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Abstract :

The interference terms (ITs) of the Wigner distribution (WD) dramatically affect
WD analysis results and constitute a major problem in many WD applications. This
tutorial chapter describes the geometry of ITs for both the WD itself and related
time-frequency representations like the generalized Wigner distribution, the ambi-
guity function, and smoothed WD versions such as the pseudo Wigner distribu-
tion, the spectrogram, and the Choi-Williams distribution. The important classes of
shift-invariant (Cohen-class) and shift-scale-invariant time-frequency representa-
tions are given special attention. Further aspects of ITs are also discussed, including
relations with energetic signal parameters and the relevance of ITs to the definition
of discrete-time WD versions.

1. INTRODUCTION

The interference structure of the Wigner distribution (WD) [1] strongly influences
the results of WD-based signal analysis and restricts the WD's practical usefulness.
It is thus of great theoretical and practical consequence, and a sound knowledge
about the WD's interference structure is essential both for correctly interpreting
WD results and for successfully applying the WD in practice. Let us illustrate this
by an example. We wish to analyze, using the WD, a signal with sinusoidal frequen-
cy modulation. Since the WD is known to distribute the signal's energy over the
time-frequency plane, we expect something like Figure l.a. However, what we
obtain is the result shown in Figure 1.b. We might then jump to the conclusion
that the WD, in spite of its excellent mathematical properties, is not well fit for
practical signal analysis. This conclusion, however, is not justified since also
Figure 1.a was obtained using the WD. This seems paradoxical but can be explained
as follows: the complexity (or, apparently, confusion) of Figure 1.b is caused by
“inner interference terms” which have been suppressed in Figure 1.a by appropriate
smoothing.
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Figure 1. Time-frequency representation of sinusoidal frequency modulation: (a) ex-
pected result; (b) WD.

The example given shows the practical significance and relevance of interference
terms (ITs). Indeed, two common practical situations call for some knowledge
about the WD's interference structure. The first situation is that of "prediction:"
based on some a-priori knowledge about the signal to analyze, we wish to predict
what the signal's WD will look like, or what modifications of the WD we must
employ to get a clear and readable WD result. In the second situation, that of
"interpretation,” we are given the WD of an unknown signal and wish to derive some
information about the signal by interpreting various components and structures
visible in the signal's WD.

Apart from its relevance to practical applications, the interference property of
the WD is also interesting on theoretical grounds since it shows the high degree
of organization and inner dependency inherent in the WD. The geometry of ITs
highlights the WD's inherent symmetry and concentration and thus helps to explain
why the WD is an ideal basis for time-frequency analysis. Indeed, time-frequency
representations with quite similar mathematical properties (like, e.g., the WD and
the Rihaczek distribution) will generally display one and the same signal in widely
different ways; this can be nicely explained in terms of the different "interference
geometries” of these representations. Finally, the WD's interference structure also
has a bearing on the problem of time discretization. Specifically, it shows that the
WD must generally be sampled twice as fast as the signal itself. Also, the aliasing
components in the discrete-time WD can be interpreted as ITs.

One of the first accounts of the WD's interference structure has been given in
[2], where the name “interference" is introduced. Other customary names are "cross
terms,” "ghost terms,” or "phantom terms.” We stress, however, that not all inter-
ference phenomena can be considered as bilinear cross terms; this is related to the
distinction between “outer” and “inner" interference (see Section 5). Outer ITs of
the WD, their characterization by means of the ambiguity function, and their atten-
uation by smoothing are discussed in [3]. Another study [4] investigates the geo-
metric and energetic properties of ITs and extends the interference principle to
monocomponent signals by introducing the concept of inner interference. For the
class of amplitude-/frequency-modulated signals, the stationary-phase method
has been used for an analytic derivation of the ITs' geometry [2,5], and characteristic



structures of ITs have been described by means of catastrophe theory [5,6]. In [7],
the geometry of interference is discussed for the family of generalized Wigner
distributions which is attractive from a theoretical viewpoint, and it has been
shown that, inside this family, the WD is optimal with respect to interference
geometry. A number of papers describe the ITs of smoothed WD versions like the
pseudo Wigner distribution and the spectrogram and discuss the attenuation of
ITs by means of time-frequency smoothing, e.g., [8-21]. This survey of previous
work does not pretend to be exhaustive: since interference is a prominent feature
of the WD, it is discussed, more or less explicitly, in many other papers as well.

This chapter is intended to be a tutorial exposition of the topic which encom-
passes many of the results and insights gained so far. We believe such a compre-
hensive treatment to be valuable especially for those who plan to use the WD as an
analysis tool and wish to know what results they may expect and what mod-
ifications of the WD they will have to employ.

The chapter is organized in two parts. In Part I, the interference structure of
the WD is considered. Part II studies the interference structure of some time-fre-
quency representations related to the WD.

Note. In all figures showing results of the WD and related time-frequency repre-
sentations, the time axis is horizontal and the frequency axis is vertical. In contour-
line plots, only positive heights are indicated by contour lines since this yields a
clearer display of the oscillatory interference terms as compared to plotting both
positive and negative heights.

PART I - WIGNER DISTRIBUTION

Based on the WD's quadratic superposition principle, the ITs of the WD are first
introduced in Section 2 as bilinear cross terms arising in the case of a multicom-
ponent signal. This type of interference, termed "outer” interference, is further con-
sidered in Sections 3 and 4. Section 3 studies the geometry of outer ITs and shows
that this geometry depends on the time-frequency locations of the interfering signal
components. Based on the WD's marginal properties, energetic aspects of outer ITs
are discussed in Section 4. Section 5 then extends the interference principle to the
case of monocomponent signals by introducing the concept of "inner" interference.
Outer and inner ITs are shown to possess identical geometric properties. Using
the method of stationary phase, the laws of interference geometry are re-derived
analytically for the class of amplitude-/frequency-modulated signals in Section 6.
Section 7 uses results from catastrophe theory for studying characteristic singular-
ities of ITs. Finally, Section 8 demonstrates the relevance of ITs in the context of
discrete-time WD versions.

2. OUTER INTERFERENCE

The outer interference terms of the WD are a consequence of the WD's bilinear
(or quadratic) structure; they occur in the case of multicomponent signals and can



be identified mathematically with quadratic cross terms.

Some WD fundamentals. The cross-WD of two signals x(t), y(t) with Fourier
transforms X(f), Y(f) is defined as [1]

Wx,y(t,f) 4 {x(t“%)y*(t—%) e—j27t:f1: de = {X(f+%)Y*(f—%) ej27t:tudu ’

with t and f denoting time and frequency, respectively. (Integrals go from -o to ©
unless stated otherwise.) The auto-WD of a single signal x(t) is defined as W_(t,f)
2 W x(t.f). Both the cross-WD and auto-WD will be briefly called WD. From the
WD's hermiticity property W, ,(t,f) =W,*i,y(t,f), it follows that auto-WDs are real-
valued even for complex signals. They may hence be represented graphically as
surfaces over a time-frequency plane.

The WD can be interpreted as a distribution of the signals' energy

E,, 2 [x® yXt)dt = [X(E) Y*F) df

over the time-frequency plane. This is expressed mathematically by the well-known
marginal properties

{ W, () df = p, ,(t), { W, y(t.f) dt = B, (), { { W,y (t.H)dtdf = E, ,, (21

which show that the time-domain energy density (instantaneous power) Px,y(t) =
x(t)y*(t) and the frequency-domain energy density (spectral energy density) P, ()=
X(f)Y*(f) are "marginal densities” of the WD, and that, consequently, the WD's
integral over the entire time-frequency plane yields the signals’ energy. Still, a
pointwise interpretation of the WD as a joint "time-frequency energy density” is not
possible; such a concept is prohibited by the uncertainty principle [22]. Therefore,
if the auto-WD W,(t,f) of a signal x(t) is large at a certain point (t,f) of the time-
frequency plane, this does not necessarily mean that the signal x(t) has energy
around this point. Indeed, it is this fact that motivates and necessitates the
distinction between WD signal terms and WD interference terms.

A further important WD property is the property of time-frequency shift invari-
ance: if the signals x(t) and y(t) are shifted with respect to time by t, and with
respect to frequency by f,,

Xo(t) = x(t-t,) ei2mfot Yolt) = y(t-t,) ei2mfot |

then their WD is likewise shifted by t, and f,,

Wioyo (b)) = Wy (t-t,,f-f) . (2.2)
Quadratic superposition and outer interference terms. It has just been shown that

the WD is intimately related with the energy densities p(t), P(f) and the energy E.

These signal parameters having a bilinear structure (quadratic structure in the "auto”
case y(t)=x(t)), it is not surprising that also the WD has a bilinear (quadratic) struc-



ture. This fact is of particular significance in the case of multicomponent signals.
Let us consider an N-component signal comprising N signal components cpx(t)
with complex coefficients cy,

N
t) = t). .
x(t) kZ=1 CrXi(t) (2.3)

The auto-WD of the N-component signal x(t) can then be expressed as

Wt = 3 5 o cfW. (6 = S WO S ¥ whes (2.4)

= e Bl S =P S K=t =1 W70 ’
(I>k)

where

WD £ ol W (b

is the WD signal term corresponding to the k-th signal component cpx(t), and

we,p & cpcf Wigsq(tif) + clef Wy o (t.f) = 2Re{ckc’fok,xl(t,f)}

is the outer WD interference term (IT) corresponding to the k-th and I-th signal
components ¢, x; (t) and c;x,(t). There is obviously W(kli (t,f)=W(1{2(t,f). According to
the quadratic superposition law (2.4), the WD of an N-component signal consists
of N signal terms and (§)=&1§"_1’ ITs. Each signal component generates a signal
term, and each pair of signal components generates an IT. While the number of
signal terms thus grows linearly with the number N of signal components, the num-
ber of ITs grows quadratically with N.

3. INTERFERENCE GEOMETRY

The distinction between signal terms and outer ITs is not merely a formal one;
typically, signal and interference terms are WD structures with qualitatively
different geometric appearance. It will be seen that ITs are characterized, and
distinguished from signal terms, by their oscillation; furthermore, the time-frequen-
cy location of ITs follows from the time-frequency locations of the corresponding
signal terms. These geometric properties of ITs will be called the interference
geometry of the WD.

Time-frequency location of outer ITs - the outer interference formula We first
discuss the time-frequency location of outer ITs. According to Section 2, the outer
IT of two signals x,(t), x,(t) (we suppress the coefficients C,, ¢, for simplicity) is
given by W(t,f) = 2Re{Wy ,x(t.f)}. Suppose that the effective time-frequency
supports of the corresponding signal terms W{S)(t,f) =Wy, (t,f) and WS (t,f) =
Wy, (t,f) are the time-frequency regions R, and R,, respectively. This means that the
signal terms are approximately zero outside the respective region R, or R,. What is
the effective time-frequency support of the IT? A pointwise construction of the IT's
time-frequency support, denoted by R,,, can be based on the outer interference
formula of the WD [4]



Ile,xz(t,f)l2 = {{ Wxi(t+%, f+3) sz(t—%, f-3) dt dv (3.1

which expresses the magnitude of the signals' cross-WD in terms of the signals’
auto-WDs. Let (t,,f,) and (t,,f,) be two time-frequency points inside the time—fre-
quency supports R, and R,, respectively. We introduce the center point (t,f,,),
the time lag 1,,, and the frequency lag v,, by

Attty A fi¥fa A ¢ _ A g _
t, 85—, f, & 5= Ty = t-t, , v, 2 f-f,

so that, conversely,

_ Ti2 V12 _ Ti2 V12

t,=t+5=, f1=f12+7 H t =t-35=, f2=f12—7'

(These definitions of t,,, f,,, t,,, and v,, will remain valid throughout this work.)
The outer interference formula (3.1) then shows that the cross-WD Wy, ,x,(t,f) may
be nonzero at the center point (t,.f,,). The center point will thus belong to the
IT's support R,,.

The above result can be summarized as follows: if the signal terms are nonzero
around two points (t,,f,) and (t,f,), respectively, then the corresponding IT must
be expected to be nonzero around the center point (t,,f,,). Based on this simple
law, the IT's time-frequency support R,, may be constructed pointwise, as is
shown in Figure 2: it is the collection of all center points (t,5.f,,) for which
(t,,f) R, and (t,.f,) ¢R,. Note that the IT always lies inside a hull which is drawn
around the two signal terms according to Figure 2.

T2

Figure 2. Pointwise construction of IT support R,,.

Oscillation of outer ITs. While the interference formula (3.1) gives a fairly com-
plete characterization of the IT's time-frequency support, it does not say anything
about the IT's shape. Indeed, an analytical treatment of this question seems to be
difficult in the general case. We therefore consider the simple special situation
where the interfering signals are identical apart from time-frequency shifts. This



situation allows a simple mathematical analysis and yet highlights the crucial fea-
ture of ITs, namely, their oscillation.

Let x,(t) be a signal which we assume to be centered around the time-frequency
origin (0,0) for simplicity. From x,(t), we derive the signals

Xi(t) = xo(t_ti) ej27tf1t , Xz(t) = Xo(t-tz) ej27l:f2t

by shifting x,(t) to the time-frequency locations (t,,f,) and (t,,f,), respectively. We
may thus say that the two signals x,(t) and X,(t) are identical apart from the fact
that they occur at different time-frequency locations. For the two-component
signal x(t) = ¢,x,(t) + c,X,(t), signal and interference terms are easily calculated: we
obtain

WS = Io* W, (t-t,f-f) Wy = Ic,|* W, (t-t,, F-f,) (3.2
for the signal terms, and

WDt = Fit-t,,,f-f,,), F(t.0=2]c,|c,l W, () cos[2m(ut-1,,0) + o, | (B.3)
with

95, = arg{c}-arg{c,} + 2nvu,,t,,

for the outer IT of the signal components c,x,(t) and c,x,(t). This result is illus-
trated in Figure 3 for a Gaussian signal x,(t). According to (3.2), the signal terms
equal the WD of x,(t) apart from scale factors and time-frequency shifts which
reflect the time-frequency locations of the signals x,(t) and X,(t) in accordance
with the WD's shift invariance property (2.2). The IT (3.3), on the other hand, is
shifted to the center point (t,,,f,,); we here observe the geometry described by the
outer interference formula. The cosine factor in (3.3) expresses an oscillation whose
"frequencies” in the time and frequency direction are given by the frequency and
time lags v,, and 1,,, respectively. This, in particular, implies that a large distance
between the signal terms in the time (frequency) direction entails a faster IT oscil-
lation in the frequency (time) direction. In a contour-line plot like Figure 3, the

direction of Wl( S)e, )
oscillation

w50

Figure 3. Interference geometry of WD.



direction of oscillation will be vertical to the line connecting the two signal terms
irrespective of the graphical time and frequency scales. The envelope of the
oscillatory IT surface is given by the WD of x,(t); it is independent of the time
and frequency lags t,, and v,, and thus independent of the signal terms' time-fre-
quency locations. The cosine modulation of (3.3) causes the IT to be partly negative.
Finally, the phase of the oscillation depends on the difference of the phases of
the coefficients c, and c,.

While the IT's envelope only depends on the signal x,(t), the IT's time-frequency
location and oscillation geometry merely depend on the time-frequency locations
(t,,f,) and (t,,f,) of the interfering signal terms and on the phases of the signal
coefficients c, and c,. Note that the phases of the coefficients c, and c, do not
show up in the signal terms; they are present in the IT only. As a simple example,
we compare the two two-component signals x*(t) = x,(t)+x,(t) and x~(t) = x,(t)-x,(t)
which differ merely with respect to the phase of c,. In spite of this difference,
the WD signal terms corresponding to the components of x*(t) and x~(t) are
identical; however, the phases of the ITs' oscillation differ by = which corresponds
to a change of sign of the entire IT. It is thus seen that the IT contains an impor-
tant piece of information which is not contained in the signal terms.

=

(a) (b)

Figure 4. WD of two-component signal (Gaussian signal components): (a) isolated IT;
(b) IT overlaps with signal terms.

Signal terms and IT will appear as isolated WD components only if the time lag
1,, and/or frequency lag v,, of the interfering signal components is sufficiently
large. If 1,, and v,, are both small, then the IT may overlap with the associated
signal terms, and signal terms and IT are not nicely separated. These two situations
are compared in Figure 4. Note, also, that an IT is oscillatory only if the interfering
signal components occupy essentially different regions of the time-frequency plane
such that 1,,#0 and/or v,,#0. If, on the other hand, the signal components occupy
essentially the same time-frequency region (R,~R,, which results in t,,%0 and
U,;,80), the IT will not oscillate. Let us consider an extreme example to illustrate
this situation. Obviously, any signal x(t) may be decomposed as x(t) = c,x,(t) + c,x,(t)
with x,(t) = x,(t) = x(t) and c, =1-c,. This is a completely artificial signal decomposi-
tion without any physical significance; the signal components are identical apart
from factors and hence occupy the same time-frequency region. The WD signal
terms and the IT here are



W26 = e, PWe(e) , WL = e, P Wo(e,D

W2(t,6) = 2lc,ll1-c,| Wy (t,f) cos @

with ¢ = arg{c,} - arg{l-c,}. Signal terms and IT are thus seen to be identical apart
from different factors; in particular, the IT does not exhibit any oscillation. From
its appearance, it cannot be distinguished from a signal term (unless c, is chosen
such that cos¢ <0). This (extreme) example shows that a meaningful distinction
between signal terms and outer ITs is possible only if the underlying signal decom-
position is physically meaningful in the sense that the individual signal components
are essentially "time-frequency disjoint.”

Extension of interference geometry. So far, the WD's interference geometry has
been studied for the special case where the interfering signal components are iden-
tical apart from time-frequency shifts. This assumption, while allowing a straight-
forward mathematical analysis, appears to be rather unrealistic. Still, it turns out
that the results derived with this assumption are relevant also in the general case
where the interfering signals are completely different.

In the general case, the laws of interference geometry are still valid but have to
be applied "locally.” This is best explained using a simple example. Figure 5 shows
the WD of a two-component signal consisting of a Gaussian signal and a complex
sinusoid. The signal components are here quite different, and the WD signal terms
accordingly have different shapes. To construct the IT by local application of
the laws of interference geometry, we proceed as follows: we choose two points
(t,.f,) and (t,,f,), one point inside each signal term. Midway between these two
points, i.e., around the center point (t,,,f,,), the IT will generally be nonzero; fur-
thermore, it will oscillate with a local oscillation direction vertical to the line con-
necting the two "signal points” (t,,f,) and (t,,f,). The local oscillation "frequency"
in the time (frequency) direction again equals the frequency lag v, (time lag t,,)
between the signal points.

local direction
of oscillation

Figure 5. Local application of interference geometry.

