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PREFACE TO THE ENGLISH TRANSLATION

This English translation of Professor Selberherr's Ph. D. thesis was
undertaken because I judge that the two dimensional MOS transistor simulation
program MINIMOS which is described herein will become the "SPICE" of MOS
device simulation in the eighties. MINIMOS shares many of the same virtues of
SPICE when it was first released by U.C. Berkeley in the early seventies. The
program came at a time when the need for such a tool had become critical. No
other reliable, general purpose, two dimensional MOS transistor simulator is
readily available. MINIMOS is free just for the asking and is already in use
in a large number of university and industrial laboratories.

Because of the ready availability and widespread use of MINIMOS there
will result a worldwide community of device researchers and technology devel-
opers who will rely completely upon MINIMOS for their device simulation capa-
bility ... much in the same way as a large fraction of the integrated circuit
community has relied upon SPICE for circuit simulation capability during the
seventies.

MINIMOS has demonstrated itself as being a reliable and accurate simu-
lator of small dimension MOS transistors. However, the only detailed documen-
tation with respect to the philosophy behind and the form of the internal
structure of MINIMOS is contained in Professor Selberherr's Ph.D. thesis which
is written in the German language.

Since a vast number of the users of MINIMOS are native English speaking,
a great void exists which this English translation is meant to £ill. This
translation has been completed by Semiconductor Physics, Inc., a consulting
firm which specializes in device physics, modeling and characterization. The
translation is meant to be a one~to-one representation of Professor
Selberherr's original work.

The translation was carried out not by professional language translators,
but by native English speaking device physicists whose own backgrounds
coincide with the topic of the thesis ... thus the accuracy of the translation
has benefitted. Furthermore, Professor Selberherr has kindly consented to
proofread the entire translation and provide the necessary corrections. The
equations have been largely photocopied from the original text in order to
preserve accuracy.

I am indebted to Professor Selberherr for having granted permission for
this translation to be commercially distributed and for having provided high
quality original size figures.

May 30, 1982 Jim Smith, President

Escondido, California SEMICONDUCTOR PHYSICS, INC.
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Abstract

Because very large scale integration uses MOS transistors of very small
dimensions it is necessary to use computer aided modeling in order to under-
stand their behavior. There is no analytic model in the current literature

which can adequately explain the short channel effects in MOS transistors.

This work presents a two-dimensional MOS transistor model which is based
only upon fundamental physical principles, and a practically oriented computer
program was developed which numerically solves the model equations. The
optimization of the models by appropriate assumptions is illustrated and
thereby the scope of its validity is defined. Physical parameters contained
in the model, as for example the carrier mobility are described with the help
of a set of mathematical equations, whose realistic details are discussed.
The solution of the model equations, coupled non-linear partial differential
equations, is obtained by the application of numerical mathematical procedures
and therewith insight with regard to their fundamental functional form is
gained. A

The functional efficiency of the implemented computer program is
demonstrated by selected examples. It is shown, that all typical effects in
miniature MOS transistors can be satisfactorily explained with the help of a
two-dimensional model. An inverter circuit with submicron transistors was
analyzed and examined for correct operation. Further a sensitivity analysis
of a modern transistor technology is described; a strategy for the determi-
nation of the limits of the miniaturization and an estimate of reproducibility
in an established process is given. It is to be expected that the developed
computer program will enable faster and improved development of modern MOS

transistors in regard to very large scale integrated circuits,
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1. Introduction

In the 20 years since 1960 when Kahng and Atalla /68/demonstrated the
first functional MOS transistor, a nearly inconceivable development of these
devices has occurred. Today in the decade of very large scale integrated
circuits, electrical engineering without the MOS transistor is totally
inconceivable. The very large scale integration (VLSI), which is mentioned
here, is a technology which also absolutely requires computer aided simulation
of its devices. The design of modern MOS transistors by purely experimental
methods, experience and analytic models would be extremely time consuming,
often very expensive and sometimes impractical from a technical viewpoint.
The thus far published analytical models of MOS transistors depend upon
certain assumptions, which impose certain physical restrictions, such that, in
general only a limited ability to analyze and predict transistor
characteristics can be achieved. Especially because of the advancing rate of
miniaturization, these simple models are losing their usefulness. In order to
describe the modern MOS transistor in a useful way, one is compelled to use
numerical models with increased accuracy and without fundamental physical

restrictions.

About 15 years ago there appeared the first, yet one dimensional, model
which did not use the regional approximation as its foundation, but instead
used the fundamental semiconductor transport equations /134/. The first
consistent simulation using such a model was published by Gummel /58/ for the
bipolar transistor. There followed a flood of analogous work with refinements
and improvements in one way or another. De Mari e.g. simulated the static
/35/ and dynamic /34/ operation of the P-N diode and through this work

worthwhile mathematical and physical suggestions were gained.

At the end of the 1960's these one-dimensional models were extended to
two coordinates. Slotboom investigated the bipolar transistor in one and two
dimensions /118/, Kennedy began with the JFET /72/, Dubock performed a two
dimensional analysis of the diode /41/ and transistor /40/ and Loeb attempted

a two dimensional calculation for the MOS transistor. Today there exists a
wide spectrum of literature on the modeling of different devices with their
widely varied structures which is obvious from the bibliography which does not

Chapter 1



claim to be complete.

The development of a two-dimensional model necessarily requires
implementation in a computer program. Up until now the programs which have
been developed have not been widely available. The authors had to deal with
numerical stability, limited flexibility, large memory requirements and

computation time requirements or low throughput.

Likewise, in this work a computer program was developed, called MINIMOS;
a program aimed at consistent, numerical simulation of MINIature MOS
transistors. The greatest value of the program does not lie solely in its
physical foundation but also in its flexibility, modularity, dynamic memory
management and portability. It should become a tool not only of academic
interest but it can also be used for modeling modern transistors. The
judgement, of whether or not this has been well done, naturally cannot be
predicted here; an evaluation can be found in /51/ and many international
institutions have indicated their interests and MINIMOS can be obtained in
academic exchange for practical usage. MINIMOS should represent, with the
feedback from the international users, a massive cornerstone for further
modeling and design work, in that the basic understanding of the behavior of
MOS transistors will be enhanced.

Chapter 2 of this work deals with the physical foundations of a two-
dimensional MOS transistor model. The fundamental semiconductor equations and
the permissible simplifications will be discussed and the modeling of physical

parameters explained.

The theme of chapter 3 is the numerical point of view of the MOS tran-

sistor. The transformation of the fundamental equations to a form suitable
for numerical solution will be discussed and the method of solution explained.

In chapter 4 it will be attempted, on the one hand, to demonstrate bx
examples, the functional capability of the computer program, and on the other
hand, to confirm the correctness and plausibility of the underlying physical
models. The selected examples should clarify the two-dimensional model,

especially its breadth of applicability.

Chapter 1
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2. The Physical Model

In this chapter the necessary physical assumptions for a two-dimensional

numerical MOS transistor model will be discussed.

Section 2,1 deals with the correct formulation of the fundamental
semiconductor equations. An attempt will be made to define the scope of
validity of these fundamental equations. The simplification of the general
equations will be illustrated with appropriate assumptions and justified with
physical arguments. The model equations which are valid for the MOS
transistor (simplified fundamental semiconductor equations) will be

transformed to dimensionless form and summarized.

Section 2.2 deals with the modeling of the physical parameters of the
simplified fﬁndamental equations. Special attention will be given to the
simulation of the impurity distribution and the mobility. A previously
unpublished model for surface scattering will be presented and the physical
reasoning upon which the model is based will be explained.

Chapter 2
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2.1 The Fundamental Equations

In order to accurately analyze an arbitrary semiconductor structure under
all kinds of operating conditions the classical fundamental semiconductor
equations must be solved. These are contained in the following five partial

differential equationms.

div € grad ¥ = -q- (p-n+ND'-NAT) (2.1-1)
div 3n - q'(an/at)b- q°R (2.1-2)
div 39 + q-(3p/st) = -q°R (2.1=3)
En = -q-(un-n-g:ad v - Dn-gfad n) | (2.1-4)
3? = -q-(vp-p-gtad v+ Dp-grad p) (2.1-5)

Equation (2.1-1) is Poisson's equation, which characterizes the charge
distribution in the semiconductor. Equation (2.1-2) describes the balance of
the source and sink of electron current and eq. (2.1-3) gives the analogous
relationship for hole current. These are called the continuity equations.
The magnitude and direction for electron current are given by (2.1-4) and for
holes by (2.1-5). This set of equations which describe the transport
phenomenon in a semiconductor device was first given in closed form by Van
Roosbroeck /134/ in 1950, It is to be emphasized, however, that these
equations do not describe degenerate effects. In /86/, /92/, and /136/ the
modifications necessary in order to take into account degeneracy (the
breakdown of Boltzmann statistics and the variation of the band edge as well
as the variation of the band gap) for eqs. (2.1-4) and (2.1-5) are discussed.
These modifications are, however, in part not simple and lead to special
problems in the boundary conditions /94/ and /135/. A consistent, but only

one-dimensional, model of the degeneracy phenomenon was first published in

1979 /93/. In the relatively low doped (less than 1017 cm™3) channels of MOS
tranistors, where the current transport occurs, the degeneracy phenomenon

plays absolutely no role and will not be considered here.

2.1.1 The Chosen Assumptions

Some assumptions in the presented model have been touched upon which

significantly simplify the solution of the equations without a considerable

Chapter 2.1
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loss of accuracy. The assumptions should in no way alone remove the
difficulties as one might falsely conclude from the last sentence. On the
contrary, in the first place, the throughput and computational speed for the
solution of the fundamental equations by an obviously necessary computer
proéram should be raised 1if the program is to become a worthwhile tool. The
program developed in the scope of this work shall perform in developmental
efforts, sometimes with very many variables, not only for the infrequent
simulation of academic interest, but also for the experienced transistor

designer.

* Only a static solution is sought. This assumption is of fundamental
importance, thereby the order of the partial differential equations is
reduced. When considered from a mathematical point of view, this leads to a
significant change in the formulation of and insight into the problem. By way
of the suppression of the time dependent term a parabolic problem is converted
to an elliptic problem, whereby another point of view must be adopted.
Contributions toward the transient solution of the semiconductor equations
have indeed already been published e.g. /10/, /30/, /84/, /100/, and /102/,
however the authors themselves acknowledge that these solutions are only of
academic interest and the programs developed by these authors have exhibited
limited flexibility and therefore are of little practical value. However,
relatively new theoretical work /76/, /91/ has given hope that in the near
future a useful model for a two dimensional transient analysis will be

developed.

n/3t = 0 (2.1-6)

ap/at = (2.1“7)

* On the grounds of the lattice structure of silicon and the amorphous
nature of oxide, their dielectric constants are isotropic. The dielectric

constants in equation (2.1-1) can be taken outside the divergence operator.

€gj ™ const (2.1-8)

€ox = const (2.1-9)

Chapter 2.1
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* Total ionization of the impurities will be assumed, which is justified
for the temperature range of 250K to 450K to which this model is limited
/121/.

C=N, - N (2.1-10)

p - N = Np - Ny

A

* Degeneracy phenomena, as has already been mentioned, will not be

considered. The intrinsic carrier concentration will be taken as constant.
n; = const (2.1-11)

* Majority carrier current is neglected. This assumption represents the
most significant limitation. The a priori assumption of negligible majority
carrier current prevents a direct and consistent calculation of substrate
current and an analysis of the breakdown behavior. However, though an
integration of the ionization rate throughout the entire transistor, a
satisfactory evaluation of the substrate current can be made /131/, and the
onset of avalanche breakdown under high field conditions can be found. 1In

principle this assumption is Jjustified, inasmuch as two of the five

fundamental equations become trivial and do not need to be solved.

3p = 0 (for n-channel transistors) (2.1-12)

3 =0 (for p-chanmel transistors) (2.1-13)

* The temperature throughout the entire transistor is constant and can be

varied over the interval of 250K to 450K.
T = const (2.1-14)
* The carrier distribution is described by Boltzmann statistics. This

assumption states that heavy doping and degeneracy effects need not be

considered and therefore are not a problem.

n = ng-e{¥on)/0r . (2.1-15)

p = neltp¥)/Ur (2.1-16)

Chapter 2.1
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* The validity of the Einstein-Nernst relation i1is assumed.

The

importance of this assumption is tied to Boltzmann statistics and the original

form of the fundamental semiconductor equations, in that these formulations do

not distinguish between the electron temperature and the lattice temperature.

Dy = ¥pUp

* All contacts are considered to be ohmic.

(2.1-17)

(2.1-18)

the contact, and the carrier distribution is in thermal equilibrium.

2.1.2 The Model Equations

The space charge vanishes at

In consideration of the chosen assumptions found in the last section

the fundamental equations are simplified considerably.

