
SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4
Edited by W. Fichtner, D. Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre

A Technology CAD Shell

Hubert Pimingstorfer, Stefan Halama,
Siegfried Selberherr, Karl Wimmer, Peter Verhas

Institute for Microelectronics, Technical University of Vienna, Austria

Abstract

A new TCAD shell is presented which is capable of performing complex development
tasks by using LISP as interaction and programming language. Data level integration of
simulation tools and capabilities required in process and device development into a homoge
neous environment is based on a binary implementation of the Profile Interchange Format.

1 Introduction

The use of CAD tools for analysis and prediction of IC technology is generally a substitute for
physical experimentation to save time, efforts and money, and to provide additional insight. A
recent trend is to integrate the tools into a TCAD environment [l]-[3] to meet demands that
range from simple simulator coupling over process and device characterization to technology
optimization.

The aim of our TCAD shell is to ease and automate this in a way that the user is allowed
to concentrate on performing complex development tasks rather than on supervising single
simulator runs.

2 Demands on a TCAD Shell Language

Firstly, the TCAD shell language is the command language with which the user interacts with
the TCAD system; so it has to be interpreted. In addition, it must be able to run time consuming
tasks as background processes or in batch mode.

Our first consideration to use one of the various shells under UNIX or DCL under VMS
has been dropped due to their inconvenient (or total lack of) control structures like branches,
loops, and subprograms, mechanisms for defining new variables and controlling their scope
and visibility, and performing mathematical operations. Another major design goal was to be
independent from the operating system (not restricted to UNIX, like other efforts in this field
are).

The second task of the TCAD shell language is to serve as an extension language, in which
new functionality is added, customizations are specified, and macros or just shortcuts for often
used shell command sequences are defined.

The design of a special-purpose language can be considered a tremendous and yet unneces
sary task, as existing interpreted languages are sufficient (cf. [4]). We have chosen LISP as the
base of the TCAD shell because of the flexibility of this programming language.

Among the candidates of publicly available LISP interpreters we picked XLISP [5] in its
current version 2.1. This small interpreter combines features of Common LISP (which will

410

Figure 1: VISTA System Overview

probably evolve to a kind of standard among the various LISP dialects) with object-oriented
capabilities. XLISP is written in portable C with modularized design and exhibits a clear C-to-
LISP interface. The source code availability meets the need to implement TCAD shell functions
in C, which are linked together with the original interpreter and are further handled like built-in
functions.

Beside the basic needs, using LISP allows - as it makes no distinction between program and
data structures - process flow representations (like in [6]) or simulation flow representations to
be either executed directly or manipulated as data.

Excellent and well-known examples for the successful application of LISP as an extension
language in other software engineering domains are the text editor Emacs [7] or the CAD
program AutoCAD [8].

3 Integration into a TCAD Environment

The TCAD shell is part of the VISTA project [9], [10] to build a homogeneous TCAD envi
ronment; cf. Fig. 1. All kinds of simulators (process, device, interconnect), grid manipulators,
discretizers, solvers, measurement data translators, tools for automatic device characterization,
one- and multi-dimensional optimizers, graphical editors, previewers, etc., can be included as
directly callable shell functions. The TCAD shell serves as a command interpreter and as
extension language as already indicated in the previous section.

Simulation in a distributed computing environment will be addressed, where graphical user
interaction is done on a workstation and computationally expensive modules run on fast floating
point machines like vector computers or massively parallel systems.

As shown in Fig. 2, three levels in building an integrated TCAD environment can be iden
tified: the data level, the tool level, and the task level.

411

Task Level

Intuitive
Control

* t t : - : - ^ : W : - • > > > ̂ ••;•:•:•:•:•:•:•:•:•:•:•:•: •:• ;•: •:•:•

Sensitivity
Analysis

Tool Level

Process
Simulator

5H™ - . :W ' • . f-•: K'S

Device
Simulator

Data Laval

Measure
ment

Layout

Optimization ij

Post
processor

Circuit
Simulator

•••••• •-••• •• • • : • • : • : • : • : • : • • : • : • • • • • : • : • : • : • : • :

Device

: :y ' W S i ! : • ' .;;:-:-¥:

Process

Device
Characterization

Geometry
Editor

... . .:.w:::-. ::,:.::¥: :

Optimizer

Wafer

!
•wmm

III

Figure 2: Three Levels in TCAD Engineering

4 Data Level - The PIF Implementation

The database is a binary implementation of the Profile Interchange Format (PIF) [11], which
has been modified and extended to fulfill the needs of an integrated TCAD system.