An analytical derivation and justification of this construction scheme seems to
be difficult in the general case. However, an approximate analysis can be performed



in the special situation where the signal components are sinusoids with amplitude
and frequency modulation (see Section 6).

Finite-support properties. We finally consider the case where the interfering sig-
nal components x,(t) and x,(t) have finite time supports [t,,,t,,] and [t,,t,],
respectively, i.e., they are zero outside the respective intervals. Due to the WD's
finite-support property [1], the WD signal terms are then likewise zero outside
these intervals. The IT can be shown to be zero outside the interval [ti,a:ti2,b):
where t,, o = (t, +t,5)/2 and t,, 3, = (t,+t,,)/2. This result is consistent with the
general interference geometry. Similarly, if the signal components x,(t) and X,(t)
are bandlimited in frequency intervals [f,_,f,;,] and [f,_,f,;,], respectively, the same
is true for the WD signal terms, and the IT is restricted to the “interference
band” [f,, ,.f,, p] with f,, , = (f, +f,.)/2 and £, = (Fptfp)/2.

4. ENERGETIC INTERPRETATION OF INTERFERENCE TERMS

Sometimes it is argued that ITs do not possess any "real physical significance”
and that they are "artifacts” of the signal representation WD. We now discuss
some relations of outer ITs with physically observable signal properties and
physically measurable signal parameters.

Energy quantities, quadratic superposition, and marginal properties. Specifically,
we investigate the "energy content” of outer ITs and the ITs' contribution to the
physically significant energy quantities Px,y(t) = x(t)y*(t), P,y (£) = X(f) Y*(f), and
Eyy=IPxyt)dt=JP, (f)df . Our discussion will be based on the WD's marginal
properties (2.1),

[WasltDdf = pey(®,  [Wo (0 dt = Byl®), [IW (6Ddedf = Byy, (40

which state that the energy quantities p(t), P(f), and E can be derived from the WD
W(t,f) by integration with respect to t and/or f. Exactly as the WD, the energy
quantities have bilinear (quadratic) structure and thus obey the same quadratic
superposition principle. Let us consider the "auto case"” y(t)=x(t) and assume the
signal x(t) to be N-component as in (2.3). For the auto-energy E,=E , for example,
the quadratic superposition law then reads (cf. (2.4))

N N N
E, = 2 ES + kz_ > EY. (4.2)

Analogously to the WD, the energy E, comprises N "signal terms" E{S) = |ck|2Exk
and (%) = &bzl-‘l) cross or "interference” terms EJ’ = 2Re{ it Exy, %} The marginal
properties of the WD hold for both signal and interference terms separately: in the
case of the energy, for example, we obtain

{{WﬁS)(t,f) dtdf = ES , {{Wﬁ)(t,f) dtdf = EJ) . (4.3)

Analogous relations exist for the energy densities p,(t) and P,(f).



Energy content of outer ITs - orthogonality and time-frequency disjointness.
Inserting (4.3) into (4.2), the energy of the N-component signal x(t) can be written
in a way that involves the WD's signal and interference terms:

E = > l:ffW1‘<S)(t,f)dtdf:| 33 [ffwlg?(t,f)dtdf].
tf

k=1ltf k=11=1
(I>k)

This shows that, in general, both WD signal terms and ITs contribute to the sig-
nal's energy via their integrals. An IT's "energy content” (measured by its time-
frequency integral) is not necessarily zero, which suggests that some physical sig-
nificance can be attributed to ITs.

Still, the oscillatory shape of ITs indicates that an IT's time-frequency integral
will generally be small as compared to that of signal terms: positive and negative
contributions will tend to cancel each other. It is interesting to study the case
where an IT's energy content is exactly zero [4]. Since the cross-energy E, , of two
signals x(t), y(t) equals the signals’ inner product (x,y),

Eyy = {x(t)y*(t) dt = (x,y),

an outer IT's energy content can be written as
[IWR(Hdedf = 2Re {actaayp }
t

Thus, a sufficient (though not necessary) condition for an IT to have zero energy
content is the orthogonality (x,x;)=0 of the interfering signals.

An important special case of orthogonality is time-frequency disjointness. We
call two signals x(t), y(t) time-frequency disjoint if their WDs occupy different
regions in the time-frequency plane and, consequently, do not overlap. Mathematic-
ally, this implies that the time-frequency supports R, of x(t) and R, of y(t) are
disjoint and that, consequently, W,(t,f) W,(t,f)=0. Note that two signals may be
time-frequency disjoint without being either time-disjoint (x(t)y(t) = 0 or, equivalent~
ly, px(t)py(t) = 0) or frequency-disjoint (X(f)Y(f) =0 or P, (F)P,(f) = 0). Such a situation
is shown in Figure 6 for the case of two chirp signals (i.e., linear FM signals) with
identical chirp rates: the WDs of the signals x(t) and y(t) are disjoint whereas the
signals themselves overlap in both time domain and frequency domain.

Signals which are time-frequency disjoint are also orthogonal (the converse need
not be true, as is demonstrated by the signals x(t) = sin(2nf,t) and y(t) = cos(2nf t)
which are orthogonal without being time-frequency disjoint). This follows immedi-
ately from Moyal's formula [1]

f{ W, (t,0) W, (¢,D) dtdf = |(x,y)|?
t

according to which W, (t,f)W,(t,f) =0 entails (x,y) =0. We then conclude, finally,
that the IT of two time-frequency disjoint signals has zero energy content.

In most practical situations, the exact version of time-frequency disjointness is
too restrictive and must be replaced by an approximate version. Indeed, it is well
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Figure 6. Time-frequency disjoint signals.

known that the WD cannot be strictly confined to a finite time-frequency region;
thus, the situation illustrated in Figure 6 will generally correspond to an approxi-
mate time-frequency disjointness. Take, for example, the case of two time-frequency
shifted Gaussian signals. The WD of a Gaussian signal is itself a two-dimensional
Gaussian which, strictly speaking, occupies the entire time-frequency plane; however,
it decays fast and is hence negligible outside a suitably chosen elliptical time-fre-
quency contour. This means that the WDs of two Gaussian signals overlap irrespec-
tive of the signals’ time-frequency distance; the signals are therefore not time-fre-
quency disjoint in the strict sense. On the other hand, the overlap is negligible
whenever the two Gaussians are sufficiently distant in the time-frequency plane:
when this is the case, the signals are "approximately time-frequency disjoint.” Our
discussion has been based on the exact version of time-frequency disjointness, but
the results are most significant in the "approximate” situation.

Beat effect and comb-filter effect. Even in those cases where an outer IT has
zero energy content, it may be physically significant in the sense that it can
be associated with a physically observable signal property. The link is again provided
by the marginal relations of the WD. We consider two simple situations which
illustrate this point. The first situation is that of two signal components which
overlap in the time domain but are displaced in frequency. In the simplest case,
the components x,(t) and x,(t) of the two-component signal x(t) = c, X, (t) + cpx,(t)
are complex sinusoids

x,(t) = eI?mfit x,(t) = ei27fat (4.4)

with different frequencies (f, # f,). The signal's instantaneous power (time-domain
energy density) is

Px(t) = lcgl® + [c,1® + 2c,llc,] cos (2mu,t+,,)

or, in more detail,



() = Ic,l?, pSNt) = e, |?, PP = 2lc,llc, cos (2mu,t+ @y, )

with ¢, =arg{c}-arg{c,}. The power shows an oscillation with frequency equal
to the difference v, =f,-f, of the signal frequencies f,, f,. If the signal frequencies
are close, then this oscillation effect can be interpreted as an amplitude modulation
of the two-component signal x(t); this is then known as the beat of the signal
components x,(t) and x,(t). Note that this beat is expressed by the power's IT
p{P(t) which can be related to the WD's IT WD(t,f) via the interference-term ver-
sion of the first marginal property

[WPD df = pD(o).

Indeed, the signal terms and the IT of the WD are

WS = I, |P8(F-f) , WD = |c,|? 8(F-f,) (4.5)
Wt = 2]c,|lc,| S(f-f,,) cos (2mu,t+o,,) . (4.6)
fa
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Figure 7. (a) The beat effect, (b) the comb-filter effect.

The WD signal terms are two time-invariant "spectral lines" at the signal frequen-
cies f, and f,. The outer IT, on the other hand, occurs at the center frequency f,, =
(f,+f,)/2 and oscillates in the time direction with the beat frequency v,,=f,-f,.
The signal’s WD and power are shown in Figure 7.a. We notice that in the WD, the
signal's beat is expressed by the IT, and only by the IT. The IT is thus recognized
to express a physically observable and significant signal property. In a certain
sense, the occurrence of outer ITs in the WD is enforced by the marginal properties:



if the WD did not contain an oscillatory IT like (4.6) but only the stationary signal
terms (4.5), then its integral with respect to frequency would be equally constant.
Since the power itself is oscillatory, the first marginal property [ W, y(t.0) df =
Px,y(t) could not be satisfied. Hence, the marginal property necessitates the
existence of an oscillatory IT in the WD. While the marginal property does not
completely define the IT's geometrical shape, it certainly defines the IT's oscillation.

The second situation is the time-frequency dual of the beat effect. We again
assume a two-component signal x(t) =c,x,(t) +c,x,(t), where the two signal com-
ponents x,(t) and x,(t) now overlap in the frequency domain but are displaced in
time. In the simplest case, the signal components are impulses at times t, and t,,

X,(t) = 8(t-t,) , X, (t) = 8(t-t,) .

This is indeed the time-frequency dual of (4.4) since the signal components of (4.4)
are impulses in the frequency domain. We here compare the signal's spectral energy
density

P (f) = lc,|? + |c,|® + 2lc,lle,lcos (2nt,,f-9,,) , ¢, =arg{c,} -arg{c,} ,

with the signal's WD

W, (t,f) = lc,|®8(t-t,) + Ic,|®8(t-t,) + 2]c,llc,| 8(t-t,,) cos (2mt,,f-¢,,) (4.7)

which is shown in Figure 7.b. The spectral energy density P, (f) oscillates with a
"frequency” which equals the time lag t,,=t,~t, between the signal's impulse loca-
tions t,, t,. Suppose that the two-component signal x(t) =c,x,(t) + c,X,(t) is inter-
preted as the impulse response of a linear time-invariant filter, with a "main peak”
c,8(t-t,) and an "echo” c,3(t-t,). Due to the oscillation of P, (f), the filter's frequen-
cy response is that of a comb filter. In the WD, the filter's comb filter property is
expressed by the IT

WD) = 2lc,llc,|8(t-t,,) cos (2rtf-e,,) (4.8)

which occurs at the center time t,,=(t,+t,)/2 and shows the "comb-filter" oscilla-
tion with "frequency” t,, =t,~t,.

The "beat effect” and the "comb-filter effect” are two basic situations which
occur frequently in practical signal analysis. For the sake of simplicity, we have
studied these situations with the assumption of extremely simple signal components
(impulses in the frequency or time domain). However, the results can be generalized
to the case of more complicated signal components. For the beat effect, it is
essential that the signal components overlap in the time domain and occur at
different frequencies; in the time interval of overlap, the power will then show an
oscillation which is expressed in the WD by the oscillatory IT. The comb-filter
effect is the time-frequency dual of the beat effect.



S. INNER INTERFERENCE

Outer ITs have been introduced as quadratic cross terms of the WD in the case
where the signal to be analyzed is multicomponent. We have seen that the most
important characteristic of outer ITs is their oscillation and partial negativity and,
further, that the ITs' time-frequency support and oscillation geometry depend in a
simple way on the time-frequency supports of the associated signal terms.

Monocomponent signals and inner ITs. Any given signal can be decomposed, and
thus considered as multicomponent, in an infinity of ways. However, there are sig-
nals where a "natural” decomposition is impossible. We shall call such signals
monocomponent. Even in the case of monocomponent signals, the WD generally
contains interference terms which obey the same geometrical laws as the outer
ITs considered so far; in particular, they are again oscillatory. These ITs of mono-
component signals will be termed inner interference terms. Inner ITs cannot be
considered as quadratic cross terms of the WD since an adequate multicomponent
signal model is not available.

We will now introduce inner ITs by studying a simple but characteristic example.
Let us start with the Gaussian signal x4 (t) = e~at?, a5 0. Clearly, the signal is mono-
component: we could, for example, decompose it by simply cutting through the
time axis; however, this would certainly be an entirely arbitrary and artificial
procedure which is in no way motivated by the signal itself. The Gaussian's WD,
shown schematically in Figure 8.a, is a two-dimensional Gaussian; it is strictly
positive and non-oscillatory.

inner IT

(a) (b)

Figure 8. Inner interference: (a) WD of Gaussian signal; (b) WD of "twisted” Gaussian
signal (occurrence of inner ITs).

signal term

Let us now apply a time-frequency "twist” to our Gaussian by introducing quad-
ratic frequency modulation. The new signal is

= je(v) = b3
x(t) = xg(t) e , e(t) = 3t°,
with the instantaneous frequency

A L . = 1 142
fitt) £ - o'(t) = 5-bt

being a quadratic function of time. The signal's WD is shown in Figure 8.b. We
realize that the (originally Gaussian) WD is itself twisted according to the curvature
of the instantaneous frequency; besides, there now exist oscillatory and partly



negative WD components. Indeed, the WD can be split into a "signal term" which
occurs along the instantaneous-frequency curve and an oscillatory “inner interfer-
ence term” located on the concave side of the instantaneous-frequency curve.

Geometry of inner ITs. The shape of the inner IT is consistent with the laws of
interference geometry as derived previously for outer interference. As in the
general case of outer interference, the laws of interference geometry must here be
applied locally as follows: midway between two time-frequency points (t,f,) and
(t,,f,) of the signal term, i.e., around the center point (t,,,f,,), the inner IT's local
oscillation "frequency” in the time (frequency) direction equals the frequency lag
v,, =f,~f, (time lag 7, =t,-t,) between the two "signal points” (t,f,) and (t,.f,).
The IT's local direction of oscillation is thus again vertical to the line connecting
the signal points. This, in fact, is exactly the same construction scheme as in the
case of outer interference; the only difference is that now both "signal points”
belong to one and the same signal component and, consequently, to one and the
same WD signal term.

In a certain sense, there is no difference between inner and outer interference:
the essential point is that the signal has energy contributions at different time-
frequency locations; these energy contributions will then “interfere” and cause an
oscillatory IT around the center point. For this mechanism, it is quite immaterial
whether these energy contributions correspond to different signal components
(case of outer interference) or to one and the same signal component (case of
inner interference). In the first case, there exists an explicit multicomponent
signal model; in the latter case, such a model cannot be found. In any case, ITs
are characterized by their oscillation and partial negativity. Indeed, the local nega-
tivity of the WD can be considered as an interference phenomenon.

As in the case of outer interference, a mathematical description of the geometry
of inner ITs seems to be difficult in general. However, an indication of the inner
IT's time-frequency support is given by the "inner interference formula" [2,4]

[Walt.D]* = [ Wo(t+3,£+3) Wy(t-3,f-3) drdu (5.0

which is derived from the outer interference formula (3.1) by letting x,(t) = x,(t) = x(t).
The inner interference formula expresses the high degree of symmetry and organiza-
tion inherent in (auto) WD surfaces; it shows that the WD values at different
points of the time-frequency plane are not independent and thus highlights the
redundancy of the signal representation WD.

We can use the inner interference formula (5.1) for answering the following
question: if the effective support of a WD signal term is the time-frequency
region Rg, what is the effective support R; of the associated inner IT? Based on
(5.1), the time-frequency region R; can be constructed pointwise as discussed in
Section 3 for the case of outer interference: if the two time-frequency points
(t,,f) and (t,f,) are inside Rg, then the center point (t,,f,,) will be inside Ry (see
Figure 9). This, in particular, implies that an inner IT always lies inside a hull
drawn around the signal term as shown in Figure 9.
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Figure 9. Pointwise construction of time-frequency support of inner IT.

6. THE STATIONARY-PHASE APPROXIMATION

In the case of sinusoids with amplitude modulation (AM) and frequency modula-
tion (FM), the method of stationary phase [23] can be applied for a characterization
of inner and outer ITs and for an analytical derivation of the WD's interference
geometry. This approach, which has been proposed in [2] and worked out in [5,7],
provides a mathematical foundation of the laws of interference geometry for a com-
paratively large and interesting class of signals.

Let us start with inner interference. We consider a complex monocomponent
AM-FM signal

x(t) = a(t) eI®® a(t)20 , ()R (6.1)

with instantaneous amplitude (envelope) a(t) and instantaneous phase o(t). We
assume that the instantaneous amplitude a(t) is slowly varying as compared to the
oscillatory FM factor e/®). For our discussion, the instantaneous frequency
fi(t) =ﬁq9'(t) will be most important since it closely corresponds to the geometry
of the WD surface (the signal term, and thus the signal's energy, is located along

the curve of instantaneous frequency).

The stationary-phase approximation. The WD of the AM-FM signal (6.1) can be
written as

W (tf) = [Litn &5 P 6.2)
with
L(t;1) = a(t+—;-) a(t——;-) , o(t,f;1) = <p(t+—;—)—q>(t——;‘)—27tf‘t .

The WD is thus recognized as an oscillatory integral which can be calculated in an
approximate way by the method of stationary phase [23]. To evaluate (6.2) at a given
time-frequency point (t,.f,), we define the function ®,(t) £ ®(t,,f,;t) and consider
the values t; for which the first derivative of ®,(t) vanishes. Let us suppose that
the equation @,(t) =0 has n solutions t; and that all “stationary points" 1; satisfy
®,(ty) # 0. The stationary-phase approximation of W, (t,,f,) is then given by



= ¥, (tp)

W, (t,.f,) »~ '21 Ry(t;) el Fo'™i (6.3)
i=

with

R, (1) & —M , ¥o() & @0) + I sign{0)()} . (6.4)
| @ ()] 4

We see that each stationary point t; yields a contribution to W, (t,,fo). If O ()=

does not have any solution, then the stationary-phase approximation vamshes
Wi(to.fo) ~ 0. If, finally, a solution 7; to ®,(t)=0 does not satisfy Q,(1;) #0, then
the corresponding contribution to (6.3) diverges and, in fact, the stationary-phase
approximation (6.3) is not valid. It is easily seen that the stationary points T
always occur by pairs: if a certain t is a stationary point, i.e., satisfies ®,(1) =0 and
®,(t) #0, then -1 is a stationary point as well. The number n of stationary points
7; is thus even, and the stationary-phase approximation (6.3) can be rewritten as

n/2
W, (t,f,) ~ 2 '21 R,(1;) cos ¥, (t;) , ;50 , (6.5)
i=

where now only the positive t; are included. This expression is consistent with the
real-valuedness of the auto-WD.

