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Abstract

The Wigner distribution (WD) is perhaps the most prominent quadratic time–frequency signal representation. In this

paper, which has mainly tutorial character but also contains some new results, we describe extensions of the WD concept to

multidimensional vector signals, nonstationary random processes, linear time-varying systems (deterministic and random),

linear signal spaces, and frames. We discuss the interpretation and properties of these WD extensions and various relations

connecting them. Some application examples are also provided.
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1. Introduction

The Wigner distribution (WD) is perhaps the most

prominent quadratic time–frequency (TF) represen-

tation. It was originally de=ned in a quantum me-

chanical context by Wigner in 1932 [66]. In 1948,

Ville introduced the WD in a signal analysis con-

text [64]. A mathematical analysis of the WD and the

related Weyl symbol was provided by de Bruijn in
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1973 [4]. However, it was not before the seminal

three-part paper of Claasen and Mecklenbr1auker [6–8]

appeared in 1980 that the WD became widely popu-

lar in the signal processing community. In that paper,

among other contributions, a comprehensive discus-

sion of the signal-theoretic properties of the WD was

given, a discrete-time WD and a windowed WD suit-

able for digital implementation were proposed, and the

relation of the WD to other TF representations was

discussed.

Since then, an impressive number of papers deal-

ing with theoretical and practical aspects of the

WD have been published; for references see e.g.

[3,11,17,24,53,54]. The application areas for which

the WD (or windowed/smoothed versions of the

WD) have been proposed are as diverse as signal
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detection and enhancement, speech analysis, audio

and acoustics, image processing and pattern analy-

sis, biological and medical signal analysis, seismic

prospecting, optics, machine diagnostics and fault

detection, oceanography, radar imaging, source lo-

calization and separation, quantum mechanics, and

mathematics.

In this paper, we demonstrate that the concept of

the WD can be extended to several important math-

ematical objects beyond one-dimensional, scalar,

deterministic signals. We describe extensions to mul-

tidimensional vector signals (Section 2), nonstation-

ary random processes (Section 3), linear time-varying

(LTV) systems (Section 4), random LTV systems

(Section 5), linear signal spaces (Section 6), and

frames (Section 7). Our paper has mainly tutorial or

review character, although it contains some previ-

ously unpublished results. Special emphasis is placed

on the properties of the various WD extensions and

the relations connecting them. Some application ex-

amples are provided that demonstrate how speci=c

characteristics of signals, systems, random processes,

signal spaces, and frames can be inferred from the

respective WD.

1.1. Wigner distribution

We =rst recall the original formulation of the

WD of a scalar, one-dimensional (1-D) signal. For

a continuous-time signal x(t), the WD is de=ned

as 1 [6]

Wx(t; f),

∫

�

x
(

t +
�

2

)
x∗
(

t − �

2

)
e−j2�f� d�: (1)

The WD is a quadratic TF signal representation that

can be loosely interpreted as an energy distribution

over the TF plane. Such an interpretation cannot hold

in a pointwise sense, however, since the uncertainty

principle prohibits a pointwise TF localization of sig-

nals [10,17,20]. Due to its quadratic nature, the WD

often contains cross terms (interference terms) whose

geometry has been analyzed in detail in [25]. The

WD cross terms partly assume large negative values

(see [36] for a discussion of the positivity of bilin-

ear TF signal representations). Nonetheless, it can be

1 Integrals are from −∞ to ∞.

shown that

Wx(t; f) ∗t ∗fWw(−t;−f) = |〈x; wt;f〉|2¿ 0: (2)

Here, wt;f(t
′) = (St;fw)(t′), w(t′ − t)ej2�ft′ , where

St;f denotes the TF shift operator and w(t) is a test

signal that is assumed localized about the origin of

the TF plane. According to (2), local averages of the

WD (obtained by convolution with the WD of the test

signal w(t)) are nonnegative and can be interpreted as

the local energy of x(t) about the TF analysis point

(t; f) (as measured by the inner product of x with the

TF shifted test signal wt;f(t
′)).

The WD satis=es an impressive number of desir-

able mathematical properties. Several of these prop-

erties are listed in Table 1. The WD is a prominent

member of the Cohen class of TF shift covariant TF

representations [8,11,17,24]. All other Cohen class TF

representations can be derived from the WD by means

of a 2-D convolution.

The continuous-time form of the WD in (1) was

later on complemented by the following de=nition for

the WD of a discrete-time signal x[n] [7]:

Wx(n; �), 2

∞∑

m=−∞

x[n + m]x∗[n − m]e−j4�m�;

where � denotes normalized frequency. Due to the

factor of 4 in the exponent, this de=nition is appli-

cable to so-called halfband signals whose Fourier

transform occupies only a band of width 1
2
(exam-

ples are analytic signals and signals that are over-

sampled by a factor of 2). Further results regarding

discrete-time and also discrete–frequency WDs are

provided e.g. in [9,56,58,61]. A formal extension

of the WD to continuous groups has been proposed

in [32].

Example. Among the many practical applications of

the WD, we select a car engine diagnosis example

for purposes of illustration. We consider high-pass

=ltered pressure signals that have been measured 2

in the combustion chamber of a car engine cylinder.

Fig. 1 shows three diIerent pressure signals and the

corresponding WDs (a slight smoothing of the WD

2 We are grateful to S. Carstens-Behrens, M. Wagner, and J.F.

B1ohme for providing us with the car engine data (courtesy of

Aral-Forschung, Bochum).
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Table 1

Some properties of the WD

TF shift covariance x̃(t) = (St0 ;f0
x)(t) ⇒ Wx̃(t; f) = Wx(t − t0; f − f0)

Realvaluedness Wx(t; f) = W ∗

x (t; f)

Marginal propertiesa
∫

t
Wx(t; f) dt = |X (f)|2,

∫
f

Wx(t; f) df = |x(t)|2

Energy
∫

t

∫
f

Wx(t; f) dt df = ‖x‖2,
∫

t

∫
f

W 2
x (t; f) dt df = ‖x‖4

Moyal relation
∫

t

∫
f

Wx(t; f)Wy(t; f) dt df = |〈x; y〉|2

Finite support x(t) = 0, t �∈ [t1; t2] ⇒ Wx(t; f) = 0, t �∈ [t1; t2]

X (f) = 0, f �∈ [f1; f2] ⇒ Wx(t; f) = 0, f �∈ [f1; f2]

Symplectic covarianceb x̃(t) = (�(A)x)(t) ⇒ Wx̃(t; f) = Wx(A(
t
f
))

aX (f) denotes the Fourier transform of x(t), i.e., X (f) =
∫

t
x(t)e−j2�ft dt.

bHere, �(A) denotes the unitary operator associated to a 2 × 2 unimodular matrix A via the metaplectic representation [19,

Chapter 4]. Special cases of �(A) include TF scaling, Fourier transform, chirp multiplication, and chirp convolution.
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Fig. 1. WD (top) of pressure signals (bottom) measured in a car engine running at (a) 1000 rpm, (b) 2000 rpm, and (c) 4000 rpm.

Only positive parts of the WD are shown, with darker shading corresponding to larger amplitudes. Horizontal axis: crank angle (which is

proportional to time), vertical axis: frequency in kHz.

was used to increase readability while retaining some

of the cross terms). The three pressure signals corre-

spond to knocking combustions at engine speeds of

1000, 2000, and 4000 rpm, respectively. The WDs of

these signals allow us to identify several resonant com-

ponents with abrupt onsets and frequencies that de-

crease with time. (The decreasing frequencies can be

explained by the decreasing temperature of the gas in

the combustion chamber and by the movement of the

piston [5,37].) Between the resonance components,

the WDs feature large oscillating and partly negative

cross terms. According to (2), these cross terms do

not indicate local energetic contributions in the pres-

sure signals (note, however, that the cross terms may

manifest themselves e.g. in the WD marginals [25]).

