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Kurzfassung

Support Vektor Maschinen (SVMs) sind eine relativ neue Funktionsschitzmethode und
basieren auf dem Ansatz des iiberwachten Lernens. Sie verbinden verschiedene Techniken
der statistischen Lerntheorie, der Optimierungstheorie, des maschinellen Lernens und der
Kernfunktionen. In der vorliegenden Arbeit wird die Theorie der SVMs mit Schwerpunkt
auf ihre Anwendung auf Regression behandelt. Weiters werden SVMs fiir Regression fiir
die Vorhersage chaotischer Zeitreihen verwendet. Die Arbeit gliedert sich in drei Kapitel.

Im ersten Abschnitt werden die Teile der statistischen Lerntheorie, der Optimierungs-
theorie und des Konzepts der Kernfunktionen eingefiihrt, die gemeinsam die Theorie der
SVMs bilden. Der Abschnitt ist modular aufgebaut und in einer Weise dargestellt, die
einen Zugang auch fiir Lesern mit wenig Vorwissen im Bereich des maschinellen Ler-
nens erlaubt. Dieser Abschnitt ergénzt die vorhandene Literatur iiber SVMs insofern, als
einfithrende Literatur schwer zu finden ist und die theoretischen Aspekte nicht detailliert
behandelt. Das Funktionsschétzproblem wird als Lernproblem eingefiihrt, fiir welches sich
mit Konzepten der statistischen Lerntheorie lineare Lernmaschinen konstruieren lassen.
Ergebnisse der Theorie von Lagrange fithren diese Lernmaschinen in die eigentlichen Sup-
port Vektor Algorithmen iiber. Die Verwendung von Kernfunktionen erméglicht es, auf
reiche Klassen nichtlinearer Modellfunktionen zuriickzugreifen. Wir behandeln im De-
tail die Herleitung der klassischen Support Vektor Algorithmen fiir Regression, sowie des
v-Support Vektor Algorithmus als Beispiel fiir eine Weiterentwicklung der klassischen Al-
gorithmen, der das automatische Ermitteln eines der in SVMs auftretenden Parameter er-
moglicht. Im weiteren wird der Zusammenhang zwischen Maximum Likelihood Schétzern
und der Wahl der Verlustfunktion aufgezeigt, und es wird dargestellt, wie SVMs mit an-
deren Funktionsschatzmethoden verbunden sind. Es wird gezeigt, wie Werte fiir die in
den Algorithmen auftretenden Hyper-Parameter ermittelt werden kénnen.

Der zweite Teil der Arbeit behandelt die Anwendung von SVMs fiir die Vorhersage
von Zeitreihen mit chaotischem Verhalten. Die Eigenschaften von Chaos als einem Merk-
mal nichtlinearer deterministischer dynamischer Systeme werden diskutiert, und es wird
dargestellt, wie skalare chaotische Zeitreihen durch das Rekonstruieren eines geeigneten
Phasenraumes analysiert werden konnen. Praktische Methoden fiir die Phasenraumrekon-
struktion werden angefiihrt. Es wird gezeigt, wie SVMs fiir die Vorhersage von chaotischen
Zeitreihen in einem rekonstruierten Phasenraum verwendet werden konnen.

Im letzten Abschnitt werden die Vorhersage von chaotischen Zeitreihen mit SVMs, die
durchgefiithrten numerischen Experimente sowie die verwendeten Zeitreihen beschrieben.
Wir tragen neue numerischen Resultate fiir die Vorhersage der Hénon Zeitreihe, der
Mackey-Glass Zeitreihe, der Lorenz Zeitreihe und der Santa Fe Data Set A Zeitreihe
mit SVMs als globale und lokale Modelle mit unterschiedlichen Kernfunktionen bei. Die
Arbeit endet mit einer Diskussion der Ergebnisse sowie einem ausfiihrlichen Vergleich mit
von anderen Autoren berichteten Ergebnissen zur Vorhersage chaotischer Zeitreihen.






Abstract

Support vector machines (SVMs) are a quite recent supervised learning approach towards
function estimation. They combine several results from statistical learning theory, optimi-
sation theory, and machine learning, and employ kernels as one of their most important
ingredients. The present work covers the theory of SVMs with emphasis on SVMs for
regression estimation, and the problem of chaotic time series prediction. It is organised
in three parts.

