
Automatic Generation of Virtual Prototypes

P. Belanović, M. Holzer, B. Knerr, and M. Rupp
Vienna University of Technology

Institute for Communications and RF Engineering
Gusshausstr. 25/389, 1040 Vienna, Austria

{pbelanov,mholzer,bknerr,mrupp}@nt.tuwien.ac.at

G. Sauzon
Infineon Technologies

Operngasse 20b, 1040 Vienna, Austria
guillaume.sauzon@infineon.com

Abstract

Virtual prototyping as an embedded system design tech-
nique has the potential to significantly increase efficiency of
the design process. An environment for automatic genera-
tion of virtual prototypes (VPs) directly from algorithmic-
level descriptions is presented here. It is implemented as
part of a unified design methodology and produces VSIA
compliant VPs. When applied to an industrial design flow
of a UMTS receiver, this environment for automatic gener-
ation of VPs produced significant speedups over traditional
manual VP creation, with savings in the order of hundreds
to thousands of person-hours.

1. Introduction

Complexity of modern embedded systems, particularly
in the wireless communications domain, grows at an as-
tounding rate. This rate is so high that the algorithmic com-
plexity now significantly outpaces the growth in complex-
ity of underlying silicon implementations, which proceeds
according to the famous Moore’s Law. Furthermore, algo-
rithmic complexity even more rapidly outpaces design pro-
ductivity, expressed as the average number of transistors
designed per staff/month [12, 7]. In other words, current
approaches to embedded system design are proving inad-
equate in the struggle to keep up with system complexity.

Hence, a number of new system design techniques with
potential to speed up design productivity are intensively re-
searched. One of these techniques known as virtual proto-
typing speeds up the design process by enabling develop-
ment of hardware and software components of the embed-
ded system in parallel.

Development of a comprehensive design environment
for automatic generation of virtual prototypes (VPs) from

This work has been funded by the Christian Doppler Pilot Laboratory
for Design Methodology of Signal Processing Algorithms.

an algorithmic-level description of the system is presented
here. Section 1.1 describes the concept of a VP in closer de-
tail, including a review of related work. The design envi-
ronment for automatic generation of VPs is presented and
described in detail in Section 2. Results of applying this au-
tomatic environment in an industrial product development
process are shown in Section 3. Finally, conclusions are
drawn in Section 4.

1.1. Virtual Prototype Concept

System descriptions at algorithmic level contain no spe-
cific implementation details. Hence, before implementation
of the system can begin, the algorithmic description is par-
titioned, i.e. each component in the description is assigned
to software or hardware implementation.

Traditionally, implementation of hardware components
proceeds from this point. Development of software mod-
ules, however, can begin only once all required hardware
design is complete. This is due to the fact that the design of
software components must take into consideration the be-
haviour of the underlying hardware. Hence, a significant
penalty is incurred in the length of the design process. Vir-
tual prototyping is a technique which can eliminate most of
this penalty and thus dramatically shorten the development
cycle, as shown in Figure 1. Furthermore, such design ef-
fort savings are achieved with every iteration of the design
cycle, i.e. revision of the algorithmic-level description.

A VP is a software model of the complete system, fully
representing its functionality, without any implementation
details. In this work we consider VPs which additionally in-
clude full definitions of hardware/software interfaces found
in the system, including the required architectural informa-
tion, but still no details of the actual implementation of any
component. Hence, such VP components can be used to
mimic the hardware/software interface which will be found
in the final implementation, as shown in Figure 2. This en-
ables parallel development of the component’s hardware
implementation and the development of software compo-

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

� � � � � � � � � � 	
 � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � ! " � � " � # $ % � " & " ' " � � (" � �

� ! " � � " � # $ % � " & " ' " � � (" � �) � � * + , - � � . � � � $ / " � " � � � " � 0

� � � � � � � � � � 	
 � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

1 2 � � � � � � � � � � 3 � � 4 � � 5

Figure 1. Shortening of the design cycle by
the VP technique

� � � � � � � � � �

� 	
 � � � � � � � � �
� � � � � 	 � � �

� � � � � � � � � �
� � � � � � � � 	 � 	 � � � � � �

� � � � � � � � � �
� � � � � � � � � � 	 � � �

� � � � � � � � � � � � � � � �
� � � � � �

� � � � � � � � � � � 	 �

� � � � � � � � � �

� 	
 � � � �

� � � � � � � � � �
� � � � � �

� � � � � �
� 	
 � � � �
� � � � �
 ! �

� � � � � �
� � � � � 	 � � � � � 	
 � �

! 	 � � 	 � � � � �

 � � � � � � � � �
� � � � � � � � � � � 	 �

Figure 2. System development using a VP

nents which interact with it in the final system. Once both
software and hardware development is completed, the VP
component is simply substituted with the real hardware
implementation which provides the same behaviour at the
hardware/software interface.