Interference geometry. We now give a geometrical interpretation of the relations
0,(t) =0, ®.(1) #0 specifying the stationary points 7; for a given time-frequency
point (t,,f,). These equations can be rewritten in terms of the instantaneous
frequency f;(t) and its derivative f;(t) as

fi(te+5) +fi(t-%
£, = 1(%*2);1(1:0 2) ’ fl-(to_,,%)-rlfl'(to_% . (6.6)

The first equation of (6.6) is simply a restatement of the WD's interference geome-
try. This is easily seen by letting

t, = to"'% ) t, = to'% ) f, = fi(to"'%) = fi(t), f, = fi(to_%) = fi(t,) ,

so that t,=t,, = (t,+t,)/2, t=1,,=t,~t,, and the first equation of (6.6) reduces to
fo=f,, = (f;+f,)/2. This can now be interpreted as follows: at a given time-frequency
point (t,,f;), the WD will be nonzero only if two points (t,,f,) and (t,,f,) on the
instantaneous-frequency curve f;(t) can be found such that (t,,f,) is the center point
(tyo.f,,) of (t,.f,) and (t,,f,) (cf. Figure 10). Any pair of points on the instantaneous-
frequency curve for which (t,,f,) is center point gives a stationary point it, with
T=1,, = t,~t,, and thus produces a distinct contribution to the (real-valued) station-
ary-phase approximation (6.5). For the stationary-phase approximation to be valid,
the second equation of (6.6), f;(t,) #f/(t,), must be satisfied; this equation simply
requires that the slopes of the instantaneous-frequency curve f;(t) must not be
equal at the points t, and t,.



(t,.f,) f;(t)
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[uy,l
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Figure 10. Consistency of stationary-phase approximation with interference geometry.

If the WD is evaluated on the instantaneous-frequency curve, i.e., (to.f,) is chosen
such that f,=fi(t;), then the symmetry conditions t,=t,,, f,=f,, have a trivial
solution t, =t, = t,, f, =f, =f, which corresponds to t=0: the points (t,,f,) and (t,f,)
here coalesce. Obviously, the requirement of different slopes is then not satisfied,
and the stationary-phase approximation is not valid.

Intuitively, it is rather clear that the WD signal term is located along the curve
of instantaneous frequency. The stationary-phase approximation (6.5) cannot be used
for calculating this signal term, but it allows an approximate calculation of the
inner IT. If (t,.f,) and (t,f,) are two points of the signal term, i.e., on the instan-
taneous-frequency curve, then the corresponding "interference point” is the center
point (t,.f,) = (t,,.f,,). If, for the sake of simplicity, we assume that no other pair
of points on the instantaneous-frequency curve has the same center point, then
the stationary-phase approximation has only a single contribution,

W, (t,5,f,,) & 2Rq(t,,) cos ¥y(t,,) =

_ a(t,) a(t,)
15| £ie) - Fice,) |

cos[ @(t,) - o(t,) - 2nf,,T,,+ ¢, | 6.7

with @,= Zsign{f(t,)-f{(t,)}. This is an approximate expression for the inner IT
at the center point (t,,,f,,). We note, in particular, that (6.7) is proportional to
a(t)) a(t,), the product of the instantaneous signal amplitudes at the interfering
points t, and t,. Furthermore, (6.7) is inversely proportional to |fi(t,) - £i(t,)]|, the
difference between the slopes of the instantaneous-frequency curve at t, and t,:
increasing parallelism of slopes yields a larger WD value at the center point (t,5.f,5)
In the case of exact parallelism, fj(t,) =f{(t,), the stationary-phase approximation
(6.7) is infinite and not valid.

Apart from the location and local amplitude of the IT, also the IT's oscillation
can be derived by means of the stationary-phase approximation (6.7). To obtain an
indication of the local behavior of the WD around the center point (tyo.f15), we
replace t, by t,+at and f, by f +af, where |at| and |af| are assumed to be small. We
consider t,, as fixed and both a(t) and f{(t) as locally constant around t, and t,.
Furthermore, we use the linear approximation p(t+at) & @(t) + ¢'(t) At = @(t) +2nf,(t) at.
With this, (6.7) yields



)al(t
W, (t,+at, f,+af) ~ 2 alty alt,) cos [ 21 (v At - 1,5 AF) + g ]

Y3 filt)-£i(t,)|

with 1, =t,-t,, v, = f,-f, = f5(t,)-f;(t,), and ¢y = (t)-(t,)-2nf 1., + ¢,. We recog-
nize an oscillation as predicted by the laws of interference geometry: around the
center point (t,,,f,,), the local oscillation "frequency” in the time (frequency) direc-
tion equals the frequency lag v,, = f,-f, (time lag t,,=t,-t,) between the inter-
fering points (t,f,) and (t,,f,); the direction of oscillation is again vertical to the
line connecting these points. This geometry is illustrated in Figure 11.

local direction
of oscillation

(t.f,)

(t,.f,)
Figure 11. Local oscillation of IT.

Outer Interference. All of the results derived above for inner interference can be
reformulated for the case of outer interference. We assume an N-component
signal with signal components of the AM-FM type,

N
x(t) = 3 xic(®) X (B = ay(t) eI FKE (6.8)
For the sake of simplicity, the signal components’ coefficients cix are assumed to

be included in the instantaneous amplitudes a;(t) and the instantaneous phases
¢k(t). The outer IT of the k-th and 1-th signal component is

Wid(t.f) = 2Re {Wagn(t.H} = 2Re{fLig(t;0exIF g }
with
Lkl(t;t) = ak(t""-;—) al(t";—) , le(t,f; ) = (Pk(t""';_) - (Pl(t_";_) - 2nf1

The outer IT is thus expressed as the real part of an oscillatory integral which can
again be approximated by means of the stationary-phase method. As the derivations
are completely analogous to the previously discussed case of inner interference,
we shall not further elaborate the case of outer interference. Similar to the case
of inner interference, the stationary-phase approximation is again consistent with
the local application of the laws of interference geometry as described in Section 3.

Real-valued signal. A real-valued AM-FM signal

x(t) = al(t) cos o(t)



can be written as a two-component complex-valued AM-FM signal,

x(t) = a,(t) ejq’i(t) + a,(t) ei®2(t)

with a,(t) = a,(t) = 1Ea(t:), ?,(t) = o(t), and @,(t) =-o(t). It can thus be regarded as a
special case of the multicomponent signal (6.8). The instantaneous frequencies of
the two signal components satisfy f;,2(t) =-f; ,(t). This symmetry with respect to
frequency is also visible in the signal terms and the outer IT of the WD: it is easily
shown that Wi(t,6)= Wi (¢,~f) and WP(t,-0) = WP(¢,p).

7. SINGULARITIES OF INTERFERENCE TERMS

According to (6.4), the stationary-phase approximation (6.3) diverges when a
stationary point 1t is such that @/(tr) =0. This is especially the case when t= 0, i.e,,
when the time-frequency point of evaluation, (to,f,), lies on the instantaneous-fre-
quency curve f = fi(t).

As shown in Figure 12, this curve corresponds to the exact border between two
regions with dramatically different behaviors: within the shaded area, two distinct
stationary points it exist, leading to a non-zero stationary-phase approximation,
whereas outside this area, no stationary point exists and the approximated WD is
negligible. This sudden change in behavior which occurs when passing through
the boundary of the shaded area (and which corresponds to the coalescence of two
stationary points) is expressed by the local divergence of the stationary-phase
approximation; following [24,6,7], it can be viewed as a "catastrophe” of the WD.

£,(t)

Figure 12. Stationary-points area.

Catastrophes of WD. Catastrophe theory (CT) [25], which provides a qualitative
framework for describing sudden changes in systems, can be used for evaluating
oscillatory integrals such as (6.2). In a very general manner, CT states that the
qualitative behavior of an oscillatory integral only depends on the singularities of
the phase function ®,(t), i.e., on how the successive derivatives of ®,(t) vanish.
Since the desired description is essentially qualitative, the approach of CT is to
replace the true phase function by a standard ("generic") phase function which
possesses the same structure concerning singularities.

This results in both a qualitative description, which holds even when the station-
ary-phase approximation breaks down, and a classification of possible geometrical



structures, which only involves a reduced number of typical cases associated to
"elementary” catastrophes. The number of these typical cases depends on the
dimension of the problem, i.e., on the number of parameters controlling the phase.
In the case of the WD considered here, ®,(t) = ®(t,.f,;t) depends on one variable,
the integration variable 1, and two parameters, the evaluation time t, and frequency
fo. As a remarkable consequence, CT tells us that only two elementary catastrophes
may occur and lead to essential contributions [24]. This corresponds to the follow-
ing situations associated with the successive derivatives of ®.(1).

(i) Stationary-points areas. Stationary-points areas comprise those points (t,,f,)
for which there exist two distinct values £t such that

o, (1)=0 , O, (1) #0 .

This is just the case where the stationary-phase approximation holds (cf. Section
6); hence, the stationary-points area is the shaded region in Figure 12.

(1) Fold lines. Fold lines, the first elementary catastrophe of the WD, consist of
those points (t,,f;) for which

(=0, Q@UD=0, U0,

which implies that

fi(to+3) +fi(t-3)
2

Thus, fold lines consist of chord midpoints for which the slopes of f;(t) at the cor-
responding chord endpoints are equal and the curvatures of f;(t) at these endpoints
do not have equal magnitudes and opposite signs. As shown in Figure 13, there are
two types of fold lines: (a) the instantaneous-frequency curve f=f,(t), for which
1=0, and (b) a "ghost curve” f=fj(t), for which t#0. This ghost structure is
obviously related to the inner interference mechanism.

£, = o filr3) = fi-3) . f(*3) # -f'(t-%) . (7.0

Figure 13. Fold lines.

In the vicinity of f;(t), a "transitional” approximation of the WD can be obtained
by expanding the instantaneous phase ®,(1) to the third order, which corresponds to
expanding the instantaneous frequency f;(t) to the second order around t, [2]. This
leads to

Wt » W0 x [- 541 (5 (E-£w))] with =0 = YLY (7.2)



where W, (t,f) is the WD of the AM part a(t), ¥ denotes convolution with respect
to the frequency variable, and

Aily) = ie“y“*“s"”’ du (7.3)

is the Airy function [26], the characteristic function of the fold catastrophe (see
Figure 14). From this result, we conclude that, locally, the WD of an FM signal
generally exhibits a fast decay on the convex side of fj(t) and oscillatory fringes
(inner interference terms) on its concave side. Note that the Airy-function approxi-
mation does not diverge on fj(t); it is thus a refinement of the stationary-phase
approximation. Furthermore, it can be checked from (7.3) that the Airy function
has its centroid, but not its maximum, located at the origin y=0 (cf. Figure 14.b).
This implies that the frequency f=f;(t) corresponds to the "center of gravity” of
the WD with respect to the frequency variable but does not equal the maximum of
the WD, which is slightly displaced towards the concave side of f;(t).

(a) (b)

Figure 14. (a) Quadratic FM model, (b) Airy function.

The Airy-function approximation (7.2) depends (via the parameter =(t)) on the
local curvature f;'(t) of f;(t). If this curvature vanishes (local linear FM approxima-
tion or local chirp approximation), then insertion of the limit identity

. 1 ,./Y\ _
lim £ Ai(3) = 3()

into (7.2) yields

W, (t.f) ~ W(t,f-fi(t)),
which is exactly the WD of a linear FM signal (chirp signal) with amplitude modu-
lation a(t).

(iii) Cusp points. Cusp points are the second elementary WD catastrophe. They
are characterized by

o, (=0 , o(v)=0 , o, (1) =0 o, () £0



and are hence singularities of fold lines (see (7.1)) for which

£'(t+3) = -£'(t-3

Since the curvatures of f;(t) at the chord endpoints must now have equal magnitudes
but opposite signs, cusp points can only occur on "ghost" fold lines. An example
(corresponding to a two-component signal) is given in Figure 15.

40
C fi(v)

Figure 15. Cusp point (C).

At cusp points, the WD is peaked and its local geometry is governed by a two-
dimensional special function called the Pearcey function,

: —fu2 4
Pe(t,f) = J-ej(tu fu2/2+ut/8) du ,
u

which is characteristic of the cusp catastrophe.

The three situations discussed - stationary-points areas, fold lines, and cusp
points - essentially exhaust the possible situations in the two-parameter case of
the WD. We note that points of higher-order singularities, which are midpoints of
an infinity of chords, could also be considered. These occur in the case of perfectly
symmetrical instantaneous-frequency curves f;(t), and at these points, the WD is
highly peaked (see Figure 16). An example is the case of a linear FM signal. How-
ever, such situations are unstable in the sense that the slightest change in the per-
fect symmetry structure destroys the high-order singularity and reduces it to one
of the previous situations.

Figure 16. Points of higher-order singularities (H).



8. SAMPLING AND ALIASING

If signal processing is performed on a digital computer, then discrete-time sig-
nals have to be used, and a discrete-time version of the WD has then to be found
which operates on the discrete signal samples. The definition of such a discrete-
time WD is not straightforward, and several approaches are possible. However, a
basic requirement is that the discrete-time WD is a time-sampled version of the
continuous-time WD, where the sampling is done "properly” such that the continu-
ous-time WD can be recovered via the usual reconstruction procedure. In this
section, we study aspects of the WD's interference geometry which are relevant to
the definition of a discrete-time WD.

Minimal WD sampling rate. We first discuss the minimal rate at which the WD
must be sampled in the time direction. Let us consider signals x(t) which are
bandlimited to frequencies |f| < F/2; the signals' total bandwidth is thus F. (We have
assumed a signal band centered at the frequency origin f = 0; however, our discussion
can easily be reformulated for other band locations, e.g., 0 <f<F.) According to
the sampling theorem, the minimal sampling rate which allows the signal x(t) to
be recovered from its samples is the Nyquist rate Ry =F.

In order to determine the minimal time sampling rate for the WD, we have to
investigate the WD's variation in the time direction. This time variation is governed
by the oscillatory ITs of signal components displaced with respect to frequency.
According to the WD's interference geometry, the IT oscillation frequency in the
time direction equals the frequency distance of the interfering signal components.
The fastest oscillation will hence occur when the signal components’ frequency
distance is maximal, i.e., when the signal components are located at the band
edges +F/2. This "worst case” situation can be modelled by the signal components

:n. F—t _s:n. F-g
x,(t) = x(t) e F ¢ X, () = xo(t)e 2Tz ¢ (8.1)

where x,(t) is a narrowband lowpass signal bandlimited to [f| <s/2. According to
(8.1, the signals x,(t) and x,(t) are obtained by shifting the lowpass signal x,(t) to
the band edges *F/2 of our signal band |f| <F/2 (see Figure 17). Note that x,(t)
and X,(t) are properly bandlimited to |f|<F/2 and can thus be sampled at the
Nyquist rate Ry =F.

X, (f)

T
-F/2 0

Figure 17. "Worst case” signal components with fastest IT oscillation.



The outer IT of the signal components x,(t) and X, (t),

WP (f) = 2 W, (£, cos[2n(F-9t] , (8.2)

oscillates in the time direction with frequency F-s. To sample (8.2) with respect to
time such that the sampling condition is met, the sampling rate Ry must satisfy
Rwp > 2(F-¢) which tends to 2F for £¢~0. This shows that sampling the WD at the
Nyquist rate, Ry =F, is not sufficient: the WD must be sampled with respect to
time at (at least) twice the Nyquist rate.

WD aliasing as an interference phenomenon. We next consider the discrete-time
version xg(n) = x(nT) (with n¢Z) of a continuous-time signal x(t). The discrete-time
signal x4(n) is derived from x(t) by sampling with sampling period T or sampling
rate R=1/T.

The most popular definition of a discrete-time WD (DTWD) is [27]

(d) — ~j4TO©
W (00 = 2 1’Zr;xd(n+m) x}(n-m) 757E™ |
where n is the discrete time index and © is a normalized frequency parameter. It
~ can be shown [27] that W,(‘:ID (n,©) is a sampled (with respect to time) and periodic
(with respect to frequency) version of the continuous-time WD W, (t.f),

Wiq®@© = RIW,[nT,R(6-k'3)], R=UT. 8.3
2

The sampling period T is that of the signals themselves; signals and WD are thus
sampled at the same sampling rate R=1/T. On the other hand, an inconvenient in-
consistency exists with respect to frequency: while the Fourier transform

Xa(® & 3 xqn) ei2m®n _ p > X(R-(©-Kk) (8.4)

of the discrete-time signal x4(n) is derived from the Fourier transform X(f) of the
continuous-time signal x(t) by periodic continuation with frequency period 1 (corre-
sponding to the sampling rate R), the DTWD (8.3) is derived from the continuous-
time WD by periodic continuation with frequency period 1/2 (corresponding to one
half of the sampling rate, R/2). This means that, in general, the DTWD will feature
aliasing with respect to the frequency variable. The aliasing components in (8.3) are
given by the terms with k'=2k+i,

a(n,®) = R W, [nT,R(6-(2k+D3)] = R W, [nT, R-(©-(k+3))]. (8.5)

We now show that the aliasing components a;(n,0) can be interpreted as an
interference phenomenon. In order to characterize the effects of signal sampling
within the framework of the continuous-time WD, we use the following "continuous-
time" version of sampling [28],

xs(t) & x(t) 2 8(t-nT) = T xq(n) 8(t-nTD) ,
s n n



where the signal samples x4(n) appear as the weights of sampling pulses 5(t-nT)
occurring at the sample instances t=nT. The Fourier transform of xg(t),

Xs(f) = R E X(f-kR) , (8.6)

is a periodic version of the Fourier transform X(f) of x(t), with period equal to the
sampling rate R=1/T. Indeed, the Fourier transforms X (f) in (8.6) and X4(0) in
(8.4) are equivalent, X4(0) =X (RO). Transforming (8.6) into the time domain
shows that x(t) can be interpreted as a multicomponent signal comprising an
infinite number of signal components x(t) = Rx(t)eJ2™kRt which are derived from
the original signal x(t) via frequency shifts by integer multiples of the sampling
rate R. The effects of signal sampling on the WD can now easily be described
invoking the WD's interference geometry: two versions x;(t) and x;(t) of x(t) shifted
to frequency locations f; =iR and f; =jR, respectively, cause an outer IT of the WD
which is located around the center frequency fi;= f—‘;—fj =(i+ j)%.

Two cases have now to be distinguished: if i+j is even, i—+2—=k with ke¢Z, then
the center frequency fj; coincides with the frequency location kR of the signal com-
ponent xy(t). The IT Wg)(t,f) will then correspond, with respect to its frequency
location, to the spectral component X(f-kR) of Xs(t). If, on the other hand, i+ is
odd, -i-:zi=k+1/2 with k ¢Z, then the center frequency fi; equals the "half-integer”
frequency location (k+1/2)R. The IT Wi(jn(t,f) then does not correspond to any
spectral component of xg(t) - rather, it is located midway between the adjacent
spectral components X(f-kR) and X(f-(k+1)R) of x(t). In this latter case, which is
illustrated in Figure 18, the IT forms part of that aliasing term of the WD which is
located around frequency (k+1/2)R.