But before the

simplified equations are summarized, a normalization into dimensionless form
will be carried out following De Mari /35/.

electric charge, the dielectric constant, the diffusion constant, the flux and

the potential will be determined a
equations is constrained to follow.

listed in figure 2.1-1.

Dimension

Electric charge
Diffusion constant
Dielectric constant
Flux

Potential

Length

Time

Mobility

Current density

priori,

The normalization constants for

whereupon everything else in the

The important normalization factors are

Units

As
cm2/s
As/Vem
cm.3

\

cm

8
cmz/Vs

A/cm2

Normalization factor

1 2
DO =1 cm/s

ssi

n,
1

Ur

Xg = ((esi*UT)/(Q*ni))
2/D

X0 %o

Do/ Uy

Jo = a*Dp*n, /xq

Figure 2.1-1: The normalization factors

Chapter 2.1
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The postulates (2.1-12) and (2.1-13) necessarily require a distinction
between the equations for n-channel and p-channel transistors. Consequently

for n-channel transistors the following equations hold:

div grad v = e¥7%n _ otp7V _ ¢ ) (2.1-19)
div 3n = R

-
J, = = up°n-grad n

¢p = const (which implies: J_ = 0)
P

and for the p—channel transistor the following equations hold:

div grad v = e¥"%n - o*p7V _ ¢ (2.1-20)
divJ_ = -
iv P R

I .

p -up-p°grad ¢

P

¢, = const (which implies: 3; = 0)

Equations (2.1-19) and (2.1-20) actually describe a coupled system of two
nonlinear partial differential equations, which can only be solved
numerically. It should probably also be mentioned here, that all quantities
in both of these systems of equations appear dimensionless, which implies
normalized variables. For the purpose of clarity these were not characterized

by explicit indices.

Chapter 2.1
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2.2 The Physical Parameters

The model equations derived in the last section (2.1-19) and (2.1-20)
contain several physical parameters whose modeling will be discussed next.
The importance of these parameters may not be underrated, in that their
accuracy directly determines the quantitative validity of the total simulation

results.

* The thermal voltage Up is the simplest parameter. It is only required
for normalization (see section 2.1.2) and is only dependent upon the

simulation temperature.

U, = k*T/q (V) ‘ (2.2-1)

T

* The intrinsic carrier concentration is modeled as being only tempera-
ture dependent. The formula used is very simple and does not account for the
temperature dependence of the band gap and only roughly accounts for the
temperature dependence of the band edge /50/. These temperature dependencies
however are not necessary because the intrinsic carrier concentration is only
required for normalization and furthermore the temperature is a global
quantity. The narrowing of the band gap due to heavy doping /89/, /119/ can
also be neglected.

n; = 3.88-1016.71-5.77000/T (=3 (2.2-2)

* The thermal generation will be simulated by means of simple Shockley-
Read-Hall levels. The neglect of the majority carrier current in general
appears to give these levels no meaning. For the intrinsic current transport
in the channels of MOS transistors it is also true that on the grounds that
the majority carrier current is absent, no recombination is possible. Without
thermal generation, which would be naturally described by these levels, an
absolutely unrealistic carrier depletion arises in the reverse biased
drain/substrate diode. These levels will be chosen for stabilization in order
to eliminate a numerical problem which may arise due to an unrealistically low

density. The recombination centers are assumed to be in the middle of the
forbidden band. The lifetimes will not be modeled /31/, but will instead be

Chapter 2.2
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assumed to be constant.

2
pen = n, -3_-1

2.2-3
‘p'(n + ni) Y :n-(p Y ni) (ecm s ) { )

R =

The remaining parameters, the doping profile and the mobility, are of
primary importance in the behavior of modern MOS transistors and must be

modeled with greater effort.

2.2.1 The Doping Profile

The most important input parameter for the simulation of miniature
transistors is the doping profile. International research in the area of two-
dimensional doping profiles is just now beginning. Because of the
difficulties hidden in the modeling refinements of the diffusion of the
impurities; the modeling of the diffusion constant; the effects due to
interaction of different dopants, the oxide growth and similar questions, an
interfaculty cooperation is needed in order to achieve concrete progress in
these areas. Interesting results and aspects can be inferred from /106/ about
two-dimensional implantation effects and from /107/, /130/, and /141/ about
two dimensional diffusion effects. The possibility of obtaining closed form
analytic solutions by realistic model refinements is as small for the
diffusion problem as it is for the electrical transport problem. The
importance of coupling between two-dimensional process simulation and two-
dimensional transistor modeling will surely arise in the highest degree in the
near future because of progressive miniaturization /20/, and will provide

great stimulus for scientific contributions in many places.

In MINIMOS there are two principle possibilities available for use in
specifying the doping profile. SUPREM, the Stanford University Process
Engineering Model Program /6/ can be used to calculate, with very good
accuracy, a one—dimensional channel profile and source/drain profile, whereby
in the lateral direction an adjustment with equation (2.2-4) will be made.

2.2-4)
Clx,y) = C((y>+max(x/£,0)%)3/2) (

In the above equation y = 0 represents the interface; x = 0 denotes the

edge of the gate mask at the source; the oxide mask lies in the negative x

Chapter 2.2
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direction. Equation (2.2-4) permits control of the underdiffusion with the
help of the parameter 'f', which in practical cases lies between 0.5 and 0.9.

This equation does not take into account the outdiffusion in the positive x

direction.

The second facility for the specification of the doping profiles uses an
analytic approach, which in many cases provides sufficient accuracy. This

approach is based principally upon the work of Lee /78/, /79/.

A predeposition can be simulated with equation (2.2-5). The parameters
required here are the surface concentration Ng, the diffusion time t, and also
the diffusion constant D for the doping element and the diffusion temperature.
A predeposition can only be simulated for the source/drain regions, because it
is only meaningful in those regions. Similar approaches for modeling the

predeposition are given in /19/ and /70/.

1d = 2-/5°¢ ) (2.2-5)

2
Cylx,y) = 0.5:N, - e (Y17 L arec(x/1d)

Ion implantation and diffusion can be simulated with the set of equations
(2.2-6). The parameters which must be specified are the dopant element (which
affects Rp, ARP and D), the implantation dose "DOSE", the implantation energy
(which defines Rp and z&Rp), the oxide thickness Ty, (which influences Rp),
the diffusion time t, and the diffusion temperature (hidden in the diffusion
constant). When double channel implantations are performed, the individual

profiles are superimposed.

1d = 2-/D-t (2.2-6)
a = (2 + (1d/8Rp)2 )"1/2

-(a- - 2
K(y) = e (3" (RP=Y)/ARP) | o1 ec (ma- ((Rp/&Rp)+VZ-y/1d))

Cy(x,y) = (a/(4-4Rp-/¥))-Dose - (K(y)+K(-y)) - erfc(x/ld)

It is further taken that the source/drain profile and the channel profile
are simply superimposed, that is, interaction of the diffusions is neglected.

Chapter 2.2
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The diffusion constants are taken as constant in (2.2-5) and (2.2-6).
This is justifiable for the diffusion of the channel profile (relatively low
surface doping), but not for the source/drain diffusions. Because, at the
present, no closed form analytic representation for diffusion with a
nonconstant diffusion coefficient is known. No other alternative 1is
available. One can, however, with some degree of skill with an arbitrary time
or diffusion temperature, cause the pn transition region to appear as if the
diffusion were done with dopant dependent and field dependent diffusion
coefficients. The diffusion coefficients will be calculated by way of the
traditional exponential equation and the data from figure 2.2-1.

D= Do-eT‘/T ‘ (2.2-7)
2_-1
Element DO/(cm s 7) Ta/(K)
B 0.5554 -3.975-10%
P 3.85 -4.247-10%
sB 12.9 -4.619.10%
A 24. -4.735-10%

Figure 2.2-1l: The diffusion constants.

Furthermore, the parameters R and AR the projected range and the

s
assocliated standard deviation, whipch appearl:: in equations (2.2-5) and (2.2-6)
must also be modeled. These parameters are tabulated in /55/ as functions of
the implantation energy according to the LSS theory. That table, even though
relatively coarse, can only be implemented in a computer program in an
unwieldly fashion, and is interpolated by a best-approximation polynomial for
the projected range and the standard deviation, thereby minimum memory storage
requirements and very fast output can be achieved /115/. Rp and ARp, take on

the following forms.

n
Rp = "1"‘ (2.2-8)
i
ARp = rz‘b .5 (2.2-9)
P i°x
i

Chapter 2.2
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In (2.2-8) x 1is understood to be the implantation energy. The rank n of
these polynomials lies in each case, according to the implantation element,
between 2 and 5. The polynomial coefficients for (Rpsi) and ( ARpsi) the
projected range and standard deviation in silicon are given in figures 2,2-2
and 2.2-3 respectively and in figure 2.2-4 for (Rpox) the projected range in
silicon dioxide.

Element B P SB A

3 4 4

a, 3.338-10" 1.259-1073  8.887-10" 9.818-10"

a, =-3.308-107% -2.743.2077 -1.013-207% -1.022-107°
a, 1.290-10"°  8.372-107%  9.067-1078
a, : -3.056-10710 -3.442-10720
ag 4.028-10"33 4.608-10713

Figure 2.2-2: Coefficients for Rp in silicon.

The dimension of the coefficients aj, by in figures 2.2-2 through 2.2-4
1s (um/kevl),

Element B P SB A

4 4

b, 1.781-210°3  6.542-107%  2.674-10 3.652-10"

b, ~-2.086:107> -3.161-10"% -2.885:107® -3.820-107¢
b,  1.403-1077 1.371-20"% 2.311-207%  3.235.107°
b, =4.545-10710 -2.252.10711 -g.310.11710 -1.202.10710
by  5.525-1071% 1.084-10713 1.601-10713

Figure 2.2-3: Coefficients for'ARp in silicon.
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Element B P SB A

4 9.200-107% 7.806-107¢

6 _7.899-1076

a,  3.258-1073  9.842-10°

6

a, -2.113-10"% -2.240-20"7 -8.054-10"

6.641-10"%  7.029-10°8

23
a, -2,422-10710 -2,653.10710
ag 3.191-10713 3.573.10713

Figure 2.2-4: Coefficients for Rp in silicon dioxide.

When implanting through a protective oxide, the actual range must be
reduced with equation (2.2-10), in which the projected ranges for silicon
(Rpsi) and for oxide (Rpox) and the oxide thickness (Tiox) are the required
parameters /108/.

Rp = Rpg° (1-T;  /Rp,;) (2.2-10)

2.2.2 The Mobility

The mobility is the most complex parameter in the fundamental semi-
conductor equations. Its modeling is of eminent importance, since any error
in the mobility immediately influences the current density distribution in the
transistor. A comparison of simulation results and measurements is as yet
only possible by way of current characteristics, whereby the simulation is
calculated pointwise through the integration of the current density, so that

errors in the current density naturally cause a direct error in the current.

For a correct modeling of the mobility, the different underlying physical
mechanisms must be taken into consideration. The basic mobility in high
purity, field free silicon is determined by lattice scattering. In the
following, this basic mobility will always be designated with u (lattice).
It is only temperature dependent and it can be modeled in a relatively simple
way by way of a power law /64/, /80/. Equation (2.2-11) gives the applicable
model of the basic mobility, whereby the indices n and p in the coefficients
signify the identification of electrons and holes respectively.
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up(T) = A-T™Y  (cm?/vs) (2.2-11)
- .108 108

A = 7.12:10 Ay = 1.35-20

Yo * 2.3 Yp = 2.2

Only the basic mobility has been described so far, with mention already
made of the scattering in high purity, field free silicon. Through the
existence of impurities this basic mobility will be decreased by way of two
dimensional scattering of the free charge carriers due to impurities. This
process 1is temperature dependent as 1s lattice scattering. A whole range of
formulations have been published in order to model these effects. Many are
based upon theoretical considerations /36/, /80/; quite a lot however are
heuristic in nature but they are very good when their quantitative accuracy is
checked experimentally /5/, /18/, /110/. The heuristic formulations have in
general a substantially more simple structure with equal accuracy, so that in
this work they will be given preference. Equation (2.2~12) will be used for
concrete modeling of the temperature dependence of the composite lattice and

impurity scattering mobility u;; in doped, but field free silicon.

pp(N,T) = u(Thea &y o(1=a) (cm’/Vs) (2.2-12)
.= 1
1+ (1/300) - (uymg
NaenNt e N,
Moinn ® 55-24 Vpinp = 49-7
6, = =3.8 sp = -3.7
an * 0.73 o = 0.7
- Nop = 1.072-10%7 Nop * 1.606-1017
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Because in the MOS transistor the current flows mainly at the surface of
the silicon, in the boundary layer which lies inside the inversion channel, a
further scattering mechanism, the surface scattering, absolutely must be taken
into account. It is established, however with great regret, that a model with
a physical foundation is impossible, because theoretically this scattering
process 1is not sufficiently understood. From this point on a further
description of the surface scattering can only use heuristic arguments, which
are based upon former intuitive reasoning. Regretably it is almost impossible
to make a measurement of the surface mobility, which could directly verify a
heuristic formula, because effectively one only measures the average mobility
in the channel, however, a two dimensional mobility distribution is required
for a two dimensional simulation. It is also safe to say, that the
measurement of the effective mobility in the inversion channel exhibits great
difficulty, which can only be mastered with satisfactory accuracy in
outstanding laboratories /109/.