Virtual prototyping offers numerous improvements to
the design process. First and foremost, it allows parallel de-
velopment of all components in the system, resolving all in-
terface dependencies. Furthermore, it allows testing of soft-
ware components which interface with hardware against the
known hardware/software interface. Finally, a VP allows
verification of the hardware implementation itself, making
sure the hardware indeed provides correct interface to ex-
ternal components as it was designed for at the algorithmic
level.

Very importantly, creation of a VP for a system compo-
nent requires a relatively small design effort, compared to

� � �

� � � � � �

� � � 	
 � 	 �

� �

…

� � �
� � � � � �

� � �

� � 	 � � � � � �

Figure 3. Target hardware platform

that of a full hardware or software implementation. This is
due to the relaxed requirement of the VP to recreate be-
haviour only at component boundaries, allowing all other
implementation details to be overlooked.

1.2. Model of Hardware Platform

The hardware platform targeted in this work is an SoC
based around a StarCore DSP, as represented in Figure 3. In
addition to the StarCore DSP, the platform includes a num-
ber of Hardware accelerator (HA) blocks. Just like the DSP,
the HA blocks are connected through the system bus to all
the other components. Additionally, HA blocks have direct
I/O interfaces, which can be used to connect to components
outside the embedded SoC, such as the antenna sub-system.
The platform also includes a bank of Random Access Mem-
ory (RAM) for use by all the system components. Direct
Memory Access (DMA) services are provided to the DSP,
as well as to the HA blocks by a dedicated DMA controller,
which is also connected to the system bus.

After hardware/software partitioning is performed on the
algorithmic-level description of the system, the components
assigned to hardware are implemented as separate HAs,
whereas components assigned to software are implemented
as DSP code blocks.

1.3. Related Work

Much of the current research effort in raising the effi-
ciency of the embedded system design process focuses on
introducing unified design methodologies that cover the en-
tire design cycle [11, 8]. Such methodologies have the po-
tential to increase design efficiency, reduce time to market
and improve quality of the embedded system product. The
design environment for automatic generation of VPs which

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

is presented here has been developed as an integrated part
of just such a unified design methodology [10].

The simulation environment used in this work is that de-
fined by the VSI Alliance (VSIA simulation interface stan-
dard) [1]. This environment is highly suitable to simulation
of VPs because of its simple (non event-driven) scheduling,
which is adequate for this application and produces supe-
rior simulation performance.

Previous work on VPs has for the most part focused on
their use, in the hardware/software co-simulation of the em-
bedded system [4, 2, 6]. While these efforts are targeted to-
wards increasing the efficiency and quality of the design
process through novel modifications of the co-simulation
process, they ignore the significant gains achievable by au-
tomatic generation of VPs.

The approach presented in [5] considers automatic gen-
eration of VPs and achieves a speedup in the order of 5 to 8
times that of manual VP creation. However, this VP gen-
eration environment requires, in addition to the algorith-
mic description of the component, a formal description of
its GLObal Control, Configuration and Timing (GLOCCT),
the need for which is eliminated in our approach.

Furthermore, this design environment considers only
Synchronous Data Flow (SDF) models, whereas our ap-
proach extends this to Dynamic Data Flow (DDF) models,
adaptable to both the dynamically configurable sample rates
of all sub-modules of a VP component, as well as the chang-
ing flow of data between these sub-modules.

Also, the VP environment presented here implements the
entire VP homogeneously, in automatically generated VSIA
compliant C++ code, rather than separating DSP code in C
and GLOCCT code in VHDL.

2. Automatic VP Generation Environment

As described earlier, design of an embedded system pro-
ceeds from the algorithmic-level description towards the
system’s final implementation firstly through a partitioning
process, followed by the creation of a VP and finally hard-
ware or software implementation of each individual compo-
nent.

The process of VP generation is typically performed
manually, through rewriting of the VP from the algorithmic-
level description. However, when the VP design environ-
ment is integrated into a unified design methodology, it is
possible to make VP generation a fully automated process.
This helps eliminate human errors and drastically decrease
the time needed to create a VP, in turn deriving maximum
possible efficiency gain promised by virtual prototyping.
This is illustrated in Figure 4.

