solution takes more than 90% of the total execution time. Sparse direct solvers cannot not
be used because of there huge storage requirements. Preconditioned iterative solvers are
used instead.

The linear systems in device simulation are unsymmetric and very ill-conditioned, and their
matrices have a very irregular sparsity structure due to the large variations in the density
of the discretization grids. Most iterative methods and preconditioners fail for this kind of
problems. Only biorthogonalisation methods achieve to solve most of these systems. We
will report on our experience with the standard BiCG and CGS methods, and with the new
Bi~-CGSTAB algorithm. :

CGS and Bi-CGSTAB achieve to solve most of the linear systems in device simulation
when applied with standard incomplete factorization preconditioners, but they still fail on
a few particularly badly conditioned systems. We have developed a numerical dropping
preconditioner that fills this gap.

PiLS, our package of iterative linear solvers, combines a large set of preconditioners and
iterative methods. It allows to use faster methods for moderately ill-conditioned linear sys-
tems, and switches to more expensive methods whenever the conditioning of these systems

requires it.

Massively Parallel Solution of the Three-Dimensional
van Roosbroek Equations

O. HEINREICHSBERGER / S. SELBERHERR / M. STIFTINGER
Institute for Microelectronics, Technical University Vienna, GuShausstrafle 27-29
Vienna, A-1040 Austria

Abstract

In this paper we present our experience with the implementation of the three-dimensional
semiconductor device simulator MINIMOS on a massively parallel architecture, the Con-
nection Machine CM2. The emphasis of this work is placed on parallel iterative methods
for solving the very large sparse linear systems of equations that arise at each step of the
nonlinear solution procedure. Both symmetric and nonsymmetric linear systems are solved
by conjugate gradient type iterative methods. The implementation of the parallel precon-
ditioner is the most crucial step. Multicolor incomplete LU factorization preconditioners
are compared with polynomial preconditioners.

Several numerical examples from the nonsymmetric linear systems in MINIMOS are given
with timing results obtained using the CM2. Comparisons with vector supercomputers are
made.

1. Overview

Semiconductor device simulators compute the discrete solution of the semiconductor device par-
tial differential equations: The Poisson equation and the carrier (electrons and holes)-continuity
equations. This system of nonlinear conservation laws is either solved by a damped Newton
method or by a nonlinear Gauss-Seidel iteration, the so-called Gummel [6] algorithm. In the lat-
ter case, to which we restrict ourselves, each nonlinear (outer) iteration consists of the successive
solution of the Poisson equation for the electrostatic potential ¥ and of two carrier continuity
equations for the electron and hole concentrations, n and p, respectively. Here we consider only
three-dimensional nonuniform tensor product grids. For an overview see e.g. [1].

Solving the semiconductor equations means the repeated solution of large sparse linear systems.
The coefficient matrices of the discrete continuity equations are nonsymmetric. Qur contribution
here is largely concerned with the iterative solution of those nonsymmetric linear systems on the
CM2. The emphasis is placed on parallel preconditioning methods. See also [4].

Iterative methods applied to the discrete continuity equations have to cope with high condition
numbers of the coefficient matrices and the enormous numerical range of the solution vector.
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Contrary to the Poisson equation the discrete continuity equations have to be evaluated much
more accurately to guarantee the stability of the nonlinear iteration resulting in high iteration
counts of the nonsymmetric solver. (see [1], [7]). transformation is numerically infeasible. We
use the bi-conjugate gradient squared (BiCGS) [13] method and a stabilized version of this al-
gorithm, BiICGSTAB [15), for these nonsymmetric linear systems.

