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Abstract

We present a new theoretical approach to study the influence of the dopant species on the elec-
tron drift mobility in doped semiconductors under low electric fields. The charge distribution of
the impurities is described by the Thomas-Fermi theory in the energy functional formulation.
We have included many-particle effects, such as dispersive screening and multiple scattering,
which become important in heavily doped semiconductors. Analytical expressions for the scat-
tering cross section for various species of dopants using the Born approximation up to second
order are derived. Monte Carlo simulations including all important scattering mechanism have
been performed for Si, GaAs, and InP in the doping concentration range of 10% to 10% em~3.
The dependence on donor species is significant for concentrations beyond 10'® cm~3, whereas
the minority electron mobility is not affected by different dopants. Not only confirm the results
the experimental data of the mobility enhancement of minority electrons compared to majority
electrons in degenerated semiconductors but also the lower electron mobility in As-doped Si in
comparison to P-doped Si.

Introduction

As semiconductor device dimensions decreasingly approach 0.1 ym, it becomes necessary to have
accurate values of the majority and minority electron mobilities in advanced semiconductor
device simulation. Despite the importance of these quantities for device applications, such
as bipolar transistors which are controlled by minority carrier flow in heavily doped regions,
theoretical treatments are quite limited. There still remains a tendency in numerical simulation
to assume that majority and minority mobilities are equal, although experiments have shown
that majority and minority mobilities may differ by a factor of 3 in heavily doped Si[1][2][3][4].

Moreover, there is no theoretical model to date which explains the different mobility data for
As- and P-doped Si for impurity concentrations higher than 10'® cm™2. The difference between
the electron mobility in As- and P-doped samples is up to 32 % at N; =4 - 10* cm™3 {5].
Ignoring these phenomena can lead to incorrect interpretation of device data which strongly
depend on doping concentration.
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There were several attempts in the past to explain these different mobilities. Ralph et al. [6]
introduced a central-cell scattering potential determined empirically using bound state energies
of donors. Later, EI-Ghanem and Ridley [7] employed a square-well impurity core potential.
Bennett and Lowney investigated the majority and minority electron mobility in Si [8][9][10]
and GaAs [11]. They introduced different scale factors in the interaction potential for majority
and minority electrons.

The basis of our theoretical approach is the Thomas-Fermi (TF) theory [12][13]. This semi-
classical treatment of the atom in the energy functional formulation yields the impurity charge
density as a function of the atomic and electron numbers as well as a variational parameter which
defines the size of the valence electron charge cloud. Knowing the charge density we obtain
analytical expressions for the differential scattering cross section using the Born formalism up
to second order to account for the charge sign of the impurity center.

Charge Density of Ionized Impurities

The total valence charge density (in units of the electron charge e) of an unscreened impurity
atom with atomic number Z and electron number N in a solid is given by

f)ion(r) - Zé('r)_pe(r) (1)
N = [odidr )

The first term at the right hand side of Eq. (1) describes the nuclear charge density distribution
concentrated in the origin. The second term, p.(r) is the electron charge density of the impu-
rity ion. There are numerous methods to calculate the electron charge density distribution. As
we are interested in analytical solutions, we use the semi-classical TF model. Its basic idea is
to treat the valence electrons as a degenerate Fermi gas of nonuniform, spherically symmetric
electron density in a positively charged background at zero temperature. Under this assump-
tion we get a local relation between the electron charge density and the Fermi energy. The
total energy consists of the classical Coloumb potential energy of electron-electron E._. and
electron-nucleus interactions E,_,, and the kinetic energy F;. Hence we define the total energy
functional (A =m = 1)

Ey, = Ex+FE.,+AME,._, (3)
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with ¢ = %(3%2)2/ % and a correlation parameter A. We assume the electron charge density

distribution to be of the form

N a2 e—ar
pe(T) T o4Ax 7 (7)
Its Fourler transform
Na?
F(q) = ——
(q) q2 + 042 (8)

is called the atomic form factor of the charge distribution. The variational parameter o has
to be determined by minimizing Fy. Calculating the first derivative of the total energy with
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respect to the variational parameter « and the electron number N we get two equations for «
and A:

OF

0 = o (9)
OF

0 = N, (10)

Condition Eq. (10) makes the chemical potential vanish for a neutral atom. Solving Eq. (9)
and Eq. (10) with respect to A and « we obtain finally

Lz 1-2 (%)
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(11)

with ¢} = T(4/3) (37r)2/3 (2)7/3.
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Scattering potential

We assume randomly located impurities of concentration N;. With increasing N; the average
distance R between two impurities decreases such that scattering processes become important in
which two or even more ions are involved simultaneously. To include multi-potential scattering
to first order, we let pairs of impurities act as scattering centers. Since the impurity ion in
a solid is screened by free carriers, the effective potential in momentum space for a pair of
impurities can be written as

Z - F(qg)

o = NG

(1 + exp(—iq- ﬁ)) (12)

with Vp = 2—;’;—5 In Eq. (12) linear screening is assumed. eg. is the dielectric constant of the
semiconductor, and 3 the inverse Thomas-Fermi screening length which for an un-compensated
semiconductor is given by