The automatic VP generation environment presented
here is depicted in Figure 5. The process of automati-
cally generating a VP component from that component’s

� � � � � � � � � � � � � � 	 �
 � � � �

� � � � � � ! " � # $ � % & � � � ' �

() � % *) � & + & , & � � - " & '

. � / *) � & + & , & � � - " & '

0 1 % & , & � � - " & ' 2 ") ' 3) � 4

� � � � � � � � � � � � � � 	 �
 � � � � � � � � � � � � � � � � � � � � � � 5 � � � � � � � � � � � � � �

� � � � � � ! " � # $ � % & � � � ' �

() � % *) � & + & , & � � - " & '

. � / *) � & + & , & � � - " & '

0 1 % & , & � � - " & ' 2) 3 � ") � # 4

Figure 4. Shortening of the design cycle by
automating VP generation

algorithmic description consists of two parts. First, the al-
gorithmic description of the entire system (encompassing
all its components) is read into the Single System De-
scription (SSD). This also includes partitioning of the
system by labelling each system component for imple-
mentation in hardware or software. The second step in the
process is the generation of all parts of the VP compo-
nent from the SSD.

2.1. Processing the Algorithmic Description

The environment for automatic generation of VPs pre-
sented here is based on processing algorithmic descriptions
created in the COSSAP environment. Nevertheless, the VP
environment is in principle independent of languages and
tools used for algorithmic modelling and can, due to its
modular structure, easily be adapted to any language or tool.

COSSAP descriptions contain separate struc-
tural/interconnection and functional information. The
structural and interconnection information in the COS-
SAP description is VHDL-compliant and is read into the
SSD by the System Description Interface (SDI). The SDI
comprises a VHDL-compliant Parser module as well as
a Scanner module which manages the database struc-
ture within the SSD.

The functional information in COSSAP descriptions is
written in GenericC (extension to ANSI C proprietary to the
COSSAP environment) and formatted in accordance with
specific guidelines. These guidelines ensure compatibility
of the GenericC code with tools in the second phase of

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

� � �

� � � � �
� � 	
 �
 � � � �
� � � 	 � �
 � �

 � � � �
� � �

� � �

� � �

� � � � �
� � 	 � � 	

� � � � 	

� � � � � �

 ! " # � 	 �
 ! " # �

 ! � � ! � � ! � � ! � �

$ % & & ' ()
* + , - . / , 0 . 1

2 � 3 4 5 6 4 7 8 7 9

� �
� � 	 � �
 	 : �
 : 	 �

; � < = ; = < �

> � � ? � � � @
� A � �

� � A � B : � � 	

? : �
;
 � 	 � � � �

� � � � �
;
 � 	 � � � �

Figure 5. Design environment for automatic generation of VPs

the automatic VP generation. Suitably formatted functional
component descriptions are placed directly into the SSD.

After the complete algorithmic system description is
processed into the SSD, it is necessary to perform hard-
ware/software partitioning before VP components for all
hardware components can be generated. This task is per-
formed by the Hardware/Software Partitioning (HSP) tool.
Manually created hardware/software partitioning decisions,
stored in textual form, are integrated into the SSD by the
HSP tool. Once system partitioning is performed, the first
phase of the VP generation process is complete.

2.2. Virtual Prototype Generation

A VP component is composed of several parts, as shown
in Figure 5. VP infrastructure is a class library containing
all elements needed to construct a VP component. First-
In First-Out (FIFO) blocks facilitate transfer of data within
a VP component, between its sub-modules. These FIFO
blocks have capabilities of writing data passing through
them into test-vector files, as well as inserting data into the
VP component from similar test files. Hence, these modi-
fied FIFO blocks enable testing not only at VP component
boundaries, but also within them.

CDLBlock chain is a set of all sub-modules of a VP
component, interconnected to recreate the original struc-
ture found in the algorithmic description. Each VP compo-
nent contains a Scheduler, which governs the execution of
all sub-modules, while maintaining the flow of data through
the FIFO blocks. Finally, each VP component contains two
elements which are by definition application-specific and

need to be created manually. The first of these is the inter-
face to the system bus which connects all system compo-
nents (see Figure 3). The second manually created element
is the hardware/software interface block, which controls the
transfer and packaging of data between the software run-
ning on the system’s CPU and the VP component.

The second phase of automatic VP generation is per-
formed by the Virtual Prototype Generator (VPG) tool. This
tool extracts all necessary structural information for the par-
ticular component from the SSD and creates the CDLBlock
chain accordingly, using the VP infrastructure and FIFO
blocks. Relevant functional information in the SSD is code-
styled to be compliant with the VSIA standard and the C++
language and is then integrated into the VP component. Fol-
lowing these steps, the automatically created VP component
can be manually customised to a particular system bus, CPU
and communications protocols, before being used.