An attenuation of the cross terms can be achieved by
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Table 2

Some properties of the WS

TF shift covariancea H̃ = St0 ;f0
HS+t0 ;f0

⇒ LH̃(t; f) = LH(t − t0; f − f0)

Adjoint; realvaluedness LH+ (t; f) = L∗

H(t; f);

H =H+ ⇒ LH(t; f) = L∗

H(t; f)

Marginal propertiesb
∫

t
LH(t; f) dt = H (f; f),

∫
f

LH(t; f) df = h(t; t)

Trace
∫

t

∫
f

LH(t; f) dt df = tr{H}=
∫

t
h(t; t) dt

Energy
∫

t

∫
f
|LH(t; f)|2 dt df = ‖H‖2 =

∫
t

∫
t′
|h(t; t′)|2 dt dt′

Moyal-type relation
∫

t

∫
f

LH1
(t; f)L∗

H2
(t; f) dt df = 〈H1;H2〉

=
∫

t

∫
t′

h1(t; t
′)h∗2 (t; t

′) dt dt′

Finite support h(s)(t; �) = 0, t �∈ [t1; t2] ⇒ LH(t; f) = 0, t �∈ [t1; t2]

H (s)(f; �) = 0, f �∈ [f1; f2] ⇒ LH(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance H̃ = �(A)H�(A)+ ⇒ LH̃(t; f) = LH(A(
t
f
))

aThe superscript + is used to denote the adjoint [55] of an operator.
bH (f; f′) and H (s)(f; �) = H (f + �

2
; f − �

2
) denote the 2-D Fourier transforms of h(t; t′) and h(s)(t; �), respectively.

means of a stronger smoothing, which would however

result in a loss of TF resolution.

1.2. Weyl symbol

We next discuss the Weyl symbol (WS), which is

a linear TF representation of a linear operator that is

closely related to the WD. The WS also has its ori-

gins in quantum mechanics (cf. [4,19,65,67]) and was

later used in mathematics as a “symbol” for pseudo-

diIerential operators [19,33,67]. It was introduced in

signal processing as a means for characterizing linear

time-varying (LTV) systems/=lters and TF localiza-

tion operators [13,38,40,47,59,63].

Consider a linear operator 3 (LTV system) H with

kernel (impulse response) h(t; t′) and input–output

3 Linear operators (linear systems), matrices, and vectors are

denoted by boldface letters. We use upright capital letters for

operators, italic capital letters for matrices, and italic lowercase

letters for vectors.

relation

y(t) = (Hx)(t) =

∫

t′
h(t; t′)x(t′) dt′:

The WS of the operator H is de=ned as [13,38,40,

47,59,63]

LH(t; f),

∫

�

h
(

t +
�

2
; t − �

2

)
e−j2�f� d�

=

∫

�

h(s)(t; �)e−j2�f� d�; (3)

where h(s)(t; �), h(t + �
2
; t − �

2
). The WS is a linear

representation ofH. The kernel ofH can be reobtained

from the WS via

h(t; t′) =

∫

f

LH

(
t + t′

2
; f

)
ej2�f(t−t′) df; (4)

which shows that the WS contains all information

about H. Further important mathematical properties

of the WS are summarized in Table 2.

Comparison of (3) and (1) shows that the WD is

equal to the WS of the rank-one operator x⊗x∗ whose
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kernel equals x(t)x∗(t′), i.e.,

Wx(t; f) = Lx⊗x∗(t; f):

Another important relation of theWS andWD pertains

to quadratic forms:

〈Hx; x〉= 〈LH; Wx〉=
∫

t

∫

f

LH(t; f)Wx(t; f) dt df

(note that there is no conjugation of Wx(t; f) in the

last expression since the WD is real-valued). Hence,

quadratic forms induced by an operator H can be re-

formulated in the TF domain with the WS LH(t; f) as

TF representation of H and the WD Wx(t; f) as the

associated TF signal representation. Using this prop-

erty, it follows that

LH(t; f) ∗t ∗fWw(−t;−f) = 〈Hwt;f ; wt;f〉:
This means that a local average of the WS (ob-

tained by convolution with the WD of a suitable

test signal w(t)) is a measure of the gain (ampli=-

cation/attenuation) of H about the TF analysis point

(t; f). Yet another relation between the WS and WD

is obtained for systems with an eigenvalue decompo-

sition of the formH=
∑∞

k=1 �kuk⊗u∗k . Here, the WS is

given by

LH(t; f) =

∞∑

k=1

�kWuk
(t; f);

i.e., the WS of H is a weighted superposition

of WDs.

In the practically important case of underspread

LTV systems (i.e., LTV systems that introduce TF

shifts only with small time and frequency lags), the

WS constitutes an approximate TF transfer function

with properties that are analogous to those of the or-

dinary transfer function of LTI systems [40,47]. This

TF transfer function interpretation enables the de-

sign of LTV =lters based on the WS [38,51] and the

use of the WS in statistical signal processing (non-

stationary signal estimation and detection) [28,30,

31,46,49,62].

A transfer function interpretation of the WS is no

longer valid for overspread LTV systems that intro-

duce signi=cant TF shifts. These TF shifts are rePected

in the WS by oscillating “interference” terms that pro-

hibit an interpretation of the WS as TF transfer func-

tion. In the overspread case, the inputWD, outputWD,

and transfer WD discussed in Section 4 typically yield

Fig. 2. WS magnitude (in dB) of a measured mobile radio channel.

more useful insights than the WS. An interpretation

of the interference terms of the WS is provided by the

relation
∫

�

∫

�

W̃H(t; f; �; �) d� d� = |LH(t; f)|2: (5)

Here, W̃H(t; f; �; �) denotes the transfer WD ofH (cf.

Section 4) that describes the energy transfer from the

TF point (t−�=2; f−�=2) to the TF point (t+�=2; f+

�=2) eIected byH. Consequently, (5) shows that large

values of LH(t; f) at a speci=c TF analysis point (t; f)

do not necessarily indicate a large system gain at (t; f)

but may also be due to a large energy transfer eIected

by H between TF points located symmetrically about

(t; f).

Example. To illustrate the application of the WS, we

consider an example where the LTV system under

analysis is a mobile radio channel measured 4 in a

suburban environment. Fig. 2 shows the WS of this

channel over a time interval of length 600 ms and a

frequency band of width 1 MHz and center frequency

fc = 1:792 GHz. The time- and frequency-varying

attenuation of the channel is clearly displayed. In par-

ticular, several deep fades at various TF points are

recognizable. We note that this mobile radio channel

4 The measurements were performed in the course of the

METAMORP project [34]. We are grateful to T-NOVA

Deutsche Telekom Innovationsgesellschaft mbH (Technologiezen-

trum Darmstadt, Germany) and to I. Gaspard and M. Steinbauer

for providing us with the measurement data.
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is underspread and thus its WS can indeed be inter-

preted as a TF transfer function.

2. Multidimensional vector signals

In this section, we will extend the WD and WS

to multidimensional vector signals and the associated

operators. In a mathematical context, de=nitions of a

multidimensional WD and WS were provided in [19].

Furthermore, the WD of a vector signal that is a func-

tion of a single variable has been used in a signal

processing context e.g. in [68]. Here, we extend this

previous work by de=ning and studying multidimen-

sional matrix-valued WD and WS.

2.1. Wigner distribution

TheWD of a D-dimensional, length-K signal vector

x(t) = [x1(t1; : : : ; tD) : : : xK (t1; : : : ; tD)]
T is de=ned as

Wx(t; f ),

∫

�

x
(
t +

�

2

)

×xH
(
t − �

2

)
e−j2�f T� d�; (6)

where t = [t1 : : : tD]
T, f = [f1 : : : fD]

T, and � =

[�1 : : : �D]
T. Thus, the WD Wx(t; f ) = [Wxk ;xl

(t; f )]

is a K × K matrix with each entry Wxk ;xl
(t; f ) =∫

�
xk(t +

�
2
)x∗l (t − �

2
)e−j2�f T� d� being a function of

time t and frequency f .

In the following, we discuss important mathemati-

cal properties of the aboveWD de=nition. These prop-

erties generalize the properties of the ordinary WD

listed in Table 1.

TF shift covariance. The WD of the TF shifted

signal x̃(t) = (St0 ;f0x)(t), x(t − t0)ej2�f T0 t satis=es

Wx̃(t; f ) =Wx(t − t0; f − f0): (7)

Hermitian symmetry. The WD of any signal x(t)

features Hermitian symmetry,

Wx(t; f ) =W
H
x (t; f ): (8)

In particular, the diagonal elements of Wx(t; f ) are

real-valued.

