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ABSTRACT 
Most transmission schemes for MIMO channels assume (i) a block 
fading channel without delay spread and (ii) availability of channel 
state information at the receiver. Here, we extend the space-time 
motrir modulation (STMMj scheme and the iterative demodulation 
algorithm that we introduced previously to unknown, doubly selec- 
tive MlMO channels, i.e., delayDoppler-spread MlMO channels 
that are unknown to the receiver. We show that the structure inherent 
in STMM allows perfect reconstruction of the data when transmit- 
ting over an unknown doubly selective channel (apparently, this is 
not currently possible with other transmission schemes). Numeri- 
cal simulations demonstrate significant performance advantages of 
STMM over Cayley differential unitary space-time modulation. 

1. INTRODUCTION 
Background and Motivation. Most transmission schemes for 
multi-inpuL'multi-output (MIMO) channels assume flat or frequen- 
cy-selective fading channels and availability of channel state infor- 
mation at the receiver. Only recently, methods have been developed 
for the case where neither the receiver nor the transmitter possesses 
any knowledge about the channel (e.g. [14]). An example is the 
space-time matrix modulation (STMM) scheme that we proposed in 
[ U ] .  These methods are especially interesting in the case of low 
SNR that may occur, e.g., when many users are present whose inter- 
ference can approximately be modeled as white noise.' Typically, 
these methods (including STMM) are formulated for a block fading 
channel that is constant over one block but allowed to change from 
block to block. 

In this paper, we extend our STMM scheme to doubly selec- 
tive MSMO channels, i.e., delay-spread and Doppler-spread MIMO 
channels that are time-varying even within a block. The motivation 
for doing so is twofold 

Modeling the time-varying fading within blocks leads to an addi- 
tional source of diversity, namely, Doppler diversity [SI. 
The conventional block fading model severely restricts the block 
length in the case of fast fading channels. A smaller block length 
may be a disadvantage for code design, and it usually implies that 
the channel has to be estimated more frequently. Furthermore, 
explicitly modeling the channel's time variations within a longer 
block typically requires fewer parameters than using individual 
time-invariant channel models for several shorter blocks. 

Main Results and  Organization of Paper. Our paper contains two 
main contributions. First, we present an identifiability (or perfect 
reconstruction) result stating that the structure of STMM is strong 
enough to permit joint channel estimation and data detection for 
doubly selective, unknown MIMO channels. (This result actually 
applies to all linear space-time codes that are separable in that the 
coding over space and the coding over time are done independently.) 
Second, we present an iterative demodulation algorithm that per- 
forms joint channel estimation and data detection. 

Funding by FWFgrant P15156. 
'Indeed, it has been shown (e.g. [71J that in thc low SNR case pilot sym- 

bol based channel estimation is highly suboptimal. 

From other transmit antennas 2 
Fig. I :  Mulrichannel LTI representation of the (i, j ) rh  LTVchannel. 

The paper is organized as follows. Section 2 introduces a model 
for the doubly selective MlMO channel. In Section 3, we show 
how to combine the STMM structure with the Doppler slructure of 
the time-varying channel. Identifiability (or perfect reconstruction) 
results and an iterative demodulation algorithm for doubly selective 
channels are presented in Section 4 and 5 ,  respectively. Finally, sim- 
ulation results provided in Section 6 demonstrate the good perfor- 
mance of STMM and, specifically, significant performance advan- 
tages over Cayley differential unitary space-time modulation [9]. 

2. TIME-VARYING M I M O  CHANNEL MODEL 

We first present a model for the doubly selective MIMO channel 
that will be used in what follows. The discrete-time baseband signal 
received at the ith receive antenna is given by 

z("[[n] =E 1 h ( ' ~ ~ ) [ n , m ] s ( j ) [ n ~ m ] ,  ~ = I , z , . . . , M R ,  