3. Results

The environment for automatic generation of VPs pre-
sented here has been applied to an industrial design flow of
a UMTS receiver in order to estimate its performance ben-
efits. To this end, performance of the automatic VP gener-
ation has been compared to that of the usual manual cre-
ation of VPs. Both processes start from a completed algo-
rithmic model in COSSAP and result in a fully functional
VP in complete simulation with bus and CPU models.

As mentioned in Section 2.1, COSSAP descriptions con-
tain separate structural/interconnection and functional in-
formation. Hence, the design effort (measured in person-

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

Component Structural Functional Total

DPE 8 25 33
SYNC 17 39 56
DUD 12 43 55

Table 1. Design effort for manual VP creation

hours) for VP creation is composed of processing the struc-
tural/interconnection part of the description, processing the
functional part of the description and creation of the inter-
face to the system bus. The first two steps can be performed
manually or automatically, whereas the interface to the sys-
tem bus has to be created manually in both approaches.
Hence, the design effort for the interface to the system bus
has not been taken into account in this comparison.

Design effort for the manual approach is shown in Ta-
ble 1, with all values in person-hours. The three compo-
nents for which the results are presented, Delay Profile Es-
timator (DPE), Synchronisation (SYNC) and Decoding of
User Data (DUD), are all parts of the complete, industrially
developed UMTS receiver. As can be seen from these re-
sults, design effort varied between components, due to their
various complexities and code lengths.

Automatic generation of VP components for each of
these system blocks took a negligible amount of time (in
the order of several seconds). Hence, automatic VP genera-
tion produced savings equal to the values shown in Table 1,
in total exceeding 140 person hours for these three compo-
nents.

However, with each new revision of the system descrip-
tion at the algorithmic level, the VP generation process has
to be repeated. In this industrial UMTS receiver design flow,
some system components have well in excess of 50 revi-
sions. Hence, taking into consideration the revision cycles,
total savings achieved by the automatic VP generation en-
vironment are expected to reach thousands of person-hours.

4. Conclusions

The automatic environment for VP generation presented
here has been successfully applied in an industrial de-
sign flow, showing significant speedup in creation of VPs,
with savings in the order of hundreds to thousands of per-
son hours. Simultaneously, this approach also eliminates
human-related errors, thus improving design quality. Ad-
ditionally, work presented here shows better performance
benefits, increased flexibility and wider applicability com-
pared to previously presented automatic techniques.

Future work on the presented environment includes gen-
eration of VPs in standards other than VSIA, such as Sys-
temC [9] and ConvergenSC [3], as well as processing of

algorithmic descriptions developed in environments other
than COSSAP.

References

[1] U. Bortfeld and C. Mielenz. Whitepaper C++ System Simu-
lation Interfaces, July 2000.

[2] J. Cockx. Efficient Modelling of Preemption in Virtual Pro-
totype. In International Workshop on Rapid System Proto-
typing RSP 2000, pages 14–19, Paris, June 2000.

[3] CoWare ConvergenSC Products.
https://www.coware.com/convergensc.

[4] C. Hein, J. Pridgen, and W. Kleine. RASSP Virtual Proto-
typing of DSP Systems. In Design Automation Conference
DAC’97, pages 492–497, 1997.

[5] A. Hemani, A. K. Deb, J. Öberg, A. Postula, D. Lindqvist,
and B. Fjellborg. System Level Virtual Prototyping of DSP
SOCs Using Grammar Based Approach. Design Automation
for Embedded Systems, 5(3):295–311, 2000.

[6] A. Hoffmann, T. Kogel, and H. Meyr. A Framework for Fast
Hardware-Software Co-simulation. In Design, Automation
and Test in Europe DATE’01, pages 760–765, Munich, 2001.

[7] International Sematech. International Technology Roadmap
for Semiconductors, 1999. Austin, Texas.

[8] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
Integrated Development of Embedded Software. In Proceed-
ings of the IEEE, volume 91, pages 145–164, January 2003.

[9] Open SystemC Initiative. www.systemc.org.
[10] P. Belanović, M. Holzer, D. Mičušı́k, and M. Rupp. Design

Methodology of Signal Processing Algorithms in Wireless
Systems. In International Conference on Computer, Com-
munication and Control Technologies CCCT’03, pages 288–
291, July 2003.

[11] M. Rupp, A. Burg, and E. Beck. Rapid Prototyping for Wire-
less Designs: the Five-Ones Approach. Signal Processing
Europe 2003, 83(7):1427–1444, July 2003.

[12] R. Subramanian. Shannon vs. Moore: Driving the Evolu-
tion of Signal Processing Platforms in Wireless Communi-
cations. In IEEE Workshop on Signal Processing Systems
SIPS’02, October 2002.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04)

1074-6005/04 $20.00 © 2004 IEEE

	footer1:

