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Abstract

In the application of bilinear time-frequency representations (BTFRs) to signal
design and signal processing, the problem of signal synthesis plays an important
role. This chapter discusses signal synthesis algorithms for various BTFRs and
BTFR classes. First, a general theory of signal synthesis is formulated for the
class of subspace-unitary BTFRs. For the discrete-time Wigner distribution (WD),
algorithms for both global and halfband-constrained signal synthesis are presented.
Extensions of these algorithms yield iterative signal synthesis algorithms for the
class of smoothed WDs and the spectrogram, as well as a recursive "on-line" algo-
rithm for the pseudo-WD. Various algorithms for removing the phase ambiguities
of signal synthesis are considered, Finally, the application of signal synthesis to
time-frequency filtering is discussed.

1. INTRODUCTION

This chapter discusses the signal synthesis problem for bilinear time-frequency
signal representations, with emphasis placed on the Wigner distribution (WD) and
smoothed WD versions. In the Introduction, we start with a general formulation
of bilinear time-frequency representations, give a list of important representations,
and state the basic problem of (optimal) signal synthesis. We finally give an over-
view of the material covered in the subsequent sections.

BTFRs. Bilinear time-frequency representations (BTFRs) of signals, like the WD,
ambiguity function, and spectrogram, seek to combine the notions of time-domain
description and frequency-domain description into a single two-dimensional signal
representation [1-9]. While the primary application of BTFRs is the analysis of
signals, BTFRs can also be used for signal design and signal processing. Here, the
problem of signal synthesis plays a central role [1,10-16].

Let x(n) and y(n) be two discrete-time signals with Fourier transforms X(©) and
Y(©), respectively. The variables n and © denote the discrete time index and the
normalized frequency, respectively. We note that the Fourier transform of a signal,



X(@) = % x(n) e~i27On 1.1

is a 1-periodic function of the normalized-frequency variable ©. (In (1.1) and subse-
quent equations, summations are from - to « unless explicitly stated otherwise.)

Any BTFR of the signals x(n) and y(n) can be written as
Ty ,(n,0) = % Zl: ur(n,0;k,1) gy y(k,1), 1.2)

where

A,y (k,D) 2 x(k) y*(D

is the outer signal product of x(n) and y(n), and ur(n,0;k,l) is a kernel function
which specifies the respective BTFR T [17,9]. This kernel function is in fact the
BTFR's "impulse response” since

ur(n,6;k,1) = T, ,(n,0) for x(n)=8mn-k) and y(n)=35(n-1), 1.3)
where 8(n) denotes the unit sample. Eq. (1.3) provides a convenient way for calcu-
lating the impulse response for a given BTFR.

Important BTFRs which will be considered in later sections are the Wigner
distribution (WD) [18,6,1]

WD, ,(n,0) = 2 ¥ x(n+m) y*(n-m) e"i47®m , (1.4)
m

a modified definition of the WD (not equivalent to (1.4)) given by [19]

WD', ,(n,8) = 3 x(m) y*(n-m) e”i27©2m-n) . (1.5)

? m
the Rihaczek distribution [2,6]
RD,, ,(n,0) = 3 x(n+m) y*(n) e7j27®m ,
> m

the pseudo Wigner distribution (PWD) [18,6]

PWD, ,(n,0) = 2 ¥ x(n+m) y*(n-m) h®(m) ¢~1¢7Om (1.6)
m

where h(m) is a real-valued and even analysis window:; the smoothed pseudo Wigner
distribution (SPWD) [20-22,6]

SPWD,, y(n,0) = PWD, ,(n,0) x g(n) 1.7)

where g(n) is a time smoothing window and % denotes convolution with respect to
the time index n; the exponential distribution (ED) [23,24,22,6,1]



ED, ,(n,©) = 2 ¥ '/ﬁn'f[z exp (- 3(:;—2)2) x(n'+m) y*(n'-m)] g i4mOm (1.8)

where ¢>0 is a parameter; and the spectrogram [2,25,6]

Sxy®8) = [ I xtn)hin;n) 22 3 yn,) hin,-n) e7127O"2 T (1.9)
ny ng

where h(n) is an analysis window. Furthermore, there exists a class of BTFRs with
correlative interpretation [1,3], among which the following two definitions of the
ambiguity function (AF) are the most important [2,26,6,1]:

AF1L, ,(m,0) = X x(n+m) y*(n-m) e”327%n (1.10)

AF2,  (m,) = 3 x(n+m) y*¥(n) e127C0
n

Here, m and T denote a time lag and (normalized) frequency lag, respectively. Cor-
relative BTFRs, too, can be written in the general form (1.2) if n and © are replaced
by m and T, respectively.

In most practical applications, the BTFR of a single signal x(n) is of interest;
this is defined as T,=T, x. We shall call T, an auto-BTFR and T, , (with x(n)#y(n))
a cross-BTFR.

The signal synthesis problem. Suppose, now, that T is a given BTFR defined, for
example, by its impulse response u(n,8;k,1). Furthermore, let T(n,®) be a given
function which is 1-periodic with respect to the frequency variable ©. Then, in
most cases, T(n,0) will not be a valid auto-BTFR of a signal x(n). This means that
there does not exist a signal x(n) such that T,(n,®)=T(n,0). Thus, if we want to
specify a signal in the time-frequency domain, this cannot be done by simply
constructing a desired BTFR outcome (time-frequency function) T(n,0) and “invert-
ing” the BTFR T, i.e., solving the equation T,(n,®)=T(n,0). Instead, it is natural to
resort to a least-squares approach [11] and derive the signal x(n) as the solution
to the minimization problem

ex = |T-Tx| — min, (1.11)

where the error norm ¢, is defined by

1/2
2 = |[T-T.* 2 2 | |T(,0)-Tn,0)]|2de .
n-1/2

The minimization (1.11) will be called (optimal) signal synthesis, and the time-fre-
quency function T(n,0) will be termed a model. In later sections, we will depart
from strict optimality when considering signal synthesis algorithms which do not
minimize the synthesis error ¢, but, rather, local versions of the synthesis error.



Also, we will consider subspace-constrained signal synthesis which incorporates a
signal subspace constraint.

Already at this point, we can derive a general ambiguity of the signal synthesis
solution x(n). From the general BTFR formulation (1.2), it follows that an auto-BTFR
is invariant to a constant phase factor:

%(n) = &/® x(n) > T%(n,0) = T,(n,0) for all ¢ . 1.12)

From this invariance, we further conclude that the solution of the signal synthesis
problem (1.11) is ambiguous with respect to a constant phase factor. Indeed, if x(n)
is a solution of optimal signal synthesis, then X(n) = €/® x(n) must be a solution
as well since it achieves the same (minimal) synthesis error,

ex = [ T-Tgl = [T-Tyl = ex - (1.13)

This phase ambiguity can be resolved by means of a phase matching algorithm
using a reference signal (see Section 7). An additional, more troublesome phase
ambiguity will be seen to exist in the case of the WD, smoothed WD versions, and
the AF version AFl.

Survey of chapter. The subsequent sections are organized as follows. Section 2
considers a subspace-constrained version of the signal synthesis problem in the
general framework of BTFRs. In Subsection 2.1, it is shown that a linear signal
subspace "induces" a corresponding BTFR-domain subspace for which an orthonormal
basis is easily constructed provided that the BTFR satisfies a unitarity property on
the given signal subspace. Based on this fact, a general algorithm for subspace-
constrained optimal signal synthesis is derived in Subsection 2.2. This algorithm
involves an eigenvalue-eigenvector problem for whose solution the well-known
power algorithm is proposed in Subsection 2.3.

Section 3 discusses the signal synthesis problem for the case of the WD. The
WD's unitarity properties are considered in Subsection 3.1. The well-known algorithm
for global signal synthesis (i.e., synthesis without a subspace constraint) is then re-
viewed in Subsection 3.2. It is shown that this algorithm is equivalent to performing
two independent subspace-constrained signal synthesis procedures. Subsection 3.3
shows that the problems of aliasing, non-unitarity, and relative phase invariance of
the WD can be avoided by means of a specific signal subspace constraint. According-
ly, a modified signal synthesis algorithm termed halfband signal synthesis algorithm
is then derived by specializing the general algorithm of Subsection 2.2. Finally, other
approaches to WD signal synthesis are briefly discussed in Subsection 3.4.

Sections 4 through 6 consider BTFRs which are inherently non-unitary such that
the standard algorithm of Subsection 2.2 cannot be applied. The class of smoothed
WD versions (containing the PWD, SPWD, and ED) is considered in Section 4. After
a general discussion of smoothed WD versions in Subsection 4.1, iterative algorithms
for global and halfband signal synthesis are presented in Subsections 4.2 and 4.3,
respectively. Since for smoothed WDs a closed-form solution to the signal synthesis



problem does not seem to exist, these algorithms are partly heuristic. In Section
5, the iterative method developed for smoothed WDs is reformulated for the
spectrogram. Section 6 modifies the iterative scheme to derive "on-line" algorithms
for global PWD signal synthesis. In contrast to the methods considered before,
these algorithms permit the synthesis of signals with arbitrary length by recursively
synthesizing individual signal blocks or samples, using local model segments.

Section 7 discusses phase matching algorithms for resolving the phase ambigui-
ties of signal synthesis. In Subsection 7.1, a distinction is drawn between the
"absolute” phase ambiguity affecting the entire signal and the "relative” phase
ambiguity of even-indexed and odd-indexed signal samples relative to each other.
Subsection 7.2 considers phase matching algorithms using a reference signal.
Subsection 7.3 presents algorithms resolving the particularly troublesome relative
phase ambiguity without using a reference signal. On-line versions of all phase
matching algorithms are discussed in Subsection 7.4.

Finally, Section 8 studies the application of signal synthesis to the problem of
time-frequency filtering. It is shown that WD-based signal synthesis suffers from
potential "interference term effects,” and various ways to cope with this problem
are pointed out.

2. SUBSPACE-UNITARY BILINEAR TIME-FREQUENCY REPRESENTATIONS

In this section, we consider a general BTFR T defined by its impulse response
up(n,8;k,1) as

Tx,y(n,©) = %Zl ur(n,6;k,1) gy ,(k,1) where Ax,y (k1) = x(k) y*(I) . (2.1)

We wish to derive a solution to the following subspace-constrained version of
signal synthesis [13]:

ex = |T-Tyf]| — min . (2.2)
xS

Here, € is a given N-dimensional linear signal space [27-29] spanned by an ortho-
normal basis {ey(n)}, k=1,2,..,N. (We shall also consider infinite-dimensional signal
spaces for which N=w.) As a difference from the original signal synthesis problem
(1.11), the formulation (2.2) incorporates a signal space constraint x(n) ¢& which
forces the signal synthesis solution x(n) to be an element of the signal space &.
Note, however, that the unconstrained signal synthesis problem (1.11) is a special
case of the constrained version (2.2); it is obtained by choosing & to be the total
space l,(-o,») of square-integrable (finite-energy) signals. The unconstrained ver-
sion of signal synthesis (with ©=1,(-,»)) will be called global signal synthesis;
in contrast, subspace-constrained signal synthesis (where & cl,(-»,) is a proper
subspace of 1,(-w,»)), will be called subspace signal synthesis.

The advantage of the subspace constraint x(n) ¢ & is that it provides a convenient
way for enforcing certain properties of the synthesis result x(n). By prescribing a



suitable signal subspace &, x(n) can be forced to be bandlimited, time-limited,
analytic, causal, symmetric etc. In particular, we shall see in Subsection 3.3 that a
specific bandlimitation constraint is important in the case of the WD, smoothed
WD versions, and AF1i since it avoids aliasing in these representations and at the
same time avoids the relative phase ambiguity which would occur in the case of
global signal synthesis. Furthermore, the signal subspace & can be constructed such
that it possesses a time-frequency concentration property [30,31]; this results in a
"time-frequency selective" type of signal synthesis which effectively combines
signal synthesis with joint time-frequency filtering (see Subsection 3.4).

2.1 Subspace Unitarity and Induced Subspaces

We shall now develop the concepts of subspace uﬁitarity and induced spaces as
a theoretical background for subspace signal synthesis.

Subspace unitarity. A BTFR T is said to be unitary on the signal space & [13] if
it satisfies Moyal's formula [18,9]

(Txvy1 ’sz,yz) = (xi’xz)()'v)'z)* (2.3)

for arbitrary signals x,(n), x,(n), y,(n), y,(n) ¢« & which are elements of the signal
space &. Here, the signal-domain and BTFR-domain inner products are defined as

1/2
(X4,%p) = % X,(n) x3(n)  and (T,,T,) = §—1£2 T,(n,0) T3(n,0) dO .

A BTFR is said to be globally unitary if Moyal's formula holds on the total signal
space l,(-w,). If a BTFR is globally unitary, then it is obviously unitary on arbi-
trary subspaces @ cl,(-c,0). Among the BTFRs presented in the Introduction,
only WD', RD, and AF2 are globally unitary.

The BTFR's impulse response ur(n,0;k,1) can be used to check whether or not
the BTFR is unitary on a given space ©. Indeed, it can be shown [13] that a neces-
sary and sufficient condition for a BTFR's unitarity on & is

1/2

%_1,52 ute(n,6;k,.1,) ureg(n,B;k,,l,) d® = zglk,,l;k,,1,) . (2.4)
Here,
ure(n,6;k,1) 2 g% ur(n,0;k"1") zg(k'1;k,1) (2.5)
with
zg(ky,l5k,.1,) 2 Palk,.k,) P&(,,1,) , (2.6)

where Pg(n,,n,), the kernel of the orthogonal projection operator [27,28] of &, is



derived from the basis signals ey(n) spanning & according to
N

Pg(n;,n,) = 3 ey(n,) ef(n,) . (2.7)
k=1 .

Specializing these results to &=1,(-c0,0) and the orthonormal basis of 1;(~c0,00)
given by ey (n) = 8(n-k) , ~w <k < o, a necessary and sufficient condition for global
unitarity is easily found as

1/2
§ J uk(n,6;k,L,) upn,®;k,,1,) dO = §(k-k,) s(1,-1,) . (2.8)
-1/2

Induced spaces. For a given BTFR T, the linear signal space & "induces” a corre-
sponding linear space @& of two-dimensional functions T(n,0) which are 1-periodic
with respect to the frequency variable © [9,13]. We shall call &t the induced
T-domain space associated with the signal space ©. Loosely speaking, the induced
T-domain space &y consists of all linear combinations of BTFR outcomes Tk, (n,0)
with x(n), y(n) ¢®. The spaces & and Sy are associated in the sense that

x(n), y(n) ¢ & > Tx,y(n,0) ¢ &1,

i.e., if the signals x(n) and y(n) are elements of the signal space &, then their BTFR
outcome T, ,(n,0) is an element of the induced T-domain space &1. Note, however,
that Gt contains not only valid BTFR outcomes Tx,y(n,0) but also functions
T(n,®) which are not BTFR outcomes.

If the signal space & is spanned by orthonormal basis signals e, (n) (k=1,2,..,N),
and if the BTFR T is unitary on &, then the induced T-domain space Gt is spanned
by an "induced T-domain basis” Ty (n,®) (k,I=1,2,...N), where the induced basis
functions are simply the cross-BTFR outcomes of the basis signals ey (n) spanning &,

Tk]_(n,@) = Tek,el(n,@) . (29)

The induced basis functions Ty;(n,@) are again orthonormal. In other words, the
cross-BTFRs of the orthonormal basis signals spanning & form a complete ortho-
normal basis of the induced T-domain space &y. For this, the unitarity of the
BTFR T on & is an essential requirement [9].

We shall now prove some of the statements made above. Let x(n) and y(n) be
two elements of a signal space &, and let er(n) be a complete orthonormal basis
of &. Then x(n) and y(n) can be represented in terms of the basis er(n) as

x(n) = gak ex(n) , y(n) = 21: By er(n) (2.10)
with coefficients o and B;. Inserting (2.10) into the BTFR expression (2.1) yields

Ty ,(n,0) = g% BT Tey e (n,0) . (2.11)



Since the BTFR T is assumed to be unitary on &, and the basis signals ey (n) are
themselves elements of ©, Moyal's formula (2.3) holds for the basis signals ey (n):

(Texyery: Texyer,) = (exprek,)(er,.e,)* = 8(koky) 8(1,-1,) (2.12)

where the orthonormality of the e (n) has been used. Eq. (2.12) shows that the
BTFR outcomes Te,,e;(n,0) are orthonormal; the functions Tey,e;(n,0) are thus an
orthonormal basis of a space &y. Finally, (2.11) shows that Tx,y(n,0) can be repre-
sented in terms of the basis Tey,e;(n,0) spanning &p; hence, Tx,y(n,0) must be an
element of &. This shows that Tx,y ¢ &7 for x,y ¢ ©.

2.2 A General Algorithm for Subspace-Constrained Signal Synthesis

Using the concept of the induced T-domain space and induced T-domain basis,
a solution to the subspace signal synthesis problem (2.2),

ex = | T'Tx" - xmelél )

can now be found rather easily [13]. In the following, we assume that the BTFR T
is unitary on the space & on which signal synthesis is to be performed.

We first take account of the signal space constraint x(n) ¢ & by representing x(n)
in terms of an orthonormal basis ey (n) spanning &,

N
x(n) = X oy ex(n);
k=1

the BTFR outcome T,(n,0) is then an element of the induced T-domain space Gt
and can hence be represented in terms of the induced orthonormal basis Tik1(n,0©)
= Tey,e;(n,0©) as

N N
Tx(n,8) = ¥ 3 ogaf Ty (n,0). (2.13)
k=1 1=1

The model T(n,0), on the other hand, need not be an element of S ; however, it
can be decomposed as [28]

Tm,0) = Tgnoe + T, me ,

where T@(n,e) is the orthogonal projection of the model T(n,®) on & (and thus
an element of &), and T, (n,8) is orthogonal on ©r. The (squared) synthesis error
€% can then be decomposed as

IT-Tal* = 1T+ TD-T | = [T Td+T, |2 =

2
€x

I Te-Tul® + IT.0° = s&x+ <3



where we have applied the Pythagorean Theorem [28,29] to the orthogonal “vectors"
(Tg-T,) ¢&y and T 1+ 1 ©1 (see Figure 1). Since the "orthogonal” error component
e, =] T, Il does not depend on the signal x(n), it can be disregarded for minimization.
Note that ¢, is altogether zero if the model T(n,0) is an element of GT.

Figure 1. Decomposition of model and synthesis error.

The error component g , = | Tg~Ty | has now to be minimized. Since the model
projection T@(n,G) is an element of the induced T-domain space G, it can be
represented in terms of the induced T-domain basis Ty;(n,0),

N N
Te®®) = 3 I vy Ti0n,0) with Yia = (T, Tip) - (2.14)
k=1 1=1

Inserting the expansions (2.13) and (2.14), and using the orthonormality of the in-
duced T-domain basis Ty;(n,0), the (squared) synthesis error can be developed as

2 N N 2
tox = | TeTx|® = ” 2 2 (n-ouof) T | =
k=1 1=1
N N
= 2 3 na-med |t = | T-aw | = g, .15

with the coefficient matrix I'=(yy;) of size NXN and the N-dimensional coefficient
vector @ = (ay); |-/l denotes the Euclidean matrix norm (Frobenius norm), and "+"
stands for complex conjugate transposition.

With (2.15), the synthesis error is now formulated in a coefficient domain. The
dyadic-product matrix aa* is Hermitian and rank-1; the matrix I, on the other
hand, is generally not Hermitian but can be split into a Hermitian component Iy
and an anti-Hermitian component I,. With this, it can be shown that the squared
synthesis error can be further decomposed as

IT-aat|* = || (Fu+ La)-aa* | = || (Ty-aa*)+I, | =

€S,

ITg- et | + Lo |* = eBmo* c&a -



where the "anti-Hermitian" error component ¢@A=lITs || does not depend on « and
can hence be disregarded for minimization. Thus, there remains to minimize the
"Hermitian" error component

teH,« = [Tu-aa*| . (2.16)

This minimization amounts to the approximation of the Hermitian matrix I' H by a
dyadic product aa*. Setting the gradient of ¢&H,o With respect to the coefficient
vector a equal to zero, we obtain the following necessary condition for a minimum:

Tye= lal’a . (2.17)

This is an eigenvalue-eigenvector equation, and we conclude that the « minimizing
‘@H,« Must be some eigenvector of the matrix I'yy, scaled such that ||| equals
the corresponding eigenvalue. We note that the eigenvalues and eigenvectors of
I’y are real-valued and orthogonal, respectively since the matrix I' H is Hermitian.
With Ay and uy denoting the eigenvalues and the corresponding normalized eigen-
vectors of Iy, respectively, the solution to (2.17) can be written as

a = &° /A u , (2.18)

where the phase ambiguity of eigenvectors has been explicitly incorporated via the
unknown phase constant .

We finally have to specify which eigenvector U, has to be taken in (2.18) in
order to achieve the minimum of ¢gyy .. Inserting (2.18) and the spectral decompo-
sition

N
Iy = 121 A uguy

of the Hermitian matrix Iy into (2.16), the residual synthesis error f@H,« is derived
as

2 N
= 3 -3, (2.19)
1=1

N
- +
£&H,a = “ El Ajupuy - Aeugugt

where the orthonormality of the eigenvectors u; has been used. From (2.19), it
appears that the index k minimizing ey , has to be chosen such that Ak is the
eigenvalue with maximum magnitude. However, (2.17) requires |la|®* =X, so that
Ak is constrained to be nonnegative. Thus, we conclude that the optimal Xy is the
largest positive eigenvalue. If the eigenvalues Ay and the corresponding eigenvectors
uy of I'yy are arranged in decreasing order, A,2),>..., and if the largest eigenvalue
A, is nonnegative, then the optimal coefficient vector ®,p¢ is finally obtained as

Aope = /X u, , 2,20 . (2.20)



Algorithm summary. As a result of the above derivation, we have obtained a
general algorithm for subspace signal synthesis. This algorithm is applicable to
BTFRs which are unitary on the signal subspace on which signal synthesis is
performed. It can be summarized as follows:

1a) Calculate the expansion coefficients of the model projection T@(n,@) accord-
ing to

1/2
Na = (TLTa) = 21 T0,0) Tin,0) do 1<k]l=N .

1b) Form the matrix I'= (yy)) and take its Hermitian component
Ty = L(I+TY) .
2) Calculate the largest eigenvalue ), and the associated (normalized) eigenvector

l.l1 of I'H.
3) If 1,20, the synthesis solution is given by

N
Xgpt(n) = k§1 %opt, Kk €k(n) (2.21)
with
oo = ¥/, u,, (2.22)

where ¢ is an arbitrary phase constant.

Global signal synthesis. We have stated before that global (i.e., unconstrained)
signal synthesis can be considered a special case of signal synthesis with a signal
space constraint x(n) ¢ @ if we choose the space & to be the entire space of finite-
energy signals, ©=1,(-o,w). From the identity

x(n) = X x(k) 8(n-k) , x(n) ¢ 1,(~c0,00) ,
k

it follows that ey (n) = 8(n-k) is an (orthonormal) basis of 1,(~0,0); the expansion
coefficients o) are equal to the signal samples x(k). If we assume the BTFR T to
be globally unitary, i.e., unitary on l,(-w,w), then the induced T-domain space
[1,(-~0,0)]t is spanned by the orthonormal basis

Tkl(n,@) = Tx,y(n,@)l u—r(n,e;k,l) .

x(n)=8 (n-k), y(m)=8(n-1)
where (1.3) has been used. Specializing the general results summarized above, we
obtain the following algorithm for global signal synthesis in the case of a globally
unitary BTFR:

1a) Calculate the expansion coefficients of the model projection le(_m,m)(n,e)
according to



1/2
Tia = (T, T) = 2 1}“2 T(n,0) u¥n,0;k,1) dO , ~osklsw .
n -

Ib) Form the matrix T =(yy,) and take its Hermitian component
Iy = 3(r+1%) |

2) Calculate the largest eigenvalue A, and the associated (normalized) eigenvector
u, of I'H.
3) If X,20, the synthesis solution is given by

Xopt(m = &® VX  u, , (2.23)

where u, ,, is the n-th component of the vector u, and ¢ is an arbitrary phase con-
stant.

2.3 The Power Algorithm

The general signal synthesis method derived in the previous section requires the
computation of the largest (nonnegative) eigenvalue A, and the corresponding
(normalized) eigenvector u, of a Hermitian matrix I'yy. This can be done by means
of a simple and efficient iterative method known as the power algorithm [32]. We
here briefly state the power algorithm for two reasons: firstly, it is practically
useful, and secondly, it will provide the starting-point for developing iterative
signal synthesis algorithms for smoothed WD versions and the spectrogram (see
Sections 4-6).

In the following, we assume that Iy is a Hermitian matrix whose largest eigen-
value %, equals the eigenvalue with maximum magnitude. We further assume that
A, has multiplicity 1. These requirements are usually satisfied in the context of
signal synthesis. The power algorithm is then given by the following iteration
scheme: For i=1,2,...

(a) v = Iy nti-v
(b) A@® = ” v® ”
(c) u(i) = v(i)/ )\(i) .

This iteration is initialized by a largely arbitrary start vector u‘'®?. Indeed, A? and
u? are guaranteed to converge to the largest eigenvalue A, and the corresponding
(normalized) eigenvector u,, respectively, unless the start vector u'® happens to
be orthogonal on u,. The convergence speed of the power algorithm is governed by
the ratio |1,|/X; here, X, denotes the eigenvalue with second-largest magnitude
(i.e., X, may be negative). The convergence will be faster for smaller IXl/x,. Of



course, in practice the iteration must be terminated after a finijte number of itera-
tion steps. An appropriate termination criterion is "u(i)-u(i'” "< e, where ¢ is a
suitably chosen small constant.

3. WIGNER DISTRIBUTION
This section discusses the signal synthesis problem for the discrete-time WD [18]
WD, ,(n,0) = 2 3 x(n+m) y*(n-m) e"i47Om (3.1
m

Since the general algorithm derived in the previous section requires the BTFR to
be unitary on the space & on which signal synthesis is performed, we first investi-
gate the unitarity properties of the WD in Subsection 3.1. It turns out that the WD
is not globally unitary, but it is unitary on certain subspaces §) of "halfband sig-
nals.” Furthermore, the WD is shown to be unitary (up to a factor) on two subspaces
€ and D corresponding to the even-indexed and odd-indexed signal samples,
respectively.

In Subsection 3.2, we consider the case of global signal synthesis. Despite the
WD's global non-unitarity which prohibits the application of the general algorithm
of Subsection 2.2, an algorithm for global signal synthesis exists [10] and is easily
derived. However, the synthesized signal is seen to suffer from an awkward "rela-
tive” phase ambiguity which generally leads to severe signal distortion. We also give
a subspace interpretation of global signal synthesis: global signal synthesis is shown
to be equivalent to two separate subspace signal synthesis procedures on the
subspaces ¢ and © of even-indexed and odd-indexed signal samples, respectively.

Arguing that WD aliasing should generally be avoided, we consider signal
synthesis on a halfband subspace § in Subsection 3.3. It is shown that the "half-
band constraint” x(n)¢§) prevents WD aliasing, assures the WD's unitarity, and
avoids the troublesome relative phase ambiguity of the synthesis result. Since the
WD is unitary on §, an algorithm for halfband signal synthesis is easily derived by
specialization of the general signal synthesis algorithm of Subsection 2.2.

Other approaches to WD signal synthesis and simulation results are finally pre-
sented in Subsections 3.4 and 3.5, respectively.

3.1 Unitarity Properties

From the WD's definition (3.1), it follows that the WD is 1/2-periodic with re-
spect to the normalized-frequency variable ©,

WD, y(n,0+1/2) = WD, ,(n,0) .

This is inconsistent with the 1-periodic Fourier transform X(©) of a signal x(n). In
general, the WD will hence be aliased with respect to ©. More precisely, it is well
known [18] that the auto-WD WD, (n,0) is non-aliased if and only if the signal



x(n) is a halfband signal, i.e., if its Fourier transform is restricted to some fre-
quency interval with bandwidth 1/2, which is just one half of the spectral period 1.
Halfband signals are thus effectively oversampled by a factor of 2.

Using (1.3), the WD's impulse response is obtained as

uwp(0,0;k,1) = §(n-X1) T2 k=D [y, (ka1

Checking condition (2.8), it is easily shown that the WD is not globally unitary,
1/4
§ 1;4 uivp(n,6;k,,1,) uwp(n,6;k,,1,) dO # §(k,k,) §(1,-1,)

(note that the integration is here over a frequency interval of length 1/2 only, ac-
cording to the WD's 1/2-periodicity). Indeed, it has been shown in [18] that Moyal's
formula (2.3) is not, in general, satisfied by the discrete-time WD. Also, the WD's
global non-unitarity has been implicitly noted in [33] where it is shown that an
orthonormal signal basis does not induce an orthonormal WD-domain basis. How-
ever, we will see in the following that the WD is unitary for halfband signals.

Halfband subspaces. We shall call x(n) a halfband signal if it is bandlimited in
a frequency band ©,-1/4 < © < ©,+1/4 with bandwidth 1/2, i.e., if

X(©) =0 for ©,+% < © < O+ . (3.2)

The parameter ©, is the center frequency of the halfband. Two important special
cases are given by ©,=0 (this corresponds to the lowpass band -1/4<0 < 1/4 and,
in particular, to real-valued signals oversampled by a factor of 2), and ©,=1/4 (this
corresponds to the one-sided band 0<©<1/2, i.e., to analytic signals). If O, is
assumed fixed, then the collection of all halfband signals satisfying (3.2) constitute
a linear signal subspace which we shall call a halfband subspace $. The orthogonal
projection [27-29] xg(n) of a signal x(n) on § is given by

Xg(n) = 2 h(n-n) x(n") , (3.3)
<

and an orthonormal basis {hy(n)} of § is

hy(n) = /2 h(n-2k) , —o<k <o . (3.4)
Here,
h(n) = 15 sinc(%n) el?™®on — H(©) = {(1, ; 82::;: :g : 2‘2113//4; ) (3.5)

with sinc(a) = sin(ra)/(ra), are the impulse response and frequency response, respec-
tively, of an ideal "halfband filter” with passband ©,-1/4<0 < 6,+1/4. Any halfband
signal x(n)e$) can be represented in terms of the basis hy (n),



x(n) = X aphi(n) , x(ne§ , (3.6)
k

where the coefficients a=(x,hy) can be shown to be (up to a factor) the even-
indexed signal samples,

o= 72 x(2k) . (3.7)

With this, (3.6) becomes the interpolation relation
x(n) = Z X h(n-2Kk) x(2k) , x(ne$ . (3.8)
k

It has been shown in [18] that Moyal's formula (2.3) is satisfied for halfband signals;
we thus conclude that the WD is unitary on halfband subspaces $. In particular,
for a given halfband subspace §), the induced WD-domain subspace Hwnp is spanned
by an induced orthonormal basis WDy (n,0) which, using (2.9), is obtained as

WDy (,0) = WDy, 4, (n,0) = 2 WDy,(n-(k+D),®) ¢ 47 k=D (3.9
with

_ 1 . 1 1 1
WDL,0,0) = 4(7-10-6,]) sinc[4(-10-6,)n], ©,-isecg+i . (3.10)

Summarizing, we can say that the WD is aliased and non-unitary on the entire sig-
nal space l,(-w,), but it is non-aliased and unitary on a halfband subspace $.

The subspaces & and ©. Apart from the halfband subspaces $, there exist two
other signal subspaces on which the WD is essentially unitary. These subspaces are
associated with the subsequences of even-indexed and odd-indexed signal samples,

respectively.
By definition, the "even-index” subspace & consists of all signals in which only

the even-indexed signal samples are nonzero,

x(n)e@® © x(2k+1)=0 .

The orthogonal projection of an arbitrary signal x(n) on & is obtained by setting
the odd-indexed signal samples equal to zero,

Xeo(n) = {x(n), n=2k
€ 0 , n=2k+l

We note, for later use, that the Fourier transform of Xg(n) can be shown to be an
aliased version of the Fourier transform of x(n),

Xe(® = $[X(©)+X(6-1/2)] . (3.11)



Any signal x(n) ¢ @ can obviously be written as
x(n) = X x(2k) §(n-2k), x(n) € ;
k
from this, we conclude that the subspace & is spanned by the (orthonormal) basis

er(n) = 8(n-2k) ,

and that the expansion coefficients aj are simply the even-indexed signal samples
x(2k).

Working out (2.4)-(2.7), it is readily shown that the condition (2.4) for subspace
unitarity (with frequency integration length 1/2 according to the WD's 1/2-periodic-
ity) is satisfied apart form a factor of 2 which merely effects a scaling. Thus, the
induced WD-domain subspace @, is spanned by the basis

WDy, n,0) = WD, . (n,0) = 2 §(n-(k+]))eI4mO%k-D (3.12)

eK.eq
which is orthonormal apart from a factor of 2, (WDy,, WDy ) = 25(k-k’) 8(1-1).

We note that completely analogous results are obtained for the "odd-index"
signal subspace © defined by x(n) ¢ e x(2k)=0.

3.2 Global Signal Synthesis

In the previous subsection, it has been shown that the discrete-time WD is not
globally unitary. Therefore, the global (unconstrained) signal synthesis problem

g = | T- WD, || — min (3.13)

cannot be solved by direct application of the general method of Subsection 2.2.