Choose z (e.g. zo = 0)

ro = (b - Aro)
Choose yo such that (¥, o) # 0 (e.g. 3o = ro)
po=vo=0
p-1=1
Wy = 1
a=1
FOR n = 0 STEP 1 UNTIL convergence DO
Pn = (yO)rn)
B = £La_ o
Prn—1 Wn

Pnt1 =T + ﬂ(pn +wnvn)
Un41 = Apny
@ = (Yo, Vn+1)
§=Tph — AVUnyy
t=As

i,
Wntl = 117
Tpgl = § — Wyl
Tn4l = Tn + APpy1 + Wne1d

END FOR

Table 1: BICGSTAB Algorithm

2. The Linear Solvers

The parallel solvers are of (bi-)conjugate gradient type. A relative error of 10~2 for the sym-
metric, and 10~8 for the nonsymmetric systems (motivated by numerical experiments only) in
the stopping criterion has been found sufficient.

For the Poisson equation the MIC-CG method [5], [10] with a modification factor of & = 0.95 is
the optimal choice to the best to our knowledge. On the CM2 we use the CG in the version of
Concus, Golub and O’Leary. As preconditioner the reduced system (RS) main diagonal is used.
We shall denote this method by RS-CG.

In the case of locally constant carrier temperatures (see [7]) the coefficient matrices of the
discrete continuity equations are diagonally similar to symmetric, positive definite matrices and
thus have a positive real spectrum. In these linearized discrete systems the matrix coefficients
vary rapidly resulting in a high condition number, thus yielding a large iteration count of the
linear iterative solver.

Among the number of iterative methods investigated [7] variants of the bi-conjugate gradient
method such as the biconjugate gradient squared (BiCGS) method and the the BiCGSTAB
method [15] (see Table 1]) seem to be the optimal choice.

In particular the BICGSTAB procedure improves one of the main problems of BiCGS, namely
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its erratic convergence behavior which often yields significantly more iterations for convergence
than necessary. At the same time the rapid convergence of BiCGS is maintained. BiICGSTAB
needs two dotproducts more, and one vector update less.

3. Preconditioning Methods

Efficient and robust preconditioning is the most critical issue for the iterative solution of the
discrete semiconductor equations.

Split incomplete LU preconditioning enables an efficient implementation of the incomplete
Choleski and the incomplete LU preconditioner, a technique originally proposed in {3]. However,
the ILU preconditioner of the naturally ordered unknowns is rather sequential in nature and thus
unattractive on a SIMD architecture. Alternatives are polynomial preconditioners and ILU with
multicolor orderings.

For multicolor ILU preconditioning the coefficient matrix is permuted according to some regular
replication (‘coloring’) pattern of the unknowns [12]. A partitioning of the unknowns into sets of
different colors resulting in a block structure of the coefficient matrix uncouples the unknowns of
the same color. The vector length decreases as the number of colors increases. At the same time
the convergence speed - usually - increases. We have made experiments using the simulator
NSPCG [11]. The results indicate that more than two colors are not favourable. We therefore
implemented a 2-color (red-black) ILU preconditioner. Partitioning the coefficient matrix A

into blocks
A= ( Dr Hgsp
Hgr Ds

(the indices R denote the red, B the black points) the ‘reduced system’ is obtained by eliminating
one of both sets of (e.g. the red) unknowns:

(Dp —HprDr™'Hgp) z5 = bp — HerDr ™ 'br (3.1)
The preconditioner is then the main diagonal of the reduced system
f)B = Dp — diag (HBRDR_IHRB) (3.2)
resulting in a symmetric diagonal scaling: '
D;* (D5 — HprDr 'Hrp) D3 D zp = D3} (b5 — HprDr'05) (3.3)

Thus, scaling the red unknowns by the square root of main diagonal Dg we may write the
preconditioned system in the form

(ﬁB - ﬁBnﬁRB) Zp = I;B '(3.4)

where hats () denote preconditioned quantities. Approximately half of the virtual processors
in the Connection Machine are inactive during each stage.

Matrix polynomials as preconditioners were originally proposed in order to remove the recursions
in the incomplete LU factors [2]. The construction of least squares polynomials that minimize
the residual with respect to some weight function [9] is feasible due the positive real spectrum
of the coefficient matrices of the uncoupled discrete device equations. The evaluation of ma-
trix polynomials can be carried out recursively and is a fast operation especially on an SIMD
architecture.