There is very little written about the heuristic considerations for
models of the surface mobility /142/; the previously established
considerations are simple and unsatisfactory. Experimental results are
published in /124/, and future progress seems hopeful with respect to the
modeling of the surface mobility.

From the above mentioned arguments a likewise heuristic formulation for a
model of surface mobility and its correction with lattice and impurity
mobility has been developed, with which plausible simulation results and a
satisfactory accuracy can be obtained. With the help of the complete formula
in (2.2-13) it is possible to include the gate controlled electric field
dependence of the surface roughness scattering in the model. All effects
describing the mobility which have been discussed up to this point are
represented by the symbol wujig (lattice, impurity, surface).
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HL1s (Y B Eg N T) = b (N,T) - Y::sz (cn/vs)  (2.2-13)
Yr = Yo/ (4B /E )

b = 24E /B,

E, - -ax(o,(xx-ax+zy-ayi/(3,2#ay2)1/2)

E, = -ax(o,(zxoay-zy-a‘)-Jx/(J‘2¢Jy2))

Yon = 5°1077 Yop * 42077

Eon ® 104 Z,0p ° 8-10°

E, = 1.8:10° Eeop = 3.8:10°

The lattice/impurity mobility at the surface (y = 0) is reduced by the
factor 1/b; and at a distance yr it is reduced by the factor 2/ (1+b); and at
greater distances from the surface it naturally follows that there is no
reduction in the mobility. y, represents a characteristic length, which
describes the range of influence of the surface. This range is a function of
Ep, the field strength component, which lies parallel to the curreng
direction. The formulation for y  produces a reduction in the range of the
surface scattering by greater field strength parallel to the current
direction, thereby velocity saturation appears, which will be discussed in the
following. The remaining physical consideration is, that the charge carrier,
which is moving at saturated velocity, experiences less influence due to the
surface. The parameter b in (2.2-13) descibes the extent of influence of the
surface scattering. It is a function of E., the projection of the field
strength component normal to the current direction in the direction normal to
the surface. The formulation for b rests upon the consideration, that the
charge carriers are pressed against the surface by an electric field, which
results in a greater scattering, such that a greater mobility reduction

results.

The last relevant physical effect for modeling the mobility is the
velocity saturation. For this effect there are no useful physical fundamental
arguments of high accuracy, so that analogously to the treatment for the

surface scattering a simple heuristic model must be derived. Formulations for
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such models exist in the relevant literature in sufficient quantity /17/,
/18/, /64/, /65/, /110/. The formulation used in this work is quoted from
established literature in the form of a plausible common denominator. With
the addition of the velocity saturation one obtains the formula (2.2-14), in
which Ep,
direction, and vy is the saturation velocity. Formula (2.2-14) is considered
to be a structure of a type of Mathiessen's rule /111/ with a correlation

weight (-8).

as in (2.2-13), is the field strength component in the current

8 B,1/8 -
“:o:(Y'Ep'Et'“'T’ = (upyglees) +(vs/zp) ) (2.2-14)

. v v jeq 249 2,172
Ep = max(0, (B, 3,+E 3.0/ (3,543,597

109.m=0.87 . .
vgp = 1.53-10%-1 vgp = 1-62:10

8, .,-0.52

oy

By = =2 Bp = -1
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3. The Numerical Model

A central theme of the work presented here is the transformation of the
physical model of the MOS transistor, which was established in the last
chapter, into a numerical model. This numerical model was realized in the
form of a computer program, which permitted the verification of the numerical
model, as well as the physical model in wider scope. MINIMOS - so the program
was named contains all of the necessary software for the solution of the
semiconductor equations and the modeling of the physical parameters. In this
chapter the numerical assumptions and background, that are necessary for the

establishment of a program such as MINIMOS will be treated and discussed.

In section 3.1 the alternatives for the linearization of the fundamental
equations will be given and the procedures implemented in MINIMOS will be

explained.

Section 3.2 deals with the discretization of the fundamental equations.
The discretization of a problem, which is presented as a transformation from
an analytic formulation to a numerical formulation, will first be presented as
carried out in general for the quasi-harmonic differential equation, a
generalized type for the linearization of Poisson's equation and the

continuity equation and it will then be specialized for these equations.
The solution of the discretized fundamental equations will be discussed

in section 3.3 An overview of the available existing methods will be

presented and their consequences singled out for the reader.
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3.1 The Linearization of the Fundamental Equations

In the last chapter a system of nonlinear partial differential equations
was presented, which describe the current transport in an MOS transistor, and
which must be linearized before it can be solved numerically. The system of
equations examined in the following are exclusively for N-channel transistors.
The equations for the P-channel transistor are structurally identical and
thereby all established considerations will be valid. For purposes of clarity

this system 1s presented again here in normalized form:

divgrad ¥ = n-p-C (3.1-1)

div(u,°n-grade,) = (l-n-p)/(tp-(n+1)+fn'(p+1))
(3.1-2)

mit: n = e *n
p = ofp?
¢_ = const

C = C(x,y)
b= un(x,y)

T = const

T = const

The classical mathematical way to the solution of this kind of system is
the use of a Newton procedure with eventual damping and/or extrapolation /99/,
/104/ for the simultaneous solution of the complete system. A shortcoming of
this method however is the considerable storage requirement which is required
for the Jacobian matrix of the system. A more important advantage to be noted

is that this procedure exhibits quadratic limiting convergence.

An alternative means for solving this system of equations is the
application of a block nonlinear iteration procedure, by which a Newton-like
formulation is not applied to the complete system. Instead a Newton—-like
formulation is established for each of the differential equations keeping

constant the secondary independent variables for which an individual choice

Chapter 3.1



- 21 -

must be found for each specific problem. From well known authors /15/, /30/
comparisons of both of these procedures have been made, and the conclusions
conceded, that the block-nonlinear iteration procedure is preferred for a wide
spectrum of applications. The procedures were first published in explicit
form for application to semiconductor equations by Gummel /58/, who therein
gave an intuitive and physically based derivation. In the relevant literature
it is often designated as the Gummel algorithm.

A mathematical convergence proof for the application of the block-
nonlinear iteration procedure to the semiconductor equations is not known and

in considering the complexity of the problem, such a proof may not be trivial.

As a complement to the somewhat heuristic theory of the Gummel algorithm,
the works /11/ and /127/ are mentioned, which however present only

insignificant improvements.

The practical procedure followed is: One solves Poisson's equation with
fixed ®n and thereafter the continuity equation with constant ¢ . This
process is iteratively repeated until one has obtained a consistent solution
for ¢ and ¢,. The necessary accuracy is an important point to be stated for
the solution of the individual equations. The accuracy is verified by
beginning the iteration process with small accuracy requirements and
successively increasing them during the iteration under consideration of the
global errors from the right hand sides of (3.1-1) and (3.1-2).

One first applies the Newton-like formulation for the linearization of

Poisson's equation (3.3-1) and, therefore one obtains, after simple algebraic

transformation:
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0“1-—- vk+ &
k 52
div grad & - é-(n+p) = n-p - C - div grad ¥ + O(&%)
k_.k

mit: n = e* ~¢n

-k : 3.1-3)
_— (

Because of the exponential nonlinearity of Poisson's equation it is
mathematically significant to propose a damping of the potential increment in
order to prevent an eventual overshooting of the Newton procedure. This can

e.g. be done in the following manner:

v L o gk 4 s/ 2+] 8] /11m) (3.1-4)

This form of damping, the so called hyperbolic damping, is continuous
with 'lim'esignum (6) as the boundary value for 6 as opposed to « and it
has been well proven by all test calculations., 'lim' is in the case of
Poisson's equation, when it is represented in its normalized form as in this
work, assigned the order of magnitude of 0.25. This way of damping is
arbitrary; it has however resulted in a monotonic convergence in all
calculations for the Newton procedure for Poisson's equation. The relevant

literature offers a wide spectrum of similar variants /14/, /99/.

The linearization of the continuity equation (3.1-2) can be achieved by
the application of a Newton-like formulation in a completely analogous way as
was briefly explained for Poisson's equation, By suitable substitution of the
independent transformation the continuity equation is only very weakly
nonlinear, such that, as will become clear in subsection 3.2.3, a

linearization can in general be avoided.
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3.2 The Discretization of the Fundamental Equations

The differential equations which, in the last section, resulted from the
linearization of the complete system of semiconductor equations possess no
closed analytic solution and their solution must be found numerically. The
first step toward a numerical solution is the partitioning of the regions, in
which the differential equations are to be solved under consideration of their
boundary conditions, into a finite number of subregions, in which the desired
solution to the problem can be approximated with the desired accuracy through
simple functions; the equations must be discretized. One must be very
careful, because in no case with this procedure does one obtain an exact
solution to the analytically formulated problem, instead in the best case an
exact solution to the transformed, discrete problem, which, depending upon the
fineness of the partioning of the total region and the type of approximate
functions in the subregions, represents a more or less good approximate

solution to the analytically formulated problem.

There are many classical methods, which propose constructive
possibilities for the subdivision of the total region and the choice of
approximate functions. In this work a variation of the method of finite
differences was used, the five point discretization, which was preferred by
most other authors in their work on two dimensional modeling. Examples are
the dissertations of Heimeier /62/, of Jesshope /66/ and of Mank /84/ and the
review article by Kani /69/ which covered modeling activities in Japan.
Discretizations of higher orders were not taken into consideration because of
their complexity with respect to programming and possibly for the same reason

they also do not appear in the literature.

The method of finite elements is certainly, for purposes of discussion,
an alternative with practical relevance which has been used with success by
many well known authors (/1/, /8/, /15/, /16/, /30/), and always will be. In
the modeling of planar MOS transistors the method of finite differences might
‘be given preference because of the simplicity of the region in which the semi-
conductor equations are to be solved, and on the grounds of mathematical and
physical considerations necessary for partioning of this region. A
fundamental mathematical preference for one method or the other is certainly

not to be given, therefore in the end the choice is philosophical.
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A very interesting modification in certain respects complementing the
finite differences method was published by Adler /2/, /3/. With the help of
this modification much greater flexibility is achieved in the formulation of

the finite differences, which can be very attractive.

In the classical method of finite differences the region in which the
solution to the differential equation will be sought is subdivided into
subregions through a system of lines parallel to the coordinate axes. Further
discussion will be restricted to a cartesian coordinate system and a
rectangular solution space, which configuration is exclusively found in the

work presented here.

One therefore lays NX vertical (parallel to the y-axis) lines and NY
horizontal (parallel to the x—axis) lines through the rectangular region, so
one has NX*NY intersection points of these lines, on which an approximate
solution for the differential equations is sought. One substitutes only the
differential equation on each inner point (i,j) (see figure 3.2-1) through a
difference equation, in which the inner point (i,j) - there are exactly (NX-
2)+(NY=-2) inner points - connected with its four nearest neighboring points
(i+1,3), (1,j+1), (1-1,3) and (1,j-1) under the assumption, that the solution
of the problem acts as a linear function in the interval spanning these four

points and the inner point.

From the already mentioned assumption it becomes clear in an impressive
way, how difficult can be the choice for the number of grid lines and their
positions for a specific problem. Numerical mathematics has established a
considerable amount of evaluation and theories for the purpose of making this
choice, e.g. /47/, /140/; 1in practical cases one needs additionally an
enormous amount of experience, in order to advantageously interpret their

meaning for a concrete problem.

On the boundary of the region the solution naturally must satisfy the
respective boundary conditions, which will be demonstrated later, likewise

linear equations can be deduced for the boundary points /47/ - there are
exactly 2¢(NX+NY-2) points.
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The next subsection will deal with the discretization of the
quasiharmonic differential equation, a problem upon which a wide spectrum of
literature has been published (e.g. in /47/, /49/, /87/, /120/) and as well
the linearized Poisson's equation can, as can also the continuity equation, be
transformed to this type by a simple method, which will be shown in the

following subsection.

3.2.1 The Quasiharmonic Differential Equation

In the (x,y)-plane there exists a finite continuous region G, which is
bounded by a piecewise continuous differentiable boundary R. The functions
P(x,y), S(x,y and F(x,y) are continuous in the region G and piecewise
continuous on R, the boundary of G. Furthermore P(x,y) is positive and
nonvanishing in the complete definition space, likewise S(x,y) and F(x,y) are
positive or zero. What is wanted is the function u(x,y) which satisfies the

quasiharmonic differential equation:

div(P(x,y) *grad(u(x,y))) = S(x,y)-u(x,y) = F(x,y)
v (3.2-1)

and indeed under the boundary conditions

A(x,y)*u(x,y) + B(x,y)-u(x,y}, = C(x,y) (3.2-2)

with A(x,y), B(x,y) and C(x,y) defined on R, piecewise continuous and positive
or zero, likewise A(x,y) + B(x,y) is positive nonvanishing. u(x,y), stands
for the externally directed normal derivative of u(x,y) on the boundary R of

the region G.