Nevertheless, the solution is easily derived [10]. In the following, we assume that

the model T(n,0) is real-valued and 1/2-periodic with respect to the frequency

variable © just as the auto-WD WD, (n,8), and that the frequency integration length

in the synthesis error (3.13) is 1/2, consistent with the 1/2-periodicity of WD, (n,0).
We start by writing the WD (3.1) as

-jan®
WD, ,(0,0) = 23 ¢, (nm)eI4mO™ (3.14)
where
Cx,y(n,m) 2 x(n+m)y*(n-m) = dx,y(n+m,n-m)

is derived from the outer signal product dx,y(k,]) by the coordinate transform
k=n+m, 1=n-m. Analogously, the model T(n,8) can be written as

T(m,0) = 23 ¥nm) g j4™Om



where ®(n,m) is given by

1/72
¥nm = % 1£2 T(n,2) &2™™° go . (3.15)

Using Parseval's relation, the (squared) synthesis error norm can then be reformu-
lated as

ek = [|[T-WD,|* = 2|-c, I? = 2 % rZr:l | %(n,m) ~ x(n+m) x*(n-m) |* .
Separating even-indexed and odd-indexed signal samples
xo(k) £ x(2k) , xo(k) £ x(2k+1) ,

the squared synthesis error can finally be expressed as

g2 = te,xg* £0,%g (3.16)
where
texe = 2 [¥8e-ax | = 2§§|qe(k,1)—xe(k)x§(l) |2 (3.17)
taxe = 2 %o | = 2%% | Yolk,D = x(k) x*(1) [ (3.18)
with
ok, D & (k+Lk-D |, Aok & (k+l+,k-D . (3.19)

According to (3.16), the synthesis error is decomposed into two error components
involving each only the even-indexed and only the odd-indexed signal samples,
respectively. Hence, even-indexed and odd-indexed signal samples can be synthesized
separately by solving the two independent minimization problems fe,xe = Min and
€0,x,~> min which yield x.(n) and x,(n), respectively. The error components (3.17)

and (3.18) can be written in obvious matrix-vector notation as

texe = 2[|Qe-xXX |, oxo = 2[1Qo-Xoxg |

The square matrices Q. and Q, are Hermitian provided that the model Tn,0) is
real-valued. Hence, each minimization is recognized as a rank-1 approximation of a
Hermitian matrix, which is analogous to the final approximation problem considered
in Subsection 2.2 (cf. (2.16)). Reasoning as in Subsection 2.2, the eigen-equations
(cf. (2.17))

QX = Ixe*x. QU X, = %] %o (3.20)



are obtained as necessary conditions for the optimal solutions. The solutions are
then derived as (cf. (2.20))

xe,opt = ej‘Pe ')‘ei. “ei ’ xo,opt = ej(PO V)\o1 “01 ’ (321)

where A, and A, are the largest eigenvalues of Q, and Q. respectively, u,, and
U,, are the correponding (normalized) eigenvectors, and ¢ and ¢, are two arbitrary
(unknown) phase constants.

Summary of the global signal synthesis algorithm. In the following summary of
the global signal synthesis algorithm derived above, the power algorithm (see
Subsection 2.3) is incorporated for calculating the largest eigenvalues and corre-
sponding eigenvectors of the matrices Q. and Q.. It is assumed that the largest
eigenvalues of Q. and Q, equal the respective eigenvalues with maximal magnitude.

1a) Transform the model T(n,0) as

1/2
mm = % ) ;2 T(n.2) 2™™° go . (3.22)

1b) Form the Hermitian matrices Q. and Q, as
Q1 & wk+lLk-D , Qo k1 2 k+l+,k-D) . (3.23)
2) Calculate the largest eigenvalues A,, Ao, and the corresponding (normalized)

eigenvectors Ug,, U, of the matrices Q. and Q, by means of the power-algorithm
iteration: for i=1,2,...

(a) v = Q, ul-?, v = Q, ul", (3.24)
(b) 2 = v 2 = v (3.25)
(c) uld = vy /@, uld = vy /W (3.26)

On convergence (i ), the looked-for eigenvalues and eigenvectors are obtained as
et = AL, wg, = ul; rot = A, wu,, = ul™. (3.27)

3) Form the synthesis solution Xopt{n) by interleaving even-indexed and odd-
indexed signal samples as

ejtpe ')‘ei. Uegsk » n=2k

Xopt(n) = { . , (3.28)
opt %0 /Xg, Ugi » n=2k+

where ¢, and ¢, are two arbitrary (unknown) phase constants.
In contrast to the general solution (2.23) derived in Subsection 2.2 for a globally



unitary BTFR, the solution (3.28) for the WD contains two independent unknown
phase constants ¢, and ¢, associated with the subsequences of even-indexed and
odd-indexed signal samples x.(k) = x(2k) and x,(k) = x(2k+1), respectively. Thus,
there exists not only a phase ambiguity affecting the entire signal x(n) but, in addi~
tion, a "relative” phase ambiguity which produces a phase offset of even-indexed and
odd-indexed signal samples relative to each other. This relative phase ambiguity,
which is a consequence of the WD's global non-unitarity, will be further discussed
in Section 7.

We note that an analogous algorithm for global signal synthesis exists for the
AF version AF1 (see (1.10)) whose unitarity properties are analogous to those of
the WD. For WD', RD, and AF2, on the other hand, the global signal synthesis
method of Subsection 2.2 can be applied since these BTFRs are globally unitary.

Subspace interpretation of global signal synthesis. We have seen above that
global signal synthesis in the case of the WD splits up into two separate and in-
dependent synthesis procedures for the even-indexed and odd-indexed signal sam-
ples x.(k) = x(2k) and x,(k) = x(2k+1), respectively. We shall now show that these
synthesis procedures can be interpreted as subspace signal synthesis procedures
on the signal subspaces & and © introduced in Subsection 3.1.

Let us first consider subspace signal synthesis on the subspace ¢, i.e., the con-
strained minimization

cx = |- WD, || — min .

Since the WD is unitary on € (apart from a scaling factor of 2), we can apply the
general synthesis method of Subsection 2.2. Step 1a is the calculation of the projec~
tion coefficients (including a factor 1/2 to compensate for the scaling factor)

1/4 .
T = (T, WD) = %%_1/14 T(n,0) 2 §(n-k+D)) I*™O%D g9

1/2 .
z_J, T 3) &27¢% P ae

where (3.12) has been used. Comparing with (3.22) and (3.23), we note the identity

Tkl = Qe k1 -
For a real-valued model T(n,8), the matrix T’ = (yy;) = Q. is Hermitian. Thus, Step 1b

(calculation of the Hermitian component I'y;) may be omitted, and the expansion
coefficients of the synthesized signal are directly obtained according to Step 3 as

Aope = &P u, (3.29)

(cf. (2.22)). But the expansion coefficients oy were shown in Subsection 3.1 to be



the even-indexed signal samples x.(k)=x(2k). Furthermore, since T = Q.. the largest
eigenvalue X, and the corresponding eigenvector u, of I equal the largest eigenvalue
Ae; and correspending eigenvector u., of Q,, respectively. Thus, the result (3.29)
can be rewritten as

Xe,opt ~ el®e Yhes Uey s

which is exactly the result (3.21) of global signal synthesis. It has thus been shown
that the global signal synthesis result for the even-indexed signal samples x.(k)
equals the result of subspace signal synthesis on the space €. A completely
analogous derivation shows that the global signal synthesis result for the odd-
indexed signal samples x,(k) equals the result of subspace signal synthesis on the

space P.

3.3 Halfband Signal Synthesis

In the previous subsection, it has been shown that the global WD signal synthe-
sis problem can readily be solved despite the WD's global non-unitarity. However,
the occurrence of a relative phase ambiguity of even-indexed and odd-indexed sig-
nal samples is an awkward inconvenience of global signal synthesis (see Section 7).

In practice, the application of the WD is usually restricted to halfband signals
for which the WD is non-aliased. Thus, it is reasonable to require that the result
of WD signal synthesis, too, be a halfband signal. For example, one may be inter-
ested in obtaining an analytic signal as the result of signal synthesis. We are thus
led to consider the following halfband signal synthesis problem incorporating a
halfband constraint x(n) ¢ §,

ex = || T- WD, | — min , (3.30)
X

where §) is a halfband signal subspace with given (application-specific) center fre-
quency 6,. Since the WD is unitary on §), the solution to the halfband signal syn-
thesis problem (3.30) is simply a special case of the general synthesis algorithm
derived in Subsection 2.2. Moreover, since the result of the general algorithm is
unique up to a phase affecting the entire signal, the troublesome relative phase
ambiguity of global signal synthesis is automatically avoided.

We now specialize the general subspace signal synthesis algorithm of Subsection
2.2 to the BTFR WD and to the signal subspace §. With the induced WD-domain
basis given by (3.9) as

WDy (n,0) = 2 WDp(n-(k+]),8) e J47@ k-1

the expansion coefficients of the model's projection on the induced WD-domain
subspace §yp, are



1/4 .
Tia = (T, WDy) = 2 J. T(n,0) 2 WD, (n-(k+]),0) e}47@&-D 4q

This can be split into a convolution operation with respect to the time index n and
an inverse Fourier transform with respect to the normalized-frequency variable ©
(see the algorithm summary given below). After calculation of the expansion
coefficients vy, the synthesis solution is obtained according to (2.21), (2.22).

Summary of the halfband signal synthesis algorithm. The resulting halfband
signal synthesis algorithm is now summarized; again, the power algorithm is used
for calculating the largest eigenvalue and the corresponding eigenvector of the
coefficient matrix I = (v, ).

1a) Perform the convolution

Tn.0) = 3 WDy(n-n, ©) T(n'@) (3.31)

where WD,,(n,©) is given by (3.10). Due to (3.10), this convolution amounts to an
ideal lowpass filtering (with ©-dependent cutoff frequency) of the model T(n,0) in
the time direction. We note that 'T‘&(n,@) can be shown to be the orthogonal
projection of the model T(n,0) on the induced WD-domain subspace §wp. The
"projected model” T@(n,@) is thus an element of §wp.

ib) Calculate the inverse Fourier transform

1/2
egmm = 3 T Tgm%) ™™ de.

ic) Form the matrix T = (yy,) with
Yi1 = 2 Egk+Lk-1) . (3.32)

It is easily shown that T is a Hermitian matrix due to the real-valuedness of the
model T(n,0).

2) Calculate the largest eigenvalue ), and the associated (normalized) eigenvector
u, of T by means of the power-algorithm iteration: for i=1,2,...

(a) v = pqli-D ,

(b) A @ = ”v(i) " ,

(c) u@® = yW/@®

On convergence (i~ w), A, and u, are obtained as

X, = A, u, = u),



3) Form the synthesis solution as
Xopt(m = E Uopt,k hi(n)
with
Bope = ¥\ u, ,

where ¢ is an arbitrary phase constant.

With agne i = Y2 Xope(2k) and hy(n) = /2 h(n-2K) according to (3.7) and (3.4),
respectively, Step 3 of this algorithm can be reformulated as follows:

3a) Obtain the even-indexed signal samples as

Xopt(2K) = e® VX, 72 ugy .
3b) Derive the odd-indexed signal samples by means of the interpolation
Xopt(2k+1) = 2 E h(2k+1-2k’) x5, (2K") . (3.33)

Thus, the halfband signal synthesis algorithm first calculates the optimal even-
indexed signal samples, from which the odd-indexed signal samples are then de-
rived by means of an interpolation step.

Comparison with global signal synthesis. Comparing the halfband signal synthesis
algorithm (HSSA) as stated above with the global signal synthesis algorithm
(GSSA) summarized by (3.22)-(3.28), we note two similarities: both algorithms
perform an inverse Fourier transform and a coordinate transform and require the
calculation of the largest eigenvalue and corresponding eigenvector of one (HSSA)
or two (GSSA) Hermitian matrices. On the other hand, there are two main differ-
ences. Firstly, the HSSA uses the model's projection Ts,(n,e) on Hwp for inverse
Fourier transform (and thus requires an additional projection (convolution) step)
while the GSSA takes the model T(n,0) itself. Secondly, the HSSA synthesizes only
the even-indexed signal samples and derives the odd-indexed samples through a
simple interpolation; in contrast, the GSSA performs separate syntheses of even-
indexed and odd-indexed signal samples. As a consequence, the result of halfband
signal synthesis features only a phase ambiguity affecting the entire signal whereas
the result of global signal synthesis contains an additional relative phase ambiguity
of even-indexed and odd-indexed signal samples.

A reduced-cost halfband signal synthesis algorithm. In some situations, it is
advantageous to use a modified algorithm for halfband signal synthesis which is
suboptimal but very economical. Let us call a model T(n,0) halfband-consistent if
it is an element of the induced WD-domain subspace $wp and thus equals its
projection on $wp, 1(n,0) = T‘g(n,(:)). For example, the WD outcome T,(n,0) of a
halfband signal x(n) ¢ § is an element of §wp and thus halfband-consistent. When



applying halfband signal synthesis to a halfband-consistent model T(n,0), Step 1a,
i.e., calculation of the projection Tﬁ(n,e) by means of the convolution (3.31), can
obviously be omitted, which yields a substantial reduction of computation. In fact,
the halfband signal synthesis algorithm here reduces essentially to the "even" part
of the global signal synthesis algorithm, with subsequent interpolation to obtain
the odd-indexed signal samples.

Of course, exact halfband consistency of a model will be the exception rather
than the rule. However, there are frequently situations where a model T(n,0) is
nearly halfband-consistent in the sense that the normalized deviation | T- T$ll /1T
is small. In particular, a model will be nearly halfband-consistent if it is derived
from a valid WD outcome of a halfband signal through some modification which
preserves halfband consistency apart from small errors. If we then perform the
halfband signal synthesis algorithm but omit the projection convolution (3.31), we
obtain a synthesis result which is a halfband signal (since it is derived by the inter-
polation (3.33)) but which is suboptimal since it does not minimize the synthesis
error. Of course, it may be expected that the deviation from the optimal solution
will be small provided that the model's deviation from halfband consistency is
itself small.

3.4 Other Approaches

Two approaches to the signal synthesis problem in the case of the WD have been
discussed in the previous two sections. The first approach, global or unconstrained
signal synthesis, produces signals with a phase ambiguity of even-indexed and
odd-indexed samples relative to each other; in general, the WD of these signals
will contain some amount of aliasing even if the phases of even-indexed and odd-
indexed samples are matched to each other by one of the phase matching algorithms
discussed in Section 7. The second approach, halfband signal synthesis, avoids the
relative phase ambiguity of even-indexed and odd-indexed signal samples and prod-
uces signals whose WD is strictly non-aliased.

Alternative definition of WD. A third approach, proposed in [34], circumvents
the problems of the WD's global non-unitarity and relative phase ambiguity by
formulating the global signal synthesis problem as

tx = |T-WDy| — mjn,

where WD’ is the alternative definition of the discrete-time WD given by (1.5). In
contrast to the WD version defined by (1.4), WD’ is globally unitary. Thus, the
general algorithm for global signal synthesis derived in Subsection 2.2 can be ap-
plied, and the synthesis solution x(n) does not suffer from a relative phase ambi-
guity of even-indexed and odd-indexed signal samples. However, just as the WD,
WD' is aliased in general, the only exception again being the case of halfband sig-
nals. A halfband restriction (i.e., halfband signal synthesis) can again be used if one
wishes to obtain halfband signals with non-aliased WD'.



Gabor-type basis. An interesting modification of signal synthesis is proposed in
[35,36]. The synthesis result x(n) is represented by its Gabor expansion

x(n) = 3T a gry(n) with gri(m) = g(n-kN,) ¢l27™1€0n (3.34)
k1

The signals gy ,(n) are time-frequency shifted versions of a signal g(n) which is
assumed to be well concentrated with respect to both time and frequency (e.g., a
Gaussian signal). A problem with the expansion (3.34) is that the basis signals
gk1(n) are generally not orthogonal. This problem, however, can be overcome by
means of a second basis which is bi-orthogonal to gy ;(n). Combining the concepts
of bi-orthogonal bases and induced WD-domain bases, the signal synthesis problem
can again be transferred to the coefficient domain, and the optimal Gabor coeffi-
cients agne k1 can be derived in a way similar to the derivation in Subsection 2.2.
The advantage of the Gabor-type basis gy(n) is the time-frequency localization
and time-frequency concentration of the basis signals gy ,(n), which permits a "time-
frequency-selective” signal synthesis. The problem of WD aliasing remains but can
be controlled to some extent using the frequency localization and concentration of
the basis signals gy ;(n): by including, in the Gabor expansion (3.34), only those
basis signals gy)(n) which are well concentrated in a given halfband interval, the
synthesis result x(n) is assured to be approximately a halfband signal. Thus, the
Gabor scheme can be used to (approximately) realize halfband-constrained signal
synthesis.

©4 (a) e (b)

> | >
n n

Figure 2. Time-frequency regions: (a) general region, (b) region corresponding to a
halfband subspace §.

Time-frequency subspaces. To a given time-frequency region R (see Figure 2.a),
we can construct a linear signal subspace &p whose signals fill the region R
energetically [30, 31]. Signal subspaces with this property of time-frequency energy
localization are called time-frequency subspaces. In fact, the halfband subspace
$ is a special case of a time-frequency subspace, where the region R is an infinite
strip (Figure 2.b). When subspace signal synthesis is performed on a time-frequency
subspace @p, the synthesis result is guaranteed to assume most of its energy



inside the time-frequency region R. Somewhat similar to the Gabor-basis approach
discussed above, this results in a time-frequency-selective synthesis. Aliasing and
global non-unitarity of the WD are avoided if the time-frequency subspace @p is
constructed as a subspace of the halfband subspace §, &g c §; the general subspace
signal synthesis algorithm of Subsection 2.2 can then be applied. The systematic
construction of time-frequency subspaces is discussed in [30, 31].