Marginals and energy preservation. In a certain

sense, the WD can be interpreted as a TF energy dis-

tribution of x(t). This interpretation is supported by

the marginal properties
∫

t

Wx(t; f ) dt = X(f )XH(f );

∫

f

Wx(t; f ) df = x(t)x
H(t);

where X(f ) ,
∫
t
x(t)e−j2�f Tt dt denotes the D-

dimensional Fourier transform of x(t). These marginal

properties further imply the “energy preservation”
∫

t

∫

f

Wx(t; f ) dt df = Ex ,

∫

t

x(t)xH(t) dt;

and further
∫

t

∫

f

Tr{Wx(t; f )} dt df = ‖x‖2 ,
∫

t

xH(t)x(t) dt

(here, Tr{·} denotes matrix trace).

Moyal relation. Let us de=ne the inner product of

x(t) and y(t) as

〈x; y〉,
∫

t

yH(t)x(t) dt:

It is then possible to show the following extended

Moyal relation:

〈Wx;Wy〉,
∫

t

∫

f

Tr{Wx(t; f )W
H
y (t; f )} dt df

= |〈x; y〉|2; (9)

with the special case ‖Wx‖2 = ‖x‖4. Note that (9)

together with (7) and (8) implies that
∫

t′

∫

f ′
Tr{Wx(t

′; f ′)WH
w (t

′ − t; f ′ − f )} dt′ df ′

= |〈x;wt; f 〉|2;

where wt; f (t
′) = (St; f w)(t

′). This means that a local

average of the WD (i.e., a smoothed version of the

WD) can be interpreted as local energy of x(t) about

the TF analysis point (t; f ).

Finite support. The time and frequency supports

of the WD are given by the total time support of the

signal and the total frequency support of its Fourier
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transform, respectively:

x(t) = 0; t �∈ [t1; t2]

⇔ Wx(t; f ) = 0; t �∈ [t1; t2];

X(f ) = 0; f �∈ [f1; f2]

⇔ Wx(t; f ) = 0; f �∈ [f1; f2]:

Symplectic covariance. A property very speci=c of

the WD is its covariance to area-preserving linear co-

ordinate transforms. Such coordinate transforms are

characterized by 2D×2D matrices A belonging to the

symplectic group of dimension 2D [19]. The meta-

plectic representation [19] associates to each such

matrix A a unitary operator �(A). The symplectic co-

variance of the WD is characterized by the relation

W�(A)x(t; f ) =Wx

(
A

(
t

f

))
:

Special cases of the symplectic covariance property

are as follows:

TF scaling:

A =

(
D−1 0

0 D

)

⇔ (�(A)x)(t) =
1√

|detD|
x(D−1t)

⇔W�(A)x(t; f ) =Wx(D
−1t;Df )

Fourier transform:

A =

(
0 −IT 2

I =T 2 0

)

⇔ (�(A)x)(t) =
1

T
X
( t

T 2

)

⇔W�(A)x(t; f ) =Wx

(
−T 2f ;

t

T 2

)

Chirp multiplication:

A =

(
I 0

C I

)

⇔ (�(A)x)(t) = e−j�tTCtx(t)

⇔W�(A)x(t; f ) =Wx(t; f + Ct)

Chirp convolution:

A =

(
I B

0 I

)

⇔ (�(A)x)(t) =
e−j�tTB−1t

√
|detB|

∗ x(t)

⇔W�(A)x(t; f ) =Wx(t + Bf ; f )

2.2. Weyl symbol

We next de=ne an extended WS that is related to

the WD of multidimensional vector signals. Consider

a linear operator (LTV system) H that maps a multi-

dimensional vector signal x(t) to another multidimen-

sional vector signal y(t) of the same vector length 5

K and the same signal dimension:

y(t) = (Hx)(t) =

∫

t′
H(t; t′)x(t′) dt′;

with the K × K matrix kernel H(t; t′) = [hk; l(t; t
′)].

We de=ne the WS of such an operatorH as the K ×K

matrix function

LH(t; f ),

∫

�

H
(
t +

�

2
; t − �

2

)
e−j2�f T� d�: (10)

The WD in (6) is equal to the WS of the rank-one

operator x⊗ xH whose kernel equals x(t)xH(t′):

H = x⊗ xH ⇔ LH(t; f ) =Wx(t; f ):

Another link between WD and WS is provided by the

relation

〈LH;Wx〉= 〈Hx; x〉;

which shows how quadratic forms can be reformulated

in the TF domain.

In the following, we discuss important mathemat-

ical properties of the WS LH(t; f ). These properties

extend the properties summarized in Table 2.

TF shift covariance. For a TF shifted system H̃ =

St0 ;f0HS
+
t0 ; f0

,

LH̃(t; f ) = LH(t − t0; f − f0):

5 The extension to the case of diIerent vector lengths is straight-

forward.
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Adjoint; Hermitian symmetry. The WS of the ad-

joint operator H+ is obtained by Hermitian transposi-

tion of LH(t; f ),

LH+(t; f ) = LH
H(t; f ):

This implies that the WS of a self-adjoint operator

H =H+ features Hermitian symmetry,

H =H+ ⇒ LH(t; f ) = L
H
H(t; f ):

In particular, in this case the diagonal elements of

LH(t; f ) are real-valued.

Marginals and trace. Under certain conditions,

the WS LH(t; f ) can be interpreted as a TF transfer

function of H. This interpretation is supported by the

marginal properties
∫

t

LH(t; f ) dt = Ĥ(f ; f );

∫

f

LH(t; f ) df =H(t; t);

where Ĥ(f ; f ′) denotes the 2-D Fourier transform of

H(t; t). These marginal properties imply the “trace

preservation”
∫

t

∫

f

LH(t; f ) dt df = tr{H};

where tr{H},
∫
t
H(t; t) dt denotes a matrix-valued

operator trace (note the diIerence to the matrix trace

denoted by Tr{·}).
Moyal-type relation and energy. A Moyal-type

(i.e., inner product preservation) property of the WS

is given by

〈LH1
;LH2

〉= 〈H1;H2〉;

with the WS inner product de=ned as in (9) and the

Hilbert–Schmidt operator inner product 〈H1;H2〉 =∫
t

∫
t′
Tr{H1(t; t

′)HH
2 (t; t

′)} dt dt′. In the case H1 =

H2 = H, this specializes to the norm preservation

property

‖LH‖2 = ‖H‖2;

with ‖H‖2=
∫
t

∫
t′
Tr{H(t; t′)HH(t; t′)} dt dt′ denot-

ing the squared Hilbert–Schmidt operator norm.

Finite support. Let H (s)(t; �) , H(t + �
2
; t − �

2
)

and let Ĥ (s)(f ; �) denote the Fourier transform of

H (s)(t; �). Then

H (s)(t; �) = 0; t �∈ [t1; t2]

⇔ LH(t; f ) = 0; t �∈ [t1; t2];

Ĥ (s)(f ; �) = 0; f �∈ [f1; f2]

⇔ LH(t; f ) = 0; f �∈ [f1; f2]:

Symplectic covariance. Similarly to the WD, the

WS is covariant to area-preserving linear coordinate

transforms:

L�(A)H�(A)+(t; f ) = LH

(
A

(
t

f

))
:

Special cases of the symplectic covariance property

(TF scaling, Fourier transform, chirp multiplication,

and chirp convolution) have been considered for the

WD in Section 2.1.