To find the solution to this problem the differential equation will only
be integrated in the subregion 813 around the inner point (i,j). This
subregion 1s the rectangle drawn as a dashed 1line around the point (1i,j) in

figure 3.2-1.
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-ﬁ.dlv(l’-grad(u))-dx-dy - S-‘-S-u-dx-dy = j}r-dx-dy

With the help of a Green's-like theorem the first surface integral in the
above expression can be transformed into a line integral over the boundary Tiy

of the subregion gij'

j};1V(P-grad(u))-dx-4y - ﬂ;(P-(iu/ax)-dy-P-(au/iy)-dx)

944 £y (3.2-4)

Xy is the geometrical distance between the 10 apg 1 + 1th vertical grid
lines and Y3 is the distance between the jth and j + 1th horizontal grid lines
(see figure 3.2-1). Furthermore Py stands for the value of the functiom
P(x,y) at the point M, which lies exactly half way between the points (i,j)
and (i+ 1, Jj), and analogously for Py_;, Py and Py_;, which one can best
visualize with the help of figure 3.2-1. It follows that:

§ (P* (3u/ax) ~dy~P- (3u/3y) *dx) =

1:":l .

= °-5'(Yj*yj-1)'(Pn'(“1+1,j'“1,j)/‘1 +

+ Py (¥50,979,57/%31) *
+ °'5'(‘1“1-1)~°(PN'(“i,jﬂ-“i,j)/yj +

+ - Pe1° 09,4179y, 40 /Y400 *

+ °(xi-1“1) + o(yj_1+yj) (3.2-5)

The second and third surface integrals of (3.2-3) can, under the
assumption that the functions S(x,y) and F(x,y) as well as the solution u(x,y)

are smooth in the subregion Bijs be integrated in an elementary way.
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~
.ys-u-dx~dy & °'25'51.j'“1,j'“1*‘1-1"(Yj+Yj-1’
o
3.2-6
913 ( )
P
s}-dx-dy & 0.25-F1j-(xi+xi_1)-(yj+yj_1)
J .
(3.2=7)
glj

One combines (3.2-5), (3.2-6) and (3.2-7) and separates the unknowns,

such that one obtains for each inner point (1,j) a linear equation with the
following form:

4 '((Yj*Yj-l)'(Pn/’1+PH-1/‘1-1) +
+ (x 43y 1) (P/¥y#Py 1 /¥y ) *
+ 0.5:5y yolxg¥xy j)-lyy+¥y)) =
= Ui,y (gdYyg) Ry/Eg) ¢
Yy, Uy Py /Ry Y
*oug ger LEghEg ) Py/yg) ¢
+ “1,j-1'“’1*’1-1)'PN-1/yj-1) -

- 0.5',1'j'(xi+11_1)'(Yj+Yj-1) (3.2-3)

No residual term for the estimation of the error is provided in (3.2-8).
With a nonequidistant grid (xj #xy_7, 3 #yj_l) the error, in the first
approximation, 1s reduced linearly with the line spacing. An exact formula-
tion of the estimated error must be made, however, such a formulation is not a
central point of this work but can be found in the relevant literature /47/,
/120/.

The discretization of the boundary points presents no problem. It has

been carried out in great detail in countless textbooks on numerical

mathematics (e.g. /47/), therefore it is refrained from a simple repetition.
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One combines the equations for all of the grid points, which are linear
without exception, in one system, such that this system can be presented in

matrix form.

Aeu = Db

In the above equation u represents a vector of length NX NY, in which all of
the desired uy 4 are included. b is the pertinent vector for the right hand
side. The matrix A in many practical cases is of very high rank NX NY. As
the coefficient matrix of the system equations it has a maximum of five non
zero elements in each row. The numerical solution of a system of sparsely

linear equations of this type will be dealt with in section 3.3.

3.2.2 Poisson's Equation

The linearized form of Poisson's equation (3.1-3) is tailor made for the
quasiharmonic equation whose theory was sketched in the last subsection. In
order to see this established in its entirety, it 1is necessary to clarify the
boundary conditions of Poisson's equation as well as the structure of the
equation to be solved, and also the appropriate boundary conditions are
necessary in order to consider and thereby classify the problem clearly and

place it in proper perspective.

Figure 3.2-2 shows the geometry which was used in the simulation. Inside
the rectangular region A-F-G-H, which represents the silicon, the system of
semiconductor equations must be solved, in the region C-D-E-B which represents

the gate oxide, only Laplace's equation must be solved.

The following concrete considerations aﬁply only to Poisson's equation.
The contacts (AB: Source, EF: Drain, GH: Bulk) will be assumed to be ohmic.
The potential will hereafter have the value of the applied potential plus the
built in potential due to the doping. On the vertical edges of the
semiconductor (AH, FG) the normal derivative of the potential, that is, the
lateral electric field component, must go to zero. This consideration is
naturally justified when the vertical edges are far enough away from the
channel. On the interface (line BE) equation (3.2-9) must satisfy Gauss's

law,
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Cox” (IW/3Y) oy = caq° (3W/3Y) oy (3.2-9)

In the oxide a solution is to be found for Laplace's equation which is
coupled to Poisson's equation in the semiconductor, consequently (3.2-9)
represents the boundary condition which must be satisfied along the interface.
On the vertical edges of the oxide (CB,DE) the normal derivative of the
potential must again go to zero, and on the gate contact (CD) the potential
will be set equal to the applied voltage minus the flat band voltage.

The eventual existence of slow interface states N , will be taken into
account in the flat band voltage. Gauss's law permits a physically consistent
consideration of the accumulation of charge by the slow interface states
/126/. Due to the decreased importance of these interface states in modern

transistors, the added expense of this alternative is not justified.

With the above defined boundary conditions it is easy to verify that the
linearized form of Poisson's equation is a special case of the boundary value
problem dealt with in 3.2.1. Only the following substitutions need to be

made:

ulx,y) ... ¢(x,y)

P(x,y) ... 1

S(x,y) ... n(x,y) + p(x,y)
(n(x,y) and p(x,y) contain only the known values
of ¢k and ¢E)

F(x,y) --- n(x,y) = p(x,y) - C(x,y) - div grad ¢

For the boundary one has:

in theccases ¢f the contacts

A(x,y) =1
C(x,y) = comnst
(applied plus built-in potential)

B(x,y) =0

in the cases of the vertical boundarieé

A(x,y) =0

B(x,y) =1

C(x,y) =0
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in the case of the interface:

Alx,y) =0
B(x,y) = €qi
clx,y) = eox~(6¢/6y)ox

Laplace's equation in the oxide is only a trivial case of Poilsson's

equation and will not be given further consideration here.
The discrete form of Poisson's equation can, with the help of the
substitution presented in (3.2-8), be determined in an elementary way, by way

of a direct copy of (3.2-8) with a partial change of notationm.

3.2.3 The Continuity Equation

At first glance the continuity equation does not fit the theory of the

quasiharmonic differential equation., First by the transformation of variables

s =e'n (3.2-10)

the required analogy will become evident. The continuity equation has the
following form:

div(un'o.'qrad 8) - S'Q‘P/(1p‘(n*l)*1n‘(P*1)) =
= '1/(19' (n+l)+1,° (p+l)) (3.2-11)

The linearization of the denominators of the recombination terms is not
necessary here, in the case of MQOS transistors, because on the one hand this
term makes no conbribution to the basic carrier transport, but serves only to
avoid physically unrealistic carrier depletion in the drain/substrate diode
(see chapter 2) and on the other hand, through the use of an iterative
solution procedure for the differential equation (see section 3.3) a first

order linearization occurs automatically.

The boundary conditions are simple as was the case for Poisson's

equation. The contacts (AB, EF and GH in figure 3.2.2) are taken as ohmic,
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and the carrier concentrations are equal to their equillbrium values. On the
remaining boundaries (BE, FG and AH) no normal current components may exist at

any time.

The reader can easily see, by way of the above considerations, that the
continuity equation fits into the scheme of boundary value problems dealt with
in section 3.2.1, such that further discussion in this direction can be

dispensed with.

The above presented derivation may indeed work very satisfactorily and
completely, but still there are several additional tricks to be applied,
‘without which the transformation of this theory into a computer program would

surely be condemned to failure.

The first problem that exists is to choose a suitable interpolation of
the function in (3.2-12):

P(x,y) = u_-e’ (3.2-12)

The mobility i1s indeed, in general, a function with a small variation,
such that it can be linearly interpolated between neighboring grid points.
The exponential function of the potential surely cannot be interpolated in the
same way. A simple method 1s the geometrical averaging of the function, which
agrees with a linear behaQior of the potential. An error analysis of this
method has been carried out by Jesshope /66/, /67/. This interpolation will
not be exact even when the potential difference between two adjacent points is
small. A satisfactory 1interpolation algorithm was first published by
Scharfetter and Gummel /110/. That algorithm was in essence based upon physi-
cal considerations; its mathematical consistency was verified by Barnes /7/.
It holds that for the interpolation between the points (i,j) and (1L + 1, j):

¥ = et (9, 5ovian, )/ (e?13TVIFLY - 1y
= e¥i/d.ber(vy,§-v1+1,5) (3.2-13)

with: ber(x) = x/(e¥* - 1) (The Bernoulli function).
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Special attention must be paid to the programming of the Bernoulli
function in order to avoid overflow or underflow of the numerical range of the
computer /60/. A fortultous secondary effect of using this interpolation is,
that, when one divides the therewith obtained difference equation by e¢i’3
which causes absolutely no problem, only exponential functions of potential
differences appear in the coefficients, which decisively increases the

numerical stability of the system of equations.

A further point which requires close attention for the solution of the
discretized continuity equation is the extremely large interval for S, (3.2~
10) which has been obtained by substitution of a new independent variable. It
is finally necessary to reduce the solution interval with the help of a
similarity transformation. A physically based scaling rests upon the use of
e as the transformation variable /117/. From this method one obtains as
independent variable the carrier concentration, whose dynamic range can indeed
be very large but presents no difficulty for modern computers. An unfortunate
side effect of this similarity transformation is that the symmetry of the
coefficient matrix is lost. The global condition number of the system of
equations will not be changed through the similarity transformation /39/.

An interesting alternative to the discretization of the continuity
equation which was sketched here is to mention the connection with the "stream
function" method which was first published by Mock /90/. The stream function
method was not tested in this work, the method presented above functioned
satisfactorily. The method of "stream functions” enjoys great popularity
especially with the Japanese authors /69/, /131/. An evaluation of this
method on purely theoretical considerations is very problematic and therefore

will not be attempted here.

3.2.4 The Grid Generation

Careful attention must be given to the selection of the grid points in
order to sufficiently bound the discretization error, which has a very strong
influence upon the convergence characteristics of the equations and therewith

upon the complete system.
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It is impossible to choose an equidistant grid, because the spacing must
be compatible with the dominant region of greatest numerical difficulty. Con-
sequently, the use of an equidistant grid would result in too many unnecessary
points in other regions. Therefore an enormously large number of required
grid points would result, which would cause noticeably undesirable memory and
computation time requirements. A further, more severe disadvantage also
.exists. In a region in which a solution variable is almost constant, small
spacings can result in numerical instabilities which can be traced to the
round off error which results from taking the difference between two nearly

equal numbers.

Because of the above mentioned reasons, a grid with unequal spacing must
be used, which will then be checked for accuracy in a special phase of the
solution (see appendix C). It will then, if necessary, be adapted where the
most recently obtained behavior of the variable will be used as the new basis

for the calculation.

The underlying conditions for the grid generation can be divided into two
different groups: there is fundamentally, on the one hand, the spacings in
regard to these conditions, which are to be fulfilled under all circumstances,
and on the other hand the conditions are considered on the grounds of doping
profile, electrostatic potential and carrier distribution, so far as these
last conditions do not conflict with the first group. It should possibly be
mentioned here that the grid generations in the x and y directions are

independent and therefore no conditions exist in this regard.

Requirements which take absolute priority are that there exists a minimum
value for the spacing and that the ratio of successive spacings must be

between certain minimum and maximum values, whereby the maximum allowable

progression of the grid is established.

The considerations with respect to the doping profiles exist as criteria
relative to the active doping concentration between two successive grid
points, which is only important when at least one of the two doping levels is

greater than some minimum value.
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Respectively the electrostatic potential must satisfy the requirement
that the absolute potential difference between two adjacent grid points may

not exceed some maximum value.

A requirement imposed by the charge carrier concentration is that the
ratio of the electron density (or the hole density for p-channels) between two

adjacent points must lie between certain minimum and maximum values.

