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Absiraci-—Based on power amplifier measurements a low-
complex nonlinear model with memory, consisting of 2 memo-
ryless, but parameterized nonlinearity, sandwiched between two
linear FIR-filter is developed (L-N-L structure). Although the
signal bandwidth is with 2MHz rather small, memory effects can
he noticed. Furthermore, an adaptive algorithm for continuous
identification of the model parameters is developed. Simulations
show that the algorithm converges in the mean-square sense to
the global minimum, given only little knowledge regarding the
region where this minimum lies.

l. INTRODUCTION

In order to lincarize the signal path from origin to radiation
as required to comply with regulatory issues, for example,
spurious radiation in adjacent frequency bands, and not
to degrade system performance, digital pre-distortion can
be used to compensate for the nonlinearity introduced by
the power-amplifier. Due to such power amplifiers and the
need to utilize power efficient modes performance loss
can be recognized in form of increased Dbit-error rates.
Digital pre-distortion is already in use for GSM where only
“small bandwidths are to be compensated utilizing simple
nonlinear functions realized in form of look-up tables.
* Such pre-distortion scheme aims to rcmove the unwanted
nonlinear effects at the place of their origin, namely at the
transmitter. Due to the large radiated power in the first stage,
pre-distortion wilt be and is installed in base-stations, where
additional compiexity can be tolerated. The method relies
entirely in the digital baseband or low intermediate-frequency
(IF) domain. thus becoming a flexible scheme which can also
casily upgrade existing transmitters,

For the development of a pre-distortion scheme, a model
of the nenlinear system is required, i.c.. the power-amplifier
with its additional circuitry (mixers, matching-networks). In
modern communication systems like UMTS not only the
nonlinearity of the power amplifier, which is driven near
saturation duc to efficiency reasons, becomes a problem, but
also memory effects due to the broadband nature of the signals
turn up, see [1]. Nonlinear system models without memory
exist, e.g. the often used Saleh-model [2] or can be build

up more or less casiily using e.g. Taylor-series, or orthogonal
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function-expansions, which are more parsimonious with the
parameter usage than Taylor-sernies. Pre-distortion schemes for
memoryless nonlinearities are relatively simple, e.g. by the
usage of a look-up table, see e.g. [3]. Incorporating memory
effects becomes a task, look-up tables become very large and
unmanageable.

A prominent model for nonlinear systems with memory
is the Volterra-Series which can approximate a huge class
of non-linear systems with mild constraints [4], [5]. The
Volterra-series requires a large amount of parameters if the
nonlinearity and/or the memory effects are pronounced. The
advantage of the Volterra-series lies in the fact that, since
the parameters enter linearly in the description, quadratic
cost-functions for parameter identification have a unique
global minimum. Therefore an adaptive scheme for the
parameter-identification will yield good parameter estimates
(assuming convergence and low noise). Another possibility
are the usage of neural-nets for identification and/or control
of dynamical nonlinear systems, [6].

In this contribution a very particular, heuristic structure
with low-complexity is considered, namely a memoryless,
but parameterized nonlinearity, between linear FIR-filters of
variable lengths. Most of the paramecters enter the description
nonlinearly, causing problems in iterative methods to find the
global minimum of a cost function. Simulations show that
the derived gradient-type algorithm converges to the global
minimum, when a proper initial value for the parameter and
a sufficientty small iteration step-size is chosen.

I[. MEASUREMENT PROCEDURE

In order to obtain [/O-data to test different structures,
measurements on a standard power-amplifier (Minicircuits,
Type: ZLH-42W) were performed. Structures of interest are
specializations of the L-N-L - sandwich structure, ic., a
pure N, L-N. and N-L system with variable filter-lengths.
The chosen test-signal was a multi-tone signal of 2MHz,
whereby the individual tones where separated by 20kHz. The
phases are uniformly distributed in the interval |—=,«). The
measurement-setup is schematically shown in Fig. 1. Using the
Rhode&Schwarz-1/Q-Modulation generator AMIQ 1-Q-signals
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were generated which were up-converted to 2GHz with the
Rhode& Schwarz Vector Signal Generator SMIQ. A Power
Spectrum Analyzer (Agilent, PSA) down-converted, demod-
ulated and sampled the signal with the (intcrnally chosen)
sampling-rate of 10.24MHz. Due to the nonlinearity of the
power-amplifier large spurious parts outside of the 2MHz-band
could be observed. At the output a total signal-bandwidth of
¥MHz was measured.