3. Nonstationary random processes

We next consider a (generally nonstationary)

random process x(t) with zero mean and correlation

function rx(t; t
′) = E{x(t)x∗(t′)}. (We restrict our

discussion to the scalar 1-D case although general-

izations to multidimensional vector processes along

the lines of Section 2 are straightforward.) Of course,

the WD can be applied to an arbitrary realization of

this process, so that the WD Wx(t; f) is itself a 2-D

random process. An immediate question of interest

pertains to the average behavior of the WD. This is

characterized by the expectation of Wx(t; f)—if it

exists,

W x(t; f), E{Wx(t; f)}

= E

{∫

�

x
(

t +
�

2

)
x∗
(

t − �

2

)
e−j2�f� d�

}
;

(11)

which is known as Wigner–Ville spectrum (WVS)

[17,18,48,43]. (We note, however, that usually the def-

inition of the WVS is based on Eq. (13) below.) The

WVS can be loosely interpreted as a TF distribution
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Table 3

Some properties of the WVS

TF shift covariance x̃(t) = (St0 ;f0
x)(t) ⇒ W x̃(t; f) = W x(t − t0; f − f0)

Realvaluedness W x(t; f) = W
∗

x (t; f)

Marginal properties
∫

t
W x(t; f) dt = rX (f; f) = E{|X (f)|2}

∫
f

W x(t; f) df = rx(t; t) = E{|x(t)|2}

Mean energy
∫

t

∫
f

W x(t; f) dt df = E{‖x‖2},

Moyal-type relation
∫

t

∫
f

W x(t; f)W y(t; f) dt df = 〈Rx ;Ry〉

Finite support rx(t; t) = 0, t �∈ [t1; t2] ⇒ W x(t; f) = 0, t �∈ [t1; t2]

rX (f; f) = 0, f �∈ [f1; f2] ⇒ W x(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance x̃(t) = (�(A)x)(t) ⇒ W x̃(t; f) = W x(A(
t
f
))

of the mean energy of x(t). In particular,

W x(t; f) ∗t ∗fWw(−t;−f) = E{|〈x; wt;f〉|2}¿ 0:

(12)

Since E{|〈x; wt;f〉|2} measures the average energy of

x(t) in a local neighborhood of the TF analysis point

(t; f), (12) shows that local averages of the WVS are

measures of the mean local energy of x(t) about (t; f).

Under mild conditions [18], expectation and inte-

gration in (11) can be interchanged and we obtain

W x(t; f) =

∫

�

rx

(
t +

�

2
; t − �

2

)
e−j2�f� d�

= LRx
(t; f); (13)

where Rx = E{x ⊗ x∗} denotes the correlation oper-

ator 6 of x(t) and the last expression in (13) is ob-

tained upon comparison with (3). We conclude that

the WVS of x(t) equals the WS of Rx. An expres-

sion relating the WVS and the WD can be obtained

by using the Karhunen–LoTeve (KL) eigenexpansion

[17], Rx =
∑

k �kuk ⊗ u∗k . Here, �k ¿ 0 are the KL

eigenvalues and {uk(t)} is the orthonormal basis of

KL eigenfunctions. Inserting this expansion into (13),

6 The correlation operator of a random process x(t) is the

positive (semi-)de=nite linear operator with kernel rx(t; t
′).

we obtain

W x(t; f) =
∑

k

�kWuk
(t; f):

Thus, the WVS is a weighted sum of the WDs of the

KL eigenfunctions with the KL eigenvalues being the

corresponding weights.

The invertibility of the WS (cf. (4)) implies that the

correlation function rx(t; t
′) can be reobtained from

the WVS, and thus, the WVS constitutes a complete

second-order statistics of x(t). Further mathematical

properties of the WVS that justify an interpretation

as mean TF energy spectrum (or time-varying power

spectrum) are listed in Table 3.

A feature distinguishing the WVS (i.e., the ex-

pected WD) from the WD pertains to the occurrence

of cross terms. While in the WD oscillating and

partly negative cross terms will always occur mid-

way between any two signal components [25], the

presence of cross terms in the WVS is determined

by the TF correlations of the process [44,48] (the

WVS cross terms are therefore sometimes termed

statistical cross terms). Random processes featuring

correlations only between closely spaced TF points

are called underspread [39,41,44,48]. Their WVS

features virtually no statistical cross terms. On the

other hand, the WVS of overspread processes (i.e.,

processes for which even widely spaced TF points
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Fig. 3. WVS of four random processes with increasing levels of TF correlation.

are strongly correlated) contains signi=cant statistical

cross terms. The relation of statistical cross terms

to TF correlations is corroborated by the following

result that applies to Gaussian random processes. Let

Cx(t; f; �; �)

, cov
{

Wx

(
t +

�

2
; f +

�

2

)
; Wx

(
t − �

2
; f − �

2

)}

=E
{[

Wx

(
t +

�

2
; f +

�

2

)
− W x

(
t +

�

2
; f +

�

2

)]

×
[
Wx

(
t − �

2
; f − �

2

)
− W x

(
t − �

2
; f − �

2

)]}
:

Remarkably, this WD covariance can be shown to

equal the (coordinate-transformed) transfer Wigner

distribution of the correlation operator Rx (cf. (16) in

Section 4),

Cx(t; f; �; �) = W̃Rx
(t; f; �; �):

For =xed (t; f), Cx(t; f; �; �) characterizes the corre-

lation of all WD values that lie symmetrically about

(t; f) and are separated by � in time and by � in fre-

quency. The overall correlation of WD components

about (t; f) is obtained by integrating over � and

�, which can be shown to yield the squared WVS

at (t; f):

∫

�

∫

�

Cx(t; f; �; �) d� d� = W
2

x(t; f):

This demonstrates that large values of W x(t; f) are

not necessarily due to energetic contributions of x(t)

about (t; f) but may also be the result of strong TF

correlations of process components lying symmetri-

cally with respect to (t; f).

The application of the WVS to statistical signal

processing (nonstationary signal estimation and detec-

tion) is discussed in [16,28,30,31,46,49,62].

Example 1. As an illustration of the WVS and sta-

tistical cross terms, we consider a synthetic random

process that consists of two eIectively TF disjoint,

underspread “subprocesses”, i.e., x(t) = x1(t) + x2(t).

If x1(t) and x2(t) are uncorrelated, x(t) is underspread

and there simply is W x(t; f) =W x1(t; f) +W x2(t; f).

Here, theWVS of x(t) does not contain statistical cross

terms and correctly indicates the mean energy distri-

bution of x(t), as depicted in Fig. 3(a). However, for

increasing correlation between x1(t) and x2(t), x(t) be-

comes more and more overspread. This is rePected by

the statistical cross terms—indicating the TF correla-

tion between x1(t) and x2(t)—that become more and

more pronounced as shown in Fig. 3(b)–(d). Since

these statistical cross terms are partly negative, they

prevent an interpretation of W x(t; f) as mean TF en-

ergy distribution. Note, however, that according to

(12) suitable local averages of the WVS correctly in-

dicate that x(t) features no energy at the TF locations

of the statistical cross terms.

Example 2. Next, we consider the application of the

WVS to the spectral analysis of pressure signals mea-

sured in a car engine during knocking combustions

(cf. Section 1.1). This application was possible since

an ensemble of observations (several recorded pres-

sure signals) was available. Estimates of the WVS

were obtained by replacing the expectation (i.e., the

true ensemble average) with the average of the WDs

of the individual observations. Fig. 4 shows the re-

sulting WVS estimates obtained for engine speeds of

1000, 2000, and 4000 rpm. These spectrum estimates
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Fig. 4. Estimated WVS of pressure signals measured in a car engine running at (a) 1000 rpm, (b) 2000 rpm, and (c) 4000 rpm. Horizontal

axis is crank angle (which is proportional to time), vertical axis is frequency in kHz. This =gure should be compared to Fig. 1.

show that the pressure signals consist of several

resonance components whose frequencies decrease

with time. A comparison with Fig. 1 shows that the

WVS features much less cross terms than the WD

of a single realization. This is because the individual

resonance components are eIectively uncorrelated

[37], i.e., the pressure signal process is reasonably

underspread.

4. Linear time-varying systems

An interesting alternative to the WS for the TF de-

scription of an LTV system H is the transfer Wigner

distribution (TWD), de=ned as [1,29,42]

WH(t; f; t′; f′)

,

∫

�

∫

�′
h

(
t +

�

2
; t′ +

�′

2

)

×h∗
(

t − �

2
; t′ − �′

2

)
e−j2�(f�−f′�′) d� d�′:

Comparing with (6), it is seen that the TWD (up to

a minus sign in the exponent) is a special case of the

WD of a scalar 2-D (K = 1; D = 2) “signal”, the sig-

nal actually being the impulse response h(t; t′) of H.

Consequently, the TWD is a quadratic system repre-

sentation (in contrast to the WS, which is a linear sys-

tem representation). The TWD describes the mapping

of the WD of the input signal x(t) to the WD of the

output signal (Hx)(t) via the relation

WHx(t; f) =

∫

t′

∫

f′

WH(t; f; t′; f′)Wx(t
′; f′) dt′ df′:

Hence, with certain precautions, WH(t; f; t′; f′) can

be viewed as a measure of the amount of energy that

the LTV system H transfers from the TF point (t′; f′)

to the TF point (t; f). Further mathematical properties

of the TWD are summarized in Table 4.