(1) 
for n = 0, 1, .  . ., N -  1 (i.e., the z( ' )[n]  are observed over the in- 
terval [O, N ~ 11). Here, h("jl[n,  m] denotes the impulse response 
of the linear, time-varying (LTV) single-input/single-output (SISO) 
channel that maps the signal at the j th  transmit antenna, s(j) [n], into 
d " [ n ] ;  L - 1 is the maximum time delay; and MT and MR are the 
numbers of transmit and receive antennas, respectively. 
Multichannel LTI Representation. Using the (delay-Doppler) 

hJT L-i  

j=i m=o 

j=1  i=o m=o 

with Rj'J)[m] ~ ( ~ ~ l l [ m , ~ ] e l ~ * ~  and S O ) [ n ]  , ( j J  [ I  $Zr%, 
This expression, which is illustrated in Fig. 1, corresponds to a mul- 
tichannel LTI representarion of the LTV channel where each sub- 
channel consists of a modulator (Doppler shift) and an LTI filter. 
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We conclude that practically arbitrary channels-including chan- 
nels with diffuse scattering-are characterized by a finite set of LTI 
filters associated with unijormly spaced, discrete Doppler shifts. 
Formally, this representation is equivalent to the basis expansion 
models of [14, 151 using a basis of complex exponentials with uni- 
formly spaced frequencies. Note that all SlSO channels are assumed 
to have the same parameters L and ND; this assumption is reason- 
able if the transmit antennas and, similarly, the receive antennas are 
located sufficiently close to each other. 

In what follows, we suppose that P of the ND subchannels in Fig. 
1, corresponding to specific Doppler shifts I ,  t 10, N, - 11 with 
p = 1 , 2 ,  . . ., P,  a e  active. That is, only the subchannel impulse 
responses R j y ' [ m ]  are nonzero. (This is no restriction since we 
allow P = NO.) Thus, (2) becomes 

k k  P L-1 

x")[n] = 1 1 Rj:'j)[m] sji)[n-m], (3) 

For channels satisfying the wide-sense stationary uncorrelared scar- 
rering (WSSUS) assumption, the "active Doppler shifts'' 1, can be 
deduced from the channel's scattering function [IO, 161. Because 
the scattering function of a WSSUS channel does not change with 
time, it is much easier to estimate than the channel itself 117, 181. 
Hereafter, we assume that the 1, u e  known to the receiver. 
Matr ix  Formulation. For a compact formulation of (3). we define 

3=1 p = i  m=o 

Ri'.j)[m] . . . Ril,J) 

p 1  [ m l ]  

[ , I ;  Iml ~ j M ~ , j ) j ~ ]  , , , R j h h d  
R ( j ) [ m ]  

and furthermore R[m] 4 [R(')[m] . ' .  R(MT)[m]] and R 
[R[O] . . . R [ L -  I ] ] .  We also define the vector of modulated input 
samples ~ [ n ]  A [s!:'[n] . . . sji)[n] . . . si(Y)[n] . . . sjMT) [.I]' 
and the following block-Toeplitz input matrix of size M s P L  x N, 

s [ N  - I] 

Si? 

Ls[-i+1] s[-L+2] ' . :  s [ N - L + l ] j  
T Finally, u'e define the output vector x[n] 4 [z,[n] . . . x ~ ~ [ n ] ]  

and theoutputmatr ixX 6 [x[O] . . - x [ N - l ] ]  o f s i z e M ~  x N. 
Now (3) can be written as 

X = R S .  (4) 
For later use, we define the "generator matrix" of S as the M s P x  

( ~ + ~ - 1 ) m a t r i x S ,  k [s[-L+I]  s [ -L+z]  . . .  ~ [ N - I ] ] .  
Furthermore we define an operator ?L{.} that maps the generator 
matrix to the corresponding block-Toeplitz matrix with L block- 
rows, i.e., ? L { S ~ }  = S. 

3. COMBINING T H E  STRUCTURES 

As a basis for Section 4, we now show how the structure of STMM 
and the Doppler structure of the LTV channel model discussed in 
the previous section can be combined. We start by briefly reviewing 
the STMM scheme [4]. 
Review of STMM. We consider K input data streams d l [n ] : .  . ., 
d K [ n ]  with dk[n] E C (i.e., nofinite-alphaber assumption is made). 
These data streams are mapped to the MT transmit antennas as 

K 

St [RI = mi, [n] dr r71.1 , ( 5 )  
k=1 

with the MT x 1 vectors st[n] k [d1)[n] . . . ~ ( * ' ~ ) [ n ] ] ~ a n d  time- 
varying "modulation vectors" m k  [n] that are known to the receiver. 

