (of the system itself/ connected systems/ user programs); 

• Overload Tolerance 

• Reliability (safety integrity) 

• Accuracy 

Another safety standard in the aerospace industry, ARINC 653, suggests an Application 

Programming Interface for the operating system to the application layer for safety related 

avionics systems, which provides a solid basis for assessment of the quality of an operating 

system for such systems. [HSE02] The ARINC 653 safety model is split up into two levels of 

classification – functions and services. [HSE02] states that what is required is a functional 

failure analysis of the operating system, the result of which can be plugged into the analysis 

of the failure characteristics of each application that relies on the functions of the operating 

system. A failure of the operating system may thus appear as a base event in the fault tree for 

a particular failure mode of an application. Thus it is necessary to determine a set of functions 
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that the operating system must provide if an application is to provide the intended 

functionality, and then to undertake a failure analysis of these functions [HSE02].  

The ARINC 653 API description gives six families of functions that are determined for safety 

related applications that have to be fulfilled by the operating system as shown in Table 2. 

This provides a good overview of the main tasks that have to be considered when building 

infrastructure to prevent operating systems from harming safety. 

i) Provision of secure and timely data flow to and from applications and I/O devices. 

ii) Controlled access to processing facilities. The access of applications to the 

underlying hardware processing resources must be managed so that, for example, 

any deadlines can be met. 

iii) Provision of secure data storage and memory management. The aim here is to 

secure memory storage from corruption of interference by other applications or the 

actions the operating system takes on their behalf. 

iv) Provision of consistent execution state. This concerns the consistency of data and is 

mostly concerned with the state of the system after initialisation. 

v) Provision of health monitoring and failure management covers partial and 

controlled failures of the system (operating system, application, hardware). 

vi) General provision of computing resources. This covers provision of any of the 

services of the operating system. A failure of this function would imply an 

uncontrolled failure of the operating system. 

Table 2 – Families of safety functions to be provided by operating systems [HSE02]. 
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Figure 22: Functions and related calls for ARI�C 653 [HSE02]. 

Figure 22 shows how the links and services defined in the standard are linked. A third 

classification level is the suggested API that describes how services are invoked by the 

applications. 

[HSE02] states that this classification scheme can be used to decide whether a given 

operating system is intrinsically suitable for use with a given safety related application, to 

compare the merits and disadvantages of a number of operating systems which are being 

considered for use in a safety related application and to facilitate a hazard analysis of the 

interaction between the application programs and the operating system, to ensure that no new 

hazards have been introduced by the use of the operating system, and where necessary to 

create derived requirements to mitigate operating system failures of weaknesses. 

In order to make an assertion about the suitableness of an operating system to a safety related 

environment, we have 3 sources of evidence that we have to check against the described 

criteria. Those are field service experiments, testing and analysis. 
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3.4.3 Fulfilment of Safety Criteria provided by Linux 

[HSE02] assessed standard Linux distributions and concludes that it would be broadly 

accepted for use in [IEC61508] SIL 1 and SIL 2 integrity environments. But this assertion is 

pretty much based on assumptions that the hardware is of suitable integrity as well as the 

applications based on it fulfil the safety requirements. It also states that it would certainly be 

feasible to certify Linux to SIL 3, but further evidence from testing and analysis must be 

provided.  

A point very important to this work is that [HSE02] does not consider Linux as suitable for 

[IEC61508] SIL 4 environments as it would not be reasonably practicable to provide 

evidence that it meets the according safety requirements. 
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4 Overview 

During the elaboration of the solution and the literature studies it turned out that a two-trail 

approach is the most suitable for the described problem. The Safety Supervision Layer 

consists of two parts. A library that wraps the usual unsafe functions and provides error 

detection capabilities for the functions under consideration, and a watchdog structure that 

periodically checks operating system functionality. As a pattern for the wrapping functions 

message passing libraries have been picked and a Safe Message Passing library is provided. 

The watchdog structure lacks of decisive advantages the direct error checking approach of the 

libraries provides. Hence this structure should primarily used check functionality the library 

cannot check directly because of their nature. 

4.1 Idea 

As the problem description shows the goal is to provide a facility that theoretically allows us 

to separate the application layer from the underlying infrastructure. Safe application 

developers shall finally be provided the possibility to rely on the functionality those lower 

layers provide in a way that they can be sure that the application is notified of any possible 

fault. Therefore guarantees are required that every fault situated in either operating system 

code or hardware is detected and passed over to some kind of error notification system. 

Hence this leads us to some kind of dependable component view of operating systems and 

hardware, whereas at least the result may be seen as a safety feature wrapper around the 

POSIX layer. As our problem domain is a fail-safe one, there’s the possibility to get to a safe 

state in which the system may be turned off without causing any harm to people or material. 

Most of the time this will be to just stop the train. 

A two-trail infrastructure for the Safety Supervision Layer is suggested. It consists of a safe 

system call library and a safety watchdog system. Figure 23 shows things work together. One 

important characteristic is that we do not shut down our system immediately, but at first just 

notify on the one hand the system using usual signals and on the other hand the application 

using this library as most of the programs have their own specific needs and plan according to 

what to do when the system fails. Those actions may be notifying the operator via a certain 
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interface, logging or even do some secondary action that may be needed to ensure system 

safety. 

In order to provide system engineers the possibility to get to know why and when exactly a 

system was halted, the layer produces log files. Those log files are important for forensic 

analyses. 

 

 

Figure 23: Schematic representation of the Safety Supervision Layer. 
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4.1.1 Safe System Call Library 

Weaknesses and lacks of common POSIX system call functionality are analysed and 

augmented by fault detection functionality. Applications use the new functionality exactly the 

same way as they use the common POSIX functions using preloading. The functions 

implement fault detection algorithms to get after faults in an end to end way and use the 

underlying POSIX functions themselves. 

In this context libraries may deal with operating system functionality like message passing, 

process synchronization, timing functionality and a lot of other functions that may be utilized 

using POSIX. Applications using these libraries are notified immediately after an error is 

detected, as all results produced are checked. As stated above we need to prove that a given 

function covers all possible faults, so every library module has to be proven using common 

technologies like FTA and FMEA. 

4.1.2 Safety Watchdog System 

Often one may come over functionality that may not be checked immediately in their result. 

Constraints avoiding this may come from performance requirement or others that may 

prevent a fault to be detected in a single function’s chain of execution. This is why we need 

some sort of watchdog. The watchdog is a user level demon that runs modular tests 

periodically. Those tests may check memory management, scheduling, timing and others. 

If an application wants to profit from the watchdog functionality in order to be notified, it has 

to register at the watchdog’s client registry. The demon will then inform subscribed 

applications to give them the chance to shut down gracefully, before it halts the system. The 

watchdog also writes its results to system log files to provide data for forensic analyses. 

In some cases the watchdog may use the libraries described above and send some test data in 

order to check for erroneous functionality. 

4.2 The Practical Side – An Example 

Railway applications used in main lines as well as urban rails have strict and challenging 

requirements to dependability and safety. The TAS Platform is a vital computer platform, that 

is designed to meet these requirements [Kan04]. Figure 24 shows how this platform is 

structured. The main goal is to please the shared requirements of the different railway control 

systems according safety, dependability and real-time responsiveness. Logically the described 

Safety Supervision Layer has its place above the blue coloured POSIX layer. 
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Figure 24: A safety platform for railway applications [Kan04]. 

4.3 Resulting Code, POSIX Compatibility 

There two items my work resulted in. On is a concept of a watchdog structure taking care of 

the described faults. The other is a library to be preloaded that features safe message passing. 

POSIX compatibility is a requirement to the supervision layer as well as to the library that 

comes from the project partner and is supposed to guarantee portability. 

The libraries are loaded and used as their original POSIX functions are, their names are those 

of the standard ones. The safe functions use the standard message passing functions via 

function preloading. In this work it turned out that a number of restrictions to be made in 

concerning the communication features, e.g. there is a restriction of 1:1 communication 

between two endpoints, which emerged mainly from the authentication requirements of 

[CEN50159-1].  
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5 Safe POSIX Message Passing 

A major part of my thesis as well as a desired field of application of the Safety Supervision 

layer was the analysis of possible faults related to message passing using POSIX message 

queues. The implementation of a module to check this operating system feature led me to the 

implementation of a system library that raises alarms, if a fault is detected in the message 

passing functionality. 

This side product turned out to be a library that may be used the same way as the standard 

POSIX message queuing procedures and hence may be preloaded to override the common 

unsafe mechanisms although it uses the traditional system calls at a lower level. 

5.1 POSIX Message Passing 

Currently the POSIX standard holds the following functions that are referred to as Message 

Passing functions. Those are the items I built wrappers, which can be preloaded, for. 

5.1.1 Basic Workflow 

The POSIX standard (IEEE Standard 1003.1-2001) defines inter process communication 

structures based on message queues. In literature those are known as POSIX message queues 

and are based on System V message queues, in which the processes can communicate with 

one another by means of messages. Each message is sent through an IPC message queue, 

where it remains until another process reads it. When the other process reads – or consumes - 

it, the message is deleted.  A message is composed of a fixed-size header and a variable 

length body. Messages can be given a message type, which allows a consumer to selectively 

retrieve messages from a queue. The characteristic that the message is destroyed by the kernel 

leads to the fact that only one process can receive a given message. 