The setting of the bounds for each of the above requirements by strong
mathematical considerations is highly unrealistic, because some remainder may
arise which can only be evaluated by an enormous, unjustified expense. The
values of the bounds which were actually used came from intuitive or physical
considerations and were proven plausible by many test cases. The criteria
were placed in a separate part of the program in a modular fashion such that

changes could be easily made.
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3.3 The Solution of the Discretized Fundamental Equations

Given the system of equations
Aeu = Db

with the property that the coefficient matrix A is derived from a five point
discretization using finite differences. In general the rank of this matrix
is very large (typically 2000-3000) and furthermore there are only a maximum
of five elements in each row and column which are not equal to zero. Conse-~
quently, the matrix is very sparsely filled, it is sparse. Because of the
discertization of Poisson's equation the resulting matrix is symmetrical and
positive definite. In principle these properties also hold for the
coefficient matrix of the continuity equation, whereby it should be noted,
that these properties are lost through an eventually required similarity
transformation. Further properties of these magfices will not be required for
the following discussion, therefore, the relevant literature can be referenced
/87/, /139/, and /140/.

Two kinds of approaches can be used for the solution of these types of
linear systems of equations: direct and iterative approaches. The classical
direct method, Gaussian elimination, does not take into account the sparseness
and the special structure of the coefficient matrix, such that the required
computational effort (rank (A)3) is in general, not acceptable. However,
there exists a remarkable number of modified Gaussian elimination methods
/43/, which consider to some extent the above mentioned properties of the
coefficient matrix. Because the solution of the system of equations is
embedded in an iteration procedure, it therefore very often must occur that
priority has to be given to the iterative methods for the solution of the
system of equations. This holds even more as through the iteration procedure

very good initial guesses are available /42/.

In the scope of this work a large number of iterative solution procedures
were programmed and tested. The relaxation processes (SOR, LSOR, SSOR, S2LOR)
were ruled out in the first test comparison because of their slow rates of

convergence. The programming of these methods 1s indeed very easy and there
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exists a wide spectrum of literature /122/, /139/, and /140/ in which their
convergence characteristics and their mathematical foundations are exactly
analysed, such that the attraction of these methods is that they are very
serviceable, After careful consideration the choices were limited to the ADI
method /122/, the AFP method /44/ and the SIP method of Stone /123/. Careful
comparison of these three methods indicated an unmistakable advantage for the

SIP methods, as was also confirmed in /105/.

The basic idea of Stone's method is that a special matrix N is added to
the coefficient matrix A, such that the resultant matrix (A + N) can be decom-
posed trivially into the product of an upper triangular matrix and a lower

triangular matrix.
(A+ N)eu = (L°U)ou

Under this condition the construction of an iterative process is simple,

It holds namely:
(A+ N)eu = (A + N)eu = (b - Aeu)
hence one can obtain:
(A + M) = (4 + N)edk + (b - Au¥).

Because the right side of this system of equations is known and because
(A+ N) is simply factorizable, the above equation represents an extremely
efficient iteration scheme. Furthermore, if the norm of N is very much
smaller than the norm of A, a fast convergence rate can be intuitively

expected.

Stone further gave a simple, and constructive possibility for the choice
of the matrix N; closer examination regarding this topic would greatly expand
the scope of the present work, therefore those interested are referred to the

original work /123/ or the explanations of this procedure in /49/ and /120/.
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An eventual disadvantage of this method is the fact, that the
vectorization of this algorithm in view of a computer with pipeline
architecture, as 1s also noted in /42/, and the efficient use of fundamental

modular programs of linear algebra /77/ are not simple.
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4. Typical Applications Examples

The demonstration of a finished work by typical examples is unquestion-
ably one of the most important points of the work itself. Examples first
bring 1life to abstract formulas; they stimulate the imagination, induce ideas
and thereby often times build a graphic basis for further and analogous works.
The appropriate choice of such examples can.be very difficult when many such
possibilities exist, one must appeal to a wide spread public yet only a small

space is available.

Three significant examples will be presented in this work. Subsection
4.1 represents a didactic example. On the one hand this example should be
easily understandable and only for the general interest in the simulation
without specific knowledge of the MOS device and on the other hand it should
provide interest and stimulation for the experienced reader. In subsection
4,2 the simulation of an inverter will be dealt with. This example should
appeal to the designer of circuits with miniaturized devices and also to the
device designer. In the third subsection (4.3) the problem of the process
sensitivity of modern transistors, which is one of the general interests of

technology at the present, will be examined.

Extremely high quality graphics are presented in all three subsectiomns.
A multiple number of figures, which show the physical distributions of the
relevant quantities within a greatly enlarged cross-section of the interior of
the transistor will be used. Because of this, subtle details can frequently
be explained. In the examples the comparisons of calculated and measured
characteristic curves were omitted. Comparisons of this type would of course
provide increased verification of the numerical models and of the limitations
of the tolerances of the physical parameters of the models. In general, good
agreement between calculated and measured characteristics curves can be
obtained. An important consideration here is that one must know, with good
accuracy, the relevant technological parameters and geometry of the transistor
which is measured. Only then, because of the increased process sensitivity of
miniature transistors, is there a chance to achieve the desired results. For
the purpose of testing and verification, MINIMOS has been passed on, by way of

academic exchange, to a large number of highly interested international semi-
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conductor manufacturers. A realistic verification and evaluation with
constructive criticism 1s surely only fair and serious with the aid of many

users and a wide spectrum of transistors from different manufacturers.

It is to be further mentioned, that no transistors were fabricated in the
-scope of this work. The availability of transistor material from outside
firms was relied upon completely. A proper fabrication of transistors was, by

the best intentions, not possible because the necessary facilities did not

exist.
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4.1 A Didactic Example

In general, it is difficult to present an application example of two
dimensional modeling which on the one hand is interesting to the experienced
reader and on the other hand is easily understood by those who have a general
interest in this work but who have no specific knowledge of the MOS system. A
thoroughly appropriate example of this type is the analysis of the influence
of an ion implantation upon short-channel transistors. For that purpose three
transistors were simulated whose data are declared in the MINIMOS input state-
ments (Figure 4.1-1). At this point it should also be mentioned, that the
transistors discussed in the following were never actually fabricated; rather
their data were chosen so as to demonstrate the distinct effects of the
analyses. They could, however, be directly realized in any good laboratory,
because the specified data are technologically significant. As will become
clear in the following, the third transistor is thoroughly suited for use in
an integrated switching circuit with a one micrometer technology.

The first line of each of the three input statement sets (Figure 4.1-1)
is a title, which will identify the computer output; it is therefore simply
for commentary purposes. The further syntax (as detailed and discussed in
appendix A) is based upon a keyword-parameter-value—-structure and is

completely format free.
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ONE-MICROMETER ANALYSIS (TRANSISTOR 1)

DEVICE CHANNEL=N GATE=NPOLY TOX=350.E-8 W=10.E-4 L=1,E-4
BIAS UD=3. UG=0.

PROFILE NB=1.E15 ELEM=PH DOSE=1.E15 AKEV=40 TOX=350,E-8
+ TEMP=1000 TIME=1200

END

ONE-MICROMETER ANALYSIS (TRANSISTOR 2)

DEVICE CHANNE1=N GATE=NPOLY TOX=350.E-8 W=10.E~4 L=1,E-4
BIAS UD=3. UG=0.

PROFILE NB=1.E15 ELEM=PH DOSE=1.E15 AKEV=40 TOX=350,E-8
+ TEMP=1000 TIME=1200

IMPLANT ELEM=B DOSE=3,5E1l AKEV=25 TEMP=925 TIME=1800
END

ONE MICROMETER ANALYSIS (TRANSISTOR 3)

DEVICE CHANNEL=N GATE=NPOLY TOX=350.E-8 W=10.E-4 L=1.E-4
BIAS UD=3. UG=0. '
PROFILE NB=1.E15 ELEM=PH DOSE=1.E15 AKEV=40 TO0X=350.E-8
+ TEMP=1000 TIME=1200

IMPLANT ELEM=B DOSE=3.5E1l AKEV=25 TEMP=925 TIME=1200
IMPLANT ELEM=B DOSE=1.5E1l AKEV=100

END

Figure 4.1-1: Typical input statement sets.

The second line with "DEVICE" as the key word describes the type and
geometry of the transistor. An N-channel device is specified (CHANNEL=N) with
an N-type polysilicon gate (GATE=NPOLY) and with an oxide thickness of 35
nanometers (TOX=350.E-8), a channel width of ten micrometers (W=10.E-4) and a

channel length of one micrometer (L=1.E-4).

The operating point 1is established by the "BIAS“ input. A drain voltage
of three volts (UD=3.) and a gate voltage of zero (UG=0.) were chosen. When a
substrate voltage is not given explicity, MINIMOS will assume a value of zero

volts.
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The substrate doping and the source-drain profiles are specified by the
“"PROFILE" input. ‘In these examples the simplest means of defining the doping
profiles was chosen: a direct calculation with MINIMOS. A substrate doping of
10153 cm-3 (NB=1.E15) and a source/drain implantation with phosphorous
(ELEM=PH), and an implantation dose of 1019 cn~2 (DOSE=1,E15) and an
implantation energy of 40 keV (AKEV=40) were selected. The implantation was
made through an oxide with a thickness of 35 nanometers (T0X-350.E-8) and was
annealed at 1000 degrees centigrade (TEMP=1000) for 1200 seconds (TIME=1200).

The second set of input statements also contains an "IMPLANT" speci-
fication for the channel implantation with Boron (ELEM=B), a dose of 3.5-1011
cm™2 (DOSE=3,5E11) and an energy of 25 keV (AKEV=25), The anneal was at 925
degrees centigrade (TEMP=925) and 1800 seconds long (TIME=1800).

The third set of input statements contains a second "IMPLANT" input
statement for a second, deeper channel implantation with Boron (ELEM=B), a
dose of 1,5-1011 cm~2 (DOSE=1,5E11) and an energy of 100 keV (AKEV=100). It
is assumed by MINIMOS that both channel implants are annealed together.

It is surely well known by many readers, that the first transistor in
these examples will exhibit a small negative threshold voltage due to short
channel effects and, that the first shallow channel implantation serves to

shift the threshold voltage to a positive value.

The deep channel implantation is for the purpose of eliminating the
eventual problem of “"punch-through”. This effect will be 1llustrated further
by 3-D figures of distributions of the relevant physical quantities in the

interiors of the transistors.

Figures 4.1-2, 4.,1-3 and 4.1-4 show the doping profiles calculated by
MINIMOS.

One can accurately read the source/drain pn-junction depth of 300

nanometers from these figures. The surface concentration in these highly

doped source/drain regions is about 1020 cm—3. The effective channel length

will be reduced by the lateral diffusion of about 0.6 micrometer. The shallow
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channel implantations are easy to distinguish in figures 4.1-3 and 4.1-4. The
deep channel implantation in the third transistor (Figure 4.1-4) for the
suppression of the "punch-through” effect exhibits a local doping maximum at
about the same depth as the source/drain pn-junction. The deep implantation

will have a negligible influence upon the threshold voltage.

Figures 4,1-5a,b show the distribution of the electrostatic
potential in the first transistor, For clarity of presentation Figure 4.1-5b
shows a graphical representation in the form of equipotential lines. The
drain contact 18 at the right rear of the 3-D figure. The zero potential
point was established at the middle of the forbidden band. 1In the space
charge zone of the reverse biased drain/substrate diode the potential falls
off monotonically; and in the highly doped source/drain regions it appears
constant. One observes only a very small barrier between the source and the
channel. Figures 4.1-6a,b show the potential distribution in the second tran-
sistor. In the 3-D representation of the potential only a small difference is
observed with respect to the first transistor; the source/channel diode
barrier is slightly more distinct here. 1In the equipotential representation
one observes a local potential minimum directly under the surface. The
significance of this local potential minimum is that there exists a saddle
point under and slightly to the left of the local potential minimum. This
saddle point is a field free point in which current can only flow as diffusion
current. A saddle point of this type as has been dealt with by many authors
(e.g. /9/, /75/) is typical for the occurrence of the "punch through” effect.
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Doping profile of the first transistor.

Figure 4.1-2:
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Doping profile of the second transistor.

Figure 4.1-3:
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Figure 4.1-4: The doping profile of the third transistor.
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Figure 4.1-5a: Potential distribution in the first transistor.
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Figure 4.1-6a: Potential distribution in the second transistor.
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Figure 4.1-7a: Potential distribution in the third transistor.
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In cases such as these it is not sufficient to separate the gate induced
field from the space charge zones of the source and drain. This effect is
partially under the influence region of the gate. As will become more clear
later, the occurrence of a potential saddle is a sure indication of “"punch

through”, but it is by no means necessary.

Figures 4.1-7a,b show the potential distribution in the third transistor.
The 3-D representation shows only a marginal difference in comparison with the
second transistor. From the equipotential graph one can observe a source/
channel barrier which is well enough defined so as to guarantee a properly

operating transistor at the given operating point.