Defining the transmit signal matrix S, 4 [st[-L + I] . . . s c ( N -  
111 of sire h4s x ( N + L -  1). the I( modulation murrices b l k  i? 
[mk[ -L+  1).  . ' m r [ N - l ] ]  of size b1T x (N+L-1). a n d t h e K  
diagonal data matrices Dk diag{dr[-L + 11,. . ., d r [ N - l ] }  of 
size (N+L--1) x (N+L-l) ,wecanformula~e(5)as 

K 

S ~ = ~ M ~ D * .  (6) 

A set of modulation matrices {Mk} will be called admisnible if the 
data sequences d r [ n ]  can be uniquely reconstructed (up to a com- 
mon constant factor) from the received matrix X in (4), without 
knowledge of R. In [51, we showed that for a flat fading MIMO 
channel H with rank{H} > 1, admissible sets of modulation ma- 
trices can always be found if K < rank{H}. 
Combining the Structures. The Doppler structure of the channel 
(3) is expressed by the relation ~i(l)[n] = s(j)[n] We can 
rewrite this Doppler structure in a way similar to (5):  

k=l 

P [ n ]  = f [n]  s(J)[n] I 

with s(')[n] [sE'[n] . . . s?2[n]lT and f[n] 4 [e""% .~ 
e2Zn%]T. Thus, the vectors s [ n ]  = [ ~ ( ' ) ~ [ n ]  . . . s ( * " ~ ) ~  [.]IT 
are given by 

s[n] = st[n] @ f[nl, 

where @ denotes the Kronecker product [191. Inserting ( 5 )  for s t [n] ,  
we can finally write 

K 
s[n] = %r[n]  dt[n] , with 6 r [ n ]  mk[n]  @ f [ n ] .  (7) 

Equivalently, the generator matrix S, = [s[-L + 11 . . . s [ N -  l]] 
becomes 

s g  = GkDk, (8 )  

with the "Doppler-spread modulation matrices" MI, n [riik[-L+ 
11.. . i i i k [ ~ - l ] ]  ofsize M T P  x (N+L- I ) .  

The structure of (7). (8) equals that of ( 5 ) .  (6). which shows that 
the channel's Doppler structure nicely blends into the STMM strut- 
ture. We finally note that Mk = Mk 0 F and S ,  = St 0 F, 
where 0 denotes the Khatri-Rao product 1191 and F 6 [f[-L+ 

k = 1  

K 

k=i - 

- 

1).  . . f [ N -  111. 

4. PERFECT RECONSTRUCTION 

First Reconstruction Result. Using methods from deterministic 
blind equalization (e.g. [ 13,20]), the structure of the doubly selec- 
tive channel can be exploited to equalize the channel up to an un- 
known instantaneous-mixture matrix. This matrix ambiguity can in 
turn be resolved by using the STMM structure (see [41). Indeed, 
the following theorem can be shown by simple "concatenation" of 
results provided in [13,20] and [4]. 

Theorem 1. Ler the rrnnsmir marrix St possess the STMM m u c -  
rure in (6). and consider the time-varying MlMO channel in (3) 
or (4). Furthermore. let or least one of the K diagonal dura 
matrices D k  be nonsingular and let Mn 2 MTP. iV > 
m a {  E,-M,P , M T P - K  }. K i J&forP t 
2, and K < MT for  P = 1. Then. rhere exists a set of K admissi- 
ble Doppler-spread modulation matrices Mk.  

MTTP(M L+L-I"In)-MR (I"fTP)2-1 

- 

Hence, using these admissible Gr, the diagonal data matrices 
D r  (and, thus, the data dr[n]) can be reconstructed from the re- 
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ceived matrix X up to an unknown constant factor c E @. This 
reconstruction uses the knowledge of the modulation matrices Ms 
but does not require knowledge of the channel R. 

Theorem 1 can be reformulated as follows, Let K' 5 K be the 
number of data streams actually present (K' need not be known 
to the receiver). Then, the transmit matrix S occumng in (4) is 
given by S = TL{ Et:, MkDb} (cf. (E)), and the received ma- 
trix is X = RS = R E {  M k D k } .  Suppose there is an- 
other couple (R, { D k } )  that also "explains" X, i.e., we have also 
X = RE{ G k D k } .  Now Theorem 1 states that there ex- 
ist Doppler-spread modulation matrices Rk such that the identity 

- 

- 
- 

&Ti X G k D k  = RTL X G k D k  
{b : l  ~ } {k:l 1 

implies R = cR (with c E C an unknown factor) and 

Thus, X can be uniquely factored (up to an unknown constant factor 
c E @)into the channel R a n d  the data matrices Dk. 