To send a message, a process uses the mq_send(…) function, passing 3 parameters: 

• The IPC identifier of the desired message queue 
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• The size of the message body 

• The address of a User Mode buffer that contains the message type followed by the 

message body 

To retrieve a message the mq_receive(…) function is used with the following parameters: 

• The IPC identifier of the IPC message queue resource 

• The pointer to a User Mode buffer to which the message type and body should be copied 

• The size of the buffer 

• A value that specifies the type of the message that shall be retrieved. If this value is 0, 

the first message in the queue is received. If it is positive, the first message of the 

specified type is returned. 

To get to a Fault Analysis of the POSIX message passing functionality it is crucial to entirely 

understand how the system calls behave in usual and erroneous situations. Therefore I give a 

comprehensive description of the data structures and functions and the error notifications they 

may yield in the following paragraphs. The fault analysis chapter deals then with where there 

are possible failures that should be detected by the layer. Based on the results of those 

analyses, the end of this chapter describes possible solutions to the problems spotted. 

5.1.2 Data Structures 

In POSIX Message Passing there are generally two important data structures, which are 

mqd_t which holds the information about the message queue and msg_msg which basically 

represents a message: 

Type Field Description 

struct list_head m_list Pointers for message list 

long m_type Message type 

int m_ts Message text size 

struct msg_msgseg * next Next portion of the message 

 

void * security Pointer to a security data structure (used by 

SELinux) 

Table 3: mqd_t data structure. 

An instance of the mqd_t data structure is returned when the message queue is opened or 

optionally created. Table 4 describes the properties of a message queue. 
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Type Field Description 

long mq_flags Holds the set flags (0 or O_NONBLOCK). 

long mq_maxmsg Specifies the maximum number of messages in the queue. 

long mq_msgsize Defines the maximum size of the messages in bytes. 

long mq_curmsgs Gives the total number of messages currently in the queue. 

Table 4: The mq_attr data type. 

5.1.3 Functions 

The following functions are subject of this work’s analyses and proposals. They embody the 

standard message passing functionality.  

mqd_t mq_open( const char *name, int  oflag ); /** open existing mq */ 
mqd_t mq_open( const char *name, int  oflag, // open possibly not  
   mode_t mode, struct mq_attr ); // existing mq (O_CREAT) 
 

mqd_t mq_close( mqd_t  mqdes ); // close a message queue 
 
mqd_t mq_send( mqd_t mqdes, const char *msg_ptr,    // send message 
      size_t msg_len, unsigned int msg_prio );  
 
mqd_t mq_receive( mqd_t mqdes, char *msg_ptr,  // receive message 
             size_t msg_len, unsigned int *msg_prio ); 
 

mqd_t mq_getattr( mqd_t mqdes, struct mq_attr *attr );  
 

mqd_t mq_setattr( mqd_t mqdes, const struct mq_attr *newattr, 
         struct mq_attr *oldattr );  
 

mqd_t mq_notify( mqd_t mqdes, const struct sigevent *notification ); 
 

5.2 Fault Analysis, Possible Errors 

What I explained above is how the message passing functions are supposed to behave 

according to the POSIX standard. Notifying a process of errors such as run outs of memory 

or permission denials are part of this specification. Therefore those are not treated as faults 

and can be clearly expected and foreseen by a system developer. Hence they have to be 

handled at the application level. What cannot bee foreseen by the system engineer without 

costly verification and validation are faults situated in the implementation. 
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In order to characterize erroneous functionality one has to define the correct way a system or 

component is supposed to behave. Figure 25 shows the very basic set up for our environment. 

A producer shall produce messages. They shall be consumed by a series of consumer 

processes. Messages that are retrieved on the consumer side shall contain the same data that 

has been passed to the mq_send function. The messages the consumer processes receive shall 

arrive in the same order that they are intended, which means that they shall be received the 

older after the newer respecting their priority. Another important thing is that we have to 

guarantee that the processes only consume messages that are addressed to them and that the 

messages are really consumed by their intended process. 

 

Figure 25: Basic message passing functionality. 

The statements above only show some points that have to be elaborated. In the analyses 

below the functions are checked for possible points of failure that could harm this intended 

functionality. Suggested counter measures are written in italic characters and subsumed in the 

solution chapter. 

The following Failure Modes and Effects Analysis (Table 5, Table 6) is based on the 

proposals and requirements of CENELEC 50159-1 and covers all the failure modes described 

in the standard. So this is why the following analysis can be considered complete. 

Producer Process Consumer Process 

Send message Retrieve message 

Message Queue 
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5.2.1 Failure Modes and Effects Analysis 

Failure Mode Cause of Failure Possible Effects Possible Action to permit 

detection 

 

1) Message is sent, but not 

consumed by the receiver. 

 

 

- Receiver is down or 

blocking. 

- Receiver does not exist. 

- Message is lost in the 

communication channel. 

- Message is consumed by 

another process. 

Intended Receiver does not 

get the message. Safety 

critical actions initiated by 

the message are not 

performed. 

Create feedback 

infrastructure to enable the 

sender to check for correct 

retrieval. 

2) Message is sent and 

consumed by the right 

receiver, but the contained 

data is wrong. 

 

- Bit flips occurred 

somewhere in the 

communication channel. 

- Message queue memory 

integrity is violated by 

some other processes. 

- Message passing 

functionality yields wrong 

results for certain input 

parameters. 

Data may not be read 

correctly by the receiver. 

Wrong actions may be 

initiated. 

Implement checksum 

functionality to enable the 

receiver to independently 

check for violated data. 

3) Message is consumed by 

an unintended receiver. 

 

- The wrong process 

“steals” and consumes the 

message from the queue. 

- Defect message passing 

functions put the message 

on the wrong queue. 

- Race conditions, errors in 

synchronization 

mechanisms. 

 

Intended receiver does not 

get the message. Important 

actions may not be 

undertaken. 

The unintended receiver 

may undertake hazardous 

actions. 

 

Implement authentication 

infrastructure to provide 

the possibility to 

adjudicate properly 

whether the intended 

receiver did get the 

message. 

Introduce unambiguous 

identifiers for message 

consumers and feedback 

infrastructure. 

Table 5: Message passing FMEA (1).
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Failure Mode Cause of Failure Possible Effects Possible Action to permit 

detection 

4) Messages are not 

consumed in the right order 

(newer messages are 

consumed before older 

ones). 

 

- The implementation of 

the queuing algorithm 

contains faults. 

- The implementation of 

the receiving algorithm 

contains faults. 

- Different delays at 

senders while putting 

messages on the queue 

- Incorrect scheduling. 

Messages can cause actions 

on the receiver side. If those 

actions are performed in the 

wrong order, hazardous 

states may be reached. 

Give messages sequence 

numbers and timestamps on 

the sender side. Checking 

those items the receiver can 

autonomously decide 

whether an error has 

occurred or not. 

5) Messages are consumed 

more than once. 
- Faults in the 

consummation algorithms 

may erroneously fail to 

delete the consumed 

messages from the queue. 

- Faults in file handling 

If the information content of 

the message is not 

idempotent, inconsistencies 

may occur. 

Sequence numbers are an 

easy way to detect these 

faults. 

6) Same messages are put 

on the queue more than 

once. 

 

- Faults in the queuing 

algorithm 

- Faults in the file handling 

If the information content of 

the message is not 

idempotent, inconsistencies 

may occur. 

Sequence numbers are an 

easy way to detect these 

faults. 

7) Message passing 

infrastructure is constructed 

but no messages can be 

sent. 

- Faults in the input checks 

or signalling. 
This may lead to 

unnecessary error detection 

delays as detection not 

occurs until the first 

message is sent. 

Send periodic test messages 

and receive test feedback. 

Table 6: Message passing FMEA (2). 
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5.2.2 Fault Tree Analysis 

The following chapters describe the spotted situations in terms of fault trees and provide 

qualitative analyses for them. I examine suitable counter measures for the described failure 

causes. Quantitative analyses are not to be done for the given case as it is nearly impossible to 

generate reliable numeric data for the reliability of existing software components. The events 

containing bold character shortcuts are described in the explanation text below each figure. 

Each node containing an index is explained in the text below, others are not explained further. 

5.2.2.1 Message is sent, but not consumed by the receiver 

 

Figure 26: FTA for case 1) Message is not consumed by the receiver. 
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• RD Receiver is down. 

The intended receiver process may be down or suspended. This may be critical in our 

environment, we suggest our receiver to be up. Timeouts and a feedback 

infrastructure will help detect this fault. 

• G1 Message is not in the queue 

o FE1 Error related to mq_send 

Because of arbitrary reasons and faults in the mq_send code the function may 

fail either to put a message on the queue correctly or just fail to report an 

error. This may happen if mq_send is intrinsically intended to yield -1, but 

returns 0 showing success. Feedback provided by a second way 

communications channel will detect such malfunctions. 

o G3 Other process consumed message 

� FA1 Fault in application logic. 

The application logic may initiate message delivery to a wrong 

process in some cases. Unique sender and receiver identification as 

demanded by CENELEC-50159 will help to cope with some of such 

problems. 

� FD1 Fault in message delivery. 

There may be faults in code executed by calls of mq_receive. The 

function may deliver the message to unintended processes. Feedback 

and timeouts at mq_send are a solution. 

• G2 Wrong message delivered. 

Generally the causing events can be dealt with unique message IDs and sequence 

numbers. 

o FA2 Fault in application logic. 

o FD2 Fault in mq_receive. 

o FE2 Fault in enqueuing algorithm. 