In the first part, the building blocks that contribute to the theory of SVMs are in-
troduced. The necessary results from statistical learning theory, optimisation theory and
kernels are summarised in a modular and self-contained way that makes them accessible as
well to readers without background in these topics. The exposition complements already
existing material on SVMs in so far as introductory literature that covers all theory em-
ployed by SVMs is hard to find. By viewing the function estimation problem as a learning
problem, results from statistical learning theory allow the construction of linear learning
machines. An application of Lagrangian theory casts these learning machines in forms
that constitute the support vector algorithms for classification and regression estimation,
which can employ rich classes of nonlinear modelling functions via the use of kernels. We
consider in detail the derivation of the standard support vector algorithms for regression
estimation and, as an example for a recently reported extension to the standard algo-
rithms, describe the »-SVM which is capable of tuning one of the parameters involved in
support vector training as a part of the training procedure. Then, the connection between
maximum likelihood estimation and the choice of the loss function is established, and the
introduction of kernels allows us to show how SVMs are related to other function estima-
tion approaches. We finish the first part with a discussion on the important question of
how the hyperparameters involved in the support vector algorithms can be assessed.

The second part considers the application of SVMs to chaotic time series prediction.
The properties of chaos as a feature of nonlinear deterministic dynamical system are
reviewed, and it is discussed how observed chaotic data can be analysed via phase space
reconstruction and time delay embedding. Practical methods for time delay embedding
are reviewed, and we show how SVMs can be applied to the function approximation
problem arising from the task of predicting chaotic time series from embedded data.

In the third part, the prediction procedure with SVMs is described in detail. The
setup of the numerical experiments and an analysis of the time series considered therein
are given. We report and illustrate new results for chaotic time series prediction on the
Hénon time series, the Mackey-Glass time series, the Lorenz time series and the Santa
Fe data set A, obtained with SVMs as global and local models employing different kernel
functions. We provide an exhaustive comparison with results reported by other authors.
The work finishes with a discussion of the numerical experiments.
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Chapter 1

Introduction

In general, estimation and approximation applications involve making inference from ob-
servations that are distorted or corrupted in some unknown manner, when the information
that one wishes to extract is unknown to the observer. The simplest way to approximate a
function would be to take the mean of the observations. Choosing linear functions or more
complicated bases of functions would be a more sophisticated approach, and the solution
to obtain better results seems to be to increase the complexity of the base. This is not
true since one encounters the well-known effect of overfitting, which means that the com-
plexity of the system of functions used is too high. For obtaining good approximations,
one needs to take the complexity of the base of functions into account.

There already exists a large set of approximation approaches, for instance splines and
methods based on decomposition into orthogonal systems. All these methods suffer from
shortcomings that are tried to be overcome by the support vector approach. Splines and
decomposition approaches share the problem of exponential increase in the number of
coefficients with the dimensionality of the problem. One solution is to use nonseparable
expansions, e.g. neural networks, which allow tractable solutions of high-dimensional
problems. Their architecture has to be defined a priori or modified by some heuristics
during training, which cannot assure that the optimal structure of the network is found
for a particular problem. Moreover, the possibilities for controlling the complexity of the
function base are rather limited, and the training algorithm can get stuck in local minima.
Only for the asymptotic case and for the case of known prior probabilities optimal selection
criteria have been obtained.

In contrast, support vector machines (SVMs) possess a number of advantages. Their
architecture does not have to be determined beforehand, and input data of any arbitrary
dimension can be treated with only a linear cost in the number of input dimensions.
Moreover, the training has a unique solution, and the modelling functions may be chosen
within a rich function base having to satisfy only some conditions from functional analysis.
Capacity is controlled efficiently by implementing a learning bias that involves a regulari-
sation term [59]. SVMs are a rather new concept in learning theory. Although its origins
can be dated back the 60’s, it attracted attention only after Vapnik’s and Cortes’ work in
1995 [12] [67]. Since then, SVMs proved excellent performance in many applications such
as pattern recognition, text categorisation and solution of inverse problems. Many aspects
in the theory of SVMs are still under intensive research, and the number of introductory
literature is limited. We decide to give a thorough introduction to SVMs with emphasis
on regression estimation, ranging from basic terminology and mathematical tools to more
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advanced topics and to questions arising in practise, and apply SVMs to the important
problem of chaotic time series prediction.