3.5 Simulation Results

Figure 3 compares computer simulation results obtained with the global signal
synthesis algorithm and the halfband signal synthesis algorithm. Both algorithms
were applied to the model function T(n,0) shown in Figure 3.a.

The result of global signal synthesis is depicted in Figure 3.b. Although the
model is defined for 0<© <1/2, the synthesized signal assumes the main part of its
energy on the complementary band 1/2<© <1 (see Figure 3.b.2). This is due to a
phase mismatch between even-indexed and odd-indexed signal samples - a conse-
quence of the relative phase ambiguity of global signal synthesis. We note that
this phase mismatch can be removed to a large extent by means of the phase
matching algorithms discussed in Section 7 (cf. Figure 12).

The application of halfband signal synthesis is demonstrated in the right-hand
column of Figure 3. To be consistent with the model's frequency band 0<0 <1/2,
the center frequency of the halfband subspace § was chosen as ©,=1/4, i.e., § is
the subspace of analytic signals. Figure 3.c shows the result of the first step of
halfband signal synthesis, namely, the projection T$(n,9) of the model T(n,®) on
the induced halfband subspace $wp (cf. Eq. (3.31)). The final result of halfband
signal synthesis is given in Figure 3.d. Note that the synthesized signal is now
properly bandlimited in the halfband 0<© <1/2.

4. SMOOTHED VERSIONS OF WIGNER DISTRIBUTION

So far, we have discussed BTFRs possessing a unitarity property on the space &
on which signal synthesis is to be performed. Strictly speaking, global signal
synthesis for the WD has been an exception since the WD is not unitary on the
entire signal space 1,(-x,x). However, global WD signal synthesis has been shown
to amount to two separate signal synthesis procedures on the subspaces ¢ and O
on which the WD is essentially unitary.

In the case of unitary BTFRs, the signal synthesis problem has been reduced to
the solution of an eigenvalue-eigenvector equation involving either the vector of
signal samples (case of global signal synthesis) or a coefficient vector characterizing
the signal (case of subspace signal synthesis). In either case, the solution is given
by the largest positive eigenvalue and the corresponding eigenvector of a Hermitian
matrix. It has been noted that these quantities can be computed iteratively by
means of the power algorithm reviewed in Subsection 2.3.
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Figure 3. Results of WD global signal synthesis and WD halfband signal synthesis.
(a) Model T(n,0); (b) result of global signal synthesis: (b.1) real part of synthesized
signal, (b.2) signal spectrum, and (b.3) WD; (c) projected model T$(n,e); (d) result
of halfband signal synthesis: (d.1) real part of synthesized signal, (d.2) signal
spectrum, and (d.3) WD. (The WD contour-line plots (b.3) and (d.3) show the
positive WD parts on a linear scale.)



In this section, we consider the class of smoothed WDs (SWDs). The results de-
rived so far cannot be applied to SWDs since SWDs are inherently non-unitary. On
the other hand, SWDs are practically important since (i) they can often be computed
on an "on-line” or short-time basis, which makes them suited for the time-frequency
processing of signals with arbitrary lengths; and (ii) the interference terms of
SWDs are attenuated as compared to the WD, so that the interpretation of SWDs
is greatly facilitated [1,6,21,22,24] and certain applications of signal synthesis do
not suffer from troublesome interference term effects [15] (see Section 8).

Due to the non-unitarity of SWDs, the derivation of a closed-form solution to
the signal synthesis problem appears to be impossible. An equation representing a
necessary condition for the optimal signal can be found; however, this is a compli-
cated third-order equation which can only be solved by some iterative method.
While a number of iterative standard methods are available, we here develop a
method which is motivated by the case of unitary BTFRs or, in particular, the WD:
first, the equation is reformulated such that it resembles the conventional eigen-
equation encountered in the WD case; next, this "quasi eigen-equation” is solved
iteratively by means of a natural modification of the power algorithm [15, 37].

In the following subsection, we introduce the general class of SWDs, discuss a
convenient characterization using kernel functions, and specify the kernels of some
important SWDs. Using the strategy sketched above, iterative algorithms for
global and halfband signal synthesis are then developed in Subsections 4.2 and 4.3,
respectively. Simulation results are presented in Subsection 4.4.

4.1 The Class of Smoothed Wigner Distributions

By definition, the class of smoothed Wigner distributions (SWDs) [6] contains
BTFRs which are derived from the WD by a time-frequency convolution

1/4
SWD, ,(n,0) = 2 [ ®(n-n’,0-0) WD, (n',©) de’, 4.0
' _1/4
where ®(n,0) is a smoothing function such that the convolution (4.1) actually
amounts to a two-dimensional lowpass filtering of the WD. It is easily shown that
the SWD can be written as

SWD,,(n,0) = 2% c{%)(nm) I47Om (4.2)
with

c{®)(nm) = g:'cp(n-n',m) Cy y(n'm) = 121: ¢ (n-n',m) x(n'+m) y*(n'-m) (4.3
where

e (n,m) = 15 1f2 Q(n,%) 2™mO gg |

-1/2



Note that (4.2) is reminiscent of the WD as expressed by (3.14). We require the
auto-SWD SWD, (n,0) to be real-valued just as the auto-WD WD, (n,®). For this,
the smoothing function ®(n,®) has itself to be real-valued, so that ¢ (n,m) has to
be Hermitian with respect to m,

e(n,-m) = ¢*(n,m) .

Important examples of the SWD are the pseudo Wigner distribution (PWD) (1.6),
the smoothed pseudo Wigner distribution (SPWD) (1.7), the exponential distribution
(ED) (1.8), the Born-Jordan distribution (BJD) [7], and the cone-kernel representa-
tion (CKR) [38,22]. Formally, also the WD can be considered a special (limiting)
case of the SWD. We now give a list of the kernels ¢ (n,m) for the SWDs enumer-
ated above:

WD: ewp(n.m) = 3(n)
PWD: epwp(nm) = 3(n) h®(m)
SPWD: espwp(nm) = g(n) h*(m)
3(n) , m=0
: = n?
ED: (pED(n,m) {./4zm exp (__ Omz) , m#0
BJD ( ) {S(n) , m=0
: @ n,m) =
BJD 2|1n| rect|m|(n) , m#0
CKR: Pokr(nm) = = 20m® rect| ., (n) .

Here, g(n) and h(m) are two real-valued and even window functions satisfying
0<g(n), h(m) <1, h(0) =1, X, g(n) =1, lim_,_g(n)=0, and lim,,_, h(m)=0, « and ¢
are two positive parameters, and rect; (n) is the rectangular sequence defined by

1, In|<k

(k=0
0, Inl>k )

recty (n) = {
We observe that, for all SWDs listed above, the kernel ¢ (n,m) satisfies the fol-

lowing properties: ¢ *(n,m) = ¢ (n,m); ¢ (-n,m) =¢ (n,m); ¢ (n,-m)=¢(n,m); ¢(0,0)=1;
lim  _e(nm) = lim,,_, ¢(nm) = 0.

4.2 Global Signal Synthesis
We now consider the global signal synthesis problem for the SWD,

ex = | T-SWD, | — min,



where the SWD's kernel ¢ (n,m) is assumed to be given. Reasoning as in the WD
case (cf. the derivation in Subsection 3.2), the squared synthesis error norm can be
rewritten as

e2 = 2|e-cP* = 2 121: g} | ¢ (n,m) - c{P(n,m)|*,
where 2(n,m) and c{?’(n,m) are given by (3.15) and (4.3), respectively. Setting the

derivative of £% with respect to x(n) equal to zero, we obtain as a necessary
condition for the signal x(n) minimizing ¢% the following system of third-order

equations:

121:1 x(n-2m) C,(n-m,m) = O for all n (4.4)
with

Cy(n,m) = § *(n"-n, m) [E(n',m) - c;“’)(n',m):l . (4.5)

We now split the set of equations (4.4) into a subset for n even (n=2u) and a sub-
set for n odd (n=2u+1). After a change of indices, the two subsets of equations can
be written in matrix-vector notation as

\J
e,x Xe

=0 , o, x X0 = O (4.6)

where, as usual, X, and X, denote the vectors of even-indexed and odd-indexed
signal samples, respectively, and the matrices Q. . and Q| . are derived from

C,(n,m) as

(Qe,x)k1 = Cxlk+Lk-1) , (Qoxc )1 = Colktl+1,k-1) .

We stress that the separate equations (4.6) do not imply that the syntheses of
even-indexed and odd-indexed signal samples are decoupled (as in the case of
the WD), since each of the matrices Q.  and Q,, , generally contains both the
even-indexed and the odd-indexed samples. On the other hand, it is easily shown
that the overall phases of the subsequences of even-indexed and odd-indexed signal
samples are again decoupled. This means that the solution of global SWD signal
synthesis will again feature a relative phase ambiguity.

The quasi power algorithm. We now develop an iterative technique for solving
the third-order equations (4.6) [15,37]. This technique is inspired by the power
algorithm used in the WD case, and it is based on a reformulation of (4.6). Indeed,
adding [Ix.[|?2x. and [Ix,[|?2x,, to the first and second equation of (4.6), respectively,
we obtain the equations

Qe x Xe = lIx.IPx, , Qo .x Xo = lIx,l17%x, , (4.7)

where the new matrices Q. , and Q, , are defined as



Qe,x = 'e,x + xex:;. ’ Qo,x = 'o,x + xox-'c; : (4.8)
The matrices Q¢ , and Qg , are easily checked to be Hermitian for a real-valued
model T(n,®) and an SWD kernel @(n,m) which is Hermitian with respect to m. The
equations (4.7) resemble the eigen-equations (3.20) encountered in the WD case;
however, the matrices Q. xand Qg , here are themselves signal-dependent, i.e.,
they are (quadratic) functions of the signal x(n). Nevertheless, we propose to solve
the "quasi-eigen-equations” (4.7) by means of a suitable modification of the
power algorithm, which accounts for the signal-dependency of the matrices Q.
and Q, ,, simply by updating these matrices at each iteration step. Assuming that
the results of the (i-1)-th iteration step have already been derived, the i-th iteration
step of this "quasi power algorithm” involves the following operations:

First, the matrices Q¢ (-1 and Qg , (-1 are formed by inserting the (i-1)-th
iteration version x"?(n) of the signal x(n) into the definition (4.8) of Q. and
Q,,x- Next, the matrix-vector multiplication of the power algorithm is performed
(cf. (3.24)),

v = Q. - ul?, v = Qg i-p ul ™ .

Then, the usual normalizations (cf. (3.25), (3.26)) are carried out,

M = v 2P = v
u® = VO /20 ud = v /2@

Finally, the i-th iteration version of the signal x(n) is formed by interleaving even-
indexed and odd-indexed signal samples (cf. (3.28)),

x®(n) = {')‘t(ei) u(ei:)k , n=2k
AP ul)y , n=2k+d

Note that x®(n) will be used in the next ((i+1)-th) iteration for constructing the
matrices Qg (i) and Qg ,(i)-

It is seen that the quasi power algorithm differs from the power algorithm in
that the signal-dependent matrices Q. ,and Q, , are updated at each iteration
step using the current version of the signal x(n). When the iteration converges
(i—= ), the synthesis solution x(n) is obtained as

x(n) = x*)(n) ,

where certain phase factors of even-indexed and odd-indexed signal samples are
implicitly included; these depend on the initial vectors uéO) and u,(_.,O) with which the
iteration is started. Alternatively, the general solution (containing arbitrary phase
values ¢, and ¢_) can be written as



d¥e MPulP?, n=2k
x(n) = { je (<)
e’ e/ g ug , n=2k+
Summary of the global signal synthesis algorithm. Before further discussing the
algorithm derived above, we summarize it as follows (see [37] for a discussion of

its implementation):
1) Transform the model T(n,0) as

172 .
dmm = L T Tn2) ™ de . (4.9)
-1/2
2) Perform the quasi power algorithm iteration: for i=1,2,...

(a) Construct the matrices Qg x -1 and Qg xi-1) as follows:

<%p(n,m) = > ¢(n-n',m) xD(g'+m) x - D*(n'-m) , (4.10)
n
CyG-n{n,m) = 3 cp*(n'—n,m)[e(n',m) - c(x“iz-n(n',m)] ; (4.11)
<
(Qex-D)x1 = Cxti-nk+Lk-D + xEPaR)xED*q0) (4.12)
Qo (-0l = Cxt-n(k+l+L k-1 + xGP@xED*Q) . (4.13)
, k

(b) Calculate the matrix-vector products
v(ei) = Qe,x(i—i) u(ei_i) ’ vg) = Qo’x(i—i) ugi_i) - (4.14)

(c) Perform the normalizations

2D = v, 2D = ||V (4.15)
l-l(ei) = v(ei)/)‘(ei) , u‘()i) = vgi)/)\(g) . (4.16)

(d) Form the signal

x®P(n) = { D ugy . m=2k (4.17)
2D udy , n=2k#+

3) After convergence (i—w), the synthesis solution x(n) is obtained as x(n)=
x{%(n).

The quasi power algorithm summarized above represents one of several possible
ways to iteratively solve (or, more precisely, attempt to solve) the necessary-con-
dition equations (4.6). It is justified to some extent by the following facts:



(i) In the case of the WD, which is a special case of the SWD, the quasi power
algorithm reduces to the WD algorithm (i.e., the conventional power algorithm) as
given by (3.22)-(3.28). Indeed, for ¢(n,m) = ewp(n,m) = 8§(n), we find that

Qe,xG-» = Qe Qo,xG-1 = Qp

where Q. and Q, are the signal-independent matrices (see (3.23)) of the WD case.
Consequently, the matrices Q¢ (-1 and Q,,x(i-1) remain unchanged throughout
the iteration, and the iteration thus reduces to the original power algorithm.
Therefore, the power algorithm, which is known to converge and produce the
correct (optimal) solution, is a special case of the quasi power algorithm.

(ii) When the iteration converges, the resulting signal x(n) is guaranteed to be a
solution to the necessary-condition equation (4.4). To show this, we first consider
the "even” equation of (4.14) which can be rewritten as

@D 3@ xg~V
i i) - - . .
%l %! Qe,x (-1 IxGD] (4.18)

Now, convergence means xg)=x§‘1), so that (4.18) reduces to

Qe,x(i) xfei) = "xt(al)llz xg) !

which shows that x{’ satisfies the first (“even”) equation of (4.7). An analogous
argument shows that x{V satisfies the second ("odd") equation of (4.7). But
together, the equations (4.7) are equivalent to the necessary-condition equation
(4.4), which completes our proof.

Of course, the necessary-condition equation must be expected to have many
solutions; thus, the fact that the synthesis result satisfies the necessary-condition
equation does not prove that this result is truly optimal in the sense that it
provides the global minimum of the synthesis error &,. Also, there is no analytic
proof that the iteration converges at all. However, both properties are satisfied in
the special case given by the WD: here, the iteration is guaranteed to converge, and
the result is guaranteed to provide the global minimum of the synthesis error.

We have practically applied the quasi power algorithm to the PWD and SPWD.
Our experimental results here suggest that the algorithm converges (and produces
satisfactory results) for practically arbitrary models and practically arbitrary start
vectors, provided that the SWD smoothing function ®(n,0) is normalized as
>S5, 0(n,0)de = 3,.0(n,0) = 1. The convergence speed has been observed to
depend primarily on the amount of smoothing performed in the SWD: the conver-
gence will be slower in the case of more smoothing. For example, the convergence
is slower for the SPWD than for the PWD (with identical window h(n)) since the
SPWD features an additional smoothing in the time direction.

The PWD case [39]. The PWD is another special case of the SWD, with kernel

e(nm) = epwp(nm) = §(n) h*(@m) .



Inserting this into (4.3), it is easily seen that the matrices Qe,xand Q, , are here
given by

(Qesdit = h2(k-D) &(k+Lk-1) + [1-h*(k-1)] xo(k) x*(D (4.19)
(Qo,x)x1 = h2(k-D) &(k+1+1,k-1) + [1-h*(k-1)] xo (k) xX() . (4.20)

But this shows that Q. , depends only on the even-indexed signal samples x.(k)
and Q, ,, depends only on the odd-indexed signal samples x,(k). As a consequence,
the syntheses of even-indexed and odd-indexed signal samples are completely
decoupled just as in the WD case. This is due to the fact that the PWD does not
feature a smoothing with respect to the time variable n.

4.3 Halfband Signal Synthesis

Just as the WD itself, SWD, (n,0) is 1/2-periodic with respect to the frequency
variable © and thus aliased unless the signal x(n) is a halfband signal. (Strictly
speaking, SWD, (n,0) is generally aliased even for halfband signals; this is a con-
sequence of the smoothing in the frequency direction. However, this aliasing effect
is of secondary importance when compared to the aliasing encountered in the case
of non-halfband signals.) Also, we have seen that a relative phase ambiguity of
even-indexed and odd-indexed signal samples exists in the case of global signal
synthesis. These facts again call for the introduction of a halfband constraint
x(n) ¢ § in the formulation of signal synthesis [37,40],

ex = [|T-SWD, || — ,r‘nlg : (4.21)

where § is a halfband subspace with given center frequency ©,. As in the case of
the WD, we can take account of the halfband constraint x(n) ¢ $ by representing
x(n) in terms of the orthonormal basis hy (n) spanning § (see (3.4)),

x(n) = Ecxkhk(n)

Inserting into (4.21), the halfband-constrained minimization with respect to x(n)
reduces to an unconstrained minimization with respect to the coefficients oy :

Ex = €4 = ”'T- 22 o af SWDy, ” — min , (4.22)
k1 @

where

SWD,,(n,0) 2 SWDy,,_ b, (n.0) .