X(f) 4

kR (k+3)R (k+DR

Figure 18. Equivalence of aliasing and interference.

Let us take a closer look at the way WD aliasing terms are made up by outer
ITs. To produce the k-th aliasing term ay(n,0) of (8.5), i.e., the aliasing term around
frequency (k+1/2)R, we have to collect all ITs with center frequency f;;= (k+1/2)R.
Two signal components x;(t) and x;(t) will create an outer IT at f;; = (k+1/2)R if
i=k+m and j=k-m+1 with m¢Z; their IT then is

Wi, kems1 (6.0 = 2R W_ (¢, f~(k+1/2)R) cos [2n(2m-DRt] .



Adding all these ITs yields
S Wittm, keme1(tf) = 2R* W, (t, f-(k+1/2)R) 3 cos [2n(2m-DRt] =
m m
- T T
= R I (0™ W(m3, f-G+1/2)R) 5(t-mE) . (8.7)

It is interesting that the continuous-time WD is here sampled with sampling period
T/2, i.e., at sampling instances which are spaced twice as fine as the sampling
instances of the signal [28]. The signal's sampling instances nT are obtained for m
even, m=2n; the weights w{¥(f) of the sampling pulses 5(t-nT) of (8.7) are here
given by

wi(f) = R W, (nT, f-(k+1/2)R) . (8.8)

At these sampling instances, the discrete-time WD W,(,g)(n,@) is defined. Comparing
the k-th aliasing term a;(n,0®) (see (8.5)) of W,(,g)(n,@), i.e., the aliasing term located
around frequency © =k+1/2, with (8.8), we finally recognize that this aliasing term
is equal to the IT weight wlK)(f),

a(n,® = wik(re).

This shows that the aliasing components of the DTWD can in fact be interpreted as
ITs caused by interference of the various spectral components of the sampled signal.

PART IT - RELATED TIME-FREQUENCY REPRESENTATIONS

In the context of the WD, certain other time-frequency representations are of
theoretical and practical interest. Just as the WD itself, these representations have
bilinear (quadratic) structure and will contain outer ITs whenever the signal under
investigation is multicomponent. The interference principle can again be extended
to inner interference in the case of monocomponent signals. However, the geometry
of ITs may be quite different from the interference geometry of the WD. The pur-
pose of Part II of this chapter is to investigate the similarities and differences of
the interference geometries of various representations.

Section 9 studies the generalized Wigner distribution (GWD) and shows that,
due to the GWD's interference geometry, GWD results are typically more difficult
to interpret than WD results. The interference geometry of the ambiguity function
is considered in Section 10; the results obtained will form a basis for discussing
smoothed WD versions in Section 13. In Section 11, the class of shift-invariant
time-frequency representations (Cohen's class) is considered, and the oscillation of
ITs is shown to be a common characteristic of this class. The subclass of shift-
scale-invariant time-frequency representations is shown in Section 12 to possess
some remarkable properties with respect to interference geometry. Finally, Section
13 considers smoothed versions of the WD and discusses specific representations
like the smoothed pseudo Wigner distribution, the spectrogram, and the Choi-
Williams distribution.



9. GENERALIZED WIGNER DISTRIBUTION

The generalized Wigner distribution (GWD) is a family of bilinear time-frequency
representations which can be considered as a natural generalization of the WD, with
the WD being itself a special case. Most of the desirable mathematical properties
satisfied by the WD are satisfied by the GWD as well. For this reason, the GWD
family is theoretically an interesting alternative to the WD. From a practical view-
point, however, the GWD is generally inferior to the WD since GWD results are
typically much more difficult to interpret than WD results. It is the purpose of
this section to demonstrate that this inferiority of the GWD is a direct consequence
of the GWD's interference geometry which, in general, shows characteristic differ-
ences from the interference geometry of the WD.

Definition of GWD. The GWD is defined as [29,2,7]
W,(ca,),(t,f) = [ x(t+a*t) y*(t-a~1) e 27T gr = £ X(fro~u) Y*(F-atv) e2™t gy
? T

where a*+a~=1. We may thus write a*= 1§+oz, o= %—-a with a real-valued a which
is the parameter of the GWD family. Obviously, the WD is a special case of the
GWD; it is obtained with the symmetrical choice a=0 for which a*=a" =1/2.
Another special case is the Rihaczek distribution (RD) [30,29,2]

R, ,(t.f) = [ x(t+1) y*(t) €327 dr = X(f)yX(t) &2
’ T

for which «=1/2 or a*=1 and «™=0. As a practically important difference from the
WD, we note that auto-GWDs (with the exclusion of the WD case «=0) are not

real-valued.

Since the auto-GWD is a quadratic signal representation, it obeys the same quad-
ratic superposition principle as the WD. For an N-component signal with signal
components ¢ X (t), the auto~-GWD again consists of N signal terms

WD) & ol Wt
and (¥ )=&1\2T_-l) ITs

WPPEH 2 e W (6.0 + i WL 1) (1)

where it is easily shown that

(-] — (—oc) ¥
Wi ltf) = Wi, (6F)
We also note that the GWD satisfies the marginal and shift-invariance properties
which have been discussed in the context of the WD in Section 2.

Interference geometry of GWD. The interference geometry of the GWD depends
on the GWD parameter a. To study this dependence, we first consider the outer
interference of two time-domain impulses x,(t)=8(t~t,) and X,(t) = 3(t-t,). Signal



terms and IT are here obtained as
WS e) = e, s(t-t,) , WS ) = e, s(t-t,) ,
WP P, = le,lle,l[ S[t-(t,-ar,,)] T2 212) 4 gle (¢ 1ar )] i(2mriaf-13)]

with ¢, =arg{c,} -arg{c,}. This is illustrated in Figure 19. We note that the signal
terms are independent of the GWD parameter a; consequently, they equal the
signal terms of the WD (cf. (4.7)). The IT, on the other hand, depends on «; it con-
sists of two impulsive subterms located at time points t,, t at,,. With respect to
the frequency f, the IT subterms oscillate with "frequency” Ty, = t,~t,; this oscilla-
tion is independent of «. The IT oscillation is the same as in the WD case; specific-
ally, it will be faster for increasing time distance |t,,| between the interfering signal
components. A difference from the WD case is that the oscillation now corresponds
to a complex sinusoid. We recognize that the GWD parameter a determines the
location of the IT: for larger |a|, the IT subterms will be more distant from the
center point t,,= (t,+t,)/2.

fa
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Figure 19. Signal terms and IT of GWD for the superposition of two impulses.

In the WD case (a¢=0), the IT subterms coalesce at the center point t,,, and we
obtain a single real-valued IT (cf. (4.8))

WDAt,f) = 2]c,|lc,l 8(t-t,,) cos (2rt,,f-0,,) .
Another interesting special case is the RD (x=1/2) for which the IT subterms occur

exactly at the signal (and thus signal term) locations t, and t,,

20 = lellegl [ 8(t-t) 212601 o g(pg ) I (2mrafoes)]

2

Dual results are obtained for the interference of two complex sinusoids (frequency-
domain impulses) x,(t) = el27f1t and x,(t) = eJ27f2t,



A joint time-frequency description of the GWD's interference geometry can again
be obtained by considering the case of two time-frequency shifted versions x,(t) =
Xo(t-t,)eIZ7FLE, X (t) = x,(t-t,)e2™F2t of a signal x,(t). In this case, the GWD's signal

terms are

WO = ey Wte-t,f-f) . WO = I f Wt-t,,f-f,) , (9.0
and the IT is obtained as

wE D = 9.2)

= leylle,) [ Fr(t-(tpmaty,), f- 6 pran,,)) + F(t-(t an,y), f-(F,p-av,,) ) ]

where

FELE & W) etI[2rvmet-ma) + @] 9.3)
with

93, = arg{c}-arg{c,}+2mu,,(t, ,Fat,,) .

(tymatyy, Fiptan,)

(t 4oy, fmau,,)
Figure 20. Interference geometry of GWD (schematic).

The geometry of this result is shown in Figure 20. Due to the GWD's shift invari-
ance, the signal terms (9.1) are simply time-frequency shifted versions of the GWD
of the signal x,(t). While the exact shape of the signal terms thus depends on the
GWD parameter «, the signal terms’' overall time-frequency locations are independ-
ent of o and always equal the true time-frequency locations (t,,f,) and (t,,f,) of the
interfering signals.

The time-frequency location of the IT, on the other hand, depends on «: accord-
ing to (9.2), the IT consists of two subterms located around time-frequency points
(t,~aty,,f,,+av,,) and (t ,+at,,,f,,~av,,). The distance of the IT subterms from the
center point (t,.f,,) is thus proportional to |a|. Eq. (9.3) shows that the IT subterms



are oscillatory, where the oscillation characteristic is identical with that of the WD.
Specifically, the oscillation "frequencies” in the time and frequency directions again
equal the frequency lag v,, and time lag t,,, respectively. Similar to the WD case,
the envelopes of the oscillatory IT subterms are given by the GWD of x,(t).

In the special case of the WD, the two IT subterms coalesce and yield a single
real-valued IT which is located around the center point (t,,.f,,) (cf. (3.3)). In the
case of the RD, the IT subterms are located around the time-frequency points (t,f,)
and (t,f,); signal terms and IT subterms thus form the corners of a rectangle with
center point (t,,,f,,) and lateral lengths t,,, v,,. Figure 21 compares the interference
geometries of the WD and the RD.

(b)

Figure 21. Interference geometries of (a) the WD and (b) the RD (schematic).

Interference formulae and inner interference. In general, the interfering signals
will not be equal apart from time-frequency shifts. The GWD's interference geometry
is still valid in the general case, but it has to be applied locally as explained in
Section 3 for the WD. A partial mathematical foundation of this local application
of interference geometry is provided by the GWD's outer interference formula [7]

W O =[] W (trart, framv) W (t-a t, F-a*v) dedy (9.4)

which is a generalization of the WD's outer interference formula (3.1). With
t, = t+at, t, =t-at, f, = frav, f,=f-atv

or, conversely,

t = t,-at, , f=f,+au,, t=1,, v=vy, ,

the GWD's outer interference formula implies the following: if the auto-GWDs
Wg“:)(t,f) and W;‘;)(t,f) are nonzero around the time-frequency points (t,f,) and
(t,.f,), respectively, then the cross-GWD W,(“f’)xz(t,f) will generally be nonzero
around the time-frequency point (t,,-ar,,,f,,+av,,). Since the outer IT of the signals
x,(t) and x,(t) is given by W@ ®D(¢ f) = W;"i‘?,‘z(t,f) +W§‘°;),xi(t,f), this can be interpret-
ed as follows: two points (t,,f,) and (t,,f,) of the GWD signal terms W;‘;‘)(t,f) and
Wg“;)(t,f), respectively, create two interference components around the points

(tyo-at,,,fitav,,) and (t,,+at,,,f,,-av,,). The geometry of signal and interference



points equals that of Figure 20. As in the WD case, the GWD's interference formula
characterizes the location of ITs but does not describe the ITs' oscillation.

So far, the interference geometry of the GWD has been discussed for outer inter-
ference. However, as in the special case of the WD, it also applies to inner inter-
ference. An indication of this fact is given by the GWD's inner interference formula

IW,(“")(t,f)l2 = %f i'; W (tratt, fra~v) WO (t-om 1, f-atu) dtdu

which is derived from the outer interference formula (9.4) with x,(t) = x,(t) = x(t).
Analogously to the WD case, the geometries of inner and outer interference are the
same; the only difference lies in the fact that, for inner interference, the interfering
time-frequency points (t,,f,) and (t,,f,) belong to one and the same signal component
(or GWD signal term).

Also for the GWD, the stationary-phase method can be used for an analytical
derivation of the laws of interference geometry when the signals are of the AM-FM
type (6.1). This is a straightforward extension of the discussion given in Section 6
and does not furnish any new aspects. We will not, therefore, enlarge on this
point and refer the reader to [7] for details.

Optimality of WD. As demonstrated above, the GWD's interference geometry
critically depends on the GWD parameter . The WD case («¢=0) is optimal in the
sense that the ITs here occupy a time-frequency region with minimal area; the ITs
of the WD have thus maximal time-frequency concentration. This optimality of the
WD with respect to interference geometry is the reason why WD results are gen-
erally more easily interpreted than the results of other GWD representations.

We shall consider a simple example where the superior performance of the WD
is most pronounced. The signal to be analyzed is the linear FM (chirp) signal

. C
x(t) = a(t) el27zt? (a(t)20, ceR)
with instantaneous frequency

fi(t) = ct .

We assume that the AM part a(t) is a lowpass signal whose effective time support
is the interval [t,,t,]. The WD of x(t) is obtained as

W, (t,f) = W_(t,f-ct) .

Since a(t) is a lowpass signal, W, (t,f) will be concentrated around f=0, and W,(t,f)
will thus be concentrated along the instantaneous-frequency line f;(t)=ct. This
behavior is illustrated in Figure 22.a. The interference-geometric interpretation
according to Figure 21.a is that all inner IT components fall onto the instantaneous-
frequency-line, and thus onto the signal term; therefore, a separate IT does not
occur.

It is clear that this ideal behavior cannot be obtained with GWDs other than the
WD. As an example, the RD of x(t) is shown in Figure 22.b. Using the stationary-
phase method, the following approximation can be derived,



(a) (b)

Figure 22. (a) WD and (b) real part of RD of chirp signal.

R (t,) » C a(t)a(f)eTEE-et®

where C is a complex constant. We see that R, (t,f) is oscillatory and effectively
concentrated inside the time-frequency rectangle [t,,t,]x[ct,,ct,]. In the frequency
direction, the oscillation grows faster with increasing distance between f and
f;(t) = ct. This behavior is consistent with the interference geometry of the RD as
shown in Figure 21.b: the inner ITs fill the rectangular time-frequency region de-
fined by the end-points (t,,ct,) and (t,,ct,) of the chirp's signal term.

This example shows that the results obtained with the WD and other GWDs
may be dramatically different; this difference is due to the different interference
geometries of these representations. Our discussion also shows that the real part
of the RD (also known as "instantaneous power spectrum”) is by no means free of
interference, and thus refutes an incorrect claim made in [31].

10. AMBIGUITY FUNCTION

In this section, we study the ambiguity function (AF) which is the Fourier trans-
form of the WD. While the time-frequency representations considered so far (WD
and GWD) can be interpreted as time-frequency energy distributions, the interpreta-
tion of the AF is that of a time-frequency correlation.

As may be expected, the AF's interference geometry is totally different from the
interference geometry of the WD or GWD. The interest of the AF for our discussion
stems from the fact that, being the Fourier transform of the WD, the AF allows a
convenient description of smoothed WD versions like the pseudo Wigner distribu-
tion, the spectrogram, and the Choi-Williams distribution. This description will be
used extensively in Section 13.

Definition and properties. The AF is defined as [29,14,32,33]

Ay (T,0) a7 x(t+%)y*(t,-%) g2t g0 {X(fq.%)y*(f_%) gi2mf df |
t



where t and v denote the time lag and frequency lag, respectively. The AF is essen-
tially the two-dimensional Fourier transform of the WD,

Ayt = I Wy (t.f) T2V Dae af (10.1)
t

Due to this duality relation, there exists a corresponding property of the AF to
each property of the WD. For example, the WD's shift invariance property (2.2)
transforms into the following version of shift invariance: if

Xo(t) = x(t-t,) ef2™fot | Yolt) = ylt-t,) e}27fot
then
Axo’yo(t’U) = Ax,y(tﬂ)) ejz'l't(fo‘c—tou) . (10.2)

We see that a time-frequency shift of the signals causes the AF to be modulated
by an oscillatory factor, instead of being shifted by t, and f, as in the WD case.
As a further example, the WD's hermiticity W, ,(t,f) =W:,y(t,f) transforms into

Ay () = Ai,y(-t,—u);

it thus follows that auto-AFs are generally complex-valued but satisfy the symmetry
property A*,i(-t,-u) = A, (t,v).

Since the auto-AF is a quadratic signal representation, the quadratic superposition
principle applies: for an N-component signal with signal components cyx,(t), the
auto-AF consists of N signal terms

A(lf)(t,u) 2 g2 Ay (T,0)

and (’5’) =&§:2 ITs

AP 2 ocf Ay, x(TV) + clcl*iA,q,Xk(t,u) =
CiCF Asg 2TV + Crcf A% o (=1,-0) (15k) ,

which satisfy the symmetry property of the auto-AF
A(lg*(-t,-u) = A(lzl)(t,u) .

Interference geometry. The Fourier transform relation (10.1) connecting the WD
and the AF holds for signal terms and ITs separately,

A = [ ! Wt,p) e 2D geqr . AD(ru) = 1] WiD(t,f) 3270t ge gf |
t t
and thus relates the signal terms (ITs) of the AF with the corresponding signal

terms (ITs) of the WD. From the properties of the Fourier transform, there follows
a duality of the interference geometries of the WD and the AF.



Specifically, if a WD signal term occurs around the time-frequency location
(t,.f,), then the corresponding AF signal term will be located around the origin
=0, u=0 of the (t,u)-plane since the WD signal term is essentially non-oscillatory.
Furthermore, the AF signal term will oscillate in the t direction with frequency £,
and in the v direction with "frequency” t,.

An IT of the WD caused by WD signal terms located around (t,,f,) and (t,,f,)
occurs around the center point (t,,f,,); the corresponding IT of the AF will hence
oscillate in the t direction with frequency f,, and in the v direction with "frequency”
ty,. Furthermore, the IT of the WD oscillates in the t direction with frequency tu,,
and in the f direction with "frequency” it,,; the corresponding IT of the AF will
hence be located around the points (t,,,u,,) and (-t,,,-v,,) in the (t,u)-plane.

We now illustrate these general laws by considering the simple situations pre-
viously discussed in the context of the WD and GWD. We first study the interfer-
ence of two time-domain impulses x,(t) =3(t-t,) and x,(t) = §(t-t,). The AF's signal
terms and outer IT are here obtained as

A = |, |? s(r) e7I2TtY A = lc,|? 8(v) eTi2mtay
APw) = Icllc,l [8(1-112) "2tz ures,) | 8(t+t,,) ej(-27tt121)-<p12):|

with @, = arg{c,} - arg{c,}. With respect to the time lag variable t, the signal terms
are impulses located at the origin t=0; with respect to the frequency lag variable
v, they oscillate with "frequency” equal to the signals’ time locations t, and t,,
respectively. The IT consists of two impulsive subterms located at time lags t,,
and -t1,,, where |t,,|=|t,~t,| is the distance between the signals’' time locations.
The IT subterms, too, oscillate with respect to vu; the oscillation "frequency” is the
signals’ center time t,, = (t,+t,)/2. This is illustrated in Figure 23. Dual results are
obtained for the case of two complex sinusoids (frequency-domain impulses) x,(t) =
ei27fit and x,(t) = el27f2t,

A(1S) U A(S)

/1t

/]t 1/1t,,]

1
-Itml \ 0

Figure 23. Signal terms and IT of AF for the superposition of two impulses.