In Figure 1 we present convergence results obtained from the majority continuity equation solve
of the first nonlinear iteration of device 1 (see Section 5). The 2-norm of the relative euclidean
solution error is plotted using the BICGSTAB iterative procedure with various preconditioners:
Point Jacobi (JA) i.e. diagonal scaling, the Reduced System (RS), Least Squares polynomials
LS(i) up to degree 8, and incomplete LU (ILU) with zero fill-in.
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4. Installation on the CM

MINIMOS is a standard FORTRAN 77 program. A two-dimensional simulation provides the
initial data prior to the three-dimensional run. The maximum number of gridpoints in each
dimension of the self-adaptive grid is 64 nodes. A massive parallelization throughout the whole
MINIMOS code for application on the CM2 requires a rewrite of the largest part of the MINIMOS
source code in connection machine FORTRAN (CMF) and was not the purpose of this work.
Such a rewrite is very time-consuming, of little scientific value, but necessary for a production
code on the Connection Machine. A compromise was obtained by leaving the largest part of
the MINIMOS code, essentially all parts except the linear system solvers, in the FORTRAN 77
standard and using the Connection Machine for the solution of the linear systems only. Such
an implementation achieves parallelization of the most costly computational part — the linear
systemn solution — at relatively low programming costs. That is, the matrix assembly is done on
the so-called front-end computer, and the linear system solution is achieved on the Connection
Machine. The Connection Machine acts so to speak as a ‘coprocessor’ for linear system solving.
An interface using routines from the CMF library was provided to quickly move binary data to-
and from the Connection Machine’s processors. The matrices are stored by diagonals. For a
262144 node mesh the move of 9 diagonals (matrix+rhs+solution) per solve takes approx. 40
seconds. This time which is independent of the number of processors allocated is in most cases
larger than the solution of the linear systems within the CM2. In an actual production code
such an 10 bottleneck must clearly be avoided.

The linear solvers RS-CG and the RS-BiCGSTAB methods have been benchmarked. Some
results are shown in Table 2: Three tensor product grids of 162, 323 and 642 points are chosen.
The Laplace equation is solved on 8k, 16k and 32k processors using double precision arithmetic.

Using 32k processors we find a megaflop rate of 120 for the N = 643 grid. Note that only half of
the virtual processors are active due to the red-black mask. Obviously this speed is determined
by the speed of the 7 point stencil which executes with roughly 200 megaflops. Correspondingly
we obtain approximately 50 megaflops on 16k processors for the same grid. The low speed
of the 7-point stencil computation is the reason why polynomial preconditioners are not (yet)
competitive. Despite global communication the dotproduct achieves a rate of 300 megaflops.
This makes polynomial preconditioners compare unfavorable. We use the RS preconditioner for
our device simulation runs therefore.
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Figure 1: Convergence Curves for the Discrete Majority Continuity Equation of Device 1.

Solver RS-CG RS-BiCGSTADB

hline # Processors 8k | 16k | 32k 8k | 16k | 32k
16 x 16 x 16 10| 10| 10 20 20 20
32 x 32 x 32 40 ] 20 10 50| 30 20
64 x 64 x 64 190 | 110 | 60 || 300 | 160 | 90

Table 2: RS-CG and RS-BiCGSTAB Benchmarks (msec per iteration)

5. Performance Analysis

In this section performance measurements of MINIMOS on a 32k processor Connection Machine
CM2 are given. 16k processors are used in all simulations. The reduced system conjugate
gradient method is used for the Poisson equation, and the reduced system conjugate gradient
squared (RS-BiCGSTAB) method is used for both carrier continuity equations.

We present three device simulation runs of different complexity. Device 1 is an NMOSFET in
the subthreshold operating region, device 2 a PMOSFET in the saturation region and dewvice 3
an NMOSFET in saturation with a complex shape of the oxide-semiconductor interface thus
requiring a fine mesh. The simulation includes a selfconsistent treatment of impact ionization
and carrier recombination.