Integrating the TWD WH(t; f; t′; f′) with respect

to (t; f) and (t′; f′) yields the so-called input Wigner

distribution (IWD) and output Wigner distribution

(OWD) of H, respectively [29], i.e.,

W
(I)
H (t; f),

∫

t1

∫

f1

WH(t1; f1; t; f) dt1 df1;

W
(O)
H (t; f),

∫

t′

∫

f′

WH(t; f; t′; f′) dt′ df′:

The IWD describes how much energy is picked up by

the systemH at the TF point (t; f). Thus, the eIective

support of the IWD characterizes the TF region where

the system H can pick up energy. In contrast, the

OWD describes how much energy is delivered (on

average) by H at the TF point (t; f), and thus its

eIective support equals the TF region where the output

signals ofH are potentially located. Using the singular

value decomposition [55]H=
∑

k (kuk⊗v∗k (where (k ,

uk(t), and vk(t) denote the singular values, left singular

functions, and right singular functions, respectively),

one can show

W
(I)
H (t; f) =

∑

k

(2
kWvk

(t; f);

W
(O)
H (t; f) =

∑

k

(2
kWuk

(t; f): (14)
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Table 4

Some properties of the TWD

Input TF shift H̃ =HS+t0 ;f0
⇒ WH̃(t; f; t′; f′) =WH(t; f; t′ − t0; f

′ − f0)

Output TF shift H̃ = St0 ;f0
H ⇒ WH̃(t; f; t′; f′) =WH(t − t0; f − f0; t

′; f′)

Realvaluedness WH(t; f; t′; f′) =W∗

H(t; f; t′; f′)

Marginal properties I
∫

t

∫
t′
WH(t; f; t′; f′) dt dt′ = |H (f; f′)|2

∫
f

∫
f′ WH(t; f; t′; f′) df df′ = |h(t; t′)|2

Marginal properties II
∫

t′

∫
f′ WH(t; f; t′; f′) dt′ df′ = W

(O)
H

(t; f)

∫
t

∫
f
WH(t; f; t′; f′) dt df = W

(I)
H
(t′; f′)

Energy
∫

t

∫
f

∫
t′

∫
f′ WH(t; f; t′; f′) dt df dt′ df′ = ‖H‖2

∫
t

∫
f

∫
t′

∫
f′ W

2
H(t; f; t′; f′) dt df dt′ df′ = ‖H‖4

Moyal-type relation 〈WH1
;WH2

〉= |〈H1;H2〉|
2

Finite support h(t; t′) = 0, t′ �∈ [t1; t2] ⇒ WH(t; f; t′; f′) = 0, t′ �∈ [t1; t2]

h(t; t′) = 0, t �∈ [t1; t2] ⇒ WH(t; f; t′; f′) = 0, t �∈ [t1; t2]

H (f; f′) = 0, f′ �∈ [f1; f2] ⇒ WH(t; f; t′; f′) = 0, f′ �∈ [f1; f2]

H (f; f′) = 0, f �∈ [f1; f2] ⇒ WH(t; f; t′; f′) = 0, f �∈ [f1; f2]

Symplectic covariance H̃ =H�(A)+ ⇒ WH̃(t; f; t′; f′) =WH(t; f;A( t′

f′
))

H̃ = �(A)H ⇒ WH̃(t; f; t′; f′) =WH(A(
t
f
); t′; f′)

These relations provide a link between the IWD/OWD

and the ordinary WD. Since the left and right singular

functions span the signal spaces whereH respectively

delivers and picks up energy, (14) further supports

the above-mentioned interpretations of the IWD and

OWD.

The IWD and OWD can also be related to the WS

via the expressions

W
(I)
H (t; f) = LH+H(t; f);

W
(O)
H (t; f) = LHH+(t; f): (15)

Hence, it is seen that in the case of a normal system

(i.e., a system satisfyingHH+=H+H [55]), the IWD

and OWD coincide. Further mathematical properties

of the IWD and OWD are summarized in Tables 5

and 6.

The OWD can be linked to the spectral analysis of

nonstationary processes. For a nonstationary random

process x(t), consider the innovations system repre-

sentation that is given by the input–output relation

x(t) = (Hxn)(t) =
∫

t
hx(t; t

′)n(t′) dt′, where n(t) de-

notes normalized stationary white noise and hx(t; t
′) is

the kernel of an innovations systemHx of x(t) [12,57].

The correlation operator of x(t) can be written in terms

of the innovations system Hx as Rx = HxH
+
x .

Comparing (15) and (13), it is then seen that the

WVS of x(t) equals the OWD of the innovations

system Hx,

W x(t; f) = LRx
(t; f) = LHxH+

x
(t; f) = W

(O)
Hx

(t; f):
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Table 5

Some properties of the IWD (U denotes a unitary operator)

Input TF shift H̃ =HS+t0 ;f0
⇒ W

(I)

H̃
(t; f) = W

(I)
H
(t − t0; f − f0)

Output TF shift H̃ = St0 ;f0
H ⇒ W

(I)

H̃
(t; f) = W

(I)
H
(t; f)

Realvaluedness W
(I)
H
(t; f) = W

(I)∗
H

(t; f)

Marginal properties
∫

t
W

(I)
H
(t; f) dt = (H+H)(f; f)

∫
f

W
(I)
H
(t; f) df = (H+H)(t; t)

Energy
∫

t

∫
f

W
(I)
H
(t; f) dt df = ‖H‖2

Moyal-type relation
∫

t

∫
f

W
(I)
H1
(t; f)W

(I)
H2
(t; f) dt df = ‖H1H

+
2 ‖

2

Finite support h(t; t′) = 0, t′ �∈ [t1; t2] ⇒ W
(I)
H
(t; f) = 0, t �∈ [t1; t2]

H (f; f′) = 0, f′ �∈ [f1; f2] ⇒ W
(I)
H
(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance H̃ =H�(A)+ ⇒ W
(I)

H̃
(t; f) = W

(I)
H
(A( t

f
))

Unitary invariance H̃ =UH ⇒ W
(I)

H̃
(t; f) = W

(I)
H
(t; f)

Table 6

Some properties of the OWD

Input TF shift H̃ =HS+t0 ;f0
⇒ W

(O)

H̃
(t; f) = W

(O)
H

(t; f)

Output TF shift H̃ = St0 ;f0
H ⇒ W

(O)

H̃
(t; f) = W

(O)
H

(t − t0; f − f0)

Realvaluedness W
(O)
H

(t; f) = W
(O)∗
H

(t; f)

Marginal properties
∫

t
W

(O)
H

(t; f) dt = (HH+)(f; f)

∫
f

W
(O)
H

(t; f) df = (HH+)(t; t)

Energy
∫

t

∫
f

W
(O)
H

(t; f) dt df = ‖H‖2

Moyal-type relation
∫

t

∫
f

W
(O)
H1

(t; f)W
(O)
H2

(t; f) dt df = ‖H+
1 H2‖

2

Finite support h(t; t′) = 0, t �∈ [t1; t2] ⇒ W
(O)
H

(t; f) = 0, t �∈ [t1; t2]

H (f; f′) = 0, f �∈ [f1; f2] ⇒ W
(O)
H

(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance H̃ = �(A)H ⇒ W
(O)

H̃
(t; f) = W

(O)
H

(A( t
f
))

Unitary invariance H̃ =HU⇒ W
(O)

H̃
(t; f) = W

(O)
H

(t; f)
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Fig. 5. IWD, OWD, and TWD slice of two overspread systems: (a) System causing a unidirectional energy transfer (indicated by dashed

arrow) from upper right to lower left corner, (b) system causing a bidirectional energy transfer between upper right and lower left corner.

Let us =nally consider the following coordinate-

transformed version of the TWD,

W̃H(t; f; �; �)

,WH

(
t +

�

2
; f +

�

2
; t − �

2
; f − �

2

)
: (16)

Remarkably, this coordinate-transformed WD of the

“signal” h(t; t′) can be shown to equal the WD of the

“signal” LH(t; f), i.e.,

W̃H(t; f; �; �)

=

∫

)t

∫

)f

LH

(
t +

)t

2
; f +

)f

2

)

×L∗
H

(
t − )t

2
; f − )f

2

)

×e−j2�(�)t−�)f) d)t d)f: (17)

From this expression, it follows that
∫

�

∫

�

W̃H(t; f; �; �) d� d� = |LH(t; f)|2:

An interpretation of this relation was provided in Sec-

tion 1.2 (cf. the discussion around (5)).