In contrast to the WD case, the cross-SWDs SWD,,(n,0) do not constitute an
orthonormal basis in general; this is due to the fact that the SWD is not unitary on



$ (the only exception being the WD). Therefore, (4.22) cannot be further simplified.
To obtain a necessary condition for the optimal coefficients oy minimizing the

synthesis error (4.22), we set the derivatives of the squared synthesis error g2,

with respect to the coefficients o) equal to zero; this yields the system of third-
order equations

Fa=o0 (4.23)
where

(Fodrr = Yia - E% oot P g,

with the inner products

Tia = (T, SWDy,; ), Prix,rr = (SWDy. 1, SWDy, ) .

To solve the necessary-condition equation (4.23), we again use an iterative scheme
which is motivated by the WD case and the power algorithm. Adding |« |2a, (4.23)
becomes

La=|al?a (4.24)
with
I, =T, ,+aa".

Eq. (4.24) is again a "quasi-eigen-equation;” we once more propose to solve it iter-
atively by means of the quasi-power algorithm described in the previous section,
i.e., the original power algorithm is modified to include an update of the matrix I,
at each iteration using the current version of a.

Summary of the halfband signal synthesis algorithm. The resulting algorithm is
summarized in the following; an efficient implementation can be found in [37]. We
note that Steps 1a through 1d of our summary can be shown to be equivalent to
the calculation of the inner product vy = (T, SWDy,).

1a) Smooth the model according to

1/4
TPMme) =3 | on-n6-6 Tw,e)de .
n -1/4

Ib) Perform a ©-dependent lowpass filtering in the time direction (cf. (3.31))
T8 0,0 = I WDy(n-n,0) ¥ Pm,0) .
<

ic) Calculate the inverse Fourier transform



(@) -1 122 2@, ey j2rme
¢g (nm) = 2_171'2 Tg (%) € do .

1d) Calculate the coefficients
Tia = 2 ¥ kel k-D) .

le) Calculate the inner products (see [37] for an efficient implementation)
Pk,l,k',l' = (SWDk-,l-,SWDkl) .

2) Perform the quasi power algorithm iteration: for i=1,2,...
(a) Construct the matrix I -1) as

i~1) _(i-1)% i-1) _(i-1)%
(TaG-D)1 = Y1 - E% ogi? o P, + gt oftD* (4.25)

(b) Calculate the matrix-vector product

v = T oy

pli-0
(c) Perform the normalization
AD = ||v(i) " ,
a® = gD/
(d) Calculate the current coefficient vector
a® = /3D gD
3a) Obtain the even-indexed signal samples as

x(2k) = i® 71“5'011((“) .

3b) Derive the odd-indexed signal samples by interpolation,
x(2k+1) = 2 3 h(2k+1-2k’) x(2k’)
k'

As in the case of global signal synthesis discussed in the previous section, the
following facts can be shown:

(i) For the special case of the WD, the matrix I, reduces to the a-independent
matrix I' of (3.32); hence, the iterative algorithm does not contain the matrix update
(4.25) and thus reduces to the WD algorithm (3.31)-(3.33), i.e., to the power algorithm
which is known to converge and produce the correct result for the WD.



(ii) If the iterative algorithm converges, then the resulting coefficient vector a
is guaranteed to satisfy the necessary-condition equation (4.23).

A reduced-cost halfband signal synthesis algorithm. Compared to both global
signal synthesis for the SWD and halfband signal synthesis for the WD, the above
algorithm for halfband signal synthesis in the SWD case is computationally quite
expensive. A cheaper but suboptimal alternative is again obtained by a suitable
modification of the global signal synthesis algorithm (4.9)-(4.17), similar to the
reduced-cost strategy for WD halfband signal synthesis discussed at the end of
Subsection 3.3. This modification is obtained by performing only the "even" part of
the quasi power algorithm (4.10)-(4.17), and replacing (4.17) by the interpolation

xW(2k+1) = 2 3 h(2k+1-2k") xP(2k")
kl

where

xP@2r = AP uld .

By this, it is guaranteed that at each iteration step, and thus after convergence as
well, the signal x?(n) is a halfband signal. However, the result is suboptimal
since its coefficients generally do not satisfy the necessary-condition equation
(4.23).

4.4 Simulation Results

The application of the iterative SWD signal synthesis methods described in
Subsections 4.2 and 4.3 to the PWD is illustrated in Figures 4 and S, respectively.
The PWD window h(n) is a Hamming window of length 63.

Figure 4 demonstrates the iterative process of global signal synthesis by means
of the quasi power algorithm. Phase matching was performed by applying the spec-
tral spread algorithm (see Subsection 7.3) at each iteration. The start signal u‘®
for the quasi power iteration was chosen as a noise signal whose energy is irregu-
larly spread over the time-frequency plane (see Figure 4.b). From Figures 4.c through
4.e, it is seen how the iteration signal gradually adapts to the model shown in
Figure 4.a. The minimization of the synthesis error corresponding to the convergence
of the quasi power algorithm is shown in Figure 4.f.

Figure 5 presents results of both optimal and reduced-cost halfband signal
synthesis from the model shown in Figure S5.a. It is seen that these results are
quite similar; hence, the reduced-cost algorithm is an interesting alternative to the
optimum algorithm.

S. SPECTROGRAM

The auto-spectrogram (cf. (1.9)) is given by the squared magnitude of the short-
time Fourier transform using an analysis window h(n),
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Unlike the continuous-time spectrogram [2], the discrete-time spectrogram (5.1) is
not an SWD. Indeed, S, (n,0) is 1-periodic with respect to © just as the Fourier
transform X(©), whereas the SWD is 1/2-periodic. As a consequence, the spectro-
gram is effectively non-aliased not only for halfband signals but quite generally.
Also, it is easily shown that a relative phase ambiguity cannot occur in the result
of global signal synthesis. Thus, there is no call for a halfband restriction, and we
therefore limit our attention to the problem of global signal synthesis

g = | T-Sx| — min .

We note that this synthesis problem is not equivalent to the problem studied in
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[41], which involves either the short-time Fourier transform itself or its magnitude
(rather than squared magnitude, i.e., the spectrogram).

Similar to the SWD case, the application of the general algorithms of Subsection
2.2 to the spectrogram is impossible since the spectrogram is inherently non-unitary.
We here develop an iterative algorithm for global signal synthesis which is similar
to the SWD algorithm described in Subsection 4.2.

Defining a modified outer signal product dy ,(nm) as

dy,y(nm) = gy (n,n-m) = x(n)y*(n-m) ,

the auto-spectrogram can be written as

Sx(n,0) = 3 d{P(n,m) e7I27Om (5.2
where

d{P(,m) = 3 dy(n'-n,m) dy(n'm) .



With (5.2) and Parseval's relation, the squared synthesis error £2, becomes
e2 = |T-S,P = |d-dP|* = 22 | dnm - dPmm)|?

where

172 R
dinm) = [ T(m,0) &2™™° g4g .
-1/2

Setting the derivative of £ with respect to x(n) equal to zero, we obtain as a nec-
essary condition for a minimum the system of third-order equations

Q.x = o (5.3)

with the matrix Q) given by

( Q'x)kl = Dx(k ,k-l)
where

D, (n,m) = g: di';(n—n',m)[a(n',m)- d;h)(n',m)] .

By addition of [[x|>x, the necessary-condition equation (5.3) can again be given the
form of a "quasi eigen-equation,”

Q. x = [x|*x with Q, = Q,+ xx* ,

which can be solved iteratively by means of the usual quasi power algorithm.

Summary of the global signal synthesis algorithm. The above derivation yields an
iterative algorithm for global signal synthesis which is summarized below.
1) Transform the model T(n,®) as

1/2 .
dnm) = J Tmn,e) &*™™° go.
-1/2
2) Perform the quasi power algorithm: for i=1,2,...

(a) Construct the matrix Q,i-1) as follows:

d;lzi)_i) (n,m)

Y dp(n'-n,m) x4V (") xED*@r-m) |
=

Dyg-np(mm) = 3 dfn-n’,m) [dmm) - d B, mm) ] ,
(QuxG-1)k1 = Dyti-n(k,k-1) + xG V() x@-D*q)

(b) Calculate the matrix-vector product



v = Q.- ui-v
(c) Perform the normalization
A D = "v(i)" , u® = ¢/ 0
(d) Form the signal
xP(n) = YAD ufp .
3) After convergence (i~ «), the synthesis solution x(n) is obtained as

x(n) = &% x*)(n) ,

where ¢ is an arbitrary phase.

6. ON-LINE SYNTHESIS ALGORITHMS FOR PSEUDO WIGNER DISTRIBUTION

The pseudo Wigner distribution (PWD)

K
PWD, y(n,0) = 2 Y. x(n+m) y*(n-m) h2(m) e~i4¢7©®m
m=~-K

is a special case of the SWD; as such, the general synthesis algorithms developed
in Subsections 4.2 and 4.3 can be applied. However, the possibility of calculating
the PWD on an on-line basis raises the question whether signal synthesis can be
performed on an on-line basis as well.

Throughout this section, we assume that the PWD's analysis window h(n) has fi-
nite time support -K < n < K, i.e., the window length is L = 2K+1. Then, when calcu-
lating the auto-PWD, PWD, (n,0), at a given time instant n, we need only a local,
finite-length record x(n-K), x(n-K+1),..., x(n+K) of the signal x(n). This allows an "on-
line” computation of the PWD of signals which may have arbitrary time lengths.
Unfortunately, the global signal synthesis algorithm for the PWD, as derived in Sub-
section 4.2, does not feature a similar on-line characteristic. Rather, the entire sig-
nal x(n) is synthesized as a whole, making use of the entire model T(n,0). Moreover,
for longer signals both computation and memory requirements will become prohib-
itively large. Practical application of the PWD synthesis algorithm of Subsection 4.2
is therefore restricted to the off-line synthesis of signals with moderate time
lengths. For the on-line synthesis of signals without any length restriction, on the
other hand, we would need a sequential algorithm which synthesizes signals sample-
by-sample or synthesizes consecutive signal blocks, using only a local time interval
of the model for the calculation of each signal sample or signal block.

An obvious way to perform blockwise signal synthesis is to cut the model T(n,®)
into adjacent blocks and then apply the synthesis scheme of Subsection 4.2 to each



model block. However, this approach is clearly inadequate since adjacent synthesis
processes are in no way related and the synthesized signal will thus show discon-
tinuities at the block boundaries. Of course, the scheme could be refined by
having consecutive blocks overlap and somehow combining the synthesis results in
the overlap intervals. Still, it seems that such an approach is somewhat artificial.

In the following two subsections, we develop sequential global signal synthesis
algorithms for the PWD which are recursive in the sense that the synthesis of each
signal block or signal sample is based on the previously synthesized signal samples
and a local model interval [37,39,42]. These PWD signal synthesis algorithms feature
an on-line mode of operation and avoid discontinuities at the block boundaries
since the previously synthesized signal samples are taken into account. We note that
a somewhat similar PWD synthesis algorithm has been proposed in [43]; how-
ever, unlike the algorithms discussed in the following, this algorithm is not based
on a local optimization and has been observed to produce poor results [42].

6.1 Block-by-Block Synthesis

As in the case of the WD (see Subsection 3.2), the squared synthesis error 2 in
the PWD case can be split into a component sze,xe involving the even-indexed signal
samples and a component sg,xo involving the odd-indexed signal samples,

e = | T- PWD,, ||2 = sze,xe+ sf,,xo )
where
k+K 2
B2xe = 22 2 | ¥kD) - h2(k-1) x (k) xE(D |
’ k 1=k-K
k+K 2
2., =2 X | do(k,1) - h2(k-1) x (k) x§(1)|
o k 1=k-K

with qe(k,D, §,(k,]) given by (3.19) and (3.15). The error components sg,xe and sf,,xo
can again be treated separately and independently. In the following, we only
consider the "even” component sg,xe since the odd case is analogous.

It is easily shown that the error component £2 o can be decomposed as

£2,x, = E e2 x (k) (6.1)
with
k-1
2x K 2 4 3 |YkD - h2k-D x K xED[* + 2 [ kK) - x K xEK) [*. (6.2
1=k-K

We note that the k-th error component sze,xe(k) is causal in that it depends only on
the signal samples x.(n) with n <k; to be more precise, it involves the signal samp-



les x(n) in the range k-K < n < k. In a sense, sg,xe(k) is the contribution of the k-th
time instant to the overall (squared) error sg,xe. Suppose, now, that the signal
Xe(n) has already been synthesized up to time f, i.e., the signal x.(n) is known for
n < fi. Based on this knowledge, we want to synthesize the next block of N samples,
i.e., the signal x.(n) in the range fi+1 < n < fi+N. Let us group these unknown signal
samples into a vector ’?e,u (here, the index "U" stands for "unknown,” and the
hat "~" is to remind us that the respective quantity is localized around the time
instant n),

(Rett)n 2 xc(fi+m), 1<ns<N .

For later use, we also define a vector ﬁe,K containing the last K signal samples
that have already been synthesized before and are accordingly known, i.e., x.(n)
for i-K+1 < n < fi (the index "K" stands for "known"),

(Xek)n 2 X (f-K+m), 1<n<K.

Finally, the combination of the two vectors will be denoted by %,

A

x. 2 (’fe’K> ; (X )n £ X(A-K+n) , 1sns<K+N.
Xe,u

Based on the previously synthesized, known signal samples contained in ﬁe’K, we

want to synthesize the new, unknown signal block ﬁe,L[' According to the error

decomposition (6.1), the contribution of the unknown signal block ﬁe,u to the

overall (squared) error sze’xe is given by

A+N
= 2 £2,x(K) - (6.3)

é\z
Xe U
€ k=fi+1

The result ﬁe,u,opt of our recursive synthesis is now defined as the ﬁe,u mini-

mizing £,_ >
I

N .
£ — min
e, U
R u

Inserting (6.2) into (6.3) and setting the gradient of €§e u With respect to the un-
known signal samples ’?e,u equal to zero, we obtain the following system of N
equations as a necessary condition for the optimal ﬁe,u:

H+N
>, h2(k-1) [qe(k,l) ~ h*(k-1) x(k) x:(l)] xe(l) = 0, fi+1 < k < fi+N . (6.4)
1=k~K

The lower summation bound k-K may be replaced by fi-K+1 since h2(k-1) will be
zero for 1<k-K. After adding



A+N N
(5 k0 = R %0
1=H-K+1

to both sides, the necessary-condition equation (6.4) becomes

Qe,x ’,ie = "’A‘e"2 ﬁe,UZ (6.5)

where the (rectangular) matrix Qe,x is defined as

(ée,x)kl = qg,‘,l(ﬁ*-k, fi-K+1) , 1<ks<N, 1<1<K+N , (6.6)
with (cf. (4.19))

qB)k,1) = h2(k-1) go(k,1) + [1- h* (k-1 7] x(k) x¥(D) . 6.7)

Note that Qe,x contains both the known signal samples (the elements of )'Ee,K) and
the unknown signal samples (the elements of "Ee,u)-

Again, we propose to solve (6.5) iteratively by a suitable modification of the
quasi power algorithm. The i-th iteration consists of the following steps. First,
using the signal vector ﬁ,‘;'l’ derived in the (i-1)-th iteration, the matrix Qe,x(i‘l)

is formed by means of (6.6) and (6.7). Then, the matrix-vector product

A (3 A (3=~
vOq = Qo a-p 48P

is computed; this yields the "unknown” signal vector :'Eg,)u up to a scaling factor.
This scaling factor, however, depends on the entire signal vector x%). Consistent

with the quasi eigen-equation (6.5), we first define the "quasi eigenvalue”
2D = RO 6.8)

We then derive the vectors ﬁ,‘;}u, ﬁ,‘;}u, x?, and 0¥ from Gé‘)u as follows:

=>
~
o
S’
"

V0 /29

Xy = NG 4y = ¥4 /AP

. x x
AG) e, K\ _ e, K )
x - A (2 - A2 6-9
€ ( x 8y ) (Vg,)u/ D (6.9

0P = RO/ 8P| = RO /D .

Note that X’ and @’ will be used for the next iteration. The above equations



also show how A can be calculated: combining (6.8) and (6.9), we obtain

A = ek + 1¥Qul® /2

This represents a quadratic equation in A which is solved by

2 = 5 (IRexl? + /TR x P+ 413 8ul?) -
A similar derivation can be given for the odd-indexed signal samples.

Summary of the block-by-block algorithm. Combining the results obtained for
the even-indexed and odd-indexed signal samples, we can summarize the "block-by-
block” algorithm for global signal synthesis in the case of the PWD as follows.