R&S R&S
1/Q Mord, Gen. Vec. Stz Gen.
uath)
) AMIQ aviq  prar®)
uell)
Agilem PSA Power Amplifier
(1 .
psa  fadirll) PA
Fig. . Measurement setup

HI FITTING MEASUREMENTS TO MODELS
The generated 1/O-data is the basis for the data-fitting step.
Using a L-N-L structure. N memoryless but parameterized, the
FO-mapping can be described by
gty = LaNLju{n}
=Lof (8. Liu(n))
wherchy L2 stands for lincar operators (FIR filters with M,
and- My coefficicnts, respectively) and f (. 1) is a nonlinear
function with parameters grouped into the vector #. The
utilized nonlinear memoryless function 1s defined by

(fr) = ——s 2
Fi6.x) (+0 |2 (2)

T

1)
nm=1.2..... N (]

&x

which. for small |z| can well be approximated by f(6,2) =~
. For Targe arguments |x|. f(#.x) does not behave linear
any more but instead turns into a compression mode. There is
only onc complex-valued parameter # describing the nonlinear
tunction, Due to the simplicity of the model the parameter
vector § in (1) is reduced to a scalar 6. Applying a nonlinear
data-fitting procedure (Matlab®s procedure Isgnonlin()), the
optimal parameters can be found as well as the corresponding
remaining error!. The achicved mean-square error

N
1
LN = Z} Lu(n) = g () (3)
n=
of the L-N-L and correspondingly the errors of the L-N and
the N-L system are compared relative to the the mean-square
error
1 N
. 2
N= S lyln) = guln)f 4

n=l

z

"Note that this procedure does not guaraniee to find the global minimum.

of a pure nonlinear system without memory. The improvement
NarsE = SLNL/EN (%)

by increasing the filter-lengths of the input and output filter
(for L-N-L both simultaneousty at each step) is reported
in Fig. 2. A significant improvement is noticed only for
small numbers of filter parameters. For one additional filter
tap in the N-L case the mean-square crror is reduced by
approx. 3dB, by apprex. 3.5dB in case of a L-N or a L-
N-L structure. Observe that one tap corresponds to a time
interval of 1/10.24MHz = 100ns. In a faster sampled system
(with higher signal bandwidth) there would be meore taps
necessary for an equivalent improvement. As Fig. 2 points
out, not very much is gained by using an L-N-L structure,
which requires Afy resp. Mo parameters more than the L-N,
resp. the N-L structure. Probably this is due to the small signat
bandwidth of only 2MHz. Using e.g. a L-N structure with 3
taps would, in this case, be the best choice. Note that a Volterra
series of order P with memory length Af requires Q{AF)
coefficients (without reductions due to symmetry} while the
L-N-L structure is only of order O{AJ).

, — L-N—L strucrire
0.5h o L=N swuctire
\ N-L structnre

—l— e e

3 [
raps (A J.J'.' !)

Fig. 2. improvement of the MSE

In Table I the parameters for the lincar filters of the L-N
configuration for filter-length four are denoted. In Table I the
identified parameters for the N-L structure are shown, while
in Table Il the paramcters for the L-N-L-structure are listed.

TABLE |
PARAMETERS FOR THE L-N STRUCTURE

Wi [

wy | = 157124+ j2.8797 8 =0.012112 — 50.0040354
Wi = ~5.8875 — §1.1768
wy g = L4634 + 70.26428

w4 = 0.20648 + 0.044805

IV. ADAPTIVE IDENTIFICATION OF THE SYSTEM

In this scction an adaptive algorithm for the continuous
identification of the parameters of the L-N-L reference
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TABLE II
PARAMETERS FOR THE N-L STRUCTURE

|

0 = 1.5862 — j0.52638

E WQ 9
| wen = 16323+ 3017
| o ==81101 - j1 8619
i
L

wos = 39151 + j0.9736
Wy = —0.71243 — j0.20321

TABLE I
PARAMETERS FOR THE L-N-L. STRUCTURE

W W2
ey, = 36187 4 j0.23288 wa, | = 4.2624 4 70.55122
o = — 10003 — j0.26903 wa o = —U,28874 + j0.13464
Wi = LUBE2S — 010397 w3 = 0.21805 4 70.25220
wy g = 0017799 — JO.0037678 | we.4 = 0.052459 + 70.072556
]