Example. The IWD, OWD, and TWD of two syn-

thetic LTV systems are shown in Fig. 5. Both LTV

systems are overspread, i.e., they introduce signi=-

cant TF shifts. Indeed, in the case of the =rst system

(Fig. 5(a)), these TF shifts are obvious from the fact

that the TF supports of the IWD and OWD (i.e., the TF

regions where energy is picked up and delivered, re-

spectively) are eIectively disjoint. This energy trans-

fer “to the left and down” is also correctly indicated

by the TWD slice W̃H(t0; f0; �; �) with the TF center

point (t0; f0) chosen as indicated by the cross in the

IWD and OWD plots.

In contrast, for the second system (Fig. 5(b)), the

IWD and OWD are seen to be completely equal, i.e.,

the TF regions where energy is picked up and where

energy is delivered are the same. Nonetheless, the sys-

tem introduces signi=cant TF shifts. Indeed, the TWD

slice W̃H(t0; f0; �; �) (with (t0; f0) chosen as in part

(a)) shows that the energy picked up in the upper

right corner is completely transferred to the lower left
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corner and vice versa. We note that for these examples

none of the conclusions drawn from the IWD, OWD,

and TWD could have been obtained from the WS in

a similarly simple and clear manner.

5. Random time-varying systems

In certain cases, the LTV system H under con-

sideration is modeled as being random, i.e., impulse

response h(t; t′) and WS LH(t; f) are 2-D random

processes. A particularly important application is

the modeling of wireless communication channels

that are generally characterized by random multipath

propagation and Doppler shifts [60]. Usually, in this

context the assumption of wide-sense stationary

uncorrelated scattering (WSSUS) is made [2,52],

which amounts to assuming that LH(t; f) is a 2-D

stationary process. This means that the 4-D correla-

tion function of LH(t; f),

rH(t; f;)t; )f), E

{
LH

(
t +

)t

2
; f +

)f

2

)

× L∗
H

(
t − )t

2
; f − )f

2

)}
;

(18)

is independent of t and f. Thus, rH(t; f;)t; )f) =

r̃H()t; )f) where r̃H()t; )f) is termed the TF

correlation function [2,52]. The WSSUS assumption

allows the use of “stationary” techniques for the char-

acterization of random LTV channels. In particular,

the scattering function [2,52]

CH(�; �),

∫

)t

∫

)f

r̃H()t; )f)

×e−j2�(�)t−�)f) d)t d)f (19)

is the power spectral density of LH(t; f). It describes

the mean power of scatterers causing a time delay �

and a Doppler frequency shift �. Just as r̃H()t; )f),

the scattering function is a complete description of the

second-order statistics of a WSSUS channel.

In practice, the WSSUS assumption holds only ap-

proximately within certain time and frequency inter-

vals. In this case, the scattering function is no longer

de=ned. It is thus of interest to =nd an extension of the

scattering function that applies to non-WSSUS chan-

nels, i.e., channels whose WS is a 2-D nonstationary

process. By analogy to (19) and (13), we introduce

the local scattering function [45]

CH(t; f; �; �)

,

∫

)t

∫

)f

rH(t; f;)t; )f)

×e−j2�(�)t−�)f) d)t d)f: (20)

It can be shown [45] that CH(t; f; �; �) character-

izes the mean power of scatterers causing a delay

� and Doppler shift � of input signal components

localized about (t; f). In the case of a WSSUS sys-

tem, CH(t; f; �; �) = CH(�; �). Some properties of

CH(t; f; �; �) are listed in Table 7.

We =nally discuss some relations of the local scat-

tering function CH(t; f; �; �) with various other TF

representations considered previously. First, by com-

paring (20) and (18) with (17), it is seen that

CH(t; f; �; �) = E{W̃H(t; f; �; �)};

provided that the integration and expectation in (20)

can be interchanged. Since W̃H(t; f; �; �) can be

interpreted as the WD of LH(t; f), it follows that

CH(t; f; �; �) can be viewed as the WVS (cf. (11))

of the 2-D process LH(t; f), i.e., CH(t; f; �; �) =

W LH(t; f; �; �). This suggests that the local scattering

function can be written in terms of the WS. In fact,

comparing (20) and (10) (with K = 1, D = 2) shows

that

CH(t; f; �; �) = W LH(t; f; �; �) = LRH(t; f; �; �);

where RH denotes the correlation operator whose 4-D

kernel is the correlation function E{LH(t; f)L∗
H(t

′; f′)}
of LH(t; f).

Example. We illustrate the application of the lo-

cal scattering function CH(t; f; �; �) to a measured 7

non-WSSUS channel (suburban, partial line-of-sight

scenario). During the measurement duration of 50 s,

the mobile moved around a corner with a constant

velocity of 1:6 m=s and approached the base station.

7 The measurements were performed in the course of the

METAMORP project [34]. We are grateful to T-NOVA Deutsche

Telekom Innovationsgesellschaft mbH (Technologiezentrum

Darmstadt, Germany) and to I. Gaspard and M. Steinbauer for

providing us with the measurement data.
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Table 7

Some properties of the local scattering function

TF shift covariance H̃ = St0 ;f0
HS+t0 ;f0

⇒ CH̃(t; f; �; �) = CH(t − t0; f − f0; �; �)

Realvaluedness CH(t; f; �; �) = C∗

H(t; f; �; �)

Marginal properties
∫

t

∫
�
CH(t; f; �; �) dt d� = E{|H (s)(f; �)|2}

∫
f

∫
�
CH(t; f; �; �) df d� = E{|h(s)(t; �)|2}

∫
�

∫
�
CH(t; f; �; �) d� d� = E{|LH(t; f)|2}

Mean energy
∫

t

∫
f

∫
�

∫
�
CH(t; f; �; �) dt df d� d� = E{‖H‖2}

Finite support h(s)(t; �) = 0, t �∈ [t1; t2] ⇒ CH(t; f; �; �) = 0, t �∈ [t1; t2]

h(s)(t; �) = 0, � �∈ [�1; �2] ⇒ CH(t; f; �; �) = 0, � �∈ [�1; �2]

H (s)(f; �) = 0, f �∈ [f1; f2] ⇒ CH(t; f; �; �) = 0, f �∈ [f1; f2]

H (s)(f; �) = 0, � �∈ [�1; �2] ⇒ CH(t; f; �; �) = 0, � �∈ [�1; �2]

Symplectic covariance H̃ = �(A)H�(A)+ ⇒ CH̃(t; f; �; �) = CH(A(
t
f
);A−1( �

�
))

An estimate of the local scattering function was

obtained by applying a nonstationary 2-D multiwin-

dow estimator to a single measurement of the chan-

nel transfer function [45]. The results are shown in

Fig. 6 for f = fc (the carrier frequency) and four

diIerent time instants corresponding to four diIerent

mobile positions. For t = 5 s (see Fig. 6(a)), there

is no line-of-sight so that shadowing causes a large

path loss. Furthermore, the Doppler frequencies close

to �max = 9:56 Hz indicate that the angle of arrival

(AOA) of all paths is about 0◦ (i.e., the waves arrive

from ahead of the mobile). As the mobile approaches

the corner, the delays gradually drift from � = 0:5 to

0:3 �s and the frequency spread of the Doppler com-

ponents grows since the scatterer’s angular spread and

thus the AOA spread increase (see Fig. 6(b)). At about

t=25 s, the mobile passes the corner. This results in a

strong line-of-sight component from broadside (AOA

90◦, Doppler frequency ≈ 0 Hz) that can be seen in

Fig. 6(c). At about t = 40 s, the mobile turned right

which resulted in an AOA of≈ 0◦ for the line-of-sight

component and thus a dominant Doppler frequency

≈ �max (see Fig. 6(d)). A second, weaker contribution

with Doppler frequency ≈ −�max, i.e., AOA 180◦, is

due to a building located behind the mobile at that

time.

6. Linear signal spaces

The success of the WD as a tool for analyzing de-

terministic signals suggested the de=nition of similar

TF representations for collections of signals like linear

signal spaces (discussed in this section) and frames

(discussed in Section 7). A linear signal space X is a

set of signals such that c1x1(t) + c2x2(t)∈X for any

two elements x1(t); x2(t)∈X [55]. The signal space

X can be characterized by a (nonunique) orthonormal

basis or by the associated orthogonal projection opera-

tor 8 PX. The dimension NX of the spaceX equals the

cardinality of any orthonormal basis spanning X or,

equivalently, the rank of the projection operator PX.