1a) With fi being a given time instant, transform the model as

1

/2 .
¥nm) = F g T(n.%) ™ de  for 2(A+N-Lg)sns 2(A+N)-1,

where N and Lg are the block length and the step length, respectively, to be ex-
plained below.
1b) Define the known vectors )’Ee, K :’Eo, k and unknown vectors ﬁe’u, ”Eo,u as

Hnp

(Xe. X )n x(fi-K+n) (X0 K)n & Xo(i-K+n) , 1snsK ;

Xo(fi+n) 1sn<N

Hnp

xe(ﬁ+n) , (*O,U)n

(”Ee,U)n

2) Perform the quasi power algorithm iteration: for i=1,2,...
(a) Construct the matrices Qe,x(i-i) and Qo,x(i-i) as follows:

(Qexti-n)yy = a®-n(hivk, A-K+1) , 1<k<N, 1<1sK+N
(Qoxi-n)yy = a®i-p(hi+k,-K+) , 1sksN, 1sIsK+N ,

where

(h)

qd®G-n (k1) = h2(k-1) @(k+L,k-1) + [1- h*(k-D] x5V (k) xED*1)

(h)

a5 - (k1) = h2(k-1) @(k+1+1,k-1) + [1- h*(k-1) ] x$ P k) xED*) .

(b) Calculate the matrix-vector products

v @

Ali—
o, U = Qo,x(i—i) u¢()l v .

A (% A —
¥y = Qu xa-p 88D,

(c) Perform normalizations and scalings:



A= 5 (e I+ IRe, P+ 418 8ul®) . A& = 5([Ro, kI + 7 IR0, x [P+ 41F Sue|P)

AGD - A X N {1

ROy = VO /D, Xy = 804 /NP ;
X X

a0 e,K a0 o,K

o= (2 - (x|
&S 2D

80 = 20 /7P 49 = 20 /D |

3) After convergence (i— ), obtain new blocks of the synthesized signal as

A(w

A _ A(eo A _
xe,u - xe,li ’ "o,u = xo,

4) For synthesizing the next signal blocks of even-indexed and odd-indexed
signal samples, replace fi by fi+Lg with step length Lg not greater than the block
length N, Lg<N, and go to Step 1.

Recursive continuation of block-by-block synthesis. For the synthesis of longer
signals (in fact, signals with arbitrary length), the block synthesis described above
must be continued in a recursive way as stated in Step 4. The synthesis of the
(m+1)-th signal block is based on the m-th signal block (and possibly signal
blocks lying still farther in the past) and a local time interval of the model.
Hence, the block-by-block algorithm is indeed suited for the on-line synthesis of
signals without any length restriction.

The recursive continuation of block-by-block synthesis is illustrated in Figure 6,
where it has been assumed that the block length N is smaller than the one-sided
PWD window length K (note, however, that N >K is allowed, too). In the following,
we only discuss the even-indexed signal samples since the odd case is analogous.
Suppose that we have just synthesized the m-th signal block ’?e,u,m comprising
signal samples x.(n) with fi_ +1 < n < fi +N; these samples are thus known. We
now synthesize the (m+1)-th signal block f(e,u,mﬂ with signal samples x.(n) for
fip,.q*1 < n < i, 4+N, where

ﬁ1’1'1+1 4 ﬁm+ LS

with the step length Lg. The step length Lg can be freely chosen in the range
1 < Lg < N (according to Figure 6, a choice Lg >N would cause ;‘e,K,m+1 to contain
unknown samples). For Lg=N, there does not occur any overlap of successive
signal blocks ;‘e,u,m’ f(e,u,mﬂ. For Lg <N, however, successive signal blocks
overlap with Lo =N-Lg being the length of overlap. In the overlap case Lg<N, we
note that the overlap interval fi ,¢+1 < n < i, +N is synthesized (at least) twice
since it is part of both ’?e,u,m and ﬁe,u,mﬂ. We propose to incorporate the result

contained in f(e,u,mﬂ in the final synthesized signal; the result contained in
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Figure 6. Recursive continuation of block-by-block synthesis.

f‘e,u,m is then not used for the synthesized signal but may be used as part of the
initial signal vector f‘g,){l,mu to speed up the convergence of the quasi power
iteration of the (m+1)-th signal block.

To start the block-by-block synthesis algorithm, i.e., to synthesize the very first
signal block f‘e,u,i , the first "known" signal vector ’?e,K,i (comprising signal
samples x.(n) for 1< n < K) has to be initialized. Fortunately, it seems that the block-
by-block algorithm is quite insensitive to initialization errors: according to our
experiments, the error introduced by an even extremely faulty initialization does not
propagate over more than a small number of blocks.

Some comments. (i) We stress that the block-by-block synthesis algorithm will
generally produce signals which are suboptimal. In contrast to the algorithm of
Subsection 4.2, the block-by-block algorithm does not attempt to minimize the total
synthesis error g, = | T-PWD,|| of the entire signal; instead, the syntheses of
individual signal blocks are based on a minimization of individual Jocal synthesis
errors é‘xe’u, e"o,u as given by (6.3). The block-by-block algorithm can thus be
considered to be locally optimal.

(i) It is interesting to compare the necessary-condition equations of the PWD
synthesis scheme of Subsection 4.2 with the necessary-condition equations of the
block-by-block synthesis scheme. In the first case, insertion of (4.19) into the
"even" equation of (4.6) yields

k+K
> h%k-D [ e(k+1,k-1) - h%(k-D x (k) x§(l):| xe(l) = 0, -0 ¢k¢ oo ; (6.10)
1=k-K

for the block-by-block case, on the other hand, (6.4) gives
min{k+K, A+N}

> h2(k-1) [ @(k+1,k-1) - h2(k-1) x (k) x5(1)] x.(D) = 0, firl<k<fi+N . (6.11)
1=k-K



Analogous equations hold for the odd-indexed samples. We see that the two equa-
tions have identical forms. However, Eq. (6.10) is valid for all k, and the summation
on the left-hand side involves the even-indexed signal samples x.(1) in the range
[k-K,k+K]. In contrast, Eq. (6.11) is valid only in the local interval fi+] s k < fi+N,
and the summation involves the even-indexed signal samples x.(1) only in the
range [k-K, min{k+K,fi+N}] [42].

(iii) If the quasi power algorithm converges, then the resulting signal block is
guaranteed to be a solution to the necessary-condition equation (6.4).

(iv) An important difference between block-by-block synthesis and the synthesis
of the entire signal as discussed in Subsection 4.2 is that the block-by-block algo-
rithm's memory and computation requirements per signal block and iteration step
are independent of the overall signal length; they only depend on the block length
N (for given window length L=2K+1). The convergence speed for each individual
block (assuming fixed block length N) again depends primarily on the amount of
smoothing employed in the PWD: shorter PWD windows h(n) (corresponding to more
smoothing) yield slower convergence.

(v) For a given PWD window h(n), the parameters of the block-by-block algorithm
are the block length N and the step length Lg (or, equivalently, the overlap length
Lo =N-Lg). These parameters control the quality of the synthesis result as well as
the computational expense. Better synthesis results (i.e., results with smaller
residual error, corresponding to a smaller deviation from the optimal result) will
be obtained for larger block length N and/or smaller step length Lg (i.e., larger
overlap length Lg). This, of course, entails more expensive computation. While the
recursive block-by-block algorithm avoids discontinuities at the block boundaries,
the step length is often visible in the synthesis result. This effect can be avoided
by choosing the minimal step length Lg=1 (see also Subsection 6.2).

(vi) Since the block-by-block algorithm is an algorithm for global signal synthe-
sis, its result again contains arbitrary phases ¢., ¢, of the subsequences of even-
indexed and odd-indexed signal samples. These phases are determined by the
initial vectors ’?e,K,l and ﬁo,K,l used for starting the recursive synthesis process.
They propagate from the m-th block synthesis to the (m+1)-th block and thus de-
termine the phases of the entire synthesis result. On-line algorithms for resolving
this phase ambiguity are presented in Subsection 7.4.

(vii) It seems to be difficult to develop a locally optimal on-line synthesis algo-
rithm for halfband signal synthesis. However, non-optimal halfband synthesis with
on-line characteristic can easily be performed by synthesizing e.g. the even-indexed
samples using the block-by-block algorithm and deriving the odd-indexed samples
by means of interpolation (this is analogous to the "reduced-cost" halfband signal
synthesis algorithm discussed in Subsection 4.3). Since the exact interpolation is
not consistent with an on-line operation, some recursive or short-time interpolation
algorithm (e.g., using an FIR filter) has to be employed.

(viii) Apart from the PWD, there exist many other SWDs which can be computed
on-line. Indeed, any SWD allows for on-line computation if its kernel ¢(n,m) (see
Subsection 4.1) is finite-support with respect to both variables n and m (if neces-



sary, this can be enforced by a truncation or windowing). Unfortunately, the de-
velopment of locally optimal on-line synthesis algorithms seems to be difficult in
the general SWD case. The reason for this is the time-smoothing in the SWD
which causes a coupling of signal blocks. Here, the PWD is an exception since it
does not contain a time smoothing.

6.2 Sample-by-Sample Synthesis

The computational expense and memory requirements of the block-by-block algo-
rithm depend on the block length N and the step length Lg. A minimum-cost algo-
rithm is obtained by choosing block length N=1. This obviously entails step length
Lg=1 and zero overlap, Lo=0. The signal blocks ﬁe,u, fio,u here reduce to single
signal samples, and the signal is thus synthesized sample by sample [37,39].

The case N=1 is particularly simple since it allows a closed-form solution and
thus avoids an iterative scheme like the quasi power algorithm. To show this, we
consider the synthesis of even-indexed samples; the odd case is again analogous.
Suppose that the even-indexed signal samples Xq(n) have already been synthesized
up to the time instant fi. The next signal sample x.(fi+1) is then synthesized such
that the (fi+1)-th error contribution ¢ , (fi+1) (see (6.2)) is minimized,

A .
ge,x(li*]) — min

xe(ﬁ+1)

Setting the derivative of £Z . (fi+1) with respect to the single variable x(fi+1) equal
to zero, we obtain as a necessary condition the single equation

fi+1
> hz(ﬁ+1—l)|:f[e(ﬁ+1,l)— h2(fi+1-1) xe(ﬁ+1)x§(l):| Xo() = 0 . (6.12)
1=H-K+1

This is a third-order equation in the single variable x.(fi+1). According to (6.12),
the magnitude and phase of x.(fi+1) are determined by

Ixe(B+D|* + p [x(H+D| - Iql = O , (6.13)

arg {x.(fi+1)} = arg{q} - arg{p+Ix(A+D[3} , (6.14)

where we have defined the known quantities

fi
p 2 3 IxoDhE6H+1-D|* - Y (fi+1,fi+1)
1=H-K+1
f
qa 2 I q.(fi+1,D) h2(H+1-D x (1) .
1=H-K+1

It follows from p «R and |q| > O that (6.13) has a unique real-valued and non-negative



solution

2
o

np>
N

Ixa(f+1)] = Ya+b + Ya-b with a? lg_l_ , b (6.15)

The synthesis solution x.(fi+1) is finally given by (6.15) and (6.14).

6.3 Simulation Results

Figure 7 demonstrates the performance of the block-by-block synthesis algo-
rithm discussed in Subsection 6.1. The length of the PWD window h(n) is L=2K+1=
63. The block length was chosen as N=8. Two step lengths are compared: maximal
step length Lg=N=8 (Figure 7.b) and minimal step length Lg=1 (Figure 7.c). The
recursive synthesis process was initialized with an estimate of the first 16 signal
samples which was obtained by applying off-line PWD synthesis (cf. Subsection 4.2)
to the corresponding initial model block. Note that, in the Lg=8 case, the step
length is visible in the synthesized signal via a parasitic amplitude modulation (see
Figure 7.b.2).

A synthesis experiment using the sample-by-sample synthesis algorithm dis-
cussed in Subsection 6.2 is shown in Figure 8. The PWD window length is again L=
2K+1=63. Each of the recursive synthesis processes of even-indexed and odd-
indexed samples was initialized with K=31 zero samples. It is seen that, in spite
of this extremely faulty initialization, the synthesized signal rapidly adapts to the
model.

In both of the experiments shown, even-indexed and odd-indexed signal samples
were synthesized separately, and phase matching was performed by means of the
on-line "spectral spread algorithm™ discussed in Subsection 7.4, with phase matching
performed simultaneously with the synthesis of each signal block or signal sample
(in the case of iterative block-by-block synthesis, phase matching was performed
for each iteration step separately) [37].

7. PHASE MATCHING ALGORITHMS

It has been shown in the Introduction that, for any BTFR, the result of signal
synthesis invariably contains a phase ambiguity: the synthesized signal is unique
only up to a constant phase factor. An additional, more troublesome phase ambi-
guity exists in the case of WD, SWD, and AFl1 if global signal synthesis is performed.
Here, the subsequences of even-indexed and odd-indexed signal samples contain
separate phase ambiguities; these can be represented in terms of an “absolute”
phase ambiguity affecting the entire signal and a "relative” phase ambiguity of
even-indexed and odd-indexed signal samples relative to each other. The relative
phase ambiguity is much more awkward than the absolute phase ambiguity since it
generally produces severe signal distortion. We have seen, however, that the
relative phase ambiguity can be avoided by performing halfband signal synthesis
instead of global signal synthesis.
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Figure 7. PWD on-line signal synthesis using the block-by-block algorithm. (a)
Model; (b) synthesized signal for Lg=8: (b.1) real part, (b.2) envelope, and (b.3) PWD;
(c) synthesized signal for Lg=1: (c.l) real part, (c.2) envelope, and (c.3) PWD.
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Figure 8. PWD on-line signal synthesis using the sample-by-sample algorithm. (a)
Model; (b) synthesized signal: (b.1) real part and (b.2) PWD.

The present section discusses various methods for phase matching, i.e., resolving
the phase ambiguities of the synthesized signal [44,37,10]. These methods can be
grouped into two categories: firstly, reference-based phase matching where the
phases are matched to a reference signal, and secondly, autonomous phase matching
which does not require a reference signal. Reference-based phase matching is capable
of resolving both the relative and the absolute phase ambiguity while autonomous
phase matching only resolves the relative phase ambiguity. Autonomous phase
matching is useful in the case of global signal synthesis if a meaningful reference
signal is not available and, hence, reference-based phase matching cannot be per-
formed.

This section is organized as follows. After a discussion and analysis of absolute
and relative phase ambiguities in Subsection 7.1, Subsection 7.2 considers two algo-
rithms for reference-based phase matching. Subsection 7.3 then presents two ap-
proaches to autonomous phase matching and shows that these approaches can be
generalized, resulting in a unified mathematical framework for autonomous phase
matching. "On-line" versions of the reference-based and autonomous phase matching



algorithms are discussed in Subsection 7.4. These on-line algorithms feature a
short-time or causal mode of operation and thus permit the on-line processing of
signals with arbitrary length. Simulation results are presented in Subsection 7.5.

7.1 Absolute and Relative Phase Ambiguities

For any BTFR, and for both global signal synthesis and subspace signal synthesis
on arbitrary signal subspaces, the result of signal synthesis is always ambiguous
with respect to a constant phase. Indeed, if x(n) is a solution of signal synthesis,
then ® x(n), where @ is an arbitrary constant phase, is a solution as well. This
phase ambiguity of signal synthesis is caused by the invariance of BTFRs to constant
phase factors (see (1.12), (1.13)).

We now consider global signal synthesis in the case of the WD. Let x(n) be some
signal, and let us derive from x(n) a new, "phase-rotated” signal X(n) by applying
constant phase factors e/®e, &/ to the subsequences of even-indexed and odd-
indexed signal samples, respectively,

, (7.0

3 . jPe -
%(n) = %%ePlm) & Pexo(n) + JPoxg(n) = {e x(n), n=2k

el®o x(n), n=2k+

where the signals xg(n) and xg5(n) have been defined in Subsection 3.1. Alternatively,
the phase-rotated signal X(n) may also be written as

%) = ¥®PPn) = P ¥ (n)
with

@y - ¢ . [x, - n=2k
X (n) x(4{-(n)+ej Xo(n) {e’q’x(n), n=2k+1 ’

(7.2)
The "absolute phase” ¢ = ¢, affects the entire signal whereas the "relative phase”
$=¢@,-p. describes a phase rotation of even-indexed and odd-indexed samples
relative to each other. Now, inserting into the WD definition (1.4), it can easily be
shown that the WD is invariant to arbitrary phase rotation of the subsequences of
even-indexed and odd-indexed signal samples,

WD5(n,0) = WD, (n,0) . (7.3)

Then, combining (7.3) and the definition (3.13) of the synthesis error ¢, it follows
that the original signal x(n) and any "phase-rotated” version X(n) achieve the same
synthesis error,

sx = [|IT-WDg| = |T-WD,|| =

xX x

Therefore, if x(n) is a solution to the global WD signal synthesis problem (3.13),
then X(n) is a solution as well. We conclude that the result of global WD signal



synthesis is ambiguous with respect to the phases ¢, and ¢, or, equivalently, ¢
("absolute phase ambiguity”) and ¢ ("relative phase ambiguity”). On practical
application of WD signal synthesis, these phases will assume arbitrary values. An
analogous argument shows that the same phase ambiguities exist in the case of
SWD and AFl.