Unfortunately, the assumption MR 2 MTP causes Theorem 1 
to be of limited practical interest. Therefore, we will now consider 
an altemative result that does not rely on this assumption. 
Second Reconstruction Result. The next theorem can he derived 
by exploiting the combined structure offered by the channel model 
and by the STMM scheme, rather than "concatenating" these struc- 
tures in the two-step approach that underlies Theorem 1 

Theorem 2. Let the transmit matrix S, possess the STMM struc- 
ture in (6), and consider rhe rime-varying MlMO channel in (3) or 
(41. Furthermore, let ( I f  least one of the K diagonal data marri- 
ces D k  be nonsingular and let N 2 e + and 
K < miri { rank{R}, MT + 1). Then, withprobnbilityone? there 
exists a ser of K admissible G,. 

We emphasize that this theorem is also valid for MR < MTP. 
Its proof is more difficult than that of Theorem 1 (mainly because 
for MR < MTP, X contains only a part of the row-span of S, 
i.e., R is not left invertible); it cannot be included here because of 
space constraints. We note that the theorem can be extended to the 
multi-user case, which however is beyond the scope of this paper. 

5. ITERATIVE DEMODULATION ALGORITHM 

Next, we propose an iterative demodulation algorithm for STMM 
transmission over a doubly selective MlMO channel. This algo- 
rithm if valid for both MR < MTP and M R  2 MTP. However, 
for MR 2 M T P  there exists a more efficient POCS algorithm sim- 
ilar to the one presented in [13]. 

Given a received matrix X = RS and assuming admissible Dopp- 
ler-spread modulation matrices M k ,  it follows from Section 4 that 
for any pair of matrices R a n d  S that satisfy the two properties 

- 

1. RS=x 
2. S = TL{ E,"=, G k D k }  with diagonal D k ,  

the matrices D k  contain the correct data up to a common constant 
factor. This motivates an iterative algorithm which consists in alter- 
nately executing two different steps that enforce one of the above 
properties. The ith iteration is as follows. 

Step 1. The first step enforces Property 1. That is, given ST-') 
as a result of Step 2 from the previous iteration (see below), we 

'For this theorem, the channel R is modeled as a realization of B random 
channel that is governed by an arbitrary continuous probability density. 

calculate Rco and Si.' such that RctlSY' = X. As a first substep, 
we calculate R(') such that R("S$-') best approximates X in the 
least-squares (LS) sense. Thus, R(') = XS$-"#, where S2-l)' 
is the pseudo-inverse of S$-''. As a second substep, we calculate 
Sf'  such that R("Sy) = X. This gives the final result 

Sji' = R("#x = ( xs( 

Step 2. This step attempts to enforce Property 2. That is, given SF' 
from Step 1 above, we calculate a generator matrix St' with STMM 
structure, i.e., Si' = E:='=, GkDf), where the D!) are chosen 
such that the product R(')TL{ S:'} best approximates R[')SY' in 
the LS sense. Since R(')SP' = X (see Step I ) ,  these Dt) are such 
that Rc')E { S!' } best approximates X. To solve this problem, we 
first rewrite (4) as 

Rd = vec{X}, 

whered k [dl[-L+l] . . . d ~ [ - L + l ]  . . . dl[N-l] . . . d K [ N -  
l]]Tvec(X} is the MRN x 1 vector formed by stacking all columns 
of X, and the M T N  x K ( L + N - l )  matrix R is defined as 

(10) 
where RC) R[m]G[n] with R[n] [ml[n] . . . r i i~[n] ] .  
The above LS approximation problem is thus equivalent to choosing 
dcil such that G(''d"' hest approximates vec{X} in the LS sense; 
here, f i ( ' )  is defined as in (IO) with R[m] replaced by R(')[m] 
(note that Rc"[ m /, IS contained . ' in ' the matrix a('' that was c a b -  
lated in Step 1). T e solution is given by 

d'" = G("#vec{x} 
We can now calculate S:) = E,"=, GkDt), where the Dt) cor- 
respond to d('). Finally, the desired matrix St) (to be used in Step 
I of the next iteration) is obtained as Sf)  = TL { Sy'}. 

Remarks. This algorithm yields a channel matrix estimate 
in Step 1 and data matrix estimates Dt' in Step 2. In the noise- 
free case, we always observed the algorithm to converge to the true 
channel and data matrices. In the presence of noise, the algorithm 
converged to matrices that were close to the true channel and data 
matrices (detailed results in the presence of noise will he shown 
next). However, the convergence was observed to be rather slow. 