Using an arbitrary orthonormal basis

{xk(t)}k∈{1; :::;NX} of X, the orthogonal projection

8 The orthogonal projection operator PX associated to a signal

space X is the self-adjoint (P+
X
=PX) and idempotent (P2

X
=PX)

linear operator with range X.
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Fig. 6. Estimated local scattering function CH(t; f; �; �) (in dB) of a measured channel for f = fc and (a) t = 5 s, (b) t = 20 s,

(c) t = 28 s, (d) t = 40 s.

operator can be written as

PX =

NX∑

k=1

xk ⊗ x∗k ; (21)

with kernel pX(t; t
′) =

∑NX

k=1 xk(t)x
∗
k (t

′) (here,

xk ⊗ x∗k is the rank-one projection operator on the

one-dimensional space spanned by xk(t)). Since

the WD Wxk
(t; f) characterizes the TF location of the

energy of xk(t), it is reasonable to de=ne the WD of

the signal spaceX as the sum of all Wxk
(t; f) [22,26],

similar to (21):

WX(t; f),

NX∑

k=1

Wxk
(t; f)

=

NX∑

k=1

∫

�

xk

(
t +

�

2

)
x∗k

(
t − �

2

)
e−j2�f� d�:

(22)

As will be made clear presently, the WD ofX does not

depend on the speci=c basis {xk(t)} used in the above

de=nition. Eq. (22) suggests that WX(t; f) describes

the TF location of the signal space X in the sense that

any signal x(t)∈X will be located in the TF region

where WX(t; f) is eIectively nonzero. Signals located

entirely in TF regions where WX(t; f) ≈ 0 will be

approximately orthogonal to X.

For a one-dimensional space spanned by some sig-

nal x(t), the WD of the space is just the WD of the

signal (up to a scaling with the energy ‖x‖2 of the

signal),

X = span{x(t)}

⇔ WX(t; f) =
1

‖x‖2 Wx(t; f):

On the other hand, if X equals the space L2(R) of

square-integrable signals then WX(t; f) ≡ 1, which

means that L2(R) covers the entire TF plane. In fact,

it can be shown that (at least for “nonsophisticated”

spaces [22]) the WD of a space approximately equals

1 within the TF region where the signals contained in
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Table 8

Some properties of the WD of a signal space

TF shift covariance X̃ = St0 ;f0
X ⇒ W

X̃
(t; f) = WX(t − t0; f − f0)

Realvaluedness WX(t; f) = W ∗

X
(t; f)

Marginal properties
∫

t
WX(t; f) dt = PX(f; f),

∫
f

WX(t; f) df = pX(t; t)

Trace and energy
∫

t

∫
f

WX(t; f) dt df = NX,
∫

t

∫
f

W 2
X
(t; f) dt df = NX

Moyal-type relations
∫

t

∫
f

WX(t; f)WY(t; f) dt df = 〈PX ;PY〉

X ⊥ Y ⇒
∫

t

∫
f

WX(t; f)WY(t; f) dt df = 0

X ⊆ Y ⇒
∫

t

∫
f

WX(t; f)WY(t; f) dt df = NX

Finite support ∀x(t)∈X: x(t) = 0, t �∈ [t1; t2] ⇒ WX(t; f) = 0, t �∈ [t1; t2]

∀x(t)∈X: X (f) = 0, f �∈ [f1; f2] ⇒ WX(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance X̃ = �(A)X ⇒ W
X̃
(t; f) = WX(A(

t
f
))

X are located and 0 otherwise, i.e., WX(t; f) is ap-

proximately the indicator function of a TF region R

associated to X. A relation supporting this interpreta-

tion is

06WX(t; f) ∗t ∗fWw(−t;−f)

= ‖PXwt;f‖26 1; (23)

where w(t) is an arbitrary normalized test signal. If the

TF shifted signal wt0 ;f0
(t) lies (mostly) withinX, then

‖PXwt0 ;f0
‖2 ≈ 1 and (23) shows that the local aver-

age of WX(t; f) about the TF analysis point (t0; f0)

approximately equals 1. Conversely, if wt0 ;f0
(t) lies

mostly outside X (i.e., if wt0 ;f0
(t) is eIectively or-

thogonal to X), then ‖PXwt0 ;f0
‖2 ≈ 0 and the local

average of WX(t; f) about (t0; f0) is approximately 0.

This interpretation of the WD of a linear signal space

provides the basis for the design of TF projection ;l-

ters [22,27,50]. Some further properties of WX(t; f)

are summarized in Table 8.

Interchanging integration and summation in (22)

and comparing with (21), it is seen that

WX(t; f) = LPX
(t; f)

=

∫

�

pX

(
t +

�

2
; t − �

2

)
e−j2�f� d�:

That is, the WD of the space X equals the WS of the

orthogonal projection operator PX. This shows that

WX(t; f) is indeed independent of the speci=c basis

{xk(t)} used in the de=nition (22). Because orthogonal
projection operators are idempotent and self-adjoint,

PX = P2
X
= P+

X
PX = PXP

+
X
, and thus (cf. (15) with

H replaced by PX)

WX(t; f) = W
(I)
PX
(t; f) = W

(O)
PX

(t; f):

That is, the WD of the spaceX equals the IWD/OWD

of the projection operator PX.

Example. We consider spaces spanned by NX

time-shifted versions of the ideally bandlimited

sinc function x0(t) = sin(�Bt)=(�
√

Bt), i.e., xk(t) =

x0(t − k=B), k = 1; : : : ; NX. Fig. 7 shows the WD

of such spaces for NX = 1, NX = 12, NX = 24, and

NX = 36. In all four cases, the WD correctly rePects

the bandlimitation of these signal spaces and its ef-

fective time support is an interval of duration NX=B.

Within its eIective TF support region of bandwidth B

and duration NX=B, the WD approximately equals 1,

whereas outside this region the WD is approximately

zero. Thus, the WD correctly indicates the TF support

of the spaces. Note that the area of the eIective TF

support region equals the space dimension NX.
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Fig. 7. WD of four signal spaces spanned by NX time-shifted sinc functions with (a) NX =1, (b) NX =12, (c) NX =24, and (d) NX =36.

7. Frames

In recent years, nonorthogonal and, possibly, redun-

dant (overcomplete) signal expansions have gained

increasing popularity [14,15,21]. Examples include

Gabor and wavelet expansions. The theory of frames

[14,15,21] yields a powerful and convenient mathe-

matical framework for the analysis and implementa-

tion of nonorthogonal signal expansions.

Brief review of frame theory. Consider a signal

space (Hilbert space)X. A set of functionsG={gk(t)}
with gk(t)∈X is called a frame for X if

0¡ A‖x‖26
∑

k

|〈x; gk〉|26B‖x‖2 ¡∞ (24)

for every nonzero signal x(t)∈X (note that the gk(t)

need not be orthogonal and the cardinality of G may

be larger than the dimension of X). The constants A

and B are called frame bounds. 9 The frame operator

G associated to G and its kernel are given by

G =
∑

k

gk ⊗ g∗k ; G(t; t′) =
∑

k

gk(t)g
∗
k (t

′) (25)

(note the formal similarity to (21)). On X, G is a

self-adjoint, positive de=nite, invertible linear opera-

tor; furthermore, the lower and upper frame bounds

equal the in=mum and supremum, respectively, of the

eigenvalues of G.

The dual frame is the set of functions G̃= {0k(t)}
obtained as

0k(t) = (G−1gk)(t);

9 In what follows, we consider the largest possible A and the

smallest possible B.

where G−1 is the inverse frame operator. For the dual

frame, the frame bounds are A′ = 1=B and B′ = 1=A

and the frame operator equals +=
∑

k 0k ⊗ 0∗k =G
−1.

Using the frame G and the dual frame G̃, any signal

x(t)∈X can be expanded as

x(t) =
∑

k

〈x; 0k〉gk(t) =
∑

k

〈x; gk〉0k(t): (26)

Thus, both G and G̃ span the signal space X.