The TCAD database, consisting of so-called binary PIF files, is accessed from programs
with an application interface. Our implementation of this interface [12] is strictly layered, thus
conforming to modern software engineering style. In contrast to other approaches (e.g. [13]), we
designed even the low-level database structure specifically for TCAD purposes, resulting in con
siderable performance improvements compared to implementations built on top of commercial
database systems.

The interface itself is implemented in C, but FORTRAN and LISP applications have been
taken into account with the support of appropriate language bindings to the interface's C
functions. The application interface for LISP provides routines which create, delete, read or
write entire PIF objects. Thereby access for all shell programs and even interactive PIF data
manipulation is provided.

The method how a new simulator is adapted to obey the PIF object storage convention [14]
depends on whether its source code is subject to manipulation or not. In the first case, the input
and output functions are replaced with corresponding application layer functions to read and
write PIF. Even in the latter case in which conventional translators are necessary, the advantage
gained from a unique data exchange format is obvious: Only n translators for coupling n tools
are needed and not n • (n - l) /2 for all possible tool to tool connections.

412

5 Tool Level - The Workhorses

Tools can be integrated in three manners, depending on the language they are programmed in
(note that these items refer only to integrating tools upwards into the task level; the integration
on data, level has been discussed above):

• LISP tools just have to be loaded and executed by the TCAD shell. This is useful for
high-level optimization loops or module sequencers, which consume only small amounts
of computation time compared to other tools probably called.

• Tools in form of a C function just have to get a small C-to-LISP interface. Then they can
be linked together with the shell and called just like normal built-in shell functions. This
is useful for small and frequently needed tools which consume some computation time.
They could as well be called as separate executables with the system call, but linking
them to the shell eliminates the operating system overhead.

• Tools in any language that are separate executables can be called with a shell built-in
system call function. Thus existing simulators, most arc coded in FORTRAN, can be
used like any other shell function.

Full flexibility can be gained from splitting the simulator into reasonably sized modules (e.g. sep
arating grid generation, discretization, solver and physical models) and from combining the new
modules with existing TCAD tools into task level programs almost arbitrarily, l b do so, the
modules must have a small extension language interface to make them callable from LISP, and
they have to adhere to the PIF object storage convention [14].

Until now the device simulator MIN1MOS, e.g. [15], the process simulator PROM1S, e.g. [16],
and the interconnect capacitance simulator VLSICAP, e.g. [17], have been integrated into the
TCAD system.

As an example. Fig. 3 shows how the most recent versions of the simulators MIN1MOS
and PROMIS fit into the TCAD environment. PROMIS is split into four completely indepen
dent executables, called from the shell through a small LISP interface. Every module reads
and writes from/into the PIF database. There are four interface routines to the shell, called
promis-analytic-implant ,promis-mc-implant , promis-diffuse and promis-oxidize. The
function run-promis in the TCAD shell example is just a sequence of PROMIS functions sim
ulating a complete process. MINIMOS modules are coupled internally; PIF input/output is
done by two specialized ones. All modules are controlled by a stack-driven sequencer, callable
as run-minimos.

The major advantage when building a new simulator is that it is no longer necessary to
provide a specific grid generator, solver, etc., since these tools are readily available on the shell
level. Therefore, simulator designers are able to concentrate on the specialized parts of simulator
construction.

The executable modules are usually small and, for appropriate simulation problems, can
be run (in parallel) on different machines under control of the TCAD shell, thus yielding con
siderable speed improvement. When modularized properly, the most time consuming parts
(e.g. linear solvers) can be executed on a supercomputer communicating with the TCAD shell
running on a workstation.

413

TCAD
LISP Part of PROMIS Modules

analytic

Implant

Monte
Cario

Implant
Diffusion Oxidation

- Shell
MNIMOS Control Program

Init

PIF
Input

Module Module PIF
Output

Figure 3: MINIMOS and PROMIS in the TCAD Environment

6 Task Level - TCA D Shell Functions

From the viewpoint of the TCAD shell, a simulator is a function that takes input and returns
output in two possible formats - as normal LISP expression and/or as a handle to an opaque
PIF object, accessible from the shell level via the PIF application layer.

Shell functions specialized on MOS transistors have been written which compute, e.g., the
threshold voltage and drain and/or bulk current by invoking MINIMOS and returning the value
as a LISP expression. The relative transconductancc or the gate swing, e.g., are computed by
invoking the device simulator twice for different gate voltages.

These functions combined with a one-dimensional optimizer are used, for instance, to find the
maximum of the bulk current or of the relative transconductancc in the linear regime. Combined
with looping constructs, the shell functions are tailored to compute I/V characteristics or any
other variation of an output quantity versus any allowed input key applying a constant or an
adaptive step size.

For each simulator run, the user is relieved from adapting an input deck with an editor,
starting the simulator on the command line and getting the required values from the output.

With few lines of TCAD shell code a new shell function, tailored to the very specific needs
of the user, can be written as a combination of any tool callable at shell level and normal LISP
code. The TCAD shell allows arbitrarily complex tasks to be performed, ranging from simply
calling a single module interactively over coupling simulators to running whole optimization
loops as background processes.

7 User Interface

The TCAD shell serves as a textual user interface to the TCAD system in cases where terminal
capability is required to be enough. For higher convenience, the User Interface Agent (UIA)
ha,s been designed which allows graphical control of the TCAD system. This includes editing,
manipulating and viewing geometries or simulation results, a visual programming interface to
symbolic simulation flow representations and postprocessing.

An interface to the X11R.4 window system has been implemented into the LISP interpreter,
based on X Toolkit and the Athena widgets to address the portability issue between workstations

414

from different vendors. In principle, a witget callbacks cause LISP expressions to be evaluated.
Thus a certain shell function can be selected by the mouse cursor and a simulator started by a
button press.

8 Example

As an example, the bulk current of an n-channel MOS transistor has to be minimized by varying
the dose of the lightly doped drain (LDD) implant. Therefore process and device simulation
are coupled within an optimization loop.

The doping profiles simulated by PROM1S are characterized by several MINIMOS runs, com
puting the threshold voltage, the saturation current, and the maxima of the relative transcon-
ductance in the linear regime and of the bulk current, for which an optimizer is used to adjust
the gate voltage. The ratio of bulk to drain current for a constant bias condition is the value
to drive the optimization loop for the LDD implant dose.

The one-dimensional optimizer applied, is an implementation of the well-known golden sec
tion algorithm. It needs 8 iterations to explore a dose range from 1 elO to \elQcm~2 with a
resulting tolerance factor less than 2. That means, 8 times PROMIS and due to the extensive
device characterization about 100 times MINIMOS is run automatically under control of the
TCAD shell.

The TCAD shell program for this example is shown in Fig. 4 and the corresponding control
flow diagram in Fig. 5. As the resulting diagram of hi Id versus LDD implant dose in Fig. 6
shows, an explicit minimum exists and the device can be readily improved.

;; optimize LDD implant dose for minimal ib/id[2.5/5,0]

;; run PROMIS and characterize the profile running MINIMOS for U_th,

;; Id_saturation, gm_max, Ib_max, and lb/Id for each optimizer iteration

(defun minimize-ib/id

(PR-INPUT MM-INPUT DIRECTIVE OCCURENCE KEY MIN MAX TOL

fckey (PR-BASENAME TCAD-PR-TFN) (LOG NIL)

&aux PROFILE RESULT-LIST Ib/Id-VALUE)

(golden-section ;Id-optimizer

#'(lambda (VALUE)

(setq PROFILE ;nen profile name

(new-profile-name PR-BASENAME DIRECTIVE OCCURENCE KEY VALUE))

;modify PROMIS input deck

(set-pr-key PR-INPUT DIRECTIVE KEY VALUE OCCURENCE)

;;run PROMIS

(run-promis PR-INPUT :EXEC-MODE "i")

;; run MINIMOS several times

(setq RESULT-LIST (append RESULT-LIST

(list (list VALUE

(u-th MM-INPUT :PROFILE PROFILE)

(idCbias] MM-INPUT :UG 5.0 :UD 5.0 :PROFILE PROFILE)

(gm-max MM-INPUT 1.0 3.0 0.2 :UD 0.1 :PR0FILE PROFILE)

(ib-max MM-INPUT 1.0 3.0 0.2 :UD 5.0 :PR0FILE PROFILE)