Figures 4.1-8a,b,c show the electron density distribution of the first
transistor. In order to improve the clarity of the presentation all figures
which show carrier density distributions include two 3~D representations and a
constant density contour plot of the carrier concentration. Figures 4.1-8a,
9a and 10a show the density in the usual orientation with the drain contact at
the right rear. Figures 4.1-8b, 9b and 10b show the density likewise at the
surface of the transistor., This makes it possible to view the channel regiom

from the surface.

The surface concentration of electrons in the channel is relatively high,
which is due to the small negative threshold voltage. The operating point
lies in the region of strong inversion. In the region of the drain contact a
very distinct depression in the surface carrier concentration is observed,
which represents the so called “pinch off" zone. It is also shown that the

region of high electron density is very wide.

Figures 4.1-9 show the electron density distribution in the second
transistor. As was expected, the surface concentration is depressed because
of the channel implantation. One can now observe a carrier channel at a depth
of about 300 nanometers, which is also the depth of the pn-junction. This
carrier channel was caused by way of the "punch through” effect, which was
already observed from the potential distribution and which will be made even

more clear by the. current density distribution.
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Figure 4.1-83a: The electron distribution in the first transistor.
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Figure 4.1-8b: The electron distribution in the first transistor.
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Figure 4.1-9a: The electron distribution in the. second transistor.
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Figure 4.1-9b: The electron distribution in the second transistor.



- 61 -

*1038TSUBI] pUOD3S 3Y] UT UOTINQTIISIP UOIIDBTD ayf !%6=T°% 2In814g

wr o._

00 wrf

\\MWO

[ 1 1 ] 1 ] 1 :

e

/u
80

-7°0

vyl i
\\\ Al

N

S&A@&OOOOOOA
NIvaa

. N\\\\\\\\\\\_. 0°0

324N0S



- 62 -

el
N

Figure 4.1-10a: The electron distribution in thecthird transistor.
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The electron distribution in the third transistor.
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Figures 4,1-10 show the electron density distribution in the third
transistor. The second deep channel implantation causes the carrier
concentration to fall off monotonically from the surface inside the
transistor, which distinctly establishes the suppression of the "punch
through” effect. Examining the absolute value of the carrier concentration it
is immediately obvious that the operating point which was selected by a
predetermined convention is not in the region of strong inversion, but lies in
the region of deep depletion. It is also worth noting that the carrier
concentration is beginning to separate relatively rapidly near the middle of
the transistor. On the contrary the characteristic "pinch off" zone is very

small and lies very near the drain region.

Figure 4.1-11a shows the distribution of the lateral current density
component in the first transistor in a 3-D representation. In figure 4.1-11b
the same quantity is shown as viewed from the surface in order to better view
the channel region. At the source end of the channel the transverse field
component forces the current to flow near the surface. However, in the middle
of the channel the current flux is spread out under the influence of the drain
voltage, which is a typical short channel effect. The channel itself is
relatively wide. The reason for this is found to be a superposition of the
inversion current and the "punch through"” current. The maximum values of the
lateral current density component lie, surprisingly, directly under the
contacts. This becomes obvious when one looks at the considerations for
current continuity. The current flows through the contact almost completely
in the form of a transversal component. There is only a small lateral voltage
drop under the contacts which can cause only a small lateral current com-
ponent. In the source/drain regions the lateral current density component
must increase immediately in order that a lateral current flow will result
through the transistor. Because of the source free nature of the current, the
integration (in a direction normal to the surface) of the lateral current
density component must result in a flux which is constant anywhere in the
channel region (conservation of flux). This naturally results in high current
densities in narrow channel regions and lower current densities in wide

channel regions.

Chapter 4.1
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Figure 4.1-1la:
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The current density distribution in the first transistor.

Figure 4.1-11b:
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The current density distribution in the second transistor.

Figure 4.1-12a:
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The current density distribution in the second transistor.

Figure 4.1-12b:
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The current density distribution in the third transistor.

Figure 4.1-13a:
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The current density distribution in the third transistor.

Figure 4.1-13b:
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The distribution of the lateral current density component in the second
transistor is shown in figures 4.,1-12, One observes a massively marked
"punch-through” effect. The current flux occurs in a wide channel in the
substrate /32/. Practically no portion of a pure surface current is present
here. The peak current density at this operating point is, in comparison to

the first transistor, an order of magnitude smaller.

Figures 4.1-13 show the distribution of the lateral current density
component in the third transistor. The "punch~through” channel of the last
figure has totally disappeared. The total current flux occurs completely at
the surface. The peak current density —which appears here in the middle of
the channel and directly at the surface- is about a factor of 200 smaller in
comparison to the second transistor. Current density distributions with these
qualitative characteristics are typical for ordinary functional devices in the

subthreshold region and can be used as very good evaluation criteria.

Figure 4.1-14 shows the mobility distribution in the first transistor in
the form of isocontours. In the highly doped source/drain regions the
mobility is very small because of impurity scattering. Under the source
region the mobility immediately increases to its bulk value. This is
naturally not the case under the drain region, because here the strong fields
in the reverse biased drain/substrate diode decrease the mobility by way of
the saturated drift velocity. The local maximum in the mobility under the
drain region is worth noting; this results because there is only a small
amount of impurity scattering and also the field strength is not high enough
in order to decisively reduce the mobility. This effect will also be seen in
all of the following mobility distributions. The mobility in the channel
falls off monotonically along the surface. Oniy in the region of the channel
near the source does it appear constant. In this short region the field
strength component parallel to the current direction is very small and this
results in no reduction in the mobility. This field strength component
increases nearer the drain, which results in the above mentioned mobility
reduction. In the normal direction the mobility parallel to the surface is
reduced by surface scattering. An exact explanation of the modeling of the
different scattering mechanisms and the mathematical formulas used are found

in section 2.2.3.

Chapter 4.1



*10381SUBI] 318173 9yl Ul UOTINQTIISTp AIT]IqOW YL HT-T°y °an8rg

wr 0L 80 90 Y0 0 00 wrf

-7°0

V7777777777 00
NIVYa 324N0S

- 73 -
'\'IOO\ /-
£l
o o | o
o o -




- 74 -

+1031STSUBI]} PUODIS 3yl U UOIINQTIAISTP L£ITTTIQOow aYJ

wr 0t 80 90

IGT~T°y 2an314

wrf

fﬂJ é

DD\

_£<mc

om

SA
wd

o't

-8°0

-9°0

-7°0

¢'0

\

-0°0

334N0S



- 75 -

19T-T"% 2n8yg

70 20 00 - wrf
R R .W\/ 0l
WoF

*I1018TSUBI] PITYl SYl UT UOTINQTIISTP AITTTqom oy

wi 0| g0 .
/.0 i

I
90

-7°0

mw_ .
\Illl\\\\\\\\\\\\\l!lllll////&Wv Ny |
Mﬂ/@/ 0o, '\\ 20
—
2/} i
Jk Q g 5T |
777772777 00
304N0S

NIVyQ




- 76 -

Figure 4.1-15 shows the isocontours of the mobility in the second
transistor. The qualitative appearance of this figure is, as was expected,
relatively similar to figure 4.1-13. One distinctly observes the appropriate
mobility reduction at the surface due to scattering by the impurities of the
channel implantation. It is worth noting that the region along the surface in
which the mobility is negligibly reduced is somewhat longer here. This
results because of the suppression of the short-channel effects by way of the

channel implantation.

Figure 4.1-16 shows the mobility distribution in the third transistor.
In the channel region there is essentially no change in comparison with the
second transistor. Only at the depth of the p—n junction can there be noticed
a small mobility reduction due to the impurities of the second implantation.

This effect has no influence upon the device's behavior.

Figure 4.1-17 shows the subthreshold characteristics for the three
transistors presented here for two different drain voltages. The solid curves
correspond to 100 millivolts and the dashed curves correspond to 3 volts. The
slope 1s identical for all three transistors at 100 millivolts. At 3 volts
the slopes are substantially reduced for the cases of the first and second
transistors by way of the "punch through” current. In the third transistor
the displacement of the characteristic curves at different drain voltages due

to short channel effects is minimal.

Fundamental statements about the behavior of a transistor can be derived
from the subthreshold characteristics of short channel transistors as can be
seen from the above example. One can apply them directly toward the
definition of the threshold voltage, and, what is of greater importance, their

slope immediately gives an indication of the usefulness of the transistor in a

circuit /38/. If the slope is not large enough such that the transistor
cannot be reasonably turned off, the resulting leakage current in the circuit

will be unacceptable.
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4.2 The Simulation of an Inverter

The simple inverter is one of the basic building blocks of digital
integrated circuits. Such a simple inverter consists of two types of devices;
a drive transistor and a load element. In the case of a low level on the gate
the drive transistor should draw no current, thereby no voltage drop will
occur across the load element and consequently the drain contact, which
represents the output of the inverter, will be at a high level. The
application of a high level on the gate should turn the drive transistor on
completely and consequently a low level should appear at the output due to the
voltage drop across the load element. Thereby one obtains the desired
electrical behavior of the inverter by placing certain restrictions on the
physical behaviors of the drive transistors and the load elements. The
threshold voltage of the drive transistor, for example, must be greater than
the low level. Many possibilities are available for the load element. It can
be realized as an ordinary ohmic resistor or as a load transistor. The
current which a modern mihiaturized drive transistor can draw is relatively
small., The power dissipation should remain small. Therefore it would be
difficult to implement the load element as an ohmic resistor in view of the
high resistance which is required. Such a resistor which would be represented
in practice by a diffused region would be very large and the gain in packing
density which resulted from the miniaturization of the active element, the

drive transistor, would be relatively small.

Presently, because of the above mentioned reasons, active elements are
used almost completely as loads. Such a load transistor can be implemented in
one of two possible ways: in the saturation region and/or umnsaturated in the
ohmic region. The condition for operation in the ohmic region is, that the
applied gate/source voltage (UGS) must always be greater than the sum of the
threshold voltage (UT) and the drain/source voltage (UDS).

Figure 4.2-1 shows a typical inverter circuit with an active load. Tl is
the drive transistor, T2 is the load transistor. One selects a transistor
with a negative threshold voltage for T2, such that it always operates in the
ohmic region, which on the one hand results in a larger high/low-level swing

and on the other hand contributes to increasing the speed of the circuit/63/.

Chapter 4.2
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Figure 4.2-1: A simple inverter.
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The required negative threshold voltage can be obtained through technological
means. In the following only one of the transistors which fulfilled the
requirements for a load, which together with the third transistor of sub-

section 4.1 can be used in an inverter circuit, will be investigated.

4.,2.1 The Load Transistor

One uses 5 donor element for the channel implantation, such that a slight
connection is made between the source and drain, without which one must create
an inversion channel by way of the gate voltage; in practice the channgl will
be implanted. By proper design for the channel implantation, the control-
lability of the current £low in the channel by way of the gate 18 not lost,
instead only the tﬁ}eshold voltage is shifted by a negative amount.

Figure 4.2-2 shows the doping profile of the load transistor. One
distinctly observes the steep donor implantion which was carried out for the
above reasons, in order to obtain a built-in channel. The implantation was
carried out with antimony, a dose of 10}2 ¢n2 and an energy of 180 keV. All
other technological and geometrical data are identical to the input for the
third transistor of subsection 4.1. The steep boron implantation of the above

mentioned transistor has naturally fallen off.

In order to obtain a better feeling for and understanding of the behavior
of a “depletion mode” transistor, the following 1s a short discussion of the
distribution of the relevant physical quantities for the same operating point
as was used in subsection 4.1. A drain voltage of three volts will be used

with a gate and substrate voltage of zero volts each.

Figure 4.2-3 shows the isocontours of the electrostatic potential. There
18 no barrier between the source and channel regions. A source/channel diode
is naturally non—existent and one can, in the best case, distinguish the
change of the built-in potential as an ntn transition. Figures 4.2-4 show the
electron density distribution in the load transistor. The presentation is
analogous to that of subsection 4.1l. One distinctly observes a carrier
channel, which extends over the entire channel region and the maximum

concentration is at a depth of about 100 nanometers. Naturally, due to the

Chapter 4.2
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Figure 4.2-2: The doping profile of the load transistor.
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selected operating point, there exists a "pinch off"” zone in this device.

Figures 4.2-5 show the distribution of the lateral current density
component in the load transistor in the usual 3-D presentation. The channel
is relatively wide and has its peak current density at a depth of about 100
nanometers, which was identically observed for the electron distribution. It
is also worth noting that there is not the smallest indication of “punch
through”.

Figure 4.2-6 shows the mobility distribution in the load transistor in
the form of isocontours. It is very similar to the distribution of the third
transistor of subsection 4.1, the drive transistor in that subsection. It can
be mentioned that the mobility was reduced by the higher dose in the steep
implantation.