A frame is called tight if A = B. Here, G = APX,

where PX is the orthogonal projection operator on X,

and 0k(t)=gk(t)=A. An orthonormal basis is a special

case of a tight frame with A = B = 1. A frame with

A ≈ B is called snug. Snug frames are desirable since

here gk(t) ≈ 0k(t). Furthermore, frame bounds that

are close to each other entail numerical stability of the

expansions (26).

The WD of a frame. It is possible to establish a

TF analysis of frames using a similar approach as for

linear signal spaces (cf. Section 6). Since the WD

Wgk
(t; f) of an individual frame function gk(t) char-

acterizes the TF location of the energy of gk(t), the

WD 10 of the frame G can be de=ned as the sum of

all Wgk
(t; f) [23], similar to (25):

WG(t; f),
∑

k

Wgk
(t; f)

=
∑

k

∫

�

gk

(
t +

�

2

)
g∗k

(
t − �

2

)
e−j2�f� d�:

(27)

10 In [23], what we here call the WD of a frame was originally

called the Weyl symbol of a frame, and the term “WD of a frame”

was used for the IWD/OWD of the frame operator.
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Table 9

Some properties of the WD of a frame

TF shift covariance G̃= St0 ;f0
G ⇒ W

G̃
(t; f) = WG(t − t0; f − f0)

Realvaluedness WG(t; f) = W ∗

G
(t; f)

Marginal properties
∫

t
WG(t; f) dt = Ĝ(f; f),

∫
f

WG(t; f) df = G(t; t)

Trace ANX6
∫

t

∫
f

WG(t; f) dt df = tr{G}6BNX

Energy A2NX6
∫

t

∫
f

W 2
G
(t; f) dt df = ‖G‖26B2NX

Moyal-type relation
∫

t

∫
f

WG1
(t; f)WG2

(t; f) dt df = 〈G1;G2〉

Finite support ∀k: gk(t) = 0, t �∈ [t1; t2] ⇒ WG(t; f) = 0, t �∈ [t1; t2]

∀k: Gk(f) = 0, f �∈ [f1; f2] ⇒ WG(t; f) = 0, f �∈ [f1; f2]

Symplectic covariance G̃= �(A)G ⇒ W
G̃
(t; f) = WG(A(

t
f
))

This de=nition suggests that WG(t; f) describes the

TF location of the frame G in the sense that any sig-

nal x(t)∈X will be located in the TF region where

WG(t; f) is eIectively nonzero. Some basic properties

of the WD of a frame are summarized in Table 9.

Again, local averages of the WD of a frame shed

additional light on its interpretation. In particular, it

can be shown that

A6WG(t; f) ∗t ∗fWw(−t;−f)

= 〈Gwt;f ; wt;f〉6B; (28)

where w(t) is an arbitrary normalized signal. Ac-

cording to (28), (a local average of) the WD of the

frame G correctly rePects the frame bounds A and

B. If WG(t; f) consistently assumes low values in a

TF region of area¿ 1 and high values in another TF

region of area ¿ 1, then (28) shows that the frame

bounds must be widely diIerent and thus the frame

is not snug. Conversely, if WG(t; f) is approximately

constant over the TF region that corresponds to the

space X, then the frame will be snug. Finally, if

WG(t; f) is approximately constant in some TF region

of area ¿ 1, then the frame is “locally snug” on the

subspace of X corresponding to that TF region [23].

Thus, the WD shows the TF dependence of a frame’s

snugness.

Interchanging integration and summation in (27)

and comparing with (25), it is seen that

WG(t; f) = LG(t; f)

=

∫

�

G
(

t +
�

2
; t − �

2

)
e−j2�f� d�:

That is, the WD of a frame G equals the WS of the

frame operatorG. For a tight frame, one can show that

WG(t; f) = AWX(t; f);

where WX(t; f) is the WD of the signal space X

spanned byG. For an orthonormal basis (or, more gen-

erally, any tight frame with A=1), there is WG(t; f)=

W
G̃
(t; f) = WX(t; f). If G is a tight frame for X =

L2(R), then WX(t; f) ≡ 1 and thus WG(t; f) ≡ A, i.e.,

the WD of the frame is constant over the entire TF

plane.

Gabor frames. A particularly interesting spe-

cial case is given by Gabor or Weyl-Heisenberg

frames [15,21]. These frames are obtained by TF

shifting a window g(t) to the TF points (kT; lF)

that de=ne a TF lattice with lattice constants

T and F . That is, G = {gk; l(t)} with gk; l(t) =

(SkT; lFg)(t) = g(t − kT )ej2�lFt , k; l∈Z. The dual

frame of a Gabor frame is also a Gabor frame

with dual window 0(t) = (G−1g)(t). The WD
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Fig. 8. WD (top), generating window g(t) (center), and dual window 0(t) (bottom) for three diIerent Gabor frames with TF = 1=2. The

window g(t) is a Gaussian function of (a) short, (b) medium, and (c) large eIective duration.

of a Gabor frame can be shown to equal

WG(t; f) =

∞∑

k=−∞

∞∑

l=−∞

Wg(t − kT; f − lF);

which implies that WG(t; f) = WG(t − T; f) =

WG(t; f − F), i.e., WG(t; f) is 2-D periodic.

We next restrict to TF = 1=(2n), n∈N. For this

special case, it can be shown that

WG(t; f) = |Zg(t; f)|2: (29)

Here,

Zg(t; f),
√

T

∞∑

n=−∞

g(t + nT )e−j2�nfT

denotes the Zak transform of g(t) [21,35] which is of

fundamental importance in the theory of Gabor frames

[15,21]. Based on (29), it can be shown that WG(t; f)

can be interpreted as the (continuous) eigenvalue dis-

tribution of the frame operator. As a consequence, one

has

A = min
t∈[0;T ]

f∈[0;F]

WG(t; f);

B = max
t∈[0;T ]

f∈[0;F]

WG(t; f):
(30)

These relations can be viewed as sharp versions

of the frame-bound inequalities in (28) (note

that the restriction to the fundamental TF cell

[0; T ]×[0; F] in (30) is possible due to the periodicity

of WG(t; f)).

Example. Fig. 8 shows the WD of three diIerent Ga-

bor frames with TF =1=2, i.e., oversampling factor 2.

The generating window g(t) is chosen as the normal-

ized Gaussian function g(t) = (1=
√

21=2Tg)e
−�(t=Tg)

2

with three diIerent time constants Tg corresponding

to a “short,” “medium,” and “large” eIective dura-

tion of the window. The WD in Fig. 8(a) features a

strong variation in the time direction, which indicates

that the window g(t) is too short relative to T . Indeed,

the ratio of the frame bounds determined according

to (30) is B=A = 3:7, which means that the frame is

far from being snug; the angle between g(t) and 0(t)

is 2 = arccos〈g; 0〉=(‖g‖ ‖0‖) = 25:3◦. Similar obser-

vations apply to Fig. 8(c). Here, the WD features a

strong variation in the frequency direction, which in-

dicates that g(t) is too narrowband or, equivalently,

too long. In this case, B=A=3:4 and 2=24◦. In con-

trast, Fig. 8(b) shows that for the medium-duration

window the WD of the associated frame is reasonably

Pat. Here, B=A = 1:41, i.e., the frame is quite snug.

Indeed, in this case 2 = 4:9◦, which means that g(t)

and 0(t) are almost collinear.
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8. Conclusion

We have discussed extensions of the Wigner distri-

bution (WD) to multidimensional vector signals, non-

stationary random processes, linear time-varying sys-

tems (both deterministic and random), linear signal

spaces, and frames. All WD extensions we consid-

ered are based on the Weyl symbol (WS), which thus

provides a unifying transformation or representation.

Speci=cally,

• the ordinary WD of a signal is the WS of a rank-one

operator,

• the Wigner–Ville spectrum (expected WD of a ran-

dom process) is the WS of a correlation operator,

• the WD of a signal space is the WS of an orthogonal

projection operator,

• and the WD of a frame is the WS of a frame oper-

ator.

We studied fundamental properties of the various WD

extensions, and we pointed out numerous relations

connecting them. We also illustrated by means of ap-

plication examples how speci=c characteristics of a

signal, system, random process, signal space, or frame

can be inferred from its WD.

Our discussion has shown that the basic WD con-

cept can be extended to several important domains be-

yond one-dimensional, scalar, deterministic signals. In

each of these domains, the respective WD is a time–

frequency representation that is both theoretically out-

standing and practically useful.
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