8 = 0.2228 — 70.0612563

structure is developed. see Fig. 3. The task for the adaptive
algorithm is to identify the parameters of the reference
structure with a small error. Due to its low complexity, a
gradient-type algorithm, sec e.g. [7], is preferred in a practical
scheme and is proposed and developed here.
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euln)
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Adaptive L-N-L structure

HLE Y et

rle.)

Fig. 3.

The output of the refercnce L-N-L system is
d(n)y = LaNLju(n)+vin) . (6)
N————
=y(n}

Assume now random processes as input- (u(n)), output-
{y(n})) and noise- (= (1)) signals. For shorthand notation the
signals will be subsumed in vectors. e.g.

W, = fu(ny, um=1.. ww—-M +1]", (D

whereby A1y denotes the memory-length of the first linear FIR-
filter. The weight-vectors of the linear filters of the reference
system are w; = [ (1), wi(2), ..., u:,-(ﬂ/[,-)}T ,i=1.,2, while
their estimates will be dénoted by Wy, and Wwa, respectively.
Using this vector notation the estimate of (6) can be written
in the form

d?(n) =7 (é u_',’;\'ifi) Wy ()

with

£7 (6. uTvn ) = [f (b.ulw)....f (0. i)
)

The cost-function to be minimized by the adaptive algorithm

2
I (¥1,%2,0) = E Dd(n) —d(n)| J (10)
Thus, the cost function depends on three vectars (one being
reduced to a scalar), one for each subsystem.

Applying the steepest-descent method for each parameter
vector and simplifying the expectation-operator, a gradient-
type algorithm is developed. The update part of the algorithm
for the three paramcter vectors is given by

i R N a . H
Win =Wip_| + ﬂw;ca(”) (_ Gw, d(“’)) (1

o . H
W’ln - Wz.n-x + J”'U)f_»éa.(n) (_&W d(”’)) (12)

]

N . . f
O = Opni + pgéa(n) <—£d(”)) (13
fEcr(”) = d('”') - fT (énf] s uzwlmﬁl) w?.n—l (14

where én_l,rvécw,l_n;l,i = 1.2 denotes the estimates at
iteration-step n — 1. The derivatives are

g . H
(-} =AM w5, a9
& 5 N\ 5 ;
(_ W d(”)) =f* (an—b u::‘;vl.'n—l) (16}
P H
——d(n) ) =bi W 17
( Y ( )> n=1"2n-1 ( )
where the Ms x My dimensional matrix A,,_,
u-?:fl' én—];i\n)
Ul‘wlf.r én—l--’i:nfl)
A, = (18)
ug;_j\[.2+1.f1 (én—l:i'nfi\l-_)+l)
and the Afa x 1 vector
fﬂ (énml-in)
Fo (Bnet.fn
by = o (o) (19)

Jo (9717 1oyt )
with 2, = UZ\;V]_H_I

%f( RN | P

The derivatives of f (8.} with respect to 6, resp. z, are

O e —— (20)
(l + 6 |:L‘|z)
folb.2) = —F30.2) " 2n
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Since the parameter-vectors g and Wy enter in a nonlinear
tashion in the system-equation {8). the cost-function can be
expected to exhibit local minima. Without prior knowledge
recarding the region in which the global minimum lies. the
adaptive algorithm is in general not expected to converge to
the global minimum. Therefore a smart chotce of the starting
values w g and 6, for the adaptive algorithm is essential.

A, Speciel cases: L-N. N-L - models

By setting either Ly or Ly equal to the identity operator (11)
10 (19} can be specialized to an adaptive L-N resp. an adaptive
N-L configuration. Such systems are known in literature under
the name Wiener- {L-N) and Hammersiein-model {N-L). In the
following. simulation results will be presented for all three
nonlingar adaptive systems with memory, the L-N. the N-L,
as well as the E-N-L structure.