In Table 3 performance statistics of the three simulations are listed. The rows in Table 3 have the
following meaning: Row 1 shows the grid dimensions, row 2 the number of nonlinear (Gummel)
iterations. Row 3 through row 9 shows the total times and iteration counts of the linear iterative
solvers for the majority and minority carrier continuity (CC) equation and the Poisson equation.
The timings do not include front-end computation and transfer times to and from the CM2.

As has been outlined in the previous section the implementation using straightforward FOR-
TRAN code and so-called fieldwise data (a special CM data format) is far from optimality. The
linear solvers execute with approximately 60 megaflops on 16k processors. In the case of a mean
convergence degradation factor of 4 (RS vs. ILU) as e.g. in device 3 this corresponds to a 15
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megaflop scalar machine using MIC-CG/ILU-BiCGS. For a detailed description of numerical
results see [8].

6. Some Remarks and Conclusions

The implementation on the Connection Machine has been carried out in a relatively short time
by porting the computationally most expensive code onto the Connection Machine. We have
learned that the Connection Machine is easy to use and to program although re-programming
of selected parts of the software is required.

Complex simulations, say, tasks exceeding 100000 unknowns execute well on the CM2 (no mem-
ory problems). However the matrix assembly on the front end computer becomes disastrous
slow. Furthermore, the transfer time of the diagonally stored 7-band matrix and the right hand
side to and the solution vector from the Connection Machine’s processors is in most cases slower
than the solution of the linear system itself. For a production code this is not acceptable. There-
fore an interaction of the front-end computer with the Connection Machine’s processors, which-
involves computation and transfer of large sets of binary data, must be avoided.

Thinking Machines Corporation is improving its FORTRAN compiler, using a slicewise data lay-
out. Optimization of many basic linear algebra subroutines (such as multiwire nearest neighbour
communication for stencil operations, overlapping of communication and computation) is under
way. A speedup of CMF-coded FORTRAN code by a factor between 4 to 8 seems realistic. A
one gigaflop execution speed of the linear CG and BiCGSTAB solvers is expected. Assuming a
mean convergence deterioration factor of 4 corresponding to the ILU(0) preconditioned solvers,
this corresponds to 250 megaflops of MIC-CG and ILU-BiCGSTAB. In a recent work [14] high
performance implementations of MINIMOS on vector-computers were presented. There it has
been shown that megafiop rates exceeding 100 megaflops are obtainable for the MIC-CG and
ILU-BiCGS solvers. E.g. the FUJITSU VP200 can execute the triangular solves of the ILU(0)
preconditioner, the bottleneck of the overall computation, with 100 megaflops. We expect that
a fully optimized code on the CM should thus be at least twice as fast.

The convergence loss factors of the iterative solvers in the presented simulations are larger than
three, in some cases larger than 10. A convergence degradation of more than a factor of 10 makes
the question of a potential superiority of the Connection Machine or similar massively parallel
computer architectures over vector-supercomputers doubtful. Part of this convergence dilemma
is believed to be an insufficient 3D mesh. The ILU preconditioner can much more efficiently
handle grids that deviate to much from quasi-uniformity. An improved grid generation with
respect to conditioning of the linear equations may alleviate this problem and is part of current
investigations. :

Parallel preconditioning concerning the semiconductor equations is in its early stages. Black-box
solvers such as those used in this investigation may not be the ultimate answer. Concepts that
are more flexible in nature such as domain decomposition methods, are likely to yield better
results on parallel computers. Further research in this field is encouraged.

The following final statements are meant to summarize what we believe a potential user of
MINIMOS, e.g. a process/device engineer at a semiconductor manufacturing site, would expect
from a Connection Machine implementation: At first double precision hardware is an abso-
lute prerequisite for any implementation. This is not only true for MINIMOS but also for all
process simulators, a class of software tools which are also candidates for Connection Machine
implementations.