Figures 4.2-7 and 4.2-8 should definitely clarify a discussion of the
internal behavior of the transistors. Figures 4.2-7 gshow the electron density
distribution in the load transistor at a higher gate voltage of (UG=3V) and
figures 4.2-8 show the same quantity for the drive transistor. Because of the
higher gate voltage both transistors are operating in the region of strong
inversion. 1In both transistors one can observe an enormous density gradient
at the surface. The pure inversion channel of the drive transistor is thinner
because of the antimony implantation defined channel of the load transistor.
Because of this fact the same peak current demsity in the channel of the load

transistor can furnish many times the total current of the drive tramsistor.

4.2.2 The Transfer Function

A nonsaturating inverter was analysed using the transistor discussed in
the last section and the transistor which was discussed in the.beginning of
the chapter. The channel width of the drive transistor was set at 20
micrometers, and the channel width of the load transistor was set at 2.5
micrometers, in order to obtain a desired quotient for the control factor

/59/. The substrate voltage was set at two volts, such that the threshold of
the driver is high enough for a useful low level signal to noise ratio.

Chapter 4.2
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Figure 4.2-4a: The electron distribution in a load transistor.
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Figure 4.2-4b: The electron distribution in a load transistor.
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The current density distribution in the load transistor.

Figure 4.2-5a:
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The current density distribution in the load transistor.

Figure 4.2-5b:
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Figure 4.2-7a: The electron distribution in the load transistor.
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Figure 4.2-7b: The electron distribution in the load transistor.
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The electron distribution in the drive transistor.

Figure 4.2-8a:



Figure 4.2-8b:
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The electron distribution in the drive transistor.
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Figure 4.2-9 shows the characteristic curves of the drive transistor and
the dashed line shows the characteristic of the load transistor. The gate and
drain voltages of the load tramsistor are always equal for the selected
circuit, and as already discussed the negative threshold voltage permits the
load transistor to always operate in the ohmic region. It should be
especially mentioned that the source potential is floating which has the same
effect as an equivalent substrate voltage. A notable feature of the load
transistor characteristic is that it is completely ohmic. This is because of
a compensation effect due to the influence of the drain voltage and the

substrate voltage upon the threshold voltage of the load transistor.

Figure 4.2-10 shows only the characteristic transfer curve of the
inverter, which was obtained point wise from the intersections of the
characteristic curves of the drive and load transistors. The low level lies
at 0.2 volts; the high level is naturally at the supply voltage of 3 volts
because the load transistor produces no voltage drop with no current flow.
The signal to noise ratio of the low level is (at 0.2 volts) very small,
This 1s a well known problem with miniaturized digital circuits. The reason
for this lies mainly in the low threshold voltage of the drive tramsistor.
The signal to noise ratio of the high level (at 1.36 volts) 1is surely
satisfactory. The slope of the transfer function (with a value of -2,5) is to
be expected with submicrometer logic. This could without doubt be improved by
clever design of the load element. This example documents in essence, that in
the near future, enormous integration densities of flawless digital circuits

18 to be expected by way of submicrometer technology.
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4.3 Process Sensitivity

Very large scale integration (VLSI) requires, without a doubt, the minia-
turization of the individuual transistor elements. By reducing only the
geometrical dimensions one is confronted with significant problems with
respect to the electrical behavior of the transistors. One must scale all
parameters together with the geometrical dimensions according to known rules,
("scaling” /38/ and /88/). In general, lower voltage, higher doping, more
shallow p—n junctions and thinner oxide will be used, in order to obtain the
desired behavior for the miniature transistor. For reduction of the channel
length down to two micrometers, all adjustable parameters can, at the present,
be controlled satisfactorily by the relevant technological steps (implanta-
tion, diffusion and oxidation). When the channel length is reduced further
controllability is lost, which has been experimentally confirmed by research-
ers worldwide and it was naturally to be expected a priori. In general repro-
ducibility is lost with increasing miniaturization. Especially the diffi-
culty of controlling the parameters of nearby transistors in the same in-
tegrated circuit, which should show identical behavior, increases

considerably.

In order to obtain more understanding of these conditions a process
sengitivity analysis of certain transistor parameters was carried out with
MINIMOS. This section will discuss in detail the sensitivity of the threshold
voltage, which is one of the most interesting transistor parameters for
circuit designers. It will further be attempted to find a practical limit for
the miniaturization of transistors in the technology described here, a well
established, yet modern MOS process. It is understood that the analysis of
the threshold voltage presented here is only an example of an analysis

strategy, which is usable on the remaining device parameters and technology.

4.3.1 The Transistor Which Was Analysed

The transistors investigated were made in a process which was developed
for channel lengths of two micrometers. Donor doped polysilicon was used as
the gate material. Arsenic was implanted for the highly doped source/drain
regions in order to obtain shallow p-n junctions with a steep gradient. A

double channel implantation was used in order, to adjust the threshold voltage

Chapter 4.3
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Figure 4.3-2: Enlarged detail of figure 4.3-1.
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as well as to suppress "punch through”.

Figure 4.3-1 shows a 3-D representation of the doping profile for a one
micrometer long transistor on a logarithmic scale. It is to be noted that the
scale on the lateral and vertical axes of this figure are the same. At the
rear on the left is the highly doped source region and at the rear on the
right 1s the highly doped drain region. Both channel implantations can be
seen between the source and drain. The shallow implantation was carried out
with a dose of 3101l em~2 and an energy of 35 keV and the deep implantation

0! em™2 and an energy of 160 keV. Naturally,

was carried out with a dose of 1
the dopant used in both cases was boron., The oxide thickness which was about

50 nanometers is not shown in this figure.

Figure 4.3-2 shows a blowup of the right rear quadrant of figure 4.3-1,
in order to be able to observe greater detail. A p-n junction depth of 320 nm

and an underdiffusion of about 200 nm was obtained for this process.

The process sketched here - as was described in the beginning -~ was
developed for a two micrometer long transistor and one wants to retain as much
as possible from a well established process in the development of a new
process, one asks himself first and foremost the question: How will the

devices made in this technology behave after a reduction in channel length?

4.3.2 The definition of threshold voltage

In order to investigate the behavior of the threshold voltage one must
first give it an adequate definition. The most common definitions are based
on an extrapolation of a tangent to the drain current. All of these methods
are relatively inexact and the threshold voltage cannot be directly realized
from all of them., The following definition was chosen because of the above
reasons: The threshold voltage is that gate voltage at which the transistor
sinks 0.1 microampere times the channel width per channel length. The channel
length 1s defined as the distance between the metalurgical p-n junctions of
the source-channel and drain-channel. With this definition it is insured that
no threshold voltage shift versus channel length occurs for long channel

transistors, which makes it possible to quantitatively measure the influence

Chapter 4.3
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of short channel effects. Also, with the above definition, the experimental
measurement of the threshold voltage is not a problem. At this point it
should be mentioned that the drain voltage and the substrate voltage are not
explicit parameters in the threshold voltage definition. One must obtain the
dependence upon these parameters through the use of characteristic curves
(threshold voltage versus drain voltage and threshold voltage versus substrate

voltage).

Of course the definition chosen here is arbitrary, just as arbitrary as
any other definition, and one can therefore argue about the application of
the quantitative value of the selected constant (0.1 pA times channel width
per channel length). Devices with a steep subthreshold characteristic - only
such devices are of practical interest - produce useful results by all
definitions of threshold voltage, and for devices with shallow subthreshold
characteristics. A definition of threshold voltage is irrelevant.

Figure 4.3-3 shows the threshold voltage versus channel length for the
transistors which were investigated. An operating point of 3 volts on the
drain and -2 volts on the substrate has been chosen as a fair tradeoff for the
comparison of different channel lengths. In order to avoid confusion all of
the following figures will also refer to this same operating point. In figure
4,3-3 one observes the well known decrease of threshold voltage with smaller
channel length. This first becomes critical as the channel length becomes

less than one micrometer.

4,3.3 Sensitivities

Usually in articles about short channel MOS transistors a comparison
between theoretical curves and selected experimental points is presented.
Some authors also report statistical measurements (e.g. /37/), but only one
publication /144/ deals explicitly with the sensitivity of an electrical
transistor parameter, and the threshold voltage was indeed studied in that
publication. With respect to the inherent dependence of most properties on
the dispersion of geometry and technology, it seems to be a necessity to

analyse and present these dependencies directly.
The computer program MINIMOS developed here 18 well suited for such an

Chapter 4.3
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analysis. One simply needs the physical model parameters for the program as
for example the constants in the mobility formulation. For a transistor in a
given technology it i8 necessary to have agreement within a small percent
between simulated and measured data over a selected interval. This can be done
with noncritical transistors with relatively long channels because the
measured characteristics should deviate only minimally for inaccuracies in
geometry and technology. In order to obtain the sensitivity one must simply
vary a technological or geometrical parameter of a small transistor in the
region of its nominal value and discretely differentiate to obtain the desired
results, e.g., the threshold voltage. This parameter variation must certainly
be done within a small range because the validity of linearization which is
presupposed with the whole strategy has to be ensured. On the other hand, it
is necessary to have a sufficiently large range of parameter variation to

avoid cancellation errors in the (numerical) differentiation.

The above sketched procedure is not usable experimentally, because the
parameter variation in a small region of high sensitivity is not reproducible.
If one could exactly vary the desired parameter the possibility of
experimental analysis seems questionable because the manufacturing cost would
be very large and a tremendous amount of time would be required. With a good
simulation program it is easy to calculate the partial derivatives of
transistor parameters with respect to any desired technological or geometrical

parameter by way of the above described procedure.

Figure 4.3-4 shows the partial derivative of the threshold voltage with
respect to channel length versus channel length; that is, the sensitivity of
the threshold voltage on the tolerances of channel length. If one assumes a
transistor with an effective channel length of one micrometer with a tolerance
of ten percent, which is only 100 nanometers, one can read from figure 4.3-4 a
60 millivolt spread in the threshold voltage. This spread is so large that

a great number of integrated circuits would no longer operate properly.

Figure 4.3-5 shows the relative sensitivity of the threshold voltage on
the tolerance of the gate oxide thickness versus the channel length. This
dependence decreases with shorter channel length which at first glance is

probably not expected. This 18 due to the decreasing influence of the bulk

Chapter 4.3
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charge with shrinking channel length. It is possibly noticeable that this
figure is qualitatively similar to the figure of the threshold voltage versus
channel length (figure 4.3-3). This fact is easy to understand by analytical
reasoning. One must simply remember that in the first order approximation the
threshold voltage is proportional to the reciprocal of the oxide capacitance
per channel charge and the oxide capacitance is proportional to the reciprocal
of the oxide thickness. The charge at the interface (QSS) is in general very
small in comparison to the channel charge and will therefore not be considered

in these qualitative calculations.

UT & g5 + 270p = (Qg4+0Q))/Coy
(without short channel effects)
Cox = tox’Tox

WT/Tyy & ~(Qgq*Qp) /2oy

uT & (w‘r/a'rox)-'rox + const.

The decrease in the threshold voltage with decreasing channel length (not
included in the above formulation) basically lies physically in the reduction
of the channel charge by way of the space charge regions of the source-
substrate and drain-substrate diodes, and yet one spreads the channel charge
over the oxide, therefore the decrease in the sensitivity of the threshold
voltage with respect to oxide thickness tolerance appears plausible from this
point of view. As a developer of transistors one should not be delighted by
this decrease in dependence upon oxide thickness, which means at the same
time, as was mentioned in the last sentence, that the controllability of the

transistor by way of the gate is decreased.

Figure 4.3-6 shows the sensitivity of threshold voltage on junction depth
tolerances versus channel length. A one micrometer transistor with an

uncertainty of ten percent has an uncertainty in the threshold voltage of *40

millivolts. Again as one can read from this figure, there exists, in general,

no influence on the threshold voltage of long channel transistors by the p-n

Chapter 4.3
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junction depths. Physically this effect can be explained relatively easily:
At a given critical channel length the source-substrate and drain-substrate
reverse-biased diodes are in a position to influence the charge in the
channel. This influence is simply the short channel effect (see also /133/).
If the transistor is so short that both space charge regions almost touch each
other, the channel charge will not only be reduced, but much more, the barrier
of the source-channel will be shorted and at about the depth of the p-n
junction a conduction channel will be created, the "punch through” channel.
Both effects, insofar as will be discussed here, produce a reduction in
controllability of the transistor by way of the gate and result in a
dependence on the p-n junction depth. On the one hand, the threshold voltage
will be shifted in the negative direction and additionally, what is more
undesirable, the steepness of the subthreshold éharacteristics will be
reduced. A well controlled p-n junction depth proves to be a required

necessity for the manufacturing of short channel transistors.

Figure 4,3-7 shows the sensitivity of threshold voltage on drain bias
variations A 300 millivolt change in drain voltage, that is, ten percent of
the applied bias, results in about 30 millivolts change in the threshold
voltage for this operating point. Physically this effect is based on the
influence of the space charge region of the drain-substrate diode on the
channel charge. This influence has already been discussed in the explanation
of figure 4.,3-6, the sensitivity on junction depth tolerances. It naturally
makes little difference, whether the space charge region was a result of
junction depth or uncertainty in the drain voltage, the qualitative
similarities of both sensitivities are easy to understand.