6. SIMULATION RESULTS 

We conducted two experiments in which a single random data 
stream dl[n] was transmitted over a time-varying MlMO channel. 
For each simulation run, the channel matrix R was randomly gener- 
ated with iid complex-valued Gaussian entries. The channel output 
signals were corrupted by white Gaussian noise and observed over 
an interval of length N = 100. The modulation matrices M k  were 
constructed by taking rows of a DFT matrix as the rows of Mk. We 
assumed two active Doppler shifts 11 = -1 and 12 = 1 (this can he 
interpreted as a crude approximation to a lakes Doppler profile). 
First Experiment. In our first experiment, we compare the per- 
formance of our STMM scheme (using the iterative demodulation 
technique of Section 5 )  for two channels with M = M R  = 4 and 
different delay spreads. Channel 1 is flat fading (L = 1)  whereas 
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SNR Ids1 

10; 

(a) (b) 

Fig. 2: BER vs. SNR obtained with STMM using the iterative de- 
modulation algorithm: ( a )  comparison of channel lengths L = l 
and L = 2 (for K = 1 and MT = MR = 4), ( b )  comparison to 
CDUSTM (for K = 1, MT = MR = 2, and L = 1). 

Channel 2 has a small delay spread ( L  = 2). We used a single data 
stream ( K  = 1) and 4-QAM symbols, corresponding to a data rate 
of 2 hit per channel use. Fig. 2(a) shows the BER' vs. the SNR. 
(The SNR is defined as w, where n* is the noise variance.) 
The BER performance for Channel 1 is about 2 dB better than for 
Channel 2 even though Channel 2 has a higher available diversity. 
We attribute this behavior to the larger number of unknown param- 
eters for Channel 2. Indeed, the channel matrix R has size 4 x 8 for 
Channel 1 and 4 x 16 for Channel 2, and thus Channel 2 has twice 
as many parameters that need to he estimated by our algorithm. 
Second Experiment. Next, we compare our STMM scheme to the 
Cayley diferential unitary ST modulation (CDUSTM) scheme intro- 
duced in [9]. We chose L = 1 since the CDUSTM scheme assumes 
a Rat fading channel. Furthermore, we used MT = M R  = 2 and a 
data rate of 2 bit per channel use. For the STMM scheme. this rate 
was achieved by using a single data stream (K = 1) and 4-QAM 
symbols. For the CDUSTM scheme, we used the optimized codes 
of [91. 

Fig. 2(b) shows the BER vs. the SNR for our STMM 
scheme using the iterative demodulation technique and for the 
CDUSTM scheme using linearized ML decoding (denoted by 
'CDUSTMllinML'). It is seen that STMM outperforms CDUSTM 
by up to 7 dB, even though our demodulation algorithm is an equal- 
ization technique (followed by quantization) and not a detection 
technique such as ML decoding. We attribute the good perfor- 
mance of our algorithm to the significantly larger block length al- 
lowed by STMM and by the time-varying channel model (we used 
N = 100). as compared to the small block length of N = 4 re- 
quired by CDUSTM. Because of the larger N we have many more 
equations than unknowns, which results in better demodulation re- 
sults. We also note that STMM is a purely spatial code: typically, it 
will be augmented by an outer temporal code that can be expected 
to result in further improvements of performance. 

Fig. 2(b) also shows the performance of CDUSTM with lin- 
earized ML decoding for the unrealistic case that no Doppler spread 
is present, i.e., P = 1 and 11 = 0 (denoted by 'CDUSTMIlinML 
LTI'). This allows to assess the performance loss suffered by 
CDUSTM due to the Doppler. While the performance of CDUSTM 
for the time-invariant channel is better than for the time-varying 
channel (especially at higher SNR), it is still significantly poorer 
than the performance of STMM for the time-vruying channel. 

7. CONCLUSION 

Space-time matrix modulation (STMM) is a simple and attractive 
transmission scheme for unknown MIMO channels. In this pa- 
per, we showed that both the STMM scheme (including perfect re- 
construction for unknown channels) and a corresponding iterative 
demodulation algorithm can he extended to doubly selective (i.e., 
delay-spread and Doppler spread) MIMO channels. This channel 

'For calculation of the BER. we assume that the factor c in (9) is known. 
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