Problems caused by code executed by mq_send may put the message on a 

different queue or on a wrong place in the queue. 
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5.2.2.2 Message is sent and consumed by the right receiver, but the contained 

data is wrong 

 

Figure 27: FTA for case 2) Wrong data received. 
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o FS2 Data altered by mq_send. 

Faults in code executed by the function itself may unintentionally change 

data payload. This is what should originally be prevented by the function 

wrapper. 

o FS3 Data altered by mq_receive. 

Faults in code executed by the function itself analogously to FS2. 

Generally data errors may be handled with adding redundancy.  In our case a checksum 

should be generated over the whole message payload by mq_send and appended to the sent 

message. The receiving function – mq_receive – should now check whether that appended 

checksum corresponds to the given data. Hence it can then independently detect harmed data. 

Checksums should be appended to feedback messages as well as another wall against 

unintended data manipulation. 

5.2.2.3 Message is consumed by an unintended receiver 

 

Figure 28: FTA for case 3) Message consumed by unintended receiver. 
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categorically check whether a given message is intended to it as an additional wall 

against malicious message reception. 

• FA Faults in application logic.  

Faulty establishment of the system’s communication infrastructure may also lead to 

unclear addressing. 

To satisfy the requirements of CENELEC-50159 unambiguous sender and receiver 

identification has to be done. The introduction and processing of such IDs are an 

appropriate measure to deal with the faults described in this paragraph. 

5.2.2.4 Messages are not consumed in the right order 

 

Figure 29: FTA for case 4) Messages are not consumed in the right order. 
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• G1 mq_send puts messages in wrong order. 

Faults in the function itself. 

o FP1 Priority handling fails. 

I listed this one here as priority handling belongs to the most complex 

functionality of the message passing infrastructure. Complex functionality 

may contain more faults than simple. 

o Other faults 

• G2 mq_receive gets messages in wrong order. 

o FP2 Priority handling fails. (see FP1) 

o Other faults 

• G3 Older messages arrive after newer ones. 

o Scheduling errors (OS) 

Errors done by the operating system’s scheduling mechanisms may put 

execution blocks of the sending of newer messages before older ones. These 

faults are situated in the operating system domain and are currently not 

checked by the message passing functions. As we want to see everything 

below the layer as a grey channel, this has to be checked as well. 

o Transmission delays 

Irregularities in the transmission of the data shake the sequence message are 

arriving in. This is probably not handled property by current 

implementations. 

Faults in this class may generically be handled by the introduction of sequence numbers for 

each message. As message passing knows several priorities for the messages those sequence 

numbers must be held for each priority given. Sequence numbers should be included in the 

checksum computation. 
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5.2.2.5 Messages are consumed more than once 

 

Figure 30: FTA for case 5) Messages are consumed more than once. 
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• G2 File System (OS Domain). 

o Message file not deleted. 

The file system may fail to delete the message or alter the message queue file 

correctly without an error message to be passed to the service interface. 

o Message written to queue more than once. 

This error behaves analogously to FR2. 

5.2.2.6 Same messages are put on the queue more than once 

 

Figure 31: FTA for case 6) Same messages are put on the queue more than once. 
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5.2.2.7 Message passing infrastructure is established but no messages can be 

sent or received 

 

Figure 32: FTA for case 7). 
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� AS Alarm shower. 

o CR Consummation rate is not sufficient. 

• RD Receiver is down unexpectedly. 

• QD1 No data can be written on the queue (any more). 

• QD2 No data can be read from the queue any more. 

5.3 Safe Message Passing Architecture 

What the FMEA and the fault tree analysis yield is just what is defined and demanded in 

CENELEC 50159-1. The error for the data type is seen in as a data error according to those 

analyses. There is just one step that inhibits POSIX message passing from the applicability of 

the standard, as it defines methods for closed communication channels, which means that  

• The communication media is known and specified. 

• Only authenticated access is allowed. 

• There exist a maximum number of communication participants. 

The first two requirements can be fulfilled, as the message passing functionality is defined 

clearly by a precise specification and the standard prescribes the introduction of identifiers for 

environments where such don’t exist. The problematic point is the third. Although there are a 

maximum number of message queues defined in the system, there are no mechanisms to 

define how many processes can write to and read from the queue. 

So for the applicability of the standard restrictions have to be defined for that last point. As 

the project partner uses message queues primarily for 1-process to 1-process communication, 

the authentication mechanisms could be restricted to one-to-one communication. So through 

FTA analyses we come to exactly the same failure modes that are defined in the standard. 

This prescribes the following mandatory safety measures: 

• Recognition of a sender error 

• Recognition of a data type error 

• Recognition of a data value error 

• Recognition of outdated data or data that has not been received in time. 

• Recognition of a drop of communication after a defined time. 

• Assurance of the functional independence of the safe functions from the used layers of 

the unsafe communication channel. 

Apart from that the project partner required the functions to recognize a break in the 

communication channel, before processes try to communicate. 
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Figure 33: Approach to safe message passing. 
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5.3.1.3 Sequencing of message 

To determine whether the messages arrive in the right order, the Safe Message Passing 

functions sequence each message. The first message gets the sequence number INT_MAX-1 

to ensure that value overflow works properly. The sender increases its sequence counter after 

each send, the receiver checks the received message sequence number and increases its own 

after consummation. 

5.3.1.4 Periodic supervision of the communication channel 

Even if there’s no planned communication test messages are sent through the channel to 

ensure that it is working. This was not a feature required by the standard but demanded by the 

project partner. 

5.3.1.5 Checksum 

A checksum is computed over the whole message payload containing the sender and receiver 

identifiers, the sequence numbers, timestamps and data type verifiers. This provides to a 

counter measure to common mode failures.  

5.3.2 Basic Data/ Control Flow 

As stated above certain restrictions have to be introduced to guarantee the applicability of 

CENELEC 50159 due to its restrictedness to closed communication systems. One of those is 

that the layer will only allow two communication partners for a logical queue. This 

circumstance implies two roles for the communication partners. One takes the part of the 

message queue creator, the other process takes part in that communication. There is an 

initialization process described below that will recognize if a third process tends to violate 

that restriction.  
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Figure 34: 4 raw message queues in the 1:1 communication. 

Figure 34 shows the relationship between the creator and the sender. As we want to guarantee 

the respective sender that the respective receiver has or has not received a message properly, 

feedback infrastructure is introduced. To simplify the architecture one logical safe message 

queue now consists of 4 raw message queues who are explicitly opened in read only, 

respectively write only mode depending on which side of the communication they are 

opened. The respective ***_send queues are message queues for the intended message 

payload, the others are control queues used for feedback. Figure 35 schematically describes 

how the data messages are structured. This architecture is suggested by [CEN50159-1]. 

 

Figure 35: Basic message structure. 

Creator Process Consumer Process 

 

creator_send_mq 

creator_fb_mq 

consumer_send_mq 

consumer_fb_mq 



 

65 

5.3.3 Data Structures 

As the POSIX functions are preloaded and enriched with functionality more data is 

needed to describe the items used by the communication infrastructure. So the 

descriptors produced by the common functions have to be overwritten and enriched as 

well.  

 

Figure 36: SL_mqd_t descriptor. 

Figure 36 describes the new structure that is generated at mq_open and passed to the 

application. At mq_send and mq_receive this struct is passed analogously to the common 

POSIX functions. The white indicators field holds values that refer to the role and the logical 

name of the calling process. They are of no productive use but are useful for debugging and 

logging purposes. Invariable values are once set in the initialization process and are not 

allowed to change over the lifecycle of the process. Those are the sender and receiver 

identifiers and raw message queue descriptors. Utility structures are set up in the initialization 

phase and hold descriptors of needed helper functions specified below. Sequence numbers are 

of global character according one logical queue. Hence they got their place in the message 

descriptor. The semantics of the stated variables is further explained in the functional 

specification below. 



 

66 

 

Figure 37: SL_msg, basic wrapper for all messages. 

Figure 37 shows the overall wrapper for all types of messages that run over the layer. It 

captures two of the CEN50159-prescribed measures: the checksums and message type 

checking. This is the structure that is serialized and sent through the raw message queues. 

The lower level message structures are serialized and put to the payload buffer. The original 

type of the message is stored in the mtype field. Then a checksum generation algorithm is 

used to get a checksum value to be stored in the hash field. This wrapper is especially useful 

because we want to guarantee that the checksum is generated over all available data. 

 

Figure 38: SL_init_msg, initialization message. 

Messages of the type shown in Figure 38 are only sent/ received in the initialization phase 

while the one creator and the one consumer of the message queue perform a double 

handshake protocol to identify themselves. If an init message is received in the production 

phase this will be recognized as an error. 

 

Figure 39: SL_data_msg used for data and periodic checks. 
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Figure 39 shows basically the message struct that is to be sent, when an explicit 

SL_mq_send is performed. The original message payload is serialized and put to the payload 

field. Then the other variables necessary are set like sender and receiver ids, the current 

sequence number and a descriptor, when a message has to be consumed and confirmed. 

5.3.4 Sender and receiver identification 

One topic that occurred during the conception of the Safe Message Passing Layer was how to 

implement sender and receiver identification as required by [CEN50159-1]. The problem was 

to define identifiers for the communicating processes. The solution chosen was to take the 

process’ id as the sender id. In the initialization procedure this identifier is handled over to 

the receiving process. If the receiving process receives a message stamped with another 

sender identifier, this is recognized as an error. 