We next consider the time-frequency shifted signal versions x,(t) = x,(t-t,)el27™f1t
and x,(t) = x,(t-t,)e}2™f2t The signal terms of the AF are obtained as

AP = lef* Ay fnw) SFHETED Ay = e, A, (tv) &2TETm20)
and the outer IT is

A(ilz)(t,u) = |c,llc,l [F+(t-112,u-1)12) + F-(t+112,U+U12):|
where

Fi(T,U) 2 Axo('[,u) ej[zn(fiz'f'tml)) + c,,12]

with
e, = arglc,}-arg{c,}+ 2rnf1,, .

This result is illustrated in Figure 24. The signal terms occur essentially around
the origin of the (t,u)-plane; due to the AF's shift invariance property (10.2), they
are simply modulated versions of Ax,(t,v). The outer IT consists of two subterms
located around the points (1,,,v,,) and (-t,,,~v,,), where t,,=t,~t, and v,,=f,-f, are
(respectively) the time lag and frequency lag between the interfering signal com-
ponents or, equivalently, between the corresponding WD signal terms. Both IT sub-
terms are oscillatory, with oscillation "frequency” in the t direction (v direction)
equal to the center frequency f,, (center time t,,) of the interfering signal com-
ponents or WD signal terms.

VA

i >

-
('112’1{% A(ilz)

Figure 24. Interference geometry of AF.

These simple laws describe the interference geometry of the AF. We note that
the AF's interference geometry is indeed the dual of the interference geometry of
the WD: in the WD case, an IT's time-frequency location is (t,,,f,,) and the oscilla-
tion "frequencies” are given by (1,,,u;,) and (-t,,,-u,,). With the AF, this is the
other way around: the IT's location in the time-frequency-lag plane is (t,,,,,) and
(-t45,-v,,) and its oscillation "frequencies” are (t,,,f,,).



Interference formulae and inner interference. When the interfering signals are
not identical except for time-frequency shifts, the laws of interference geometry
have again to be applied locally, which allows a pointwise construction of ITs.
A partial mathematical foundation of this principle is given by the AF's outer inter-
ference formula

[As e, (TW)* = ” Wo (t+5.£+5) W, (t-3,f-3) dtdf (10.3)

which relates the magnitude of the cross-AF with the corresponding WD signal
terms. The interference formula supports the AF's interpretation as a time-frequen-
cy correlation and, also, the local application of the AF's interference geometry. In
particular, it provides an answer to the following question: if the effective time-
frequency supports of two signals x,(t) and x,(t) are given by regions R, and R, of
the time-frequency plane, respectively (i.e., the WD signal terms are approximately
zero outside these regions), what is the effective support region ﬁm of the AFs
outer IT in the time-frequency-lag plane? Based on the outer interference formula
(10.3), we can construct ﬁ1 pointwise as follows: we choose a point (t,,f,) inside
R, and a point (t,,f,) inside R,. Then (t,,u,,) and (-1,,,-v,,), with T2 =t-t, and
v, = f,-f,, are points of the IT support region R12 (see Figure 25).

(a)

Figure 25. Pointwise construction of AF's IT support ﬁ,z: (a) signal terms of WD;
(b) IT of AF.

The interference geometry of the AF can again be reformulated for inner inter-
ference in a straightforward manner, the only difference being that both signal
points (t,.f,) and (t,,f,) then belong to the same signal component or WD signal
term. The AFs inner interference formula

[Ax(t,v)|? = {{ Wi (t+3, f+3) W (t-%,f-3) dt df ,

which is derived from (10.3) by letting x,(t) = x,(t) =x(t), permits a pointwise con-
struction of the effective support region of the AF's inner ITs. Let R, be the effec-
tive time-frequency support of the signal x(t) such that the WD of x(t) is approx-
imately zero outside R,. We choose two different points (t,,f,) and (t,.f,) inside R,.



The points (t,,,v,,) and (-1,,,-v,,), with 1, =t,~t, and vy, = f,-f,, will then belong
to the effective support ﬁx of the AF of x(t).

In any case, the WD is a convenient basis for a schematic construction of the
AF's inner or outer ITs since all relevant parameters (1,,,v,,, t,», f,,) are readily
obtained from the WD signal terms.

1. THE SHIFT-INVARIANT CLASS

The class of bilinear (quadratic) time-frequency representations (TFRs) can be
split into two subclasses distinguished by different modes of interpretation [34]:
(i) the subclass of "energetic" TFRs which, conceptually, can be interpreted as dis-
tributions of the signal's energy over the time-frequency plane ((t,f)-plane); (ii) the
subclass of "correlative” TFRs which can be interpreted as joint time-frequency
correlation functions and, consequently, are functions of the time lag t and fre-
quency lag v. So far, we have encountered specimens of both subclasses: the WD
W, y(t.f) and, more generally, the GWD W,(‘""}),(t,f) are energetic TFRs whereas the
AF A, ,(t,0) is a correlative TFR.

Bilinearity and shift invariance. In the following, we concentrate on the energetic
subclass of bilinear TFRs. We consider a TFR Cy,y(t.f) which is bilinear, i.e., the
auto-TFR C,(t,f) & Cx,x(t.f) is quadratic and thus satisfies the quadratic super-
position law: for an N-component signal x(t) with signal components CiXk(t), the
TFR C,(t,f) consists of N signal terms

CNLH 2 lol? Oy (t,D)

and (I}T):&I‘ZT-‘-Q ITs

CIT(D) 2 cpct Co it + 1ok Cogu{tf) (LK) .

Apart from the bilinear (quadratic) structure, we also require that Cy,y(t.f) is shift-
invariant (cf. (2.2)): if

X(t) = x(t-t,) 2™t and y (t) = y(t-t,) e2Fot
then
Coo,yo(t:f) = Cy L (t=t,,f-f,) .

The class of bilinear shift-invariant TFRs is well known as the "bilinear Cohen class”
[34,35,14]. The WD and GWD are members of this class. To each shift-invariant TFR
Cx’y(t,f), we define its "correlative dual” Cy,y(t,0) as the Fourier transform

Cy y(tV) = IS Cuytt.d) 120 g ar (11.1)
t

Comparing with (10.1), we note that the correlative dual of the WD is the AF.



Kernels of shift-invariant TFRs. It can be shown that any bilinear shift-invariant
TFR C, y(t,f) can be written in four different though equivalent ways [29,34,14]:

(i) as the Fourier transform of a "time-dependent pseudo correlation function”
Ty,y(t,7) with respect to the time-lag variable T,

~ -j2rf
Cy y(t.f) = ~tI'rx,y(t:,t)e 19Tt qr

with
T ytD = [ eclt-t, 1) x(t'+5)y*(t'-5) dt’,
t'

where ¢ (t,7) will be called the time kernel of the TFR C;
(ii) as the inverse Fourier transform of a "frequency-dependent pseudo spectral
correlation function” ﬁx,y(f,u) with respect to the frequency-lag variable v,

Cy(t.f) = [ R, (F0) /2™ ay

with
ﬁx,y(f,u)

where ®_(f,v) is the frequency kernel of C;
(iii) as the convolution of the WD with the Wigner kernel {_(t,f),

[ Oclf-£',0) X(E+5) YX(E-3) df",

Cooy(t.) = JJ belt-t,f-F') W, J(t,£) dt df" ; (11.2)
t £

(iv) as the Fourier transform (inversion of (11.1))
Cxyt.f) = [f éx,y(t,u) eI2m v f g qy (11.3)
TV

where the correlative dual éx,y(t,u) of C is given by the product of the AF and the
ambiguity kernel ¥ _(t,v),

C,y V) = ¥t Ay J(r,0) . (11.4)

The time kernel ¢_(t,1), frequency kernel ®(f,u), Wigner kernel {_(t,f), and ambi-
guity kernel ¥_(t,u) are all interrelated by one-dimensional and two-dimensional
Fourier transforms according to Figure 26. In particular, the Wigner kernel dl(t,D)
and the ambiguity kernel ¥ _(t,u) are related by the general duality relation connect-
ing energetic and correlative TFRs (cf. (11.1)),

Tl = Jf beltf) e i2mut=tH g4 gf
t

Any one of these four kernels provides a complete and compact characterization
of the TFR C. For example, the kernels of the GWD W,(:}),(t,f) are
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Figure 26. Fourier transform relationships of kernels of shift-invariant TFR.

Py (t, 1) = 3(t+at) , Oy (a0 (F,0) = 8(F-av),

(11.5)
ej2'n:cctu

b

tf
byt (t,f) = -I%L—I 2T Yoo (T,0)

and for the WD (a=0), we obtain
<pw(t,t) = §(t), Oy (f,u) = 3(F), b lt.f) = 8(t) 8(f), Ywltu) =1.

Interference geometry. The geometric properties of the ITs of different shift-
invariant TFRs may be quite different. There exists, however, a feature of inter-
ference geometry common to all shift-invariant TFRs, namely, the ITs' oscillation.

To illustrate this feature, we first consider the interference of two time-domain
impulses x,(t) = 8(t-t,) and x,(t) =8(t-t,). In this case, the signal terms and the IT
can be written in terms of the time kernel ¢_(t,7) as follows:

c® 0 = Ic,l? o (t-t,,0) , CIL,D) = |c,l? ou(t-t,,0) ,
CRtE = leyllc,| [ @ult-t,,t,,) 2™ m2f *Pua) L o (¢t 1 ) (27 12 ~21) ]

with ¢,, =arg{c,} - arg{c,}. We note that the signal terms are obtained by shifting
the time kernel with t=0, ¢.(t,0), to the impulse locations t=t, and t=t,, respec-
tively. The signal terms are independent of frequency.

The IT consists of two subterms which are obtained by shifting the time kernel
with (respectively) 1=1,, and t1=-1,, to the center time point t=t,,. This, however,
does not necessarily imply that the IT subterms are indeed located around t,, (e.g.,
in the case of the GWD with @y (a)(t,t) = 8(t+at), the IT subterms will be located
at time points t ,-at,, and t,,+ar,,). The IT subterms both oscillate with respect to
frequency; the oscillation "frequency” is t,, and -t,,, respectively. Just as in the
case of the WD or GWD, the IT's oscillation will thus be faster for increasing time
distance |t,,|=It,~t,| between the interfering signal components. This type of IT
oscillation is thus a common feature of all bilinear shift-invariant TFRs.



Dual results are obtained in the case of two complex sinusoids (frequency-domain
impulses) x,(t) = e127f1t and x,(t) = /272t Here, signal terms and IT can be written
in terms of the frequency kernel ®_(f,v):

CSf) = lc,)? 0 (F-F,0) , COLEH = |c,l? O-E,,0) |
Cg)(t,f) = |C1||C2| [‘Dc(f-flz,ulz) ei(Znulzt +P45) + q)c(f-fm’ -U12) e-j(27tU12t "'<P12)] .

The discussion is analogous; in particular, the IT now oscillates in the time direc-
tion with frequency tv,,, where |u,,| = |f,-f,| is the frequency distance between the
interfering signal components.

We finally study the interference of two time-frequency shifted versions x,(t) =
Xo(t-t,) 271t x (1) = x,(t-t,)eI2™F2t of a signal x,(t). Due to shift invariance, the
signal terms are

CEt,D) = le,l® Cy (t-t,,f-F,) CIE) = lcy|? Cy (t-t,,F-£,) .
For the IT, we find

CRD = lclle,] [ Frlt-t,, f-F,,) + F(t-t,,,f-f,,) ] (11.6)
where

FE(tf) = CE (t,f) eHL2m(Rat=m106) + 21, ]

with

¢y, = arg{c,}-arg{c,}+2mu,t,,;

the TFRs Cjx (t,f) are defined via their correlative duals é,*‘o(t,u) by

CE () = ¥o(tit,,uzy,) A (T,U) . (11.7)

Again, (11.6) does not necessarily imply that the IT is indeed located around the
center point (t,,.f,,); this will only be the case if the ambiguity kernel ¥_(t,v) is
non-oscillatory (the GWD with ¥y () (t,u) = el2™*™V s a counter example). We note
that the IT subterms are oscillatory, with oscillation frequency in the time direction
equal to tu,, and oscillation “frequency” in the frequency direction equal to #t,,.
Another interesting point, evident from (11.7), is the fact that the IT is con-
trolled by the values of the ambiguity kernel ¥.(t,u) in the vicinity of (xt,,, +v,,). In
particular, the IT will be small if ¥.(t,u) is itself small around (tt,,,+v,,). This
fact is important for the definition of "smoothed WD versions” (cf. Section 13).

Energy distributions. It has been demonstrated above that the oscillation of ITs,
with oscillation frequency in the time (frequency) direction equal to the frequency
(time) distance between the interfering signal components, is a general characteristic
of shift-invariant TFRs. Even more about ITs can be said in the case of an "energy



distribution,” i.e., a shift-invariant TFR Cy,y(t,f) satisfying the marginal properties
(cf. (4.1))

JCyy(tDdf = p, (), [C, (tHdt=P, (O, [ { Cy,y(t.f)dtdf = E, , .
f t t

Since the marginal properties hold for signal terms and ITs separately, it follows
that an IT's integral over frequency, time, or both time and frequency is given by
the corresponding IT of the energetic quantities Px,y(t), Py ,(f), and E, ,, respec-
tively:

feenar = pieo 2Re{ckci" Xk () x’f(t)} ,
f

P = 2Re{cpcf X (OXED },

Fedie,n dt
t

S G dtdf = BY = 2Re{cpcf Mx 0 xf®)de }.
tf t

These IT integrals are hence independent of the specific energy distribution C; in
particular, they equal the respective IT integrals of the WD. We also conclude that
the marginal properties enforce the existence of a nonzero IT in the TFR C when-
ever at least one of the ITs pl(gl)(t) and P{}l’(f) is not identically zero (this has
already been mentioned in the context of the WD in Section 4). The ITs must again
be oscillatory in general; this is easily seen by studying the simple example of two
complex sinusoids, x,(t) = el2™f1t and x,(t) = e27f2t where the IT's frequency inte-
gral is obtained as

feRendf = pP® = 2Refc,cf 2 EfIt] = 2|c |lc,| cos(2nu,t + 0,,)
f

with ¢,,=arg{c,} - arg{c,} (cf. the "beat effect” discussed in Section 4). Since the
IT's frequency integral is oscillatory with oscillation frequency v,,=f,-f,, the IT
must itself feature this type of oscillation.

It is interesting to note that both the shift-invariance property and the marginal
property enforce a specific type of IT oscillation but do not specify other important
IT features such as the IT's location and concentration in the time-frequency
plane. Indeed, we have seen that the ITs of, e.g., the WD and RD (which both satisfy
the shift-invariance property and the marginal property) show the same type of
oscillation but quite different time-frequency location and concentration properties.
These properties depend on the specific shape of the kernel functions e(t,1) etc;
they will be discussed in some detail in the next two sections.

12. THE SHIFT-SCALE-INVARIANT CLASS

The shift-scale-invariant class of bilinear TFRs [34,14,36] is a subclass of the
shift-invariant class (bilinear Cohen class) discussed in the previous section. In
addition to bilinearity and shift invariance, we here assume the following scale-
invariance property: if the signals are time-frequency scaled as



f

xa(t) = Y]al x@@t) , X, (f) = 7’;1:;)((3)
and

i, - A y(E

va® = Ylaly@n, Y. = 2=Y(§)

with a#0, then the TFR C, ,(t,f) reacts according to

Cx_y (tH) = Cxy(at, ) .

We shall see that this scale-invariance property entails characteristic IT properties.
It can be shown [34] that the kernels of a shift-scale-invariant TFR Cy,y(t.f)
assume the following special forms:

et = [ yclo) 3(t-ar) da = I—:—ch(ti) (12.1)

Of0) = [ yole) 8(Frav) da = Ly (-) (12.2)
1 —j2'r|:t—f

dlt,f) = £Yc(oz) > € o« da (12.3)

Feltw) = [yele) 2maTV gy = T (), (12.4)

where the "kernel functions" y_(«) and I'_(£), each of which characterizes the TFR
C, are related by a Fourier transform,

r.(@® = £ Yolo) €278 gy

The GWD is a prominent member of the shift-scale-invariant class. For the GWD

“7,((",‘;’,) (t,f) with parameter «,, the kernel functions are

Yoy (@ = Slaray) | Twiae® = e2T0F
and for the WD (a,=0), we have

Towl® = 8a), Tw(® = 1.

The marginal properties will be satisfied if

[ Ye(@ dot = Tc(0) = 1.

Since this condition simply expresses a normalization of y_(a), we shall assume it
to be met and, in the following, thus restrict our discussion to shift-scale-invariant
energy distributions.

The specific forms (12.1)-(12.4) of the kernel functions ¢_(t,t) etc. entail a char-
acteristic type of interference geometry. Let us first study the interference of two



time-domain impulses x,(t) =3(t-t,) and x,(t)=38(t-t,). We here obtain the signal
terms and IT as follows:

c®,f = Ic,28(t-t,) , CI(,D = o, l?s(t-t,) , (12.5)

T12

Cg)(t,f) - |C1||C2| Itizl [Y (t::'-;z)e)( 2wy, £ +ey,) Yc( t—t12)ej(21t1:12f—cp12):| (12.6)

with ¢,, = arg{c,} - arg{c,}. The signal terms are Dirac impulses at the correct time
locations t, and t,; they are independent of the specific TFR C. The ideal time
concentration of the signal components is reflected by an equally ideal time con-
centration of the signal terms.

The IT shows the usual oscillation with respect to frequency. Apart from this,
the IT features a characteristic "scaling property” which is a direct consequence of
the TFR's scale invariance. We note that the envelopes of the two IT subterms are
controlled by the function

o = 1 t
Yo(tit,,) = ol Yc(‘l:j,z) .

Let us assume that y (o) is a function with maximum (height) v, < and effective
length (spread) Aa > 0. (This assumption is not valid in the case of the GWD where
Yo = and Aa=0.) Then, for given time distance |t ,| between the two signal com-
ponents, the height and time spread of the IT envelope function Y.(t;t,,) are
Yo/ltso| and At=lt | A, respectively. This shows that the IT's height is inversely
proportional to the time distance |t,,|=]t,~t,|] between the interfering signal
components whereas the IT's time spread is proportional to the distance |ty,|. For
signal components whose time distance is large, the IT will thus be very small in
amplitude but very much spread out in the time direction.