V. SIMULATION RESULTS

In order to gain insight in the learning behavior of the
derived  algorithm,  simutations were performed since an
analytical treatment regarding convergence seems not easily
fcasible due to the occurrence of a non-linear subsystem.
In order to adapt to a global minimum a smart choice
tor the initial values of the parameter-vectors &y and W
must be available. The inmial guess for the parameter
vectors which is used in all three cases described below is
woy = (1400, .0]" i =12 6 = 0 By starting
with initial values reflecting a purely linear system without
memory (the first tap of the lincar filters equal 14 7), but not
knowing even an approximate value, it turns out that all three
adaptive structures find the global minimum.

In the following, the paramcters from Tables 1 to Ul were
used for the reference structures.

A. Convergence behuvior of the L-N-L structure

The convergence in the mean-square sense was simulated by
performing 2 = 50 runs and averaging the resultant squared
a-priori crror |6, (. r}|” over the runs + (1 denoting the
itevation stepd. resulting in the mean-squared error mse(n) =

L H = 2 e . :

W2 [¢o (1 )7, The system was fed with a zero-mcan
complex white gaussian input signal u(n), both real and
imaginary part of unit variance.. The vanance of the added
noise ¢n) at the output of the system to identify was set to
Lt~ for the real and the imaginary part, vespectively,

The step-sizes were chosen heuristically in order to achieve
convergence and are ji,,, = 1072 jt,, = 1072 and 1y =
5-107% In Fig. 4 the mean-squared error of the adaptive L-N-
L-structure 15 depicted. Up to now no limits are known for the
step-sizes i order to achieve convergence, nov optimal values
for fastest convergence available. Convergence to an undesired
local minimum was observed when ne prior knowledge was
used, e.g. when sctting the initial value of the parameters
equal to zero. Furthermore. a large uncertainty regarding the
convergence rate 1s noticed. Even with a ot more simulation
runs (1000 runs were performed), no “smoother” curve could

be achieved.

|

& 300 foenr  Fape 29'00 2506 3608 3360 1000

Fig. 4. Learming behavier of the adaptive L-N-L structure

B. Convergence behavior of the L-N structure

In Fig. 5 the learning behavior of an L-N structure is
depicted. The chosen step-sizes where ., = 0.4 for the
linear part and jig = 10~ for the nonlinear part. The added
noise u{#) at the output was, like in the previous [-N-L
case, drawn from A(0,10™%) for real and imaginary part,
respectively. Also in this configuration, the convergence rate
differs significantly from realization to realization.

In contrast to the L-N-L structurc, convergence to the
optimal parameters was observed even with no “smart” choices
for the parameters (zero-vectors), but the convergence was
slower (approx. 5-10% iterations), using the same step-sizes. [n
this special case of an L-N structure the zero initial condition
seems to be “smart” enough to achieve good performance.

2500 iees Asew

0 S0

1060 ise0 2006

Fig. 5. Learning behavior of the adaptive L-M structure

C. Convergence behavior of the N-L structure

Also in this case, using the “smart™ initial guess for the
parameters, the algorithm converged to the global minimum,
thus being able to identify the nonlinear power-amplifier
model, The convergence behavior is very similar to the former
described two cases, with rather large uncertainty regarding
the convergencc rate. The step-sizes used in this case arc
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s = 1072 and jiy, = 0.4 and were selected heuristically like

in the previous cases. The input-signal and noise parameters

are identical to the former cases. .
Using zero vectors as an initial guess the LMS-algorithm

converged to the global mintmum. but, using the same step-

sizes, o more iteration steps (about 3 - 10%) were required.

1 e e e
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0 “seo 1006 ises 2008 2508 3600

"

Fig. o, Learmng behavior of the adaptive N-L structure

V1. CONCLUSION

A power amplifier for UMTS was measured in order to ob-
tain parameters for a nonhnear model. The measured amplifier
showed memory cffects, however, due to the rather limited
bandwidth they were not very pronounced. Low complexity
nonlincar models with memory to describe such a nonlinear
power-amplifier were tested, based on the measured 1/0-data.
An adaptive system identification of the power amplifier, based
on the low complex LMS-algorithm behaved convergent in
the mean-square sense, analyzed via simulations, Bounds or
optimal values for the step-sizes to guarantee convergence, and
fastest convergence. remain open problems.
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