(setq Ib/Id-VALUE

(ib/id[bias] MM-INPUT :UG 2.5 :UD 5.0 :PR0FILE PROFILE))))))

Ib/Id-VALUE); end lambda

MIN MAX TOL :L0G LOG); end golden-section

RESULT-LIST ; return result list

)

Figure 4: Example TCAD Shell Program

file:///elQcm~2

415

J *
PROMIS

u m

Id max

gm[Ug] change Ug

change
dose

Mug] change Ug

lb/Id

-lb/Id[1]

' • ' ' " " ' • • ' " H _ J ' ' • " • • • I ' • • ' " " -

Figure 5: Control Flow Diagram

1*ft0 1»*H 1*t1| 1»^1t IM.14)»t1i

Dow [l/cm2]

Figure 6: /j/^d vs. LDD Implant Dose

9 Conclusion

The TCAD shell uses LISP as command and extension language. A PIF interface enables data
level integration of simulation tools. The graphical user interface based on X l l allows intuitive
control of the TCAD system. Due to its possibility to easily combine different tools with the
powerful shell language, our TCAD shell provides an ideal environment for technology char
acterization, sensitivity analysis, and process and device optimization. It is highly extensible,
customizable and operating system independent.

Acknowledgements

This project is supported by the research laboratories of: AUSTRIAN INDUSTRIES - AMS
Int. at Unterpremstatten, Austria; DIGITAL EQUIPMENT Corp. at Hudson, USA; SIEMENS
Corp. at Munich, FRG; and SONY Corp. at Atsugi, Japan.

416

References

[I] D. S. Harrison, A. R. Newton, R. L. Spickelmier, and T. J. Barnes, Electronic CAD Frame
works, Proceedings of IEEE, Vol. 78, No. 2, pp. 393-417, 1990.

[2] E. W. Scheckler et al., A Utility-Based Integrated Process Simulation System, Symp. on
VLSI Technology, pp. 97-98, 1990.

[3] P. Lloyd, H. K. Dirks, E. J. Prendergast, and K. Singhal, Technology CAD for Competitive
Products, IEEE Trans. Computer-Aided Design, Vol. 9, No. 11, pp. 1209-1216, 1990.

[4] CFI Extension Language Sub-Committee, CFI Extension Language Selection Document,
CAD Framework Initiative, April 1990.

[5] D. M. Betz, XLISP: An Object-oriented Lisp, Version 2.0, Peterborough, NIT, Febr. 1988.

[6] M. B. Mcllrath, D. E. Troxel, D. S. Boning, M. L. Heytens, P. Penfield Jr., and R. Jaya-
vant, CAFE: A Computer-Aided Fabrication Environment, Proc. International Electronics
Manufacturing Technology Symposium, Washington D.C., Oct. 1990.

[7] R. Stallman, GNU Emacs Manual, sixth ed. Emacs Version IS, Free Software Foundation,
March 1987.

[8] N. Johnson, AutoCAD: The Complete Reference, Berkeley, CA: Osbournc McGraw-Hill,
1989.

[9] S. Selberherr et al, The Viennese TCAD System., Proc. Int. Workshop on VLSI Process
and Device Modeling, Oiso, 1991

[10] F. Fasching et al, An Integrated Technology CAD Environment, Proc. Int. Symp. on VLSI
Technology, Systems and Applications, Taipei, Taiwan, 1991.

[II] S. Duvall, An Interchange Format for Process and Device Simulation, IEEE Trans.
Computer-Aided Design, Vol. 7, pp. 489-500, 1988.

[12] F. Fasching et al, A PIF Implementation for TCAD Purposes, this volume.

[13] A. Wong et al., The Intertool Profile Interchange Format, Proc. NUPAD III, pp. 61-62,
1990.

[14] F. Fasching et al., Viennese Integrated System for TCAD Applications, Institute for Mi
croelectronics, Technical University Vienna, Austria, 1990.

[15] S. Selberherr, Three Dim.ension.al Device Modeling with MINIMOS 5, Proc. Int. Workshop
on VLSI Process and Device Modeling, pp. 40-41, 1989.

[16] G. Hobler et al., RTA-Simulation with the 2D Process Simulator PROMIS, Proc. NUPAD
III, pp. 13-14, 1990.

[17] F. Straker et al., Capacitance Computation for VLSI Structures, Proc. EUROCON, pp. 602-
608, 1986.

Dim.ension.al