4mne? F_

2 _ mne 1/2(7]) ) (13)
esckgT -7:1/2(7])

Here, kpT is the thermal energy, ¢ the momentum transfer, and n the free carrier concentration

(no compensation is assumed). The screening function [14]

1 1 7 T T+
Gen = e | rene el
£ = n*q’ _ Er— Ec (14)

smkgT | kgl

represents the dielectric response of the conduction electrons to an external charge. F; denotes
the Fermi integral of order j and 7 is the reduced Fermi energy. To avoid numerical integration
in the Monte Carlo procedure we use a rational approximation for G of the form

1+ af® +b¢!
1+ c€2 +d¢t + et

The unknown coefficients a, b, ¢, d, e which have to be chosen such as to match the screening
function at zero and for infinity[15].

G(&n) = (15)
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Figure 1: Minority electron mobility in B-
doped Si. Simulation: solid line; experimen-
tal data from [4]: open diamonds; majority
mobility data: filled circles [5]

1000

100

Electron Mobility [cm?/Vs]

10'® 10" 1ol‘7 10" 0% 107 10
Donor Concentration [cm'3]

Figure 2: Majority electron mobility in P-

and As-doped Si. Simulation: solid (As) and

dashed lines (P); experimental data from [5]:

open diamonds (As); open squares (P)

Scattering Rate
With a given scattering amplitude f(g) the differential scattering cross section o is defined as

_ (emw)? )
o(q) = Wlf (@)°p(E) (16)

m vy

This expression is valid for arbitrary density of states p and group velocity v,. Using the total
cross section

2k

2m
o(k) = 75 [ o(a)ada, (7)
0
the total scattering rate is given by
)\(k) = vagawt(k') (18)

where N, = N;/2 is the density of impurity pairs.

Results and Discussion

We present calculated mobilities for Si, GaAs, and InP at 300 K. The transport problem is
solved by a Monte Carlo method. To avoid numerical integration for scattering rates in the Born
approximation by calculating Eq. (17) and Eq. (18), we make use of an acceptance/rejection
scheme[16].

All impurities were assumed to be ionized. In addition to ionized impurity scattering which
is the main scattering process in heavily doped semiconductors, we took also into account
acoustic intra-valley scattering, phonon inter-valley scattering, and electron-plasmon scattering.
The latter effect lowers the mobility in p-type material significantly and is responsible for the
dip in the minority mobility at about N; = 10" ecm™3, which corresponds to the maximum
strength of the electron-plasmon interaction[17]. The Pauli exclusion principle was included by
means of a rejection technique assuming equilibrium Fermi-Dirac statistics for the final states.
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Figure 3: Majority electron mobility in GaAs Figure 4: Minority electron mobility in GaAs
for different donors for different acceptors

We have found that the momentum-dependent form factor strongly influences the scattering
cross section with icreasing doping concentrations, especially for minority electrons. Then
larger scattering angles are becoming more probable such that the g-dependence of the atomic
form factor cannot be neglected. The vanishing electron-plasmon interaction and the stronger
repulsion are responsible for the increase of the minority electron mobility up to 4 - 10 ¢em™®
and the generally higher mobility in p-type Si (Fig. 1). The squared difference between Z and
F(q) is higher compared to P-doped Si for the same energy because the effective charge of
As-ions is larger than that in P-ions. Hence, the electron mobility is always lower in As-doped
samples than in P-doped samples (Figs. 2). For n-GaAs our results confirm the lower mobility
for donors with increasing atomic number Z above 10'® cm~2. The mobility values may differ up
to 20% at 10'® em~3 for Si and Sn-doping, respectively (Fig. 3). In case of p-GaAs the influence
of F'(q) leads to an small increase of the mobility for acceptors. No significant dependence on
the dopant species is observed over the whole concentration range (Fig. 4). In Fig. 5 and Fig. 6
the electron mobility in InP for different dopants is shown. These results are in agreement
with the experiments of Anderson [18] who found no significant difference for various species.
Unfortunately, the uncertainty and scattering of the available experimental data is of the same
order of magnitude as the difference of the mobilities for various dopants. Hence, it is in general
very difficult to evaluate the simulation results quantitatively.

Conclusion

We have shown that consideration of the spatial charge distribution of the impurities is essential
to explain the dopant-dependent electron mobility in heavily doped semiconductors. Hence,
the failure of explaining different minority and majority electron mobilities for various dopant
species in the past was due to neglecting the ¢-dependence of the atomic form factor which leads
to different effective charges of the ionized dopants. Furthermore, in Si the two-ion correction
is important over the whole doping range, whereas dispersive screening and the second Born
correction are becoming important at N; = 10'® em™?. Due to the lack and inconsistency of
experimental data for the minority electron mobility of all investigated semiconductors, it is
difficult to compare our simulation results quantitatively for this particular case. It is hoped
that the results outlined here will stimulate more experimental work to establish the different
electron mobilities observed for various species of donors in n- and p-type semiconductors.
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Figure 5: Majority electron mobility in InP Figure 6: Minority electron mobility in InP
for different donors for different acceptors
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