This solution is justified by the following argumentation: [CEN50159-1], on which the Safe 

Message Passing Layer is based on, is restricted to closed communication channels, which 

means that: 

• Only authenticated access is allowed. This is done by the operating system and is 

considered as given. Only processes that are allowed to take part in this communication 

may access the message queue. Authentication errors are part of another operating 

system functionality and should be tested by other wrappers or checks. This is what 

justifies the use of the process ids as identifiers. 

• There exist a maximum number of communication participants. There are only 2 

communication partners allowed for one logical message queue. This is defined by the 

1:1 restriction. If another process tries to break that restriction and take part in the 

communication, this is recognized as an error. 

• The communication media is known and specified. The raw POSIX message passing 

functionality is the communication media under consideration. This is specified properly 

by the POSIX specification.  

The main class of faults that shall explicitly be detected by this approach are invalid 

application infrastructure setups. One exemplary case would be a process that is intended to 

communicate with a child process. Potentially the process forks another child process while 

the message queue descriptor is passed to that child. The child could now try to send 

messages to the other process through that queue. This is not intended as it may harm 

message sequencing and feedback functionality. As the handling of such setups is not 

intended by the specification, an error will be detected by the receiver because of diverging 

process identifier passed over to the message. 
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5.4 The preloaded POSIX Functions 

This chapter describes how the safety methods are implemented and the considerations and 

restrictive constraints made for their design. Restrictions are especially important as they are 

needed to consider Message Passing functionality as a closed communication system. One 

important issue is that real time constraints were not under consideration for the original 

Message Passing functions, but the goal is to allow the programmer that uses the safe 

functionality to embed it exactly the same way as the old, unsafe function. So the real time 

constraints are implemented as a global timeout value. Their valid through property is added 

to the message on the very beginning of a function and checked at the receiver as well as on 

the very end. 

A very important constraint is that our message passing functions are set to be unidirectional. 

This means that only the process that opens a message queue with O_CREAT may send a 

message through this message queue and only the first process that opens it without 

O_CREAT may consume messages from it. The O_EXCL flag shall always be set implicitly to 

avoid confusions. 

5.4.1 Opening of the Message Queue 

SL_mqd_t SL_mq_open( const char *name, int  oflag ); // open as consumer 
SL_mqd_t SL_mq_open( const char *name, int  oflag,  
   mode_t mode, struct mq_attr ); // open as creator 
 

As SL_mq_open is called on the sender and the receiver side there are two paths run through. 

On the creator side when the message queue is opened with IPC_CREAT, the function sets the 

sequence counter to INT_MAX-1. Then it generates its own sender ID randomly. After doing 

that it creates on the one hand the actual message queue that is used by this one process to 

send its own messages. It is opened just with the write permission. Then it creates another 

message queue with read only permission and starts the initialization phase. The mode and 

mq_attr attributes are ignored implicitly, as the setup of the raw message queues below the 

layer are opened in clearly defined write and read only modes depending on their role in the 

1:1 communication. 
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Figure 40: SL_mq_open command flow. 

Figure 40 shows the commands that have to be performed in order to set up the basic 

infrastructure. At first a SL_mqd_t struct is created and the sequence numbers are set to the 

INT_MAX-1 value. INT_MAX is defined in limits.h and specifies the highest value for the 

integer data type. As the overflow when the data maximum value for a data type is reached is 

a possible source of failure, it is advantageous to notice such a fault as soon as possible. This 

is why the sequence numbers are initialized to that value and e.g. not to 0 or 1. 

Then the raw message queues are opened with modes depending on their role and process. 

For Example, if the logical name( the name specified by the application) of the queue is 

“testmq” the queue with the actual name “testmq-creator-send” is opened on the creator 

side as snd_data_mq with the flags O_CREAT and O_EXCL is opened with O_WRONLY 
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permission. O_CREAT indicates that the message queue should be created if it does not exist. 

O_EXCL means, that that an error should be returned if the queue exists yet. This helps 

maintaining the 1:1 constraint. The O_WRONLY prevents messages from being received from 

that channel. On the consumer side “testmq_creator_send” is opened as rcv_data_mq in 

O_RDONLY mode. This task is performed by the establish_mqs(...) function. See below 

for further details. 

After the opening of the raw channels the initialization phase starts performing a double 

handshake protocol. At first it is the creator’s part to send an initialization message 

containing its process id as sender id through its snd_data_mq. The receiver listens on its 

rcv_data_mq for that message. It sets its rcv_from value according to the SL_init_msg’s 

snd_id and sends feedback. This feedback is again consumed by the creator that sets its 

rcv_from to the value in the feedback message. Then the same process is performed vice 

versa checking the data that has been set before. 

A structure called message dispatcher is started. This is a thread that listens on the queue and 

performs first checks, sends feedback and handles messages over to the intended receivers. 

Because of that structure 2 semaphores had to be introduced and are initialized before starting 

the dispatcher, one of which is for writing to, one for reading from the buffer. After that the 

periodic checker function realized as a POSIX timer is started as requested by the project 

partner.  

 

Figure 41: SL_mq_open call graph. 

Figure 41 shows the crucial initialization steps performed by SL_mq_open and how the 

functions are linked. As you can see, the initialization task is quite complex and uses a bunch 

of helper functions. Those helper functions are contained in an own header file named 

smp50159_mq_open_helpers.h and are explained in detail below and in the Doxygen 

documentation. The identify_yourself and identify_endpoint functions are called in 

alternate order and use all of the four raw message queues in order to ensure that they are 

functioning. 
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5.4.2 Send Message 

int SL_mq_send(SL_mqd_t *mqdes,  
        const char *msg_ptr,  
        size_t msg_len,  
        unsigned int msg_prio) 
 

Figure 42 shows how the designed sending method operates. As suggested above it puts all 

the needed check data on the message, puts it on the queue and waits for feedback. For the 

prototype the message priority parameter is ignored. 

 

Figure 42: SL_mq_send control flow. 

As shown the very first step after creating a SL_data_msg struct is to set the valid_thru 

field. This is an absolute timestamp that is checked. Then the periodic checker timer for this 

message queue is set back to the maximum timer interval. This is done in order to avoid 

overhead, because there is little sense in periodically checking the send and feedback queue 

in situations where there is enough traffic on the queues, as there is enough checking by 

sending messages anyways. 

Then the function puts the intended receiver and process’s sender id onto the message header. 

Then it stamps the current “send sequence number” on it and increases the snd_seq_no value 
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in the message descriptor. After that the original message is copied to the SL_data_msg’s 

payload field without checking. The first level wrapper is now set up completely. 

Now the second level wrapper has to be set up. Hence a SL_msg struct is created and the 

first level wrapper converted to a char array is put as the SL_msg’s payload field. Then the 

message type is set to SL_DATA_MSG and a message hash is generated and set in the message 

header. (see generateHash(…) below) 

After that the message is sent through the raw snd_data_mq. As we need to know if the 

message was consumed properly, we need to wait for feedback. In the prototype this is done 

by a blocking mq_receive in the normal message control flow, but there are more options 

that may be considered in further versions of the layer. The communication on the raw 

queues is always realized as blocking, so realizing some sort of feedback listener as a POSIX 

thread would be a proper variant. The function would in this case just create a thread after 

sending, which listens for feedback. If there is something wrong with it, the thread could halt 

the system anyways. 

If the feedback arrives the process will check if the sequence number, which is the feedback 

message’s payload corresponds to the one sent. Then it checks whether valid_thru is 

reached. If there is something wrong, a signal is raised. 

5.4.3 Receive Message 

int SL_mq_receive(SL_mqd_t *mqdes,  
         char *msg_ptr,  
         size_t msg_len,  
         unsigned int *msg_prio) 
 

 

Figure 43: SL_mq_receive command flow. 

Figure 43 shows how the explicit receiving algorithm is supposed to perform. At first the 

receiving process waits for a semaphore that logically allows it to read from the buffer, where 
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the message dispatcher places a received data message. Then it compares the size of the 

message in the buffer with the size of the message received to avoid errors. Then it sends a 

feedback message through mq_rcv_fb containing snd_id set to getpid() and rcv_id. 

Then it checks, if the timely constraints are fulfilled and posts the semaphore that logically 

allows another thread to write to the buffer. After that the message dispatcher will get the 

next message from the queue. Then SL_mq_receive writes the message payload to the 

parameter handed over as buffer and returns the size of that parameter. If anything fails it 

either raises a signal or returns -1; 

5.4.4 Closing the queue 

By definition the communication channels shall – once opened – never be allowed to be 

closed. If this method is called, an error signal is raised. This is a requirement coming from 

the project partner who introduced that restriction.  

5.5 Helper Functions 

The following items describe the functionality of helper functions contained in diverse header 

files. For further descriptions and the code refer to the Doxygen documentation. 

5.5.1 Establish the Message Queues 

int establish_mqs(SL_mqd_t *mqdes,is_creator) 
 

This function is the first helper in the initialization process. It generates the raw names of the 

four message queues. Then it opens two branches, one of which is called by the creator, the 

other one called by the consumer of the logical queue. The control flow is shown below in 

Figure 44. 