We have thus seen that (i) for any BTFR, the result of global or subspace signal
synthesis contains an absolute phase ambiguity and (ii) for WD, SWD, and AF1, the
result of global signal synthesis contains both an absolute and a relative phase
ambiguity. Now, while the absolute phase ambiguity merely results in a phase
factor affecting the entire signal, the relative phase ambiguity obviously produces
severe signal distortion. In the frequency domain, this distortion can be interpreted
as an aliasing effect. Indeed, transforming %¥“(n) into the frequency domain and
inserting the relations

Xe©) = 3[X(@+X(©-1/2] , Xg@) = L[X(e)-X(6-1/2)] (7.4)
(cf. (3.11)), the Fourier transform of St(q’)(n) is obtained as

XY@ = c.X(@ +c.XO-1/2)  with . =1(12eY) . (7.5)

The troublesome relative phase ambiguity can be avoided by performing halfband
signal synthesis instead of global signal synthesis. Indeed, if the result of signal
synthesis is constrained to be a halfband signal, then it is unique apart from an
absolute phase. This directly follows from the aliasing relation (7.5): if x(n) is a
halfband signal, then ¥ (n) can only be a halfband signal (on the same halfband)
if $=0. Alternatively, it follows from the interpolation formula (3.8) of halfband
signals that even-indexed and odd-indexed signal samples are strictly coupled, and
a relative phase rotation is hence incompatible with a signal's halfband property.
We stress, however, that the absolute phase ambiguity is not removed by a halfband
constraint.

7.2 Reference-Based Phase Matching

Matching of absolute phase. We first consider the problem of matching a signal's
absolute phase to a reference signal y(n) which we suppose to be given. Let x(n)
be the result of signal synthesis. To match the absolute phase, we form the
phase-rotated version /® x(n) and choose the absolute phase ¢ such that the
resulting signal is as close to the reference signal y(n) as possible, which amounts
to the minimization

e(p) 2 ||y—ej°‘°x|| — ngn . (7.6)
Developing the squared norm £%(¢) as

20) = [y-&®x|® = |y[*+ [x[|* - 2Re{ eI (y,x)},



it follows that the minimum of ¢*(p) is obtained by maximizing

Re {e‘j“’ (y,x) } = |(y,x)| cos [arg {(y,x)}- cp] ;
thus, the optimal phase is given by

Popt = arg Cg with Cr = (y,x) = %: y(n) x*(n) . (7.7)

Matching of absolute and relative phase [10]. For matching both the absolute and
the relative phase or, equivalently, the phases of even-indexed and odd-indexed
signal samples, we form the phase-rotated signal %{®e:®o’(n) according to (7.1) and
choose the phases ¢, ¢, such that

“Pertd) & [ly-xFer| — min |

where y(n) is again a reference signal. Inserting (7.1) and the decomposition y(n)=
ye(n)+ygo(n), and separating even-indexed and odd-indexed signal samples, it is
easily seen that the squared error £%(¢.,¢,) can be decomposed as

52(‘?9‘?.5) = 82@(@‘3) + szb((po)
with
telve) = |ye-¢¥oxel . enlPe) = [lyo-Oxg| .

The error components sg(9,) and s5(p,,) can thus be minimized separately. Reasoning
as above, the optimal phases are then obtained as [10]

Pe,opt = argCre with Cre = (Y@ xg) = 2 y(2k) x*(2k) , (7.8)
k

Po,opt = argCr o with Cro = (Yo, Xp) = 2 y(2k+1) x*(2k+1) . (7.9
k

7.3 Autonomous Phase Matching

We now turn to the problem of resolving the relative phase ambiguity without
the help of a reference signal. Indeed, when no reference signal is available, there
generally does not exist a reasonable criterion for determining the absolute phase;
the absolute phase ambiguity must therefore remain unresolved. We take account
of this fact by forming the phase-rotated signal X%’(n) as in (7.2). The relative
phase § has now to be adjusted according to some optimality criterion. Two
different approaches [44,37] are discussed below. In the following, we assume that
x(n) is the result of global signal synthesis in the case of the WD. Note, however,
that the methods derived also apply to the SWD and AF1 for which similar argu-
ments can be given.



The halfband approximation criterion [44]. In practice, the WD is applied only to
signals which are halfband (or at least nearly halfband) so that no substantial alias-
ing of the WD occurs. Thus, it is natural to require that the signal synthesis result,
too, should be halfband or at least nearly halfband. The latter extension is impor-
tant in the context of global signal synthesis since in general (if the model is not
halfband-consistent as explained in Subsection 3.3) no choice of the phase ¢ can be
found such that the resulting (phase-matched) signal X% (n) is exactly halfband.
We therefore adjust the relative phase ¢ such that the resulting signal X% (n) is
as nearly halfband as possible; this will be termed the halfband approximation
criterion (HAC). Phrased mathematically, the HAC requires that the distance of
%*@)(n) from a halfband subspace $ (with given center frequency ©,) be minimal.
As shown in Figure 9, this distance is given by d(¢) = ”'i‘(q’)-x(q’)” where 'X‘(q’)(n) is
the orthogonal projection of ¥ (n) on $. Thus, the HAC reads

dp) & |xP-x@| — min .

'X;(LIJ)

d(¢)

)
%

Figure 9. Distance of signal ¥ (n) from halfband subspace §).

Using (3.3), Parseval's relation, and (3.5), the squared norm d2(¢) can be expressed
in the frequency domain as

172 2 1/2 »
e = |xV-3@PI? =_ [ G- 1] X @) a0 =_ I I-H@]|XY@® [ e -

1/2 1/2
= [ |XY@|’de - [ H®e)| X9 de . (7.10)
-1/2 -1/2

The first term in (7.10) is the energy of X (n) which is easily shown to be inde-
pendent of ¢. Thus it remains to maximize the second term,

1/72 Op+1/4
my@) 2 [ HO|XP®©)|de = [ |X¥@©)|*’de — max . (7.11)
-1/2 90—1/4- ¢



This amounts to a maximization of the signal's energy inside the halfband interval
0,174 <O <0,+1/4.

The spectral spread criterion [44]. The HAC has just been shown to maximize the
energy of X¥(n) inside the halfband ©,-1/4 < © <©,+1/4. This can be approximated
by maximizing the concentration of the Fourier transform X®(©) relative to the
halfband’s center frequency ©,, which is done by minimizing the spread of X% (@)
about ©,. This leads to the spectral spread criterion (SSC)

Gp+1/2
I o@|X¥ ()| de
(¢ 2 Sol2 — min , (7.12)
Og+1/2
5 |X® @) |*de
©p-1/2

where the weighting function p(®) has yet to be specified. While the conventional
definition of spread would use p(©)=(0-60,)%, we here have to remain within the
framework of discrete-time signals whose Fourier transforms are 1-periodic func-
tions. Hence, we choose the 1-periodic weighting function

0(®) 2 [sinm(@-8,)F = 1[1- cos2r(@-8,)] = 1-S(O)
with
S(©) = 1[1+ cos2n(e-6,)], (7.13)

which is shown in Figure 10.

4 0(O)
[r(@-6,)TF

™. [sin ©(©-0,) T

\. » 0

0,-1/2 0, 1/2 ©,+/2

Figure 10. Weighting function for the definition of spectral spread.

In order to minimize ¢%(¢), we first note that the denominator of (7.12) is the
energy of X¥(n) which is independent of the phase . Thus, there remains to



minimize the numerator of (7.12),

Oo+1/2 2
I o@|X¥@)]*de
Go-1/2

172 2
I [1-s@©)]|X¥@©)|*de =
-1/2

1/2 2 1/2 2
J‘2 | XD (@)|* do - 1;‘ZS(e)lftﬁw(@)l de . (7.14)

Since the first term of (7.14) is again independent of ¢, there finally remains to
maximize the second term,

172
mg@) 2 [ s©) |X9@©)|*°de — max . (7.15)
-1/2 ¢

A generalized criterion for autonomous phase matching. Comparing (7.11) and
(7.15), we notice that both the HAC and the SSC require the maximization of a
frequency-domain moment,

172
me@) 2 [ FO) |X¥Y@|*°de — max , (7.16)
-1/2 ¢

where the weighting function F(©) depends on the criterion used: in the HAC case,
F(©)=H(O) has rectangular shape; in the SSC case, F(0)=S(®) is sinusoidal. The
weighting functions are similar, though, since they both tend to suppress the
signal’'s Fourier transform outside the halfband ©,-1/4 <© <©,+1/4 while empha-
sizing it inside this halfband (see Figure 11). Indeed, Eq. (7.16) can be viewed as a
generalized criterion for autonomous phase matching; the shape of the weighting
function F(@) is here arbitrary apart from the requirement that F(©) attenuates
(emphasizes) the signal's Fourier transform outside (inside) the specified halfband.

A F(©)
H(©)

1
L~ |
/ | s(e)

~ ”~
\\ ’/’
\\_. ="

©,-1/2 ©,-1/4 0 @, 0,+1/4  ©,+1/2

Figure 11. Weighting functions of HAC and SSC.

We now derive the solution to the general maximization problem (7.16). Inserting
the frequency-domain version of (7.2), X% (@) = Xe(0) +ejq’X9(@), we obtain



172 2 1/2 2
mg(d) = _l/fz F(O)|Xe(®| do + _1;2 F(0)|Xo(@)|*de +
(7.17)
172 . *
+ l/fz F(©) 2Re{ X¢e(0) [ X(©) ]} do .

The first two components of (7.17) do not depend on {; thus, there remains to
maximize the last component which, assuming F(®) to be real-valued, becomes

2Re{e ¥ Cp} = 2|Cglcos(-p+argCp) (7.18)
with

172 *
Cg 2 f2 F(8) X&(0) X5(0) do . (7.19)

The phase maximizing (7.18) is thus obtained as

$ope = arg Cg . (7.20)

We note that a time-domain expression for Cg can be derived by means of Parseval's

relation,

CF = (XGF’ Xg) = Z X@F (2k+1) X*(2k+1) = (XGF{D’ Xs) . (7.21)
k

where xgg(n) denotes the result of filtering xg(n) with a filter with frequency re-
sponse F(©).

The practical computation of Cg naturally depends on the specific weighting
function F(®). Specializing to the weighting functions H(@) and S(€) defined by the
HAC and the SSC, respectively, we obtain the following results.

The halfband approximation algorithm. For F(©)=H(@), Cg=Cy; can be expressed as

Oo+1/4
Cu=_J Y®do with Y@© 2 L[x(e)x(e-5)][x(e)-x(e-HT*.
®o-1/4

This follows upon insertion of (7.4) and (3.5) into (7.19).
The spectral spread algorithm. For F(©)=S(0), Cg=Cg is given by

Cs = § 3 [727% x(2ke2) + 12790 x(210) | x* (2K .

This is obtained from (7.21) and (7.13) after straightforward manipulation.

Some comments. In a sense, the halfband approximation algorithm (HAA) with
F(©)=H(©) is optimal since it produces the signal which is "as nearly halfband as
possible” and thus causes minimal aliasing in the WD. The spectral spread algorithm
(SSA) is only an approximation but has the practical advantage of being considerably



less expensive than the HAA since it does not require the computation of a Fourier
transform. Anyway, the results of the HAA and SSA may be expected to be very
similar in many cases since the weighting functions of the HAA and SSA have similar
overall characteristics. This property has been confirmed by experiments (see Sub-
section 7.5).

The results of the HAA and SSA are identical in the case of a halfband-consist-
ent model (cf. Subsection 3.3). In this case, there exists a solution x®(n) of global
signal synthesis which is a halfband signal and equals the result of halfband
signal synthesis. However, the global signal synthesis algorithm will generally not
yield this specific solution x®)(n) but some other solution with relative phase
mismatch. It can then be shown [44] that the generalized algorithm (7.19)-(7.21)
for autonomous phase matching (with mild assumptions regarding the weighting
function F(©)) always recovers the desired halfband solution x‘®’(n), i.e., it removes
the relative phase mismatch contained in the solution of global signal synthesis.
Of course, in practice a model will rarely be exactly halfband-consistent. Still, the
fact that both the HAA and SSA are consistent with halfband signal synthesis in
the above sense seems to indicate that, in the practically important case of nearly
halfband consistent models, the solutions obtained by the HAA and SSA will be
very similar and, in particular, close to the solution of halfband signal synthesis.

There exists an interesting formal relation between reference-based phase match-
ing on the one hand and autonomous phase matching on the other. According to
(7.9), reference-based phase matching calculates the phase of odd-indexed signal
samples as @, ¢ = arg(ygp,Xgp) while autonomous phase matching calculates the
relative phase ¢ (which, up to the absolute phase, can be interpreted as the phase
of odd-indexed signal samples ¢,) as {gpe = arg (X@gp. Xp ) (see (7.20), (7.21).
As far as the relative phase is concerned, autonomous phase matching can thus be
interpreted as reference-based phase matching with reference signal y(n) = xeg(n).

7.4 On-Line Algorithms

All phase matching agorithms discussed so far use the entire synthesis result
x(n) to derive the optimal phase or phases for phase matching. This mode of
operation conforms to signal synthesis algorithms which synthesize all signal
samples simultaneously. However, it is not suited for the on-line synthesis algo-
rithms presented for the PWD in Section 6. These on-line algorithms synthesize
successive signal blocks or signal samples one after the other; this calls for phase
matching algorithms which are compatible with on-line processing in the sense that
they operate only on local or causal segments of the synthesis result. In the fol-
lowing, we develop on-line algorithms for both reference-based and autonomous
phase matching [44,37].

Reference-based phase matching - absolute phase. We first reconsider the prob-
lem of matching the absolute phase ¢ of the signal synthesis result x(n) to a
reference signal y(n). At time n, we want to calculate a Jocal estimate $(n) of the



optimal phase ¢, defined by (7.7). With this local estimate, the n-th sample of
the phase-matched signal is then formed according to
A P

%(n) x(n)

Note that, in general, different phases ®(n) are used for different samples X(n).

To be compatible with on-line processing, we assume that, at time n, the signals
x(k) and y(k) are known only for k<n+N, where N20 is a fixed parameter. It is
then natural to define the local phase estimate $(n) at a given time instant n as
the solution to the local minimization problem

2(p) = |y-e®x[%_ 2 I wik-n|y®-Cx®[> — min , (7.22)
. n k

where w(k) is some non-negative window satisfying w(k) =0 for k > N. We note that
(7.22) is simply a local or windowed version of the error norm (7.6). Due to the
windowing, only samples of x(k) and y(k) with k <n+N are contained in this local
error. It is easily shown that the solution to the minimization problem (7.22) is

¢ (@ = arg Cx(n) with  Cpm) = (y,x),. = 3 wik-n)yk) x*k) .
n k

Again, éR(n) contains only samples of x(k) and y(k) with k<n+N. Note that the
above result for on-line phase matching is analogous to the result for off-line
phase matching as given by (7.7); the only difference is the local windowing con-
tained in the inner product.

Reference-based phase matching - absolute and relative phase. For matching both
the absolute and the relative phase to a reference signal, we proceed analogously
by calculating local estimates ®.(n) and &,(n) of the optimal phases Pe,opt and
©o,0pt defined by (7.8) and (7.9), respectively. We then form the phase-matched
signal according to

k) & ef¥e® Xg(n) + efPo(m Xg(n) . (7.23)

The local phase estimates .(n), $,(n) at a given time instant n are again defined
as the solution to the local minimization problem

£2(Pes o) = [y-%Pe®l |2 24 T wik-n)|yk) -%Pe:P)(k)|* — min .
n k Pe »Po

Here, X{®e:®o) is defined by (7.1), and the window w(k) is as before. The resulting
phase estimates are given by
e(m) = argCr o) , Cre) = (Y@ Xg )y, = = W(Zk-n)y(2k) x*(2k) (7.24)

=2
k

Poln) = arg Cp o) , Cg o) = (¥o,Xp),,. = = W(Zk+1-n) y(2k+1) x*(2k+1) . (7.25)
nox



Note that the phase estimates é\oe(n) and Qvo(n) are used in (7.23) only for n even
and n odd, respectively.

Autonomous phase matching. We next develop an on-line version of the general-
ized algorithm for autonomous phase matching descrlbed in Subsection 7.3. For this,
we have to calculate a time-varying estimate LI)(n) of the optimal relative phase
$opt as given by (7.20) and (7.21). With this estimate $(n), the phase-rotated signal
is then formed as (a modified approach is proposed in [37])

x(m) 2 xgm + ¥ xgm) .

The phase estimate E\I)(n) (which is relevant only for odd n) is not based on the
minimization of a local error; rather, it is obtained heuristically by replacing the
inner product (7.21) by a locally windowed version,

$n) = argCpm , Cp) = (xgr,Xo)w, = S w(Zkst-n) xg (2k+1 x*(2k+) . (7.26)

Here, x@g (n) is the result of filtering xg(n) with a filter with frequency response
F(@); we note that this filter has to be approximated by a recursive or short-time
version (e.g., an FIR filter) in order to be compatible with on-line processing.
Comparing (7.26) with (7.25), we see that on-line autonomous phase matching can
again be interpreted as on-line reference-based phase matching with reference
signal y(n)=xgg(n). Specializing to F(©)= S(@) there results a computationally
attractive on-line version of the SSA, where CF (n)= Cs(n) is given by

Est) = (Xes X )wy= T L W(2k+1-n) [e712m00 x(2k+2) + €i270 x(2k) | x*(2k+1) .

Some comments. The window function w(k) may either have finite length (e.g.,
w(k) = O for k| > N), or it may extend to -. In the latter case, the exponential win-
dow w(k) = e*¥u(-k) (where u(k) is the unit step and «=0) is particularly efficient
since the phase estimates $(n) etc. may then be calculated recursively [44,37]. In
the limiting case a=0, i.e., w(k) = u(-k), the time-varying phase estimates formally
converge to the corresponding optimal phases of the off—hne case for n—> o [44];
however, this window may cause an overflow when computing ¢(n) on a digital com-
puter and thus results in a potentially unstable algorithm.

In most applications, the on-line algorithm for autonomous phase matching will
be combined with the on-line algorithm for PWD signal synthesis discussed in
Section 6. Here, experiments suggest that best results are obtained when the phase
matching is incorporated in the quasi power algorithm, i.e., when a separate phase
matching step is performed in each iteration step of the quasi power algorithm.
This combination of on-line signal synthesis and on-line phase matching is discussed
in more detail in [37].



7.5 Simulation Results

Figure 12 reconsiders the WD signal synthesis experiment presented in Figure 3,
this time concentrating on the aspect of (off-line) phase matching. Global WD sig-
nal synthesis was performed from the model shown in Figure 3.a. The synthesis
result without phase matching is depicted in Figure 12.a (cf. Figure 3.b). The model
is defined for 0 < © <1/2; however, due to a relative phase mismatch, the greater part
of signal energy is located in the complementary band 1/2<© <1.

The signals shown in Figures 12.b and 12.c were obtained by applying the off-line
versions of the halfband approximation algorithm and spectral spread algorithm,
respectively, to the result of global signal synthesis described above. The resulting
signals are well concentrated in the desired band 0<©<1/2. The results of both
phase matching algorithms are seen to be practically identical although the model
is not halfband consistent. Also, there exists a close similarity to the result of
halfband signal synthesis shown in Figure 3.d. We note that the WDs of the
signals depicted in Figure 12 are identical (due to the WD's phase invariance) and
are shown in Figure 3.b.3.

Figure 12. Autonomous phase matching 0.2
using the halfband approximation algo- (@
rithm (HAA) and the spectral spread 001
algorithm (SSA). (a) Synthesis result —o.2 .
without phase matching: (a.l) real part 0 ——n 100 200
of signal and (a.2) signal spectrum; (b) 2.0
HAA result: (b.1) real part of signal and (a.2)
(b.2) signal spectrum; (c) SSA result:
(c.1) real part of signal and (c.2) signal
spectrum.
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0.0 1 0.0 1
-0.2 T -0.2 T
0O ——n 100 200 0O ——n 100 200
2.0 2.0
(b.2) (c.2)
0.0 L 0.0 J

T T
o —_— 0 172 1 o —_—0 172 1



The performance of the on-line version of the spectral spread algorithm (SSA)
is illustrated in Figure 13. On-line PWD signal synthesis using the sample-by-sample
algorithm described in Subsection 6.2 was performed from the model shown in
Figure 13.a. The PWD window was chosen as a Hamming window of length 63. The
synthesis result without phase matching is given in Figure 13.b. Again, a large part
of signal energy is seen to exist in the band 1/2<0 <1 which is complementary to
the model band 0= © <1/2. Figure 13.c shows the synthesized signal after phase
matching by means of the on-line version of the SSA using the exponential window
w(k) = e*Ku(-k) with «=0.01. The signal is well concentrated in the model band
0<0<¢1/2. The time evolution of the local relative-phase estimate :]\J(l’l) is depicted
in Figure 13.d; it is seen that :]\J(n) is very close to the relative phase $opt Obtained
by the off-line version of the SSA. (Indeed, the results of the off-line and on-line
SSA obtained in this experiment were so close to each other that the respective
plots did not show any differences; therefore, no plots illustrating the off-line re-
sults are included in Figure 13.)

8. APPLICATION TO TIME-FREQUENCY FILTERING

An important application of the signal synthesis methods discussed in previous
sections is the problem of time-frequency filtering. In the simplest case, we would
like to design a filter that passes all signals located in a given time-frequency
region R and suppresses all signals located outside this region. (A signal is "located
in a time-frequency region” if the effective support of the signal's WD is located
in this region.)

A conceptually simple approach to performing such a time-frequency filtering is
an analysis-masking-synthesis scheme based on the WD [10,14,16,45,46]. Here, the
WD of the signal to be processed is calculated (analysis step), the signal's WD is
multiplied by a mask (masking step), and finally the output signal is synthesized
from the masked WD (synthesis step). The mask is the indicator function of the
"time-frequency pass region” R, i.e., it is one inside R and zero outside R. The
synthesis step makes use of the WD synthesis methods of Section 3 and the phase
matching methods of Section 7.

Interference term effects in WD-based signal synthesis. The overall method is
highly nonlinear, and it suffers from the quadratic nature of the WD, specifically,
from the occurrence of cross or interference terms (ITs) [6]. An example is shown
in Figure 14. We are given a three-component signal consisting of two chirp com-
ponents c,(n), c,(n) and a Gaussian component g(n). We wish to isolate the second
chirp component c,(n) using the WD analysis-masking-synthesis method. Unfortu-
nately, the oscillatory IT of the other two signal components c,(n) and g(n) is
located on top of the WD of c,(n). Hence, this IT is still present after masking the
WD, i.e., in the synthesis model. This parasitic IT has a dramatic influence on the
result of signal synthesis. In fact, it is shown in Figure 14.c that the synthesized
signal is not the signal component desired but a linear combination of the other
two signal components c,(n) and g(n), i.e., the signal components to be suppressed.
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Figure 13. Autonomous phase matching
using the on-line version of the spectral
spread algorithm (SSA). (a) Model; (b)
signal synthesis result without phase
matching: (b.1) real part of signal and
(b.2) signal spectrum; (c) result after
phase matching: (c.1) real part of signal,
(c.2) signal spectrum, and (c.3) PWD of
signal; (d) time evolution of relative-
phase estimate @(n).
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A theoretical analysis of IT effects in WD signal synthesis [15] has shown that
this specific behavior will always occur whenever the WD of the desired signal
component is overlaid by the IT of two other components, provided that the
geometric mean of the energies of these two interfering signal components is
larger than the energy of the desired component. (In the opposite case, the desired
component will be obtained.)

Avoiding IT effects. There are several ways to combat IT effects. One approach,
proposed in [15], is the use of a smoothed WD (SWD) instead of the WD. Here, IT
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Figure 14. Interference effects in WD-based signal synthesis [15]. (a) Real part and
WD of three-component signal; (b) result of masking the WD of the three-compo-
nent signal; (c) result of WD-based signal synthesis from the masked WD; (d)

desired signal component c,(n).



effects are reduced since the SWD's ITs are attenuated as compared to the WD's
ITs [6]. Note that this advantage of the SWD provides a motivation for our detailed
treatment of SWD signal synthesis algorithms in Sections 4 and 6. The application
of SWD-based signal synthesis to the example of Figure 14 is shown in Figure 15.
It is seen that the IT of the signal components to be suppressed is essentially
smoothed out and hence does not affect the result of SWD signal synthesis, which
is very similar to the desired signal component c,(n).
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Figure 15. Avoiding interference effects by using SWD-based signal synthesis [15].
(a) Real part and SWD of three-component signal; (b) result of masking the SWD
of the three-component signal; (c) real part and WD of result of SWD-based signal
synthesis from the masked SWD; (d) desired signal component c,(n).



A further approach to reducing IT effects is the use of a masked WD [47]. This
is analogous to SWD-based signal synthesis as discussed in Section 4, with the
difference that a masked WD (MWD), i.e., the product of the WD and a pre-defined
masking function, is used instead of an SWD. The masking function may be designed
to ignore parts of the model where parasitic ITs are located; it is not identical
with the mask used in the overall analysis-masking-synthesis process. Similar to
the SWD case, the MWD synthesis problem leads to a quasi-eigen-equation that
can be solved iteratively by a suitable version of the quasi power algorithm (cf.
Section 4) [47].

An example illustrating the application of MWD-based signal synthesis as com-
pared with WD-based synthesis is shown in Figure 16. Again, the filtering task con-
sidered is the isolation of a signal component whose WD is overlaid by the IT of
two other components. The synthesis model is a masked version of the WD of the
three-component signal, which still contains the parasitic IT. Consequently, the
result of WD-based signal synthesis is again a linear combination of the interfering
signal components (see Figure 16.c). The result of MWD-based synthesis from the
same model, with the MWD mask designed to ignore the parasitic IT, is shown in
Figure 16.f; it is seen to be very similar to the desired signal component.

The use of a masked cross-WD (instead of a masked auto-WD as discussed
above) has been proposed in [48,16]. This method involves a masked cross-WD of
the signal to be synthesized and a reference signal which is assumed fixed. The
synthesis problem here leads to a linear equation which may be ill-conditioned. The
cross-WD signal synthesis is part of a recursive overall scheme where the reference
signal is improved after each synthesis step [48,16].

The examples shown in Figures 14-16 were somewhat pessimistic in that the mask
was applied to a WD overlaid by an IT. A better procedure would be to first
isolate/synthesize a signal component whose WD is not overlaid by an IT, subtract
it from the overall multicomponent signal, calculate the WD of this reduced signal,
isolate/synthesize the next component, etc. The resulting recursive signal-synthesis/
signal-subtraction scheme has been proposed and applied to seismic signal analysis
in [45]. An alternative method, which performs an approximate signal decomposition
without a masking step, has been described in [49].

Linear time-frequency filters. Troublesome IT effects are avoided altogether if
the analysis-masking-synthesis scheme is performed using a linear time-frequency
representation (e.g., the short-time Fourier transform or the wavelet transform)
instead of the quadratic WD [50-53]. Signal synthesis based on a linear time-fre-
quency representation can always be performed by solving a linear equation. The
overall analysis-masking-synthesis scheme then results in a linear, time-varying
filter. Alternative "direct” designs of such a linear, time-varying "time-frequency
filter” (which are not based on an analysis-masking-synthesis scheme) are the
Zadeh filter, the Weyl filter, and the time-frequency projection filter [30,31,53,54].

A comparison of various linear and nonlinear schemes for time-frequency
filtering is shown in Figure 17 [53]. The input signal consists of an FM component
(to be suppressed) and a (desired) Gaussian component. The filtering task is a
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Figure 16. Avoiding interference effects by using MWD-based signal synthesis [47].
(a) Real part and WD of three-component signal; (b) result of masking the WD of
the three-component signal; (c) real part and WD of result of WD-based signal syn-
thesis from the model in (b); (d) desired signal component; (e) model as in (b) and
MWD mask (the MWD mask is such that the shaded region is ignored); (f) result
of MWD-based synthesis from the model in (b).
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Figure 17. Performance comparison of various nonlinear and linear time-frequency
filters [53]. (a) Real part and WD of two-component signal; (b) mask used for mask-
ing the WD, SWD or STFT, or used for direct filter design; (c) result of WD-based
analysis-masking-synthesis (AMS); (d) result of SWD-based AMS; (e) result of
linear STFT-based AMS; (f) result of linear Weyl filter; (g) result of linear time-
frequency projection filter; (h) desired signal component.



difficult one since the signal components are very close in the time-frequency
plane. The first three methods shown are based on the analysis-masking-synthesis
scheme involving the WD, SWD, and short-time Fourier transform (STFT), respec-
tively. Hence, the first two time-frequency filters are nonlinear while the third
one is linear. The result of the WD-based filter again suffers from the presence
of parasitic ITs inside the mask; this effect is somewhat reduced in the result of
the SWD-based filter, and altogether avoided by the (linear) STFT-based filter.
The remaining two methods (Weyl filter and time-frequency projection filter) are
linear filters which are based on a direct filter design [53,54]. This comparison
shows the superiority of linear time-frequency filters as compared to nonlinear
analysis-masking-synthesis methods.

9. CONCLUSION

We conclude this chapter with some general remarks on the signal synthesis
algorithms presented, and a brief survey of related work.

9.1 Summary and Discussion

The algorithms discussed in this chapter show strong similarities but also some
differences. To avoid confusion, it is helpful to summarize and distinguish the
various categories of signal synthesis algorithms. Three possible classifications are
the following:

1. Algorithms for global signal synthesis (without a constraint on the synthesis
result), and for subspace signal synthesis (where the synthesis result is constrained
to be an element of a prescribed linear signal subspace). In the context of the WD,
SWD, and AFi, an important special case of subspace signal synthesis is halfband
signal synthesis where the synthesis result is constrained to be a halfband signal.

2. Algorithms for BTFRs which are unitary on the signal space on which signal
synthesis is performed (like WD', RD, AF2 and, with certain restrictions, WD and
AF1), and for BTFRs which are inherently non-unitary (like the SWD or spectrogram).

3. Algorithms for off-line signal synthesis (where the entire signal is synthesized
as a whole, making use of the entire model), and for on-line signal synthesis
(here, individual signal blocks or samples are synthesized sequentially, using local
blocks or slices of the model). On-line signal synthesis is important in the context
of SWDs allowing an on-line calculation (e.g., PWD with a finite-length window).

All signal synthesis algorithms discussed consist of two main steps. Step 1 is a
transformation which maps the original time-frequency model into a "signal product
domain” (case of global signal synthesis) or a coefficient domain (case of subspace
signal synthesis). Step 2 depends on the unitarity property of the BTFR for which
the signal synthesis problem is formulated. If the BTFR is (subspace-) unitary,
then Step 2 is the calculation of the dominant eigenvalue and eigenvector of a
Hermitian matrix; this may be done iteratively by means of the power algorithm.
In the case of a non-unitary BTFR, Step 2 is the solution of a third-order equation



which no longer is a conventional eigenvalue-eigenvector equation. For this, we
propose the iterative "quasi power algorithm” which is a natural extension of the
power algorithm.

A special situation is encountered in the case of the WD, SWD, and AF1 where
the result of global signal synthesis contains a troublesome "relative” phase ambi-
guity in addition to the "absolute” phase ambiguity which is always present in the
synthesis result. Various phase matching algorithms can be used for resolving the
relative and/or absolute phase ambiguity of the synthesized signal. Resolving the
absolute phase ambiguity requires a reference signal. The relative phase ambiguity,
on the other hand, can also be resolved without a reference signal by application
of the "autonomous” phase matching algorithms discussed in Section 7. If halfband
signal synthesis is used instead of global signal synthesis, then the problem of
relative phase ambiguity is avoided altogether. For halfband signal synthesis, either
an optimal algorithm or a reduced-cost (suboptimal) algorithm may be used.

In the case of the WD, SWD or AFl, the various methods for signal synthesis
(global, optimal halfband or reduced-cost halfband) and for phase matching (abso-
lute and/or relative phase; reference-based or autonomous) can be combined into
the following synthesis strategies:

1. Global signal synthesis and
1.1 reference-based matching of absolute and relative phase, or
1.2 autonomous matching of relative phase and
1.2.1 reference-based matching of absolute phase, or
1.2.2 no matching of absolute phase;

2. Optimal halfband signal synthesis and
2.1 reference-based matching of absolute phase, or
2.2 no matching of absolute phase;

3. Reduced-cost halfband signal synthesis and
3.1 reference-based matching of absolute phase, or
3.2 no matching of absolute phase.

The best strategy naturally depends on the specific application. In this context, the
following questions have to be answered: Is the absolute phase of importance? Is
a meaningful reference signal for phase matching available? Is the strict bandlimi-
tation of the result of halfband signal synthesis desirable?

Of course, the synthesis strategies sketched above are also different with
respect to computational requirements. While it is not clear in general whether
global signal synthesis or halfband signal synthesis is more expensive (this depends
on the size of the model and the convergence speed of the power algorithm or quasi
power algorithm iteration), it is certain that reduced-cost halfband signal synthesis
is cheaper than both global signal synthesis and optimal halfband signal synthesis.



9.2 Extensions and Related Work

The signal synthesis algorithms discussed in this chapter can be extended in
several directions. Signal synthesis algorithms for unitary affine and hyperbolic time-
frequency representations are discussed in [55,56]. The extension of the basic signal
synthesis scheme to the optimum time-frequency synthesis of nonstationary
random processes is considered in [57]. A similar extension is the optimum synthesis
of linear signal spaces or, equivalently, the optimum design of linear "time-frequen-
cy projection filters” [30,31,54]. The optimum time-frequency design of general
linear, time-varying systems has been studied in [58]. The application of extended
signal synthesis to automatic signal decomposition is considered in [49].

We finally note that an alternative approach to signal synthesis, based on alter-
nating convex projections, has been proposed in [56,59]. This method allows the
inclusion of rather general side constraints but appears to be quite expensive.
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