Dual results are obtained in the case of two complex sinusoids (frequency-domain
impulses) x,(t) = /271t and x,(t) = 27 f2t,

c®t,p = Ic,l?8(5-f) , C®,h = Ic,l28(F-F,) ,
CRD = lollogl i [vo(- 522) HPmut+ia) o (Efu2) i2muatrend ] - (29)

For growing frequency distance |v,,| = [f,~f,| between the interfering signal compo-
nents, the IT's amplitude will decrease and the IT's frequency spread will increase.

The two dual situations discussed above illustrate the "scaling property” of the
ITs of shift-scale-invariant TFRs. They are, however, not sufficient for a complete
characterization of the interference geometry. In particular, they are misleading in
one respect: while it is true that, in the case of time-domain or frequency-domain
impulses, the TFR signal terms preserve the time or frequency concentration of the
signal components, a similar property does not generally hold in the practical situ-
ation where the signal components are not perfect impulses. An example is the
GWD of a chirp signal (cf. Figure 22). We shall say more about concentration
properties in Section 13.



In the general case, a partial characterization of the interference geometry can be
derived from the fact that any shift-scale-invariant TFR is a superposition of
GWDs. This is easily seen by combining (12.1) with (11.5), from which it follows that
Pc(t,1) = fyo(-a) ey (t,T) da and thus

Coy(tf) = [ vel-a) WS (t,D) da . (12.8)
[= 4

We have shown in Section 9 that, for two "signal points” (t,f,) and (t,,f,), the IT
of the GWD is located around the time-frequency points (t,,-at,,,f,,+av,,) and
(t,,+at,,,f ,-av,,). Due to the superposition relation (12.8), the IT of the shift-scale-
invariant TFR C will then be located around the line segment 1,, made up of all
points (t,,¥at,,,f,,+av,,) with « inside the effective support of v_(x). Figure 27
shows this line segment for the case where the effective support of Yla) is the
interval -1/2 < a <1/2. Note, however, that the IT's amplitude will often be small if
both |t,,| and |u,,| are not close to zero (cf. Section 13); the region shown in Figure
27 should therefore be interpreted as the potential support of the IT component
corresponding to the "signal points” (t,f,) and (t,,f,).

(t,.f,)

(t,,f,) T12
Figure 27. Pointwise construction of the potential IT support of a shift-scale-in-
variant TFR.

The time length and frequency length of the IT line segment 1,, are approximately
At=|t,,|Aa and Af=|u,,|Axa, respectively, where Ax is the effective spread of the
function v (a). Thus, the spread of y_(a) again controls the IT's spread in the time-
frequency plane. Due to the normalization [y_.(«) da=1, an increase of IT spread is
accompanied by a proportional decrease of IT height.

13. SMOOTHED VERSIONS OF WIGNER DISTRIBUTION

The interference structure of the WD is a basic limitation of the WD's practical
usefulness. Since the number of outer ITs grows quadratically with the number of
signal components, the WD's signal terms (which, after all, represent the greatest
part of signal energy) will often be covered by outer ITs and will thus become
hardly visible. In a similar way, inner ITs tend to occupy larger regions of the time-
frequency plane, thus burying smaller signal terms. In practice, therefore, it is often



mandatory to suppress or attenuate at least part of the ITs. Since ITs are oscil-
latory, this can easily be done by smoothing the WD with respect to the time
and/or frequency variable.

Shift-invariant smoothing. If the WD smoothing is to be linear and independ-
ent of time and frequency, which is assumed in the following, then the smoothed
WD (SWD) is derived from the WD by a convolution

Cy,y(t.f) = { { blt-t', f-f') W, ,(t',f) dt'df" . (13.1
Comparing with (11.2), we see that this is just the general formulation of a shift-
invariant TFR. The SWD (13.1) is hence guaranteed to be bilinear and shift-invariant.
However, this does not say that, conversely, all shift-invariant TFRs are SWDs:
for an SWD, we have to require that the Wigner kernel ¢_(t,f) is a smooth, non-
oscillatory function (i.e., a lowpass function). For example, a TFR which is shift-
invariant but cannot be considered as an SWD is the GWD whose Wigner kernel,
Pl (t,f) = '—:‘-' exp(jZn%), is oscillatory. Indeed, in the case of the GWD the con-
volution (13.1) effects essentially a time-frequency displacement, rather than attenu-
ation, of ITs (cf. Section 9).

A compact characterization of smoothing can be given in the dual (correlative)
domain [3,14,15,16]. According to (11.4), the correlative dual of the SWD Cy y(t.f) is
given by the product of the AF and the ambiguity kernel ¥_(t,v),

Gy y(TV) = ¥ (1,0) Ay L (T,0) . (13.2)

The advantage of this description is the fact that the convolution is here replaced
by a simple multiplication. Note that the Wigner kernel and the ambiguity kernel
are a Fourier transform pair,

Yol = [ (e, e I2mt=tD 4e df
t

the same relation holds between the WD and the AF, as well as between Cy y(t.0)
and C, ,(t,v).

In the correlative domain, the smoothing property is expressed by the fact that
the magnitude of the ambiguity kernel ¥_(t,u) decays for larger values of |t| and/or
|ul. (Again, this is not true in the case of the GWD where | ¥ i (t,0)] = |ei2mxTv| = 1)
In the following, we assume that ¥ _(t,u) has its maximum at the origin (0,0) of the
(t,u)-plane. We also assume the normalization

¥emax = Y00 = [f bo(e) dedf = 1
t

which guarantees the property [JC, ,(t,f)dtdf = E, ,, and

O (t,f) e R, YE(-1,-u) = ¥ (t,0)

which guarantees that the auto-TFR C,(t,f) is real-valued.



Interference geometry of SWDs. Since an SWD is a shift-invariant TFR, its ITs
exhibit the type of oscillation discussed in Section 11. Due to this oscillation, the
smoothing operation will generally produce an attenuation of ITs.

For a given kernel $.(t,f) or, equivalently, ¥_(1,u), this attenuation will be more
pronounced for faster oscillation of the ITs. Recalling that larger time distance
It,,| and/or frequency distance |u,,| between the interfering signal points (t,,f,) and
(t,.f,) causes faster IT oscillation, we obtain the general rule that the IT of more
distant signal points will be attenuated more.

This rule must be applied with caution, however, since a substantial IT attenua-
tion can be achieved only if the direction of IT oscillation and the direction of
smoothing are not orthogonal: if, for example, the IT oscillates in the time direc-
tion (i.e., the interfering signal components are displaced with respect to frequency
but not with respect to time) and the smoothing occurs mainly in the frequency
direction (i.e., the Wigner kernel {(t,f) has a large frequency spread but a small
time spread), then little or no IT attenuation will be obtained.

The attenuation of a given IT will be stronger if the Wigner kernel ¢_(t,f) has a
larger spread in the time and/or frequency direction, which means that the ambi-
guity kernel ¥ (r,u) is more concentrated around the origin of the (t,u)-plane.

f4 2

Contour lines of
¥ (t,0)]

Figure 28. Correlative-domain analysis of IT attenuation.

A detailed, quantitative analysis of IT attenuation can be derived from the correl-
ative-domain formulation (13.2), combined with the AF's interference geometry as
discussed in Section 10. Suppose that the two interfering signal points are (t,,f,)
and (t,,f,) as illustrated in Figure 28. We know from Section 3 that the WD's IT is
located around the center point (t,,,f,,) and oscillates in the time direction with
frequency |u,| and in the frequency direction with "frequency” It ,|. Passing into the
correlative domain, the corresponding IT of the AF is located around the points
(t42,9,5) and (-1,,,-u,,). We now construct the correlative dual of the SWD by mul-
tiplying the AF with the ambiguity kernel according to (13.2). By this, the IT's
magnitude is reduced by the factor |¥.(1,,,u,,)| = |¥.(-1,,,-v,,)| s 1. This attenuation
factor is preserved when passing back into the energetic domain since energetic
and correlative domains are related by the linear Fourier transform. Hence, the IT
corresponding to signal points (t,.f,) and (t,,f,) will be reduced by the factor
|¥(ty2,0,5)|- Of course, this statement is valid in an approximate sense only since



a strict pointwise localization is not possible; the IT attenuation factor will thus
be influenced also by the values of ¥_(t,u) in a local neighborhood of the point
(Ty5Uy0)-

From the above construction, we also conclude that an IT of the WD correspond-
ing to the signal points (t,.f,) and (t,,f,) will be suppressed altogether if the cor-
responding "lag point” (t,,,u,,) is located outside the effective support ﬁ\!r of the
ambiguity kernel ¥ (t,u) (see Figure 29). For general signal components x,(t) and
x,(t) with effective time-frequency supports R, and R,, respectively, the IT C(D(t f)
of the SWD C will be approx1mately zero if the effective support R12 of the AFs
IT lies entirely outside R\F This situation is shown in Figure 29 (recall that,
according to Section 10, R12 consists of all lag points (1,,,u,,) and (-t,,,-v,,) with
T,,=t,~t, and v, =f,-f,, where (t,,f )R, and (t,f,) ¢R,).

Figure 29. Suppression of IT in the SWD: analysis in the correlative domain.

Time-frequency concentration. The price paid for the attenuation of ITs is a loss
in time-frequency concentration. This is an obvious consequence of the fact that a
smoothing broadens the non-oscillatory WD signal terms and the envelopes of the
oscillatory ITs. Closely spaced signal terms and ITs which, before smoothing, are
well separated in the WD may hence overlap after smoothing [37].

For a very rough quantitative analysis, let us assume that the Wigner kernel
$o(t,f) can be characterized by a time spread At and a frequency spread af. Such a
characterization is possible if {_(t,f) is a "simple” function such as, for example,
a two-dimensional Gaussian. (We stress, however, that this exludes shift-scale-
invariant SWDs for which a separate discussion will be given later.) In this case,
roughly the same spreads At and Af will be obtained for the "marginals"

S 4(t,D)df = @.(t,0) , S 4(t,H) dt = @(F,0)
f t

of the Wigner kernel {_(t,f).

As a basic example, we now consider the time-domain impulse x(t) = 3(t-t,)
whose ideal time concentration is preserved in the WD W, (t,f) =8(t-t,), a fact
highlighting the WD's perfect time concentration. In contrast, the SWD represents
the impulse as

C,(t.D) = o(t-t,,0) ,

i.e., with time spread aAt. A dual result is obtained for a complex sinusoid (frequen-



cy-domain impulse) ei2™fot: while the WD W, (t,f) = 8(f-f,) is perfectly concentrated,
the SWD is

Cy(t,f) = O_(f-f,,0)

and thus has frequency spread af.

More generally, if a WD signal term has effective time length T, then the
smoothing (convolution) operation will roughly increase this time length by At; an
analogous statement can be made with respect to frequency. The spreads At and
Af of the smoothing kernel §.(t,f) can thus be interpreted as "analysis uncertainties"”
of the SWD C with respect to time and frequency, respectively. An increase of
these spreads or analysis uncertainties means a loss in time-frequency concentration.

In the correlative domain, the broadening of signal terms can be viewed as a
consequence of the multiplication of the AF by the ambiguity kernel ¥_(t,u). While
it is true that the AF's signal terms are located around the origin of the (t,u)-plane,
they yet extend to regions corresponding to larger values of |t| and/or |u|. These
components are attenuated if ¥ (t,v) is small in the corresponding regions, which
results in a broadening of the signal terms of the SWD. Note that, since ¢_(t,f) and
¥.(t,u) are a Fourier transform pair, a large time spread At of $(t,f) means that
¥.(t,v) is very narrow with respect to v; similarly, a large frequency spread Af en-
tails a ¥(t,u) which is very narrow with respect to 1.

At this point, it is evident that the WD smoothing is governed by a fundamental
tradeoff of IT attenuation versus time-frequency concentration: for good IT attenu-
ation, the ambiguity kernel ¥_(t,u) should be as narrow as possible around the
origin of the (t,u)-plane; however, due to the Fourier transform relationship con-
necting ¢(t,f) and ¥ (t,u), this will result in a broad Wigner kernel {_(t,f) with
large spreads At and Af and, consequently, poor time-frequency concentration.
Thus, as a general rule, better IT attenuation entails poorer time-frequency con-
centration, and vice versa.

For practical applications, the kernels ¢(t,f) or ¥_(t,u) should be designed such
that they produce sufficient IT attenuation while impairing the WD's time-frequency
concentration as little as possible. Such a design necessitates some a-priori knowl-
edge about the signal under analysis. Suppose, for example, that the signal com-
ponents are known to be displaced mainly with respect to time such that their ITs
oscillate mainly in the frequency direction. Obviously, a Wigner kernel with large
time spread At is then a bad choice since it impairs the WD's time concentration
without producing any IT attenuation.

There is thus a demand for SWDs which, besides permitting an efficient imple-
mentation, allow the time spread At and the frequency spread Af to be adjusted
independently of each other in a simple way. The smoothed pseudo Wigner distribu-
tion, to be discussed presently, largely meets these requirements.

The pseudo Wigner distribution. By way of preparation, we first discuss the
pseudo Wigner distribution (PWD) [1]

W,((},’}),(t,f) = %l' x(t+5)yXt-3) h*(%) €2 ar . (13.3)



The PWD is a short-time version of the WD using a running analysis window h(t).
We assume the window h(t) to be real-valued, even, normalized as h(0) =1 (this
assures the normalization [[{(t,f) dtdf =1), and finite-length such that h(t) =0 for
|t|>Ty/2, where Ty, is the window length. Note that the integration in (13.3) then
reduces to an integration over the finite interval [-T;,T}]. Formally, the WD is a
limiting case of the PWD with infinite window length Ty, = and the all-constant
window h(t)=1.
The PWD can be expressed as [1]

W e, = L En(-6) W (0.6 df
with
En(f) = Wi(0,f) = {hz(%) eIzt g

it is thus an SWD, where the smoothing occurs with respect to the frequency

variable only. A stronger frequency smoothing will be obtained for a broader

smoothing function £, (f), i.e., for a shorter analysis window h(t). Since the PWD

does not effect any time smoothing, the ideal time concentration of the WD is pre-

served, and ITs are attenuated only if they have an oscillation component in the

frequency direction, i.e., if the interfering signal components are displaced in time.
The kernels of the PWD are given by

En(f) ,
h(E) -
In particular, ¥, (h)(t,u) is independent of the frequency lag v, decreasing for
increasing time lag |t| (for usual windows), and zero for |t| > Ty. Evidently, the IT
of two time-disjoint signals will be totally suppressed if the gap between the

signals’ (effective) time supports exceeds the window length Ty,. Here, the finite-
length window h(t) never catches both signals simultaneously (see Figure 30).

(Pw(h)(t,t) = §(t) hz(%) , CDW(h)(f,u)

q)w(h)(t,f) 3(t) En() Tw(h) (t,v)

(0 et X,(t)
i W»’E e
-
-Itizl miz:

(@ (b)

Figure 30. Signals producing zero IT in PWD: (a) time domain, (b) correlative domain.

A simple approximate expression can be given for the PWD of an AM-FM signal

x(t) = a®e®® | aw)20, )R



provided that the PWD window h(t) is sufficiently short and the variations of the
instantaneous amplitude a(t) and instantaneous frequency f;(t) = ¢'(t)/2n are suffi-
ciently slow. Specifically, we assume that, inside the local window interval [t,-Th72,
to+Th/2] corresponding to each analysis time point t,, the instantaneous amplitude
a(t) is approximately constant and the instantaneous frequency f;(t) can be approx-
imated by a linear function (linear FM, "local chirp approximation”),

a®) ~ alt) and  fi(t) ® filt) + filty) (t-t,)  for - et + 1B,

This approximation results in the following approximate expression for the PWD,

WP e, ~ a2(t) Ey(F-Fi(D) ,

according to which the PWD is concentrated along the instantaneous-frequency
curve and does not contain inner ITs.

If the linear approximation of f;(t) is not sufficient, a second-order (linear+quad-
ratic FM) approximation can be used. For each analysis time point, the PWD is here
approximated in the frequency direction by the convolution of an Airy function (cf.
Section 7) with &, (f), i.e., by a smoothed Airy function. The Airy-function approxi-
mation shows inner ITs on the concave side of the instantaneous-frequency curve
(cf. Figure 14). In any case, the local extension of the PWD's inner ITs with respect
to frequency can be (approximately) derived from the instantaneous-frequency curve
by applying the laws of WD interference geometry while taking into account the
fact that signal points whose time distance exceeds the window length T, cannot
produce ITs (see Figure 31). From the geometric construction shown in Figure 31,
it is clear that the PWD's ITs will be more spread out with respect to frequency if,
inside the local window interval [t,-T},/2,t,+T,,/2], the curvature of the instantane-
ous frequency is stronger.

to-Tn/2 t, tATL/2

Figure 31. PWD of FM signal.

The smoothed pseudo Wigner distribution. Since the PWD does not effect any
smoothing with respect to time, it is incapable of attenuating ITs which oscillate



in the time direction only, i.e., which are caused by signal components displaced
only with respect to frequency. This drawback can be overcome by an explicit time
smoothing of the PWD; this leads to the smoothed pseudo Wigner distribution
(SPWD) defined as [38,39]

WEP (¢, = [ glt-t) WP (e,f) de = I 1 8tt) Ep(f-F) W (6) dedf" .

Here, g(t) is a smoothing (or lowpass) function which we assume to be real-valued
and normalized as fg(t) dt =1. Both the WD and the PWD are special cases of the
SPWD; in particular, the PWD is obtained for g(t) =8(t). In general, of course, the
time smoothing contained in the SPWD will produce a loss in time concentration
as compared to the WD or PWD.

The SPWD's smoothing characteristics in the time and frequency direction can
be controlled arbitrarily and independently of each other by the choice of the time
smoothing function g(t) and the PWD window h(t). A broader time smoothing
function g(t) will produce more time smoothing and thus better IT attenuation but
poorer time concentration. The smoothing in the frequency direction equals that of
the PWD: a broader PWD window h(t) will produce less frequency smoothing, which
results in poorer IT attenuation but better frequency concentration.

The kernels of the SPWD are given by

Parig, w7 = gt hz(%) , P (g, (F,0) En(f) G(u) ,

h*(3) Gl ,

q)w(g,h)(t’f) = g(t) Eh(f) , ‘Fw(g’h)(t,u)

where G(u) is the Fourier transform of g(t). Note that all kernels are separable
functions; this structure facilitates the independent adjustment of the smoothing
properties in the time and frequency directions. As in the case of the PWD, the IT
of two time-disjoint signal components will be altogether suppressed if the gap bet-
ween the signal components is broader than the length T}, of the PWD window h(t).
As a difference from the PWD, the IT of two frequency-disjoint signal components
will be effectively suppressed if the length |u |, ;. of the gap separating the two
signal bands falls outside the effective support of G(uv), i.e., if the length of the
"frequency gap” exceeds the bandwidth of the time-smoothing window g(t).

In order to further illustrate the IT attenuation and time-frequency concentration
properties of the SPWD, we again consider the cases of two time-domain and fre-
quency-domain impulses. For two time-domain impulses x,(t)=8(t-t,) and X,(t) =
3(t-t,), the SPWD's signal terms and IT are

WERE () = | [2git-t) , WERE () = e, glt-t,) |
szg,h)(l)(t,f) = 2 e llc,| glt-t,,) hz(%&) cos(2mt, f - ,,)

with @, =arg{c,}-arg{c,}. We see that the time spreads of both the signal terms
and the IT are directly given by the spread of the time smoothing window g(t).



Besides, the IT is weighted by the factor hz(% which, for h(t) being a usual win-
dow, decays for growing time distance |t,,| and is altogether zero for |t,,|> Ty,

In the dual case of two complex sinusoids (frequency-domain impulses) x,(t) =
el27f1t and x,(t) = el27f2t, we obtain

WEDS gy o | 2 g (F-F) , WERS () = |c |2 g (F-£,) |
WEPD(tf) = 2 c,llc,| Ey(F-F,,) Glu,,) cos(2mu,t+o,,) .

Here, the frequency spreads of both the signal terms and the IT equal the spread
of Eh(f), and the IT is weighted by the factor G(v,,) which will be small for large
frequency distance |u,,|.

The spectrogram. The auto-spectrogram [29,40,18,19] is defined as the squared
magnitude of the short-time Fourier transform,

SPen = | XPe,n2 with  XP(tH = [ x(t) hit-t) T2 g,
t'
it is thus everywhere non-negative. The cross-spectrogram is defined as

s = XPe, 0 YR *,p | (13.4)

Here, h(t) is an analysis window which we assume to be real-valued, even, of finite
length Ty, and normalized with respect to its energy such that Ey = fh2(t)dt=1.
For a real-valued and even window h(t), the spectrogram can be written as

Sev(tf) = J J Wy(t-t,f-F) W, J(t,f) dedf” ;

t'f
it is thus recognized to be an SWD since, for a "good” window h(t), the window's
WD W, (t,f) is a lowpass function. The spectrogram’'s kernels are obtained as

h(t+3)h(t-3) »  Dgm(fw) = H(f+3)H(F-3),

CPS(h)(t,‘t)
Q)S(h)(t,f) = Wh(t,f) ) Ts(h)(t’U) = Ah(‘E,U) .

The spectrogram is in fact a very special SWD since its Wigner kernel equals the
WD of the analysis window h(t). As a consequence, the time spread At and the
frequency spread Af cannot be chosen independently of each other. Indeed, a long
(short) window h(t) produces a Wigner kernel ¢gh)(t,f) = Wy (t,f) with large (small)
time spread At and small (large) frequency spread Af, yielding good attenuation of
ITs oscillating in the time direction (frequency direction) but poor time concentra-
tion (frequency concentration). This is illustrated in Figure 32.

Furthermore, the spreads At and Af cannot both be made arbitrarily small since
the uncertainty principle prohibits the WD of h(t) from being ideally concentrated
both in the time direction and in the frequency direction. Assuming proper definition



Figure 32. Time-frequency concentration tradeoff of spectrogram: (a) "long" window,
(b) "short” window.

of the spreads At and Af, the uncertainty relation states that the product of at
and Af is bounded from below as [23]

1
Ataf = y g

Thus, the spectrogram effects a fixed minimal overall smoothing. In contrast to
the SPWD where the time smoothing and frequency smoothing can be adjusted in-
dependently and without restrictions, the spectrogram merely permits a trading-off
of time smoothing against frequency smoothing. As a consequence, the overall time-
frequency concentration is limited, and the spectrogram suffers from a tradeoff
between time concentration and frequency concentration (see Figure 32).

On the other hand, the substantial smoothing in the spectrogram produces a
strong attenuation of ITs [18,19]. In fact, the smoothing is so strong that most ITs
will be suppressed and, furthermore, the auto-spectrogram becomes nonnegative
("smoothing for positivity”). The identity

|s®e.nl® = s®ps®ep ,

which follows from the definition (13.4), can be used for deriving an upper bound
on the magnitude of the spectrogram’s ITs [10,21]: for a two-component signal
x(t) = x,(t) + x,(t), the IT's magnitude is

Sgﬂ(l)(t,f)l ,2 Re{s(h) t f)}l < z|s<h> (t,f)l = z{sﬁ;’(t,f) SEH . (13.9)

This shows that, at a given time-frequency point, the IT's magnitude cannot be
larger than twice the geometric mean of the corresponding auto-spectrograms
(signal terms). In particular, the IT is seen be restricted to those regions of the
time-frequency plane where the corresponding signal terms overlap. Thus, the IT
will always be superimposed on the signal terms; it will never appear as a separate
structure. If the signal terms are effectively non-overlapping, then S(h)(t £) S(h)(t £)
~ 0 for all (t,f) and, due to (13.5), the IT is approximately zero (see Fzgure 33)
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Figure 33. ITs of the spectrogram: (a) non-overlapping signal terms and zero IT;
(b) overlapping signal terms and non-zero IT.
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The general properties of the spectrogram discussed above are illustrated by the
simple example of two complex sinusoids x,(t) = el2™f1t and x,(t) = ei27f2¢t, Sjgnal
terms and IT are obtained as

SO = I P HAE-£) . SPE = Ic | HAE-£,)
Sg)(l)(t,f) = 2 lcyllc,| H(f-f)) H(f-f,) cos( 2mu ,t + @, ,)

with ¢,,=arg{c,}-arg{c,}. We see that the frequency spread of the signal terms
increases with decreasing length of the window h(t), causing a loss in frequency
concentration. The IT is restricted to those frequencies f where H(f-f,) H(f-f,) # 0,
i,e, where the signal terms overlap. The IT will be altogether suppressed if the
effective bandwidth of the window h(t) is smaller than the frequency distance |v,,| =
|f,~f,|. The overall two-component signal is shown in Figure 34 for two different
windows: a "long” window (Figure 34.a) results in non-overlapping signal terms and,
consequently, a zero IT; in contrast, a "short” window (Figure 34.b) causes the signal
terms to overlap and the IT to be nonzero. The oscillatory IT is here superimposed
on the signal terms; signal terms and IT are combined into an overall oscillatory
(but non-negative) structure which, of course, reflects the "beat” between the two
frequencies f, and f, (cf. the "beat effect” discussed for the WD in Section 4).

f (a) f t (b)

T + t

Figure 34. Spectrogram of superposition of two complex sinusoids: (a) "long" win-
dow, (b) "short” window.



Dual results are obtained for the case of two time-domain impulses x,(t) = 5(t-t,)
and x,(t) = 3(t-t,):

SO = I P h%t-t),  SPOw ) = | > ht-t, ,
SED(tf) = 2 c,llc,| hit-t,) ht-t,) cos( 2mt,,f-,,) .

The signal terms’ time spread here increases with growing window length, causing
a loss in time concentration. The IT is confined to the time interval where the signal
terms overlap; it will be zero for non-overlapping signal terms, i.e., if the window
length Ty, is smaller than the time distance |t,,| = [t,-t,| between the two impulses.

Shift-scale-invariant smoothing. So far, we have considered SWDs Cy,y(t,0)
whose Wigner kernel {_(t,f) is a "simple” two-dimensional function which can be
roughly characterized by a time spread At and a frequency spread af; these spreads
can then be interpreted as "analysis uncertainties” in the sense that they character-
ize the SWD's time concentration and frequency concentration, respectively.

We now study shift-scale-invariant SWDs which feature a somewhat more so-
phisticated type of smoothing. According to (12.3), the Wigner kernel ¢_(t,f) here
is a function of the product tf and thus cannot be characterized by simple spread
quantities. In fact, shift-scale-invariant TFRs have been shown in Section 12 to
possess some very special properties regarding time-frequency concentration and
interference geometry. These properties will now be considered in more detail.

According to (12.4), the ambiguity kernel of a shift-scale-invariant TFR C is

Yot = [yl e 2T gy = T(tv) (13.6)

and thus a function of the product tu. Again, not every shift-scale-invariant TFR is
an SWD; recalling that the magnitude of ¥_(t,u) has to decay for larger values of
|t|] and/or |ul, we obtain the requirement that the magnitude of I'_(£) decays for
larger values of [E|. This again excludes the GWD W,(:‘)),(t,f) which is shift-scale-
invariant but, due to |Ty((®)|= Iejz’“"gl =1, cannot be counted as an SWD.

Let us assume that the effective support of the kernel function T'.(f) is the
interval [E| <&,, i.e., there is T () O for [E| >&,. Due to (13.6), the ambiguity kernel
¥(t,0) will then be approximately zero for all (t,u) with |w|>E,. The resulting
effective support of ¥_(t,u) is "cross-shaped” as shown in Figure 35. The cross
shape of the ambiguity kernel ¥ .(t,v) is a direct consequence of the "product struc-
ture” ¥ (t,u)=T(tv) and thus a distinctive feature of shift-scale-invariant SWDs.

We note that

¥ (1,00 = ¥_(0,0) = ¥_(0,0) = 1;

thus, the ambiguity kernel ¥_(,v) is constant both on the t axis and on the v axis,
and a decay of |¥.(t,u)| occurs only for lag points (t,u) off the axes. This simple
fact largely determines the interference geometry of shift-scale-invariant SWDs [36].
Indeed, suppose that the interfering signal points (t,f,) and (t,,f,) are displaced



Figure 35. Ambiguity kernel ¥ _(t,u) of a shift-scale-invariant SWD.

with respect to both time and frequency so that both |t,,|=[t-t,| and |u,,|=If,-f,
are not close to zero. This situation is shown in Figure 36.a. The corresponding IT
is here attenuated by the factor |T_(t,,u,,)| <1. On the other hand, if the signal
points are displaced only with respect to time, we have v,,=0 and the IT is
weighted by |T(1,,v,,)| = |Tc(0)| =1 which does not cause an attenuation (see Figure
36.b). An analogous result is obtained for signal points which are displaced only
with respect to frequency (1,,=0).

(a)

(t,5,Uy5)

Figure 36. Correlative-domain analysis of shift-scale-invariant SWD: (a) case of IT
attenuation, (b) case of no IT attenuation.

Of course, the above analysis is overly simplified since a strict pointwise locali-
zation of signal terms and ITs is not possible. Still, it is justified to draw the con-
clusion that shift-scale-invariant SWDs are capable of producing good IT attenua-
tion for signal components displaced with respect to both time and frequency,
whereas the IT attenuation will be poor for signal components displaced either only
with respect to time or only with respect to frequency (or, in other words, for
signal components occurring either at the same frequency or at the same time).

Further interesting properties of shift-scale-invariant SWDs can be derived from
the example of two time-domain impulses x,(t)=3(t-t,) and x,(t)=38(t-t,). This
example has already been studied for general shift-scale-invariant TFRs in Section



12. For simplicity, we now suppose that y_(a) is real-valued and even. From (12.5)
and (12.6), the signal terms and IT are then obtained as

c®,p = |c,l8(t-t,) , CE(E,D = I, l®5(t-t,) |

Cg)(t,f) = 2|c,lle,l _|‘|::_2| Yc(t;fzm) cos(2nt,,f-p,,) (13.7)

with p,, =arg{c,}-arg{c,}. As mentioned in Section 12, the signal terms feature per-
fect time concentration independent of the specific Ye(a). In contrast, the IT is
spread out in time, with increasing spread for growing time distance |t,,| = |t,~t,|.
This increase of spread is compensated by a proportional decrease of the IT's height.
The IT's integral with respect to time is fixed, i.e., independent of t,, and even
independent of the specific y.(a). In fact, due to

{ |‘l:iz| Yc(ﬂ) dt = £ Yela)da = TL(0) = 1 for all 1,, and all normalized v_(a),

T12

the IT's time integral equals the corresponding IT of the spectral energy density,

JePwhdt = PP = 2lcllc,| cos(2nr, f-p,,) - (13.8)
t

While the IT's amplitude is reduced for growing time distance |t,,| = |t,-t,|, the IT's
time spread increases such that the IT's time integral remains constant. In this
sense, the IT is not attenuated at all. Note that (13.8) reflects the fact that C
satisfies the marginal properties; this is a consequence of our initial normalization
assumption I'.(0) = [y (a)da =1.

Completely analogous results are obtained for two complex sinusoids x,(t)=
el27f1t and x,(t) = el2™f2t (cf. (12.7)). Here, for growing frequency distance |u,,|=
If,~f,|, the IT's amplitude is reduced while the IT's frequency spread is increased
proportionally such that the IT's frequency integral remains constant.

Just as the interference geometry of a shift-scale-invariant SWD is rather com-
plex, so are the time-frequency concentration properties. In contrast to "simple"”
SWDs like the SPWD or the spectrogram, the time-frequency concentration of a
shift-scale-invariant SWD depends on the signal itself; this is the reason why it
cannot be globally characterized by a time spread and a frequency spread.

We first consider impulses in the time domain and in the frequency domain,
x(t) = 8(t-t,) and y(t) = ei2™fot, We obtain

C,(t,f) = 8(t-ty) and C,(t,f) = 8(f-fy) ,

which shows that, independently of v («), the impulses’ perfect time or frequency
concentration is preserved. However, this does not say that, in general, a shift-
scale-invariant SWD features perfect time-frequency concentration. On the contrary,
for all other signals a concentration impairment will be incurred. The singular role
of impulses is easily understood by noting that, for the time-domain impulse x(t) =
3(t-t,), A, (t,u) =8(1) is perfectly concentrated on the v axis (t=0) where ¥.(0,u) =



Fc(0)=1 such that the multiplication of the AF A (t,u) by the ambiguity kernel
¥.(t,u) does not make any difference. Similarly, the AF of the frequency-domain
impulse y(t) = e2™fot js perfectly concentrated on the t axis where the ambiguity
kernel is again 1. Obviously, these two cases exhaust the situations where the AF
is invariant to the multiplication by the ambiguity kernel ¥.(t,u). In all other cases,
this multiplication will effect a windowing which causes a smearing of C,(t,f) and
thus a loss in concentration as compared to the WD.

We illustrate this windowing effect for the case of a chirp signal with instanta-
neous frequency f;(t) =ct. The WD, W_(t,f) = 8(f-ct), is perfectly concentrated along
the instantaneous-frequency line. The AF, A, (t,u)=8(u-c1), also exhibits perfect
concentration. We assume that the effective support of I'.(f) is the interval [El < Eg;

for simplicity, we further assume a rectangular T'_(§), i.e., T_(E)=1 for [E| <&, and
F(®) =0 for [E] > &, The correlative dual of C,(t,f) is then obtained as

3(v-c1), |t <1,

Co(ty) = ¥(t,0) Ay(t,y) = To(tw) S(u-ct) = T(cr? S(u-co) = {
0 , >t

with t, = YE,/[c|. This is illustrated in Figure 37. Transforming back into the ener-
getic domain according to (11.3) yields the following result for the SWD,

To
_ A j2r(tu—-ft) - -j2n(f-ct)t - sin[ 27ty (F-ct) ]
C,(tf) = {{ C,(t,v) e dtdv _{o e dt = 2t, P (F—cD)

Thus C,(t,f), too, is concentrated along the instantaneous-frequency line f=ct;
however, the concentration is not perfect since the frequency characteristic is a sinc
function. The frequency spread increases with decreasing t,, i.e., for smaller "cutoff
parameter” £, and/or larger chirp rate Ic|. To achieve good frequency concentration
(which, in the chirp case considered, also means good time concentration), we have
to choose a large value for the cutoff parameter E,; unfortunately, this entails a
broad ambiguity kernel ¥.(t,u) and thus yields poor IT attenuation. This shows that,
in general, the fundamental tradeoff between good IT attenuation and good time-
frequency concentration is not removed by the property of shift-scale invariance.

Figure 37. Shift-scale-invariant SWD of a chirp signal: windowing effect in the cor-
relative domain.



While the property of shift-scale invariance does not seem to afford a marked
improvement with respect to IT attenuation and time-frequency concentration in the
general case, it is true that shift-scale-invariant SWDs do possess a theoretical
advantage. In the case of SWDs which are not shift-scale-invariant, the smoothing
usually destroys most of the nice theoretical properties of the WD (except for
shift-invariance and real-valuedness). In contrast, a shift-scale-invariant SWD,
besides being shift-invariant and scale-invariant, will satisfy many other nice
properties with only mild restrictions regarding v («) [14,16,36]). In fact, it is real-
valued (in the auto case) and satisfies the marginal, instantaneous-frequency, and
group-delay properties [1] if y_(«) is real-valued, even, and normalized such that
J¥c(@)da=T.(0) =1. In addition, the finite-support properties (cf. Section 3) are
obtained if v.(@)=0 for |«|>1/2. Other properties, such as the convolution and
multiplication property [1] and unitarity [41] (validity of Moyal's formula [1]) cannot
be satisfied by any SWD since they are incompatible with the smoothing character-
istic (i.e., the requirement that |¥_(t,u)| decays for large values of |t| and/or |u|).

On the other hand, a disadvantage of shift-scale-invariant SWDs is the fact
that they do not allow the amounts of smoothing in the time direction and frequency
direction to be chosen independently. For example, more time smoothing will be
achieved by a narrower ' (f); due to the "product structure” ¥_(t,u) =T (tu) of the
ambiguity kernel, this automatically produces more frequency smoothing as well.

Examples of shift-scale-invariant SWDs. Shift-scale-invariant SWDs which have
been proposed in the literature are the Choi-Williams distribution, the Born-Jordan
distribution, and the class of "reduced-interference distributions.”

In the case of the exponential distribution or Choi-Williams distribution (CWD)
[42,16,43,14], the kernel functions v.(«) and T'.(f) are Gaussians,

2 2
Yowp (@ = /TE e ™Eo®” Tewp® = e (8% (13.9)

The parameter E,>0 controls the amount of smoothing; a smaller value of &
produces a stronger smoothing with respect to both time and frequency. In the
extreme case of no smoothing, £, o, we have I'cwp(8) 1 and the CWD thus
reduces to the WD. The CWD is real-valued in the auto case and satisfies the mar-
ginal properties as well as the instantaneous-frequency and group-delay properties.
However, due to yowp(®) #0 for |a|>1/2, the finite-support properties are not
satisfied. This means that ITs will generally be spread over the entire time or
frequency axis (although they will decay according to a Gaussian law). For example,
the IT of two time-domain impulses at time points t, and t, follows with (13.7) as

t-tio

CWDg)(t,f) = 2|g,llc,| ymEz - exp[—(n&o T2 )2] cos(2mt,,f-o,,) ;
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it is a Gaussian with respect to time, with spread proportional to 1,./%, (see Figure
38.a).

The Born-Jordan distribution (BJD) [44] is defined by a rectangular Y(a) or,
equivalently, a I'_(£) with sinc shape,
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Figure 38. Signal terms and IT for two time-domain impulses: (a) CWD and (b)
RID with Hamming window.
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The BJD satisfies also the finite-support properties; however, its IT attenuation is
poorer than that of the CWD due to the relatively slow decay and the "sidelobes”
of the sinc-shaped I'gyp(%).

The class of "reduced-interference” distributions (RIDs) [16] is simply defined as
the class of all shift-scale-invariant SWDs that are real-valued in the auto case
and satisfy the marginal, instantaneous-frequency, group-delay, and finite-support
properties. Thus, as mentioned above, apart from the general "smoothing condition”
that T (f) decays for larger |E|, the function y.(¢) has to be real-valued, even,
normalized such that [y_(e)da=T_(0)=1, and zero for la|>1/2. This excludes the
CWD (which does not satisfy the finite-support properties) but includes the BJD.
As proposed in [16], standard finite-support windows can be used to construct a
Yc(o) satisfying the RID requirements; the BJD then corresponds to the rectangular
window.

We note that the finite-support properties have an influence on the interference
geometry since the IT corresponding to two signal components displaced in time
can never extend beyond the total time support of the overall two-component
signal. This is illustrated in Figure 38.b for an RID using a Hamming window for
Yc(a). Note that the improved time concentration of the IT (as compared to the
CWD shown in Figure 38.a) is paid for by an increase of the IT's height. An analo-
gous statement holds with respect to frequency.

Other SWDs. The definition of SWDs with sophisticated smoothing kernels con-
tinues to be a current research topic. In the following, we give a brief survey of
some smoothing schemes that have been proposed recently.

The cone-kernel representation (CKR) [12,45,43,14] is defined by the ambiguity
kernel
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where g(1) is some window function. In contrast to the ambiguity kernel of con-
ventional SWDs, ¥cgr(t,u) is zero at the origin of the (t,u)-plane, and attains its
maximum at those points on the t-axis where the function g(1)|t| is maximal.
Hence, the CKR implements a directional bandpass filtering, rather than lowpass
filtering, of the WD. This can lead to significant residual ITs between signal terms
occurring around the same frequency, for some range of the time lag |t,,|=|t,~t,|
between the interfering signal components. A remarkable feature of the CKR is that
it satisfies the temporal finite-support property and is yet capable of attenuating
ITs oscillating in the time direction. The CKR achieves good time-frequency concen-
tration and good IT attenuation in the case of multiple sinosoidal bursts with
quasi-stationary instantaneous frequencies. The CKR's integral with respect to the
frequency variable, and thus also the integral over the entire time-frequency plane,
is zero; hence, the CKR is not an "energy distribution.”

An obvious extension of the smoothing discussed so far is a "directional” smooth-
ing [9,10,46] where the Wigner kernel ¢_(t,f) is oriented in a given direction of the
time-frequency plane and, consequently, the smoothing is maximal in this direc-
tion. Such a directional smoothing is advantageous if the ITs are known to oscillate
mainly in a specific, slanted direction. We note that directional smoothing is incon-
sistent with both the separable structure of the SPWD kernels and the product
structure of shift-scale-invariant SWDs.

A recent extension of the Choi-Williams distribution is the generalized expo-
nential distribution (GED) [17,14] for which

YD (T,V) = exp[—(:—o)ZM(%)ZN] .

The GED is shift-scale-invariant only if M=N. The parameters Tos Vos M, and N
permit an adjustment of the smoothing characteristics that is more flexible than
in the CWD. The CWD is a special case corresponding to the parameters M=N=1.
An SWD following a similar philosophy is the Butterworth distribution [17,14].

A general disadvantage of these more sophisticated SWD definitions is that,
often, they perform well for certain types of signals but may perform poorly for
other signal types. In many cases, a significant performance gain can be achieved by
adapting the smoothing kernel to the specific signal under analysis. An example is
given by the radially-Gaussian kernel distribution [11,14] whose ambiguity kernel is
a Gaussian in each radial direction of the (t,u)-plane,
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‘and where the Gaussian's spread, o, (), depends on the radial direction (8) and is
optimally adapted to the signal x(t) under analysis. This scheme is particularly
suited for multicomponent signals consisting of linear FM (chirp) components with



various chirp rates. Other signal-adaptive SWDs are discussed in [20,46-48]. Note,
however, that if the signal-adaptive control mechanism is considered part of the
SWD definition, then the SWD is no longer quadratic with respect to the signal.

Another extension of the WD smoothing discussed so far is the use of different
smoothing kernels for different points of the time-frequency plane. For example, if
a detailed a-priori knowledge about the signal is available, then it may be advanta-
geous to use different kernel spreads and/or directions in different regions of the
time-frequency plane [9,10, 46-48]. An important special case of this philosophy is
the use of an affine smoothing, which implements a "constant-Q" time-frequency
analysis where the time and frequency concentrations are better and poorer,
respectively, for growing analysis frequency [13,14]. An alternative approach to
constant-Q time-frequency analysis is proposed in [49,48]. We emphasize, however,
that these "time-frequency-varying” SWDs are no longer members of the shift-
invariant class (bilinear Cohen class).

Comparison of SWDs. An in-depth comparison of different SWDs [14,43,50] is
beyond the scope of this work. In the following, we concentrate on some essential
points and illustrate some of the properties and effects discussed previously by
means of computer simulations. We shall also compare the WD, PWD, SPWD,
spectrogram, and CWD for a few specific signals.

As has been stated above, the IT attenuation and time-frequency concentration
properties of an SWD depend on the shape of the ambiguity kernel ¥_(t,v). Figure 39
compares schematic representations of the effective supports of the ambiguity
kernels of various SWDs. An IT falling outside these effective supports will be
effectively suppressed. Also, the concentration loss in a signal term will be larger if
a larger part of the corresponding AF lies outside the effective support of ¥_(t,u).

(a) (b) (c) (d) (e)

Figure 39. Effective support of ambiguity kernel ¥e(t,u): (@ WD (no smoothing),
(b) PWD, (c) SPWD, (d) spectrogram with Gaussian window, (e) shift-scale-invariant
SWD.

We next consider "simple” SWDs for which the amounts of smoothing in the
time and frequency directions can be roughly characterized by the time spread At
and the frequency spread Aaf, respectively, of the Wigner kernel P(t,f). This class
includes the PWD, SPWD, and spectrogram but not shift-scale-invariant SWDs like
the CWD or BJD. Figure 40 compares possible choices of the spreads At and Af
for various "simple” SWDs. In the extreme case of the WD (case of no smoothing),



At and Af are both zero, which results in perfect time-frequency concentration but
no IT attenuation at all. The PWD permits frequency smoothing (Af > 0) but no time
smoothing (At =0), and thus yields an attenuation of ITs oscillating in the frequency
direction at the cost of impaired frequency concentration. The SPWD allows a free
and independent choice of the smoothing spreads at and af, and thus an arbitrary
control of IT attenuation and time-frequency concentration (apart from the funda-
mental tradeoff relating these two properties). Finally, in the spectrogram the
spreads are constrained by the uncertainty relation Ataf>1/(4%) and thus cannot
both be made arbitrarily small. This leads to a fixed minimal amount of overall
smoothing, corresponding to substantial IT attenuation but poor time-frequency
concentration.

Af & (a) Af g (b) Afa @
at=af=0 At=0
/
———p > %
At At At

Figure 40. Possible smoothing spreads at and af for (a) WD, (b) PWD, (c) SPWD,
and (d) spectrogram.

The following four figures illustrate the characteristic interference-geometric
properties of shift-scale-invariant SWDs. They also show a comparison of the re-
sults obtained with a specific shift-scale-invariant SWD (the CWD) with correspond-
ing results of the SPWD. For a fair comparison, the dynamic ranges of all contour-
line plots have been chosen strictly identical (10 contour lines with linear spacing
between the maximum height and 1% of the maximum).

Figure 41 compares the results of the SPWD and the CWD for the case of two
chirp signals. Note that the CWD's concentration is poorer than that of the SPWD
although the CWD's ITs are considerably stronger. Of course, the CWD's ITs
could be reduced in height by choosing a smaller value for the spread parameter |3

1 (b)

Figure 41. (a) SPWD and (b) CWD of two chirp signals.



in (13.9); however, this would produce a further broadening of the chirp signal
terms and an even greater spreading-out of the ITs in the time or frequency
direction. The CWD result nicely illustrates the interference geometry of shift-
scale-invariant SWDs. Specifically, the ITs are observed to oscillate either only in
the time direction or only in the frequency direction. This follows from the fact
that, as explained further above, only signal points occurring either at the same time
or at the same frequency produce an IT; due to the general interference geometry,
the IT will then oscillate in the time direction (in the first case) or in the frequency
direction (in the second case).

We next compare the results of the SPWD and CWD obtained for a signal con-
sisting of four time-frequency-shifted Gaussian components [14]. Two different
signals are considered: the first signal, shown in Figure 42, consists of Gaussians
which all occur at different times and frequencies. In contrast, the second signal
(see Figure 43) contains Gaussians of which two occur at the same time and two
occur at the same frequency.

(a) (b)

Figure 42. (a) SPWD and (b) CWD for a signal consisting of four Gaussians, all of
which occur at different times and frequencies.

(a)

Figure 43. (a) SPWD and (b) CWD for a signal consisting of four Gaussians, of
which two coincide in time and two coincide in frequency. (Note that in (b) the ITs
of the CWD have been truncated; they actually extend beyond the signal terms.)

In the SPWD, the two situations lead to similar results; in particular, the ITs are
nicely suppressed in both cases. In contrast, the CWD shows satisfactory IT sup-



pression only in the first case; in the second case, substantial ITs are seen to exist.
Again, the reason is that the CWD yields poor IT attenuation for signal components
occurring either at the same time or at the same frequency (cf. Figure 36). Note,
also, the large time and frequency spreads of the CWD's ITs. This confirms the
result, derived previously, that an attenuation of IT amplitude is paid for by a pro-
portional increase of IT spread.

Figure 44 shows the results of the SPWD, CWD, and spectrogram for two "par-
allel” chirp signals. The time distance between the two chirp signals is varied
whereas the smoothing characteristic of each representation is held constant. The
results confirm the general rule that an IT corresponding to signal components with
larger distance in the time-frequency plane features a faster oscillation and will

Noss sectiny\

Figure 44. Results of (a) SPWD, (b) CWD, and (c) spectrogram for two "parallel”
chirp signals with various time distances.




hence be attenuated more in an SWD. Note that, in the CWD, the time spread of
the IT increases with the time distance of the signal terms. Also, the IT of the
spectrogram is seen to be zero for non-overlapping signal terms.

Finally, Figure 45 illustrates the IT-attenuation/concentration tradeoff by com-
paring the results of different "simple” SWDs obtained for a given signal. The WD
(Figure 45.a) represents the extreme case of no smoothing and, consequently, per-
fect time-frequency concentration but no IT attenuation. The PWD features smooth-
ing in the frequency direction only; hence, ITs oscillating only in the time direction
are not attenuated (see Figure 45.b). Figures 45.c-e show results of the SPWD with
various window lengths. It is verified that more smoothing yields a better attenu-
ation of ITs but causes a stronger broadening of the signal terms, i.e., poorer time-
frequency concentration. Spectrogram results are shown in Figures 45.f and 45.g.
The similarity of Figures 45.e and 45.f shows that the SPWD is capable of simulating
a spectrogram if the smoothing in the SPWD is chosen sufficiently strong. All in
all, these results demonstrate the great flexibility of the SPWD which, on the one
hand, contains the WD and PWD as special cases and, on the other, can also
realize an extensive smoothing comparable to that of the spectrogram.

14. CONCLUSION

Throughout this work, we have emphasized the geometrical properties of inter-
ference terms (ITs) since it is this "interference geometry” which is most important
for practical applications. Often, we are in the “interpretation” situation where we
have to interpret the Wigner distribution (WD) of an otherwise unknown signal: by
inspecting the signal's WD, we want to obtain information about the signal's
time-frequency structure, i.e., decide in what regions of the time-frequency plane
the signal's energy is located. However, a large WD value at some time-frequency
point does not necessarily mean that the signal has any energy around this point.
It is exactly this fact (closely related with the uncertainty principle which a-priori
prohibits the pointwise energetic interpretation of any time-frequency representa-
tion) that necessitates the distinction between signal terms and ITs. In interpreting
a large WD value, we need to decide whether it is part of a signal term (which
carries energy) or an oscillatory IT (which usually carries little or no energy). The
laws of interference geometry allow us not only to identify signal terms and ITs
but also to associate an IT with the corresponding signal terms: given two signal
terms, we know where the associated IT is located; conversely, given an IT, we
can derive the time-frequency locations of the associated pair of signal terms.

This application of interference geometry is possible whenever the signal consists
of energetic components which are sufficiently concentrated and separated in the
time-frequency plane. Examples of "concentrated” signals are signals of the AM-
FM type where the signal energy is concentrated along the curve of instantaneous
frequency, or Gaussian signals which are concentrated around some time-frequency
point.

There exist, however, signals which do not have such a "simple” time-frequency
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Figure 45. SWD results for two crossed chirps. (a) WD, (b) PWD, (c) SPWD with
mild smoothing, (d) SPWD with stronger smoothing, (e) SPWD with strong smooth-
ing, (f) spectrogram with "good” window, (g) spectrogram with "too long” window.



structure. Extreme cases are noise signals whose energy is irregularly spread over
larger regions of the time-frequency plane. Here, a distinction between "signal
terms” and ITs is hardly possible.

In any case, it should be noted that the distinction between signal terms and ITs
is not based on a mathematically strict criterion. (In the last instance, any WD point
is made up by "interference" of other points - cf. the inner interference formula
(5.1).) Rather, the definition of ITs is based on the ITs' oscillation and is thus a
phenomenological one. In the case of outer interference, the definition of ITs as
bilinear cross terms is not unique either since any signal can be split into signal
components in an infinity of ways, and the concept of a "multicomponent signal” is
not a mathematically strict one. Still, in many situations it is intuitively clear what
the signal components are, and in these cases the distinction between signal terms
and ITs, as well as the laws of interference geometry, are indispensable for a
proper interpretation of WD results and an appropriate choice of a WD smoothing
kernel.

From a theoretical viewpoint, the occurrence of oscillatory ITs in the WD is not
surprising since the ITs are enforced by the marginal properties, i.e., by the fact
that the WD is an energy distribution. In many situations, the marginal properties
impart an energetic interpretation to ITs; hence, it does not seem justified to call
ITs "artifacts” of the signal representation WD. We note that in general oscillatory
components must exist in other energy distributions as well, even in the case of the
"positive” distributions [51,52] which are non-bilinear. The differences between the
ITs of various energy distributions are essentially differences with respect to
interference geometry. These differences in interference geometry have a heavy
influence on the results obtained with different representations. For example, the
comparison of the WD and the Rihaczek distribution clearly shows that representa-
tions with very similar general properties but different interference geometries
will generally produce very different results for the same signal (cf. Figure 22).
The aspect of interference geometry is thus an important criterion for selecting a
specific time-frequency representation for a given application.

In some situations, ITs are important since they provide specific information
which is not contained in the signal terms. In particular, the relative phase of two
signal components is visible only in the IT (via the phase of its oscillation).
Time-frequency methods for optimal detection and estimation are often based on
the unitarity (validity of Moyal's formula) of the time-frequency representation used
[53]; this necessitates the occurrence of ITs since the unitarity property is incom-
patible with IT attenuation by means of smoothing [41]. Also, ITs often allow the
identification of small signal components in contour-line plots: if a signal compo-
nent is so small that its signal term falls below the lowest contour line, the
signal term itself will be invisible; however, the IT caused by interference of this
signal component with a larger signal component may still be visible.

Even though some arguments in favor of ITs do exist, the fact remains that ITs
are a nuisance in many applications since they tend to conceal the signal terms on
which a signal’s interpretation usually relies. A smoothing of the WD results in an



attenuation of ITs at the cost of impaired time-frequency concentration and the
sacrifice of at least some of the nice mathematical properties of the WD. In many
applications, however, these properties are not really utilized and can thus be
sacrificed in favor of improved clearness and readability of analysis results (this is
especially the case in applications where a time-frequency representation is inter-
preted by a human analyst).

Our treatment of WD smoothing has been placed in a deterministic framework.
We note, however, that a WD smoothing can also be motivated from a stochastic
viewpoint, namely, the viewpoint of time-varying spectral estimation [38,39,54].
Here, the various smoothed WDs (SWDs) can be interpreted as estimators of the
Wigner-Ville spectrum of a nonstationary random process. In this framework, the
IT attenuation/time-frequency-concentration tradeoff becomes a variance/bias
tradeoff: more smoothing reduces the estimator's variance while increasing its bias.

A classical SWD is the spectrogram (or, in the context of spectrum estimation,
the periodogram) which, however, allows only a very restricted control over the
smoothing characteristics. Due to its flexibility in adjusting the smoothing charac-
teristics, the smoothed pseudo WD (SPWD) has a clear advantage over the spectro-
gram. Shift-scale-invariant SWDs like the Choi-Williams distribution, on the other
hand, are theoretically attractive since they preserve a maximal number of nice
mathematical WD properties. They do not, however, appear to produce clearer
results than the SPWD in the general case. Of course, it is impossible to make a
general statement in favor of a specific SWD. The "best” SWD always depends on
the application at hand and, in the last instance, is also a matter of personal
predilection.

The development of sophisticated smoothing methods continues to be a current
research topic. Examples of recently proposed SWDs are the cone-kernel representa-
tion, the generalized exponential distribution, and the radially-Gaussian kernel dis-
tribution. Although we have here considered shift-invariant smoothing schemes
where the smoothing kernel does not depend on the time-frequency point of evalu-
ation, there also exist "time-frequency varying” SWDs such as "constant-Q" SWDs
which are members of the affine class of bilinear time-frequency representations.
In all cases, the smoothing kernel contains one or more parameters (e.g., window
lengths or spread parameters) which influence the smoothing characteristics and
need to be adjusted. This adjustment is either done "manually” by the signal
analyst or automatically via an adaptive algorithm; the latter case corresponds to
a truly signal-adaptive SWD.

While we have concentrated in this chapter on smoothing schemes for attenuating
the WD's ITs, we note that several alternative approaches for IT suppression have
been proposed. Relevant references are [55-58], to name but a few.

Finally, a issue which has not been addressed in this chapter is that of positivity.
We have mentioned that the WD's local negativity can be viewed as an interference
phenomenon. Also, it is clear that a smoothing of the WD will usually reduce the
amount of negativity (a prominent example is the spectrogram which is always
nonnegative). An in-depth discussion of positivity issues may be found in [59].
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