The creator opens the queues with the flags O_CREAT, which means, that the queue shall be 

created if it does not already exist. Implicitly it adds the O_EXCL exclude flag, determining 

that the function shall return an error if the queue already exists. This is because of our 1:1 

relationship constraint, stating that exactly one process is supposed to create the message 

queue and exactly one message queue is supposed to open the previously created structures. 

If later another process wants to take part in that communication, this violates the restriction, 

which is out of specification. Apart from that the raw queues are explicitly opened with 

permissions according to their role in the communication. The snd_data_mq and rcv_fb_mq 

are opened with write only permission, rcv_data_mq and snd_fb_mq are opened with read 

only permission to avoid unrecognized malfunctions later. This is not an error recognition 

strategy but merely a defensive programming approach. 
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Figure 44: Control flow establish_mqs(SL_mqd_t *mqdes,is_creator). 

5.5.2 Generate the Checksum 

char *generateHash(SL_msg msg) 
 

This function is used to determine a checksum over a message that is to be sent over the 

channel. In this case, the message is serialized to a char array that is handled over to the crypt 

library’s crypt function. A standard salt is defined globally. The checksum generation 

function may be changed easily to other variants. To give some short words the quality of 

checksum functions, the better the randomness of the checksum generator, the better quality 

of the checksum is, as it gets more and more unlikely that two similar data arrays map to the 

same checksum. 
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5.5.3 Sending Identification Data 

int identify_yourself(SL_mqd_t *mqdes, int is_creator) 
 

The identify yourself method also differs depending on what side of the channel it is 

executed. It basically creates a SL_init_msg and sets its snd_id to getpid(). If it is 

performed on the creator side, it is the first identifying function to be performed, so no 

intended receiver is known. On the consumer side it’s the second to be called, so we already 

know which process is intended to be the receiver, so the rcv_id can be set to that value. The 

init messages are wrapped in an SL_msg wrapper and type and hash value are set. Then 

they’re sent and the process performs a mq_receive on its snd_fb_mq. If the function is 

called on the creator side, the process does not know a priori, which process is the intended 

consumer. The feedback message contains the consumer’s process id and so the creator can 

set its descriptor’s rcv_from accordingly. If the function is performed on the consumer side, 

the process knows the id of the process that had identified itself before and just checks if 

those two values correspond. Otherwise it raises a signal. 

5.5.4 Endpoint Identification 

int identify_endpoint(SL_mqd_t *mqdes, int is_creator) 
 

When executed on the consumer side it immediately listens on the rcv_data_mq for a 

SL_init_msg. When this message is received, it sets the message queue descriptor’s 

rcv_from value to the snd_id of the SL_init_msg. Then it generates a feedback message 

putting its own process it as the message payload and sends it through rcv_fb_mq. 

When called on the creator side it listens for a SL_init_msg. As the descriptor’s rcv_from 

value is supposed to be set before by the identify_yourself message it checks the ids and 

sends feedback respectively to the results. 

5.5.5 Periodically checking the Communication Infrastructure 

This is the handler function for the timer that periodically sends a randomly generated 

message through the communication channel, if there is no intended traffic on it. If there is 

standard traffic, which basically means that there are SL_mq_send() calls, the timer value is 

set back in order to avoid overhead. 

The mission of this timer handler is just to use the communication channel in an end-to-end 

way, it just performs SL_mq_send() calls to test if the channel is still up as intended. Hence 

every side of the queue checks its own snd_data_mq and snd_fb_mq, simultaneously 

verifying that the other side’s message dispatcher is up. 
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The special nature of this construct is that it performs application invisible, uninitiated sends. 

Therefore there would be no explicit listener to consume that message. This is in fact why the 

message dispatcher, the receive buffer, the semaphores and the timer holder had to be implied 

to the system. They are needed because of the periodic checks and the need to compensate 

those uninitiated receives. 

When a timer is run down, a signal is raised by the system. Hence it is not possible to pass the 

timer a contextual parameter, a workaround structure was imposed. Before the timer is 

initialized, a struct mapping the timer pointer to the message queue descriptor is put to a 

global linked list. The signal handler is handed over a signal descriptor containing a field, 

which indicates the timer id. Thus the timer handler gets the respective descriptor from the 

list. 

5.5.6 The Message Dispatcher 

void message_dispatcher(void *arg) 
 

This process handles the delivery of all the incoming messages. It consumes the message, 

performs first checks and writes it to a receive buffer, where an SL_mq_receive call may get 

it from. If the message is of type SL_FB_REQUEST_MSG, which is sent by the periodic checker, 

it performs the required checks on it, immediately sends feedback and disposes the message. 

The reason why raw message consummation cannot be done directly via mq_receive is that 

there are different natures of the periodic_checker and explicit SL_mq_sends 

consummation. SL_mq_sends imply that there is a consumer waiting to process the sent 

message in a limited interval after the point in time the message is sent. Periodic checker 

messages do not expect another thread to be listening, but still the SL_mq_send function waits 

for that feedback. 
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Figure 45: message_dispatcher control flow. 

Figure 45 shows how the message dispatcher deals with the messages. It checks all items 

except for valid_thru and sends feedback, if the received message is a feedback request. If 

it is a normal data message, it posts the semaphore that is used to synchronize reading from 

buffer and waits for a semaphore that is used for writing to buffer. This listen-and-check task 

is performed in an infinite loop. 

5.6 Test Environment 

The Safe Message Passing layer was developed and tested under Ubuntu Linux 7.10 [12]. 

The library and test cases were written under Eclipse CDT [13] and tested using the built-in 

GNU debugger [14] plug-in. Safe Message Passing Layer’s documentation has been 

generated by Doxygen [15]. 
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Figure 46: Linkage between the functions. 

Figure 46 shows how the basic roles make use of the functions. The following test cases are 

based on the specification of the layer, but – as the verification is needed that the functions 

detect errors that seldom occur – fault injection is needed to show that it works as intended. 

The chosen way is to set GNU debugger breakpoints and alter messages to see if those 

changes are recognized as errors (as intended). Figure 47 shows the main view for graphical 

gdb interface. Processes and threads are shown, breakpoints can be set. On breakpoints the 

execution is halted and currently allocated variables and their current value are shown in the 

upper right. Those values can be modified. This is where that fault injection took place. 

 

Figure 47: Eclipse CDT debug environment. 
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5.6.1 Single Client Case 

A test case covering all the functional requirements was implemented. The test program just 

forks two processes one of which creates a safe message queue with a given name, the other 

opens that same logical queue as consumer. 

Now the consumer listens for messages on that queue while on the creator side input is read 

from the command line interface. When the user enters a message and end of line is 

recognized, this message is sent. The consumer writes the received message to the console 

and listens for input from the command line itself.  Now the creator listens for incoming 

messages and writes it to the console output. This is run in an infinite loop. 

This case is a good choice to prove the basic functionality of the layer. In order to test the 

periodic checker simply no messages are sent intentionally. Faults can easily be injected by 

gdb. The breakpoints are set before the raw mq_send is performed. One can then either 

change the sequence numbers or ids before the data messages are serialized or change the 

hash or message payload or type of the SL_init_msg to test if errors are recognized. 

5.6.2 Invalid Application Setup Case 

This is a short test case simulating that an application forks processes that want to open the 

same logical queue. This would violate the 1:1 restriction, hence a signal has to be raised. 

This scenario may appear because of invalid application configuration. 

5.6.3 Multiple Clients Case 

The main application forks N processes that, the first of those processes opens one message 

queue for each of the others. The 1+m process then opens its queue as consumer. Then the 

other processes randomly wait to read from the standard input, take that input and send an 

according message to a server process 1. The server then sends back some data message. 

Figure 48 shows a schematic view of this test case. 
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Figure 48: Multiple clients scenario. 

5.6.4 Stress Test Case 

This test case is quite similar to the case cited in 5.6.2. The only difference is that this just 

produces and sends respectively receives message content randomly as fast as possible. The 

goal is to ensure that sequence number and timing implementation are sufficient. Results 

have been written to a file and analyzed. 
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6  Safety Supervision Watchdog 

The safety library functions are an interesting way to detect errors exactly at the point in time 

they occur. They embody a direct approach that minimizes error detection latency. 

Nevertheless there are classes of errors that cannot appropriately be detected in such a direct 

way. For example when a process is about to starve because of malicious scheduling 

behaviour, this would be hard or impossible to detect. Hence the detection of such errors 

should be handed over to an outside structure. This is where the watchdog comes into play. 

6.1 Architecture 

The supervision watchdog part is a user level UNIX demon that periodically checks basic 

safety critical operating functionality. This functionality may be memory management, 

process memory integrity, scheduling, message passing. Modular extensions are supported.  

 

Figure 49: Concept of a periodically checking safety watchdog. 
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It is intended to substitute the part that the classical hardware online tests have to perform in 

current systems. There are some faults that may not be checked reasonably at the time when 

the functionality is used, so this is where we still need some kind of periodically running 

watchdog facility.  The watch dog has not been implemented, this chapter describes in detail 

the part of the layer’s mission such a construct is assigned, how it could be implemented and 

what kind of checks the daemon should perform. Figure 49: Concept of a periodically 

checking safety watchdog provides a schematic vision of how it is supposed to perform. 

6.2 Basic Features 

The watchdog basically checks functionality that can not at all or reasonably be checked in a 

direct way in the sense of the message passing layer. There are a lot of items for that current 

test scripts and programs have been written yet. A usual site to check when looking for a 

Linux system function test is the Linux Test Project [10].  There is the possibility to easily 

write wrappers for those modules.  

6.2.1 Modular Extendability 

The daemon should be kept extendable using common modular techniques. An interface 

should be defined specifying the basic actions to be taken. When starting up the daemon 

loads the modules specified by standard configuration files. Those files contain the name of 

the shared object specifying the test, the time when the test is to be started first and the 

interval to perform that test periodically.  

The tests themselves contain function similar to common testing environments like JUnit 

methods to setup the test environment and cleanup methods specifying what to do when the 

system is intentionally shut down. Besides the three functions enumerated above, another 

handler is needed, which is a handler to deal with situation when the watchdog is shut down 

because an error has been detected. This is important for forensics and the circumstance that 

timely constraints mustn’t be violated especially in actions that are intended to prevent 

hazardous situations. Below this function is referred to as panic function. 

6.2.2 Logging and Debugging 

Hence faults driving the watch dog to shut down the system it will be useful to have it log the 

tests it performed and when, whether the check was successful or not and a readable reason 

and state footprint of the point in time when the system was shut down. This helps the 

maintenance team to get after the fault.  
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Logs have to include entries for successful checks including the time when these tests were 

performed. When a fault is detected the module shall state as close as possible which kind of 

fault and where it was detected.  

6.2.3 �otification 

Safety-relevant applications may have their specific actions to be done when errors are 

recognized. As this is easy to implement when the checks are synchronously performed 

directly on a function call, the watchdog needs to implement a notification service those 

applications can register at. If the watchdog detects an error, it notifies the registered 

programs that can now take their own specific actions. 

6.3 Modules 

As explained above, the watchdog provides the possibility to write proprietary modules. As 

mentioned above, the Linux Test Project contains a lot of tested scripts to check system 

functionality. Those modules can be built out of existing tests, just a wrapper providing the 

capability to specify what to do in case of a detected error has to be built.  

Currently LTP is a test application for which one can specify which tests to run and the its 

running the those checks once writing results to system logs. It neither request the split of the 

setup, cleanup, and panic functions, nor is it possible to run it periodically without using 

schedulers or wrappers. 

On the other side there are a lot of scripts already written for this environment, which can 

easily be used for the layer with slight changes. So in order to prevent us from re-inventing 

the wheel, the watchdog should not be held as compatible as possible to the LTP. 

6.3.1 Module Configurations 

Each model can be configured flexibly in own configuration files. Three options are intended 

to be read by the layer. Those are: 

• Module name. This is important for logging. The respective module calls a logging 

function provided by the layer. This logging function uses the given module name 

parameter to structure the logs. The module name should also be used to gain parameters 

from the configuration handler. 

• Starting time. Indicates when after the start of the layer the check specified by the 

module should be performed for the first time. 

• Check interval. Specifies the interval the module should be called from the first call on. 
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Apart from those, module specific checks should be supported. For example there should be 

provided the possibility to configure memory checks that they either perform a test on the 

whole memory or just sample parts. The module specific configuration feature is important 

because the certain tests are of completely different nature. E.g. memory checks significantly 

differ from network and scheduling tests. 

6.3.2 Existing LTP Tests 

[10] enumerates a lot of tests already written some of the issues suitable for the considered 

watchdog. Some of them are not suitable for use in this daemon, either because they are 

demanding too many resources or they are not relevant to safety issues. 

Online tests that should be adopted are memory tests, disk input-output tests, task scheduling, 

process integrity tests and others. For example tests that should not be included are e.g. stress 

tests, because they could harm the system’s performance. 

Generally the Safe Message Passing Layer may easily be implemented as an own LTP test. 

The test cases described in the previous chapter just have to be configured and called by the 

layer. Hence the respective watchdog module just consists of code using the functions 

described by it.  Please note that the restrictions to the 1:1 relation remains for the test. Only 

one to one message passing may be checked. 

6.4 Limitations 

The safety watchdog’s nature allows the performance of periodic checks on every function 

intended. One special thing about this is that those tests are not performed on the results of 

explicitly called tasks. Thus they are not capable of detecting errors produced by functions 

currently called, but rather they are a best effort strategy to find faults before they are 

activated.  

Nevertheless such a structure is required in a safety layer like the proposed, because there is 

functionality that may not reasonably be detected during action. For example some of them 

are process scheduling, certain timing issues or memory integrity. The layer can also be used 

for low-priority overall system checks, for example for memory management or file handling 

tests. Please not that the watchdog is not a direct way to find faults as they are not detecting 

an error when the function is called, but rather a heuristic approach to find faults before they 

are activated. 
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7 Conclusion and Outlook 

The presented approach is a suitable method for avoiding wrong control actions by safety 

related applications based on faulty system calls by detecting their errors in a layer just below 

the application. The layer consists of two parts, the safety functions and the safety watchdog. 

The watchdog is needed because not all possible faults can be detected by the direct checks 

provided by the functions. 

The layer is based on POSIX to ensure high portability. This is especially important because 

the structure itself is intended provide system developers to move their safety relevant 

applications to other operating systems and hardware without harming safety. It has to be 

noted the presented structure is not improving reliability and that its sole mission is to 

provide fault-detection and help to guarantee safety. Furthermore there are far more issues to 

be concerned when it comes to safety and fault-detection is just a small part in the puzzle 

that’s only mission is to avoid hazardous situations initiated by unintended actions and 

calculations diverging from the specification. 

The justification of the Safety Supervision Layer comes from the application of commonly 

used industry standards. To map the requirements described by the standards fault-analysis 

methods have to be applied on the according operating system functionality to check whether 

the standard is applicable. In this work CENELEC railway standards have been used.  

The part realized in this work was a fault-detection wrapper for POSIX message passing 

functionality. The infrastructure used by the function wrappers is set up by the new mq_open 

function. Four raw message queues are used instead of one and they are opened with explicit 

permissions. The new mq_send function packs puts redundant check data on the message and 

the new mq_receive function checks if that data corresponds to the message payload. If an 

error is recognized a signal is raised or an error code is returned.  
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7.1 Approach 

Applications rely on functions provided by operating systems. Many operating systems 

implement POSIX, the Portable Operating Interface. The POSIX layer uses operating system 

functions, which themselves rely on hardware. 

 

Figure 50: Solution schema. 

Figure 50 shows a short schema of what is suggested in this work. The idea is to invent a 

layer between that POSIX and the application level.  That Safety Supervision layer now uses 

the functions provided by the interface and checks if result for each system call is plausible. 

This is an end-to-end approach, redundant data is used to compare results with what is 

expected. There are faults that can not be detected directly, so a watchdog application is 

suggested to perform periodic checks.  

7.1.1 Safe Message Passing 

As an example for the safety functions a wrapper for POSIX message passing functionality is 

presented in this work. A logical queue now consists of four raw message queues every of 

which has got its own specific purpose. The safety requirements are taken from CENELEC 

50159-1 [CEN50159-1] standard for safe messaging in closed communication systems. 

Based on the prescriptions in that standard the following features had to be implemented: 

sender and receiver identification, sequencing, checksums and periodic supervision of the 

communication channel. Wrappers provided for the usual functions mq_open, mq_close, 

mq_send and mq_receive.  
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mq_open establishes the basic messaging infrastructure, starts a message_dispatcher and 

initializes a periodic_checker timer function that checks the queues. mq_send takes the 

message intended to be sent and stamps redundant check data like sequence number and 

sender and receiver id and timing constraints on it and calculates a checksum over the 

message. The message together with the checksum is sent. mq_receive reads messages from 

the buffer the message dispatcher writes the received messages to. Synchronization is done 

using semaphores. mq_receive checks the received message and sends feedback. mq_close 

is always intended to raise a signal to indicate an error. Basically the Safe Message Passing 

Library provides 5 features: 

• Checksums. 

• Sender and receiver identification. 

• Sequencing of the messages. 

• Feedback infrastructure 

• Periodic supervision of the communication channel. 

Generally what is to be done when an error is recognized is to log the error and raise a signal. 

In the current version it’s in the safety-relevant applications responsibility to take action. The 

Safe Message Passing layer has been tested using different scenarios. 

7.1.2 Safety Watchdog 

The Safety Watchdog is a framework for modular periodic tests. Those modules are intended 

to check specific system functions periodically in order to reveal faults before they can be 

activated. The watchdog itself is suggested to be a user level daemon that can be configured 

to run these tests, whilst actions to take and other functionality may be configured common 

configuration files. Beneath the modules it is intended to contain functions helpful for 

logging and maintenance. 

The Watchdog remains a helping structure that solely is intended to check functionality that 

can not be tested directly by the Safe System Call Library. This is because the direct checking 

approach provided by the library provides decisive advantages compared periodic checks as 

explained in Chapter 7.2. The main disadvantage of the Watchdog is indeterminism and error 

detection latency (see Chapter 7.2). 

Nevertheless there are advantages of such a structure situated in a layer right below the 

application. Good opportunities for saving costs and time-to-market are in sight, if it is 

possible to replace the hardware and system specific online tests by generic checks right 

above the operating system interface. The advantage of the end-to-end approach explained in 

Chapter 7.2 remains. 
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7.2 Conclusion 

The elaborated structures are suitable to implement fault-detection in safety-critical systems. 