The sensitivity on drain bias variation could be measured with sufficient
experimental effort. However in the case of short channel devices only the
nominal values of the process and technological parameters are known. On the
basis of the expected dispersion of these parameters the value of the
measurements would be degraded. One could only make statistical measurements
and extract statistical bars on each measured point. This procedure would be
experimentally expensive and the expected statistical bar would be so large,
that one would not be able to draw any convincing conclusions from the

measurements.

Chapter 4.3
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Figure 4.,3-8 shows the sensitivity of threshold voltage on bulk bias
variation. A 200 millivolt change in the bulk bias, ten percent, results in a
threshold shift of about 11 millivolts, which is usually noncritical. For the
long channel transistor one can easily estimate this sensitivity analytically.

It is namely:

aUT/3UB & -1/C _+3Q,/3UB
with

Q * By Y,

Ye is the space charge zone width under the chanmel

Ny 1is the substrate doping

For the partial derivative with respect to substrate bias only y,, the

space charge zone width is nonconstant. Therefore this means that:

WT/IUB & = (T /¥e) (Egq/00y)

By estimating y, at about two micrometers and the quotient of €gi tO Eox
at about three one obtains a value of about 7.5 percent for the sensitivity of
bulk bias for long channel transistors, which the exact two dimensional
calculations confirm. Although as has already been said, this sensitivity is
relatively small, in practical cases all the sensitivities are summed

together, so that one should not completely forget this effect.

An interesting detail of this figure is the fact that the sensitivity
decreases first with shrinking channel length and at a critical length begins
to increase rapidly. One can interpret this behavior as a superposition of
short~channel effect and "punch-through”. The short channel effect produces a
decreasing tendency of the sensitivity, which means that the substrate voltage
loses control over the channel charge. In the case of "punch-through"” the
sensitivity again increases, in that the substrate voltage causes a field that

definitely influences the action of the drain.

Chapter 4.3
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Figure 4.3-9 shows the influence of fluctuations in the energy of the
steep channel implantation on the threshold voltage. Qualitatively one again
observes the superposition of the "punch-through” effect and the short channel
effect., The absolute value of this particular sensitivity is low due to the
fact that the depletion region below the channel covers the entire implanted

region.

Figure 4.3-10 shows the sensitivity of the threshold voltage on the
uncertainties of the dose of the steep channel implantation. This figure is,
as was to be expected, very similar to figure 4.3-9, the sensitivity on
uncertainties in implantation energy. For the long transistor it is possible
to estimate this sensitivity in a simple manner. The implantation dose is

simply placed in the channel charge:
Qy $ qe(Nyoye + Dose)
The threshold voltage sensitivity is calculated to be:

aUT/aDose & -1/c°x°aob/abose

- g/C,, = 23 wv/101%na"2

Figure 4.3-11 shows the temperature coefficient of threshold voltage on
the transistors investigated. One also distinctly observes the previously
discussed behavior, namely, the superposition of short-channel effects and
"punch-through" effects. The absolute value of this sensitivity lies around a
value of about -1 mV/°K. The absolute value as well as the qualitative
behavior has been verified by experiments /129/. For the long-channel
transistor one can simply calculate an approximate value for the temperature
coefficient. The principle temperature dependent term in the simple threshold

voltage formula is namely the fermi level. Hence:
UT/3T o 2"’i/'T b (Ug=2:4p) /T = -1.5 av/K

The two dimensional calculations give a value of exactly -1 mV/°K which

can be taken from figure 4,3-11.

Chapter 4.3
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Figure 4.3~12 shows the subthreshold characteristics with L/W scaled for
the transistors investigated with channel length as the parameter. One
observes that the shift of these characteristic curves due to short channel
effects 18 very small down to a channel length of about two micrometers. A
more noticeable fact is that the slopes of these characteristic curves first
begin to deteriorate with channel lengths under one micrometer, which verifies
the occurrence of ("punch-through") which has already been discussed many
times with respect to previous figures. The fact that some of those figures
show a local extremum with a calculated channel length of about 1.3
micrometers can also not be completely explained here with this figure. As
has already been pointed out, the occurrence of an increased short channel
effect together with the collapse of the subthreshold slope (“punch-~through")
is responsible for the limits to any further miniaturization of the tran-

sistors in the technology investigated here.

4,3.4 Global Sensitivity

The partial derivatives discussed in the last subsection denote isolated
sensitivities on a certalin set of parameters. One can obtain from these
results which parameters are the most critical with respect to the development
of a device. A global sensitivity which describes the sum of all detailed
sensitivities is of great interest for many reasons. Such a sensitivity
should be related to a specific technology and its applications and should
indicate the limit of channel length reduction. In order to calculate such a
global sensitivity typical ranges of deviations of design parameters have to
be specified.

Figure 4.3-13 shows an example of quantitative values of these ranges for
a one micrometer technology. The channel length uncertainty is shown to be
relatively small with an absolute value of 100 nanometers. One must remember

that for a one micrometer technology this already amounts to ten percent.

Chapter 4.3
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Parameter X | ax| LY
L 100 nm
TOX 50 nm 2.5 nm 5
RJ ' 320 nm 32 nm 10
uD v 150 mv S
UB -2V 100 mV S
AKEV 35 keVv 0.7 keV 2
DOSE 3101 ca™?  6e10° cm”2 2

Figure 4.3-13: Desired process operating tolerances.

Obtaining oxide thicknesses within five percent and p-n junction depths
within ten percent should be realizable in a good manufacturing facility. The
circuit designer is expected to stabilize the bias voltages within five
percent. At the present, to control the implantation parameters within two
percent seems to be an extremely high demand. With modern equipment this is

also realizable.

Figure 4.3-14 shows the global sensitivity which was calculated with the
above given specifications. oy denotes the uncertainty of the threshold
voltage with respect to neighboring devices, which should behave identically
in the same integrated circuit. D stands for device. This sengitivity is
given only by the channel length variation as the other parameters are
commonly very homogeneous in a given circuit. o w and W stand for wafer and
denote the uncertainty of threshold voltage of transistors, which should
behave identically, but which have been fabricated in different process runs.
In this case one must use a type of Euclidean norm over all detailed

sensitivities in order to obtain a global sensitivity. It it noteworthy that

Chapter 4.3
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this curve seems to be constant down to a certain channel length at which an
excellently pronounced knee is located, 1.4 micrometers, which can be
interpreted as the practical 1imit of channel length reduction due to the
threshold uncertainty. Physically this 1limit depends strongly on the
beginning of the degradation of the subthreshold characteristics. To obtain a
practical 1limit for miniaturization purely from subthreshold characteristics
is a difficult problem in that the degradation begins very slowly and
therefore it will be too late when the limit is first recognized. It should
here then be stated, what most device developers unanimously maintain and
should not be taken trivially, that the subthreshold characteristics represent
one of the most important indicators of the quality of a transistor design.

Chapter 4.3
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5. Conclusion and Qutlook

In the scope of this work a static, two dimensional model for
miniaturized planar MOS transistors was presented. A user oriented computer
program, MINIMOS, was developed, whose two dimensional model has a physical

basis. The main motivations for this work were as follows:

* To more deeply understand the behavior of modern miniaturized MOS

transistors.

* To bridge the gap between technology modeling and computer aided
circuit design.

* To be able to place at one's disposal a simple to manage yet very

exact tool for MOS transistor simulations.

It was shown by selected examples that the above mentioned goals were
satisfactorily fulfilled. Especially the knowledge of the distributions of
important physical quantities such as charge carrier distributions and current
densities were made possible. It has also been made possible to gain a deeper
insight into the functioning of devices of this type which could not have been

done in any other way.

Furthermore, the presented work provides the basis for further modeling
efforts. The present work can be modified with fundamental physical models on
the one hand to improve the understanding of MOS transistors, in order to be
able to analyse the breakdown behavior due to impact ionization or switching
behavior and on the other hand to be able to analyse other devices which can
be analysed from "first principles” would prove to be interesting and

necessary.
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c.1

APPENDIX C THE STRUCTURE OF MINIMOS

The structure of the computer program MINIMOS is discussed from the
following point of view; that a segmentation of the pertinent object code,
which is calculated to use the smallest amount of main memory, can be simply

accomplished.

Figure C-1 shows a diagram for such a segmentation with symbolic segment
names. The table in figure C-2 further shows which subroutines belong to each

segment in the diagram of figure C-1,

The structure of the program uses a four level segmentation with a very
small root segment (S00) resident in main memory. This root segment includes
only the main program, the initialization of the physical and mathematical
constants and a small subprogram which is necessary for all lower order
segments, The main program is realized as a driver program, that means there
are no essential calculations performed, instead it has only the specific task
of calling the other subprograms (segments). This structure was implemented
as a consequence of future programming goals, in order to obtain the highest
possible level of modularity and thereby future programming changes such as

enhancements can be easily carried out /146/.

The first sublevel contains two segments, which are logically completely
independent. The segment SOl converts and analyses the input directives,
which are explained in detail in Appendix A, The support subroutine in this
segment is SUBOl; it represents the framework of a directive compiler. The
segment S02 is the driver segment for all mathematical calculations. The

support subroutine here is SUBO2,

All of the essential calculations and the output of the results follow
in the next level of segmentation. In segment S03, with SUBO2A as the support
subroutine, all of the input data is normalized (TEST), an initial grid is
calculated (GRID), the doping profile is calculated (CONCNT), and the intitial
solution is calculated (INIT).

In segment S04-SUBO2B is the relevant subroutine - the initial solution

and the grid are refined as much as possible in order that the actual two

Appendix C



C.2

dimensional solution, which is very time intensive, can be obtained. The
procedure 1s as follows: First all of the grid dependent quantities are
calculated (POICO), the boundary conditions are imposed (BOUND), then the two
dimensional Poisson's equation and a one dimensional continuity equation
(SIMUL) are solved and the grid along with the resulting solution are checked
for optimality (CHECK). When the grid satisfies certain conditions which are
deduced from the solution, then this segment is released. If the grid is not
satisfactory, it 1s regenerated. Grid lines will be added, moved or removed.
This procedure is called adaptive grid generation /12/, /74/. Consequently
the last solution will be carried over (SAVE), the doping proifile for the new
grid is calculated (CONCNT) and furthermore at the beginning of the segment,
the calculations are begun for the new grid dependent coefficients. This

procedure is repeated until the grid satisfies all necessary conditions.

The essential two dimensional calculations follow in segment S05. The
support, and realistic driver subroutine here is SUB0O2C. First the mobility
distribution is calculated (MOB) and the last obtained solution is tested for
physical and mathematical convergence (CONV). This segment is released when
convergence is reached, otherwise the two dimensional current continuity
equation for minority carriers will be solved (CEQMIN), similarly for
Poisson's equation (POIEQ), and then the program returns to the beginning of

the segment, until a mathematically consistent solution is found.

The last segment in this level, designated as S06, prints all results on
the line printer. The responsible subroutine is named SUBO2D.

If more operating points were to be calculated with MINIMOS, the

execution would return to segment S04.

The segmentation shown in the fourth level of figure C-1 is not abso-
lutely necessary. In many cases it cannot be simply realized; it is only
given in order to make the fine structure simple where needed and possible.
The given structuring was tested on a CDC computer with the help of the system
programs SEGLOAD /26/ with excellent results. The necessary memory was

reduced by about 25 percent by the segmentation.
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C.3

At this point it should also be mentioned, that all subroutines in figure
C-2, which begin with ZZZ and are in bold type, are system dependent. One
must modify these when MINIMOS is installed in different computers. In
general, this presents no overall problem, in that these routines are very
short. A detailed description of the necessary adaptations can be taken from

the comments in the source text of the programs.
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Figure C-1: The segmentation diagram of MINIMOS
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S00

(main)
blkdat
WRTHED
REFERZ
REFERT
ABTMOS
ZZZSEC

S08

GRID

Slé

MOB

S01

SUBO1
PARSE
REALVA
LOGIVA
IFEQ
ERRORA
ERRORB
ERRORC
ERRORD
ERRMSG
CLASH
ZZZDAT

S09

INIT

sl7

CEQMIN
CEQSIP
MOVMEM

S02

SUB02

REFERI
SETUP

MEMORY
ERFXX

REFERR
SETMEM
ZZZOPE
ZZZPUT
ZZZGET
ZZZCLO

S10

POICO

Sl8

POIEQ
POISIP

C.5

S03

SUBO2A
CONCNT
IMPPAR
IMPSTA
CUBF

Sll

BOUND
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CURL

S04 S05 S06 S07

SUB02B SUB02C SUB02D TEST
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CONV CHARGE
PRARAY
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Figure C-2: The segments and their contents
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