A Connection Machine system with a large number of processors is desirable. On the one hand
this provides a powerful computing basis for very large three-dimensional problems, on the other
hand a large number of processors may be subdivided, thus enabling more than one simulation
to be executed concurrently on the Connection Machine. Concurrency of this type is essential
to any integration of simulators such as MINIMOS into a technology CAD framework.
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Fast transfer of binary data to and from the Connection Machine’s processors is a key require-
ment for the use of the Connection Machine in a server-client manner. The transfer speeds for
large sets of binary data between the Connection Machine and the front-end computer mea-
sured in this work are rather slow. We note that modern device/process CAD environments, are
based on a computer network, which consists of high performance workstations as visualization
tools and supercomputers as the device/process equation solvers. The effectiveness of such a
configuration depends quite critically on a fast interconnection between the workstations and
the supercomputer hardware.

Device 1 | Device 2 | Device 3
Meshpoints 12880 18144 171985
Nonlin. Iter. 5 18 26
Total CPU Time (s) 72 216 5700
Majority CC Lin. Iter. 415 5328 9880
Majority CC Time (s) 8 100 1680
Minority CC Lin. Iter. 3160 5076 22360
Minority €C Time (s) 59 97 3800
Poisson Lin. Iter. 115 540 1014
Poisson Time (s) 5 20 212

Table 3: Performance of MINIMOS on 16k Processors
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Vorstellung des Halbleiter-Simulationsprogramms BREAKDOWN
mit einigen Beispielen an hochsperrenden pn—Ubergangen

E. FaLck / W. FEILER / W. GERLACH
Technische Universitat Berlin , Fachbereich 19 — Elektrotechnik, Institut fiir Werkstoffe der
Elektrotechnik, Jebensstraie 1, D-1000 Berlin 12, Germany

Abstract

Das Halbleiter-Simulationsprogramm BREAKDOWN berechnet durch Losen der zwei-
dimensionalen Poisson—Gleichung die Potential- und Feldverteilung von hochsperrenden
pn-Ubergangen. Durch Anwendung des “Depletion”—Modells eriibrigt sich eine Beriicksich-
tigung der Strom- und Kontinuitatsgleichungen im Sperrfall. Unter Vorgabe der Nettodo-
tierungskonzentrationen der festen Gitterstorstellen erfolgt in selbstkonsistenter Weise eine
physikalisch korrekte Aufteilung des Halbleiters in Bahngebiete und Raumladungszone. Es
ist moglich, bis maximal 5 floatende Gebiete zu beriicksichtigen. Anhand der Ionisationsin-
tegrale, die entlang von Feldlinien durch die relativen Feldstarkemaxima im Halbleitergebiet
berechnet werden, 1afit sich die Durchbruchspannung ermitteln.

Der Lésungsalgorithmus von BREAKDOWN wird vorgestellt. Die wichtigsten Strukturen,
die mit dem Programm berechnet werden kénnen, werden gezeigt. Ferner werden Ergebnisse
aus Simulationsrechnungen vorgestellt sowie Vergleiche mit experimentellen oder analytis-
chen Ergebnissen vollzogen.

Auf Vergleiche mit dem neuen Programm BDKASK, das in Kooperation mit dem Konrad-
Zuse-Zentrum in Berlin entstanden ist, wird eingegangen.

Einsatz der Evolutionsstrategie zur Optimierung von Feldringen und
mehrstufigen Feldplattenstrukturen

R. Bassus
Technische Universitat Berlin, Fachbereich 19 — Elektrotechnik, Institut fir Werkstoffe der
Elektrotechnik, Jebensstrafie 1, D-1000 Berlin 12, Germany

Abstract

Es wird eine Planarstruktur, die mit einer finfstufigen Feldplatte und einer Stoppzone
versehen ist, beziiglich der sperrfahigkeit optimiert. Der Volumendurchbruch betragt 2000
Volt. Ohne Feldplatte erreicht die Struktur nur 21% der Volumendurchbruchspannung. Bei
einer Begrenzung der lateralen Lange auf 470xm wird mit Hilfe der Evolutionsstrategie eine
automatische Optimierung der Feldplattenanordnung vorgenommen. Die Durchbruchspan-
nung der optimierten Struktur betrigt 89% des Volumendurchbruchs.

Die Methode und die wichtigsten Ergebnisse werden vorgestellt.
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