Generally they embody an approach to detect failures directly at the service interface, as the 

input is used to directly generate plausibility values for the generated output. This at least 

equals the current approach of validation and hardware tests. The Watchdog and Online 

Tests’ goal is to detect faults before they are activated, which is a search for the needle in the 

haystack. The layer mainly checks for failures when its functions are executed, which yields 

systems that are more deterministic.  

 

Figure 51: Layer functions are more deterministic. 

Figure 51 shows that important difference between the online and the direct approach. 

Periodic checks just perform tests on certain points in time. The schema describes a fault, e.g. 

a permanent memory error emerging a short time after the last check. Hence in the first case 

the time span marked red may be dangerous as the error is not recognized. The line below 

shows the same for the Safety Supervision layer, where just little error detection latency is 

suffered. 

An architecture based on a comparable structure to the proposed layer would yield some 

other advantages: 

• Portability. In a mature version the layer will be a full substitute for tests that are 

currently written for specific operating systems and hardware. As is resides on top of 

POSIX it can be set up on top of this. 

• End-to-end testing. The basis for the safety checks are the specifications of the 

functions the layer wraps. This means that concerns about interfaces between the lower 

level layers and their tests may be neglected, if the layer itself is written properly. Only 

checking the function’s components’ functionality just ensures that the components 

work properly, but not if the component works properly. 

Figure 52 visualizes the immense advantage of that approach. The schema describes a 

system intended to release cooling water into a vessel. This is initiated by a valve 

symbolized by the yellow triangle. The orange arrow symbolizes a component test 
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checking if the valve is open or closed. The valve is erroneous, does not open, but 

indicates that it is opened. Such an error would then not be recognized. The green arrow 

shows a test checking the flow through the pipe, hence directly the effect or – in other 

words - what is intended by the specification. The Safe System Call Library maps this 

approach to Software Safety. 

 

Figure 52 - End-to-end test advantage. 

• Direct result checking. As shown above systems that use the Safety Supervision Layer 

do not suffer much error detection latency. This is only true for errors that are detected 

by the Safety functions, not for the functionality that is only supervised by the watchdog 

daemon. 

• Defensive system checking. The watchdog function keeps on checking the system as a 

whole if requested. Therefore the periodic testing advantage, that faults may be detected 

before their activation, still remains. 

• Generic basis for operating system and hardware verification. Apart from its 

mission in system operation the layer is a solid tool for benchmarking the layers below. 

System developers can take applications based on the layer and change the operating 

system and hardware below to see, on which it runs best. 

• Safe systems based on faulty infrastructure. One initial target was the vision of just 

taking discount computers yielding errors and linking them to work together as a safe 

railway control system. As this would never be useful according system up-time and 

certification, it shows the desired direction. Good hardware is expensive, the price does 

not grow linearly, operating system verification is time and man-hour consuming as 

well. 

• Simpler application architectures. The fact that systems using the layer can be assured 

that all the faults below are detected can extract complex fault detection and panic 

functions out of the application code. Developers can concentrate on the business logic, 

which helps them to prevent fault situated in the application layer. Nevertheless care has 

to be taken that the layer is seen as what it is, namely just the part in the puzzle that 

assures that all faults below the operating system are detected. The layer cannot detect 

faults in the layers above. 
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• Fault Analyses for Operating Systems. As described in the theoretical part on railway 

safety standards components not only consist of their code and hardware, but also on 

their documentation and specification, as well as their fault analysis. In a safety context 

their use can be justified with such analyses. If a wrapper containing a full fault analysis 

for an operating system below the POSIX layer is provided, the whole system may be 

considered as safely changeable. 

An implementation of the suggested layer would certainly increase a product’s time-to-

market analogously to non-safety-critical component reuse. Software of Unknown Pedigree 

could potentially be used in considered railway system without harming safety. As the 

functions implemented by the layer influence a lot of common system calls, some 

disadvantages come along with it according a system’s performance: 

• Restrictions to original functionality. Because the wrapper functionality has to be 

justified by standards, the layer functions have to consider constraints introduced by 

them. As an example the Safe Message Passing Layer only supports 1:1 communication 

as explained in 5. 

• Structural overhead. As one can clearly see in the message passing chapter process to 

process communication would be possible using one message queue. This has been 

changed to four to make use of several safety mechanisms and simplify the design. 

Overheads like this are often accepted as safety is more important that performance. 

Emerging from this structural overhead slower and more complex initialization 

mechanisms have to be taken into account as one can see in the SMP setup phase. 

• Communication overhead. The exemplary Safe Message Passing layer shows the 

potential additional expenditure generated by the safety functions. To send a message 

with content “Hello”, which is of size 5 bytes the message hash of 32 bytes, message 

type, sequence numbers and temporal constraints have to be added. For longer messages 

this is acceptable. 

• Calculation overhead. Redundant data has to be generated to get plausibility criteria for 

the results of the functions to be checked. Besides that there are tests running 

permanently to check if system functionality is up. 

• �o direct access to components. Different from the shown online tests the watchdog 

does not directly check the system’s inner hardware. This may be a problem for 

forensics searching for errors to increase uptime. 

The reason why the fault detection functionality should not be implemented in the POSIX 

layer itself is that most systems are not safety critical and the performance loss described 

above cannot be accepted.  
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It has to be stated that such a safety supervision layer can not completely displace current 

verification and validation techniques. They are necessary to ensure system functionality and 

reliability. Nevertheless it can increase safety and be a valuable augmentation to current 

architectures and avoid indeterminism. Furthermore such direct portable end-to-end 

operating system call checks may save costs and time as they potentially replace non-portable 

mechanisms. 

7.3 Outlook 

This work considers itself as a starting point for the decomposition of safety-critical 

applications and the infrastructure they run on. The potential advantages of the possibility to 

change the underlying hardware and operating systems without harming safety are obvious. 

The following paragraphs propose improvements to the layer and fields of research that 

would bring benefits according the topic. 

7.3.1 General Improvements to the Safety Supervision Layer 

As described in Chapter 3.1, POSIX prescribes functions not only for message passing. 

Future versions of the layer should take concern of the other standards and implement 

wrappers for those other functions. 

Functions suitable to be wrapped by the layer are for example file and directory operations, 

process creation and control, device drivers, shared memory, pipes, thread synchronization or 

floating point exceptions. The approach should be similar to the one in this work. First the 

desired functionality is selected, then there has to be researched what respective safety 

standards prescribe. Then suitable restrictions to the according functions have to be presented 

in order to match the standard’s constraints. Fault Analysis methods have to be performed on 

the functions under consideration. 

The resulting functions should overwrite existing POSIX functionality with the prescribed 

preloading technique to avoid programmers from unintentionally using the old ones. In the 

end the whole Portable Operating Interface should be wrapped by the layer. 

7.3.2 Improvements to the Safe Message Passing Layer 

The proposed Safe Message Passing Layer is a prototype that was never tested under 

operational conditions. Before its use in a productive environment certain improvements 

according some features and especially performance issues should be undertaken. One of 

them is the renaming of the functions to the name of the ones they wrap. This is described 

above as preloading, but has not been done in the current code to increase readability. 
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The first is that currently the layer just implements “blocking” send and receive. For 

architectural and fault detections concerns the layer is now intended to always perform raw 

mq_sends and mq_receives in a blocking way. This means that the message dispatcher 

always waits until messages are in the queue. The SL_mq_receive is simulating the blocking 

case and waits until it gets the semaphore for reading from the buffer. Blocking mq_send 

means, that the sender waits, if the queue is full. The non-blocking case can be implemented 

with slight changes to the current functions. The SL_mq_receive would in this case just 

check if it gets the read semaphore immediately and return the value prescribed by the 

original mq_open specification if not. The non-blocking SL_mq_send would just check if the 

queue is currently full and perform analogously if not. 

Another interesting issue is that currently there are 4 raw message queues used for the 1:1 

communication. This is a structural overhead that simplifies fault detection. In productive 

versions of the layer one should look if it is possible to safely reduce that number and save 

resources. A clear log structure should be specified describing a format for timestamps, log 

messages, debug levels and file structures. 

Currently the periodic checker timer handlers are performing the following way: When a 

logical queue is opened the message descriptors are written to an array in order to map the 

timer pointer to a message descriptor and back. Another way to hold these values are linked 

lists, which are slower in getting the mapped descriptors but less memory consuming. Apart 

from that the periodic checker initiated a series of changes in the basic conception that made 

the design much more complex. Those changes were not needed by other features. Hence it is 

desirable to find better ways to hold these structures. 

7.3.3 The Watchdog 

The watchdog should be implemented according to the specification given in that work. As 

stated above one should not try to reinvent the wheel but analyse and adopt the test cases 

shown by projects similar to [10]. The watchdog is a construct intended to replace hardware 

online tests. There should be research according how far this is possible. Another important 

point is that it should be evaluated if a structure like the watchdog is needed at all in later 

versions, as the approach is not deterministic as explained. Yet it is not clear if a direct fault 

detection approached could make the watchdog needless if the operating system interface is 

fully wrapped. 

7.3.4 Future Fields of Research 

During the elaboration of the Safety Supervision Layer a series of desirable fields for future 

research was recognized. The most interesting field of research is the question if it is possible 

to find a generic fault analysis for operating systems. As fault detection mechanisms are 

obviously based on fault analyses there would be the possibility to fully reveal ways to detect 
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faults situated below the operating system’s service level interface. Application developers 

could then be assured that all of the faults would be detected automatically and the fail-safe 

system could be shut down. 

As the proposed layer solely checks for system call faults there would be the possibility to 

implement device and network component checks in that layer. This could be done by 

providing portable services that either wrap the device’s functionality or perform periodic 

checks analogously to the proposed structure for the operating system. 

Another interesting field is the question if there are ways analogously to the proposed to map 

the presented approach to support fail-operational systems. This would request more complex 

fault handling mechanisms and will require not only fault detection but also error correction 

techniques for operating systems.
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Appendix - CENELEC Member States 

 

Figure 53 shows current CENELEC board member states (red) and affiliate countries 

adopting the standard. 

 

Figure 53: CE�ELEC member states and affiliates 



 

99 

Appendix - POSIX Message Passing 

UNIX man pages provide specifications for the message passing functionality. 
Nevertheless some issues are not explained intuitively and suitable fort his work’s 
context, hence they are explained below. 

Data Structures 

In POSIX Message Passing there are generally two important data structures, which are 

mqd_t, which holds the information about the message queue and msg_msg which basically 

represents a message. Table 7 shows the items of the mqd_t data structure. 

Type Field Description 

struct list_head m_list Pointers for message list 

long m_type Message type 

int m_ts Message text size 

struct msg_msgseg * next Next portion of the message 

void * security Pointer to a security data structure (used by 

SELinux) 

Table 7: mqd_t data structure 

An instance of the mqd_t data structure is returned when the message queue is opened or 

optionally created. Table 8 describes the properties of a message queue. 

 

Type Field Description 

long mq_flags Holds the set flags (0 or O_NONBLOCK). 

long mq_maxmsg Specifies the maximum number of messages in the queue. 

long mq_msgsize Defines the maximum size of the messages in bytes. 

long mq_curmsgs Gives the total number of messages currently in the queue. 

Table 8: The mq_attr data type 
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Functions 

The following functions describe the usual message passing functionality provided by the 

real-time libraries in librt. This description is basically taken from the according man pages 

and enriched by the author’s own comments. 

Opening Message Queue 

mqd_t mq_open( const char *name, int  oflag );  
mqd_t mq_open( const char *name, int  oflag,  
   mode_t mode, struct mq_attr );  
 

Connects to, and optionally creates, a named message queue. The queue is identified by a 

name. The operation is basically controlled by the oflag parameter, which holds exactly one 

of the following flags: 

• O_RDONLY: Open the queue only for retrieving messages. 

• O_WRONLY: Open the queue only to send messages. 

• O_RDWR: Open the queue to send, as well as to receive messages. 

The following flags can be ORed in the oflag argument: 

• O_NONBLOCK: Open the queue in non-blocking mode. In situations where 

mq_receive of mq_send would block without this flag, these return immediately 

with the error EAGAIN. 

• O_CREAT: Create the message queue if it does not already exist. The owner of the 

message queue is set to the effective user ID of the calling process. The group ID is 

set to the effective group ID of the calling process. 

• O_EXCL: If O_CREAT was specified in oflag, and a queue with the given name 

already exists, then fail with the error EEXIST. 

If O_CREAT is set, two more arguments must be passed. The mode parameter specifies the 

permissions to be placed on the new queue. These permission settings are masked against the 

process umask. The attr is set NULL, then the queue is created with implementation-defined 

default attributes. 

There are several errors that can happen when opening the message queue: 

• EACCESS: The queue exists, but the caller does not have permission to open in the 

mode that is specified 

• EINVAL: Linux man pages give the following description to this error: O_CREAT was 

specified in oflag, and attr was not NULL, butt attr->mq_maxmsg or attr-

>mq_msgsize was invalid. Both of these fields must be greater than zero. In a 
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process that is unprivileged (does not have the CAP_SYS_RESOURCE capability), 

attr->mq_maxmsg must be less than or equal to the msg_max limit, and attr-

>mq_msgsize must be less than or equal to the msg_max limit. In addition, even in a 

privileged process, attr->maxmsg cannot exceed the HARD_MAX limit defined in 

limits.h. 

• EEXIST: Both O_CREAT and O_EXCL were specified in oflag, but a queue with this 

name already exists. 

• EMFILE: The process already has the maximum number of files and message queues 

open. 

• ENAMETOOLONG: The name specified is too long. 

• ENFILE: There is a limit on how many files and message queues can be opened the 

same time. If this limit is reached, this error is returned. 

• ENOENT: This is returned, if the O_CREAT flag is not set and the message queue with 

the given name cannot be found. 

• ENOMEM: Means that there is insufficient memory to open the queue. 

• ENOSPC: This means that there is not enough space to create the message queue. This 

can probably occur, if the queues_max limit is encountered. 

Closing Message Queue 

mqd_t mq_close( mqd_t  mqdes );  
 

If the calling process has attached a notification request to this message queue via mqdes, 

then this request is removed, and another process can now attach a notification request. This 

call may yield an EBADF error if the mqdes descriptor is invalid. 

Unlinking a Message Queue 

mqd_t mq_unlink( const char *name ); 

 

This call deletes the message queue defined by the name attribute immediately. The queue 

itself is destroyed once all other processes that have the queue open close their descriptors to 

it. If the operation is successful, mq_unlink returns 0, otherwise -1 setting errno to an error 

indicatior which may be EACCES, if the caller does not have permission to unlink the queue,  

ENAMETOOLONG, if the passed name was too long, or ENOENT, if there is no message queue 

with the given name. 
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Sending a Message 

mqd_t mq_send( mqd_t mqdes, const char *msg_ptr, 
      size_t msg_len, unsigned int msg_prio );  
 

This function adds the message referred by msg_ptr to the message queue defined by mqdes. 

If mqdes is invalid, the call returns the EBADF error. msg_len holds the size of the message 

payload specified by msg_ptr. This length has to be less than or equal than the maximal size 

of the message specified by the mq_msgsize attribute of the queue. If it’s greater, the 

EMSGSIZE error is returned.  

The msg_prio argument is a positive integer value that specifies the priority of the message. 

Messages are placed in the queue in a decreasing order of their priority, which means that 

higher priority messages are consumed earlier, while newer messages are appended after 

older messages of the same priority. 

In certain situations it can be tried to put messages on a full queue, which usually means that 

there are more unconsumed messages in the queue than specified by its msg_maxmsg 

attribute. In this case two reactions are possible, depending on whether the queue’s 

O_NONBLOCK flag is set or not. If it is not set, mq_send blocks until either it is allowed to write 

the message on the queue or it is interrupted by a signal handler. In the second case, an EINTR 

error is returned. If the flag is set, the call fails instead immediately returning the EAGAIN 

error. 

mqd_t mq_timedsend( mqd_t mqdes, const char *msg_ptr, 
      size_t msg_len, unsigned int msg_prio, 
 const struct timespec *abs_timeout);  
 

The mq_timedsend functions behaves nearly the same way as the normal mq_send, except 

that it allows to send a timeout ceiling the time that the call blocks if the O_NONBLOCK flag is 

not set and mq_maxmsg is reached. The ceiling is an absolute timeout. If the message queue is 

full and the timeout is expired, the function returns immediately. If the timeout specified is 

invalid an EINVAL error is returned. If the call timed out before a message could be 

transferred, an ETIMEDOUT error is returned. 

Receiving a Message 

mqd_t mq_receive( mqd_t mqdes, char *msg_ptr, 
             size_t msg_len, unsigned int *msg_prio ); 
 

This call removes the oldest message with the highest priority from the queue and places it in 

the buffer space specified by msg_ptr. The paramenter msg_len passes the size of that buffer 

which has to be greater than the value specified in the mq_msgsize property of the queue, 

otherwise EMSGSIZE is indicated. If msg_prio is not null, the buffer is used to return the 

priority of the returned message. 



 

103 

mq_receive usually blocks until a message is received, unless the O_NONBLOCK flag of the 

message queue is specified. In this case the call fails immediately returning the error EAGAIN. 

There exists a derivate of mq_reveive named mq_timedreceive with an additional pointer 

of type const struct timespec that specifies that behaves analogously to mq_timedsend. 

If the call is performed successfully, the functions return the number of bytes of the received 

message. If an error occurs, -1 is returned setting errno to indicate the error. 

7.3.4.1 Getting Attributes 

mqd_t mq_getattr( mqd_t mqdes, struct mq_attr *attr );  
 

Writes an mq_attr data structure describing the message queue defined by mqdes in the 

buffer defined by attr. The call returns 0 if it is successful, respectively -1 on error. In the 

second case errno is set to EBANF, which means that mqdes is invalid. 

7.3.4.2 Setting Attributes 

mqd_t mq_setattr( mqd_t mqdes, const struct mq_attr *newattr, 
         struct mq_attr *oldattr );  
 

This function can only be used to change the value of mq_flags. The other values are 

ignored. If the oldattr parameter is not null, the old values, which would be given by 

mq_getattr(…) are passed to it. The call returns 0 if it is successful, respectively -1 on error. 

In the second case errno is set to EBANF, which means that mqdes is invalid, or EINVAL if 

newattr->flags contains set bits other than O_NONBLOCK. 

7.3.4.3 �otifying 

mqd_t mq_notify( mqd_t mqdes, const struct sigevent *notification ); 
 

This system call allows the calling process to register or unregister for the delivery of 

asynchronous notifications when new messages arrive on the empty message queue referred 

by mqdes.  

The notification data structures and functionality was not part of my work, hence it is not 

further elaborated in this chapter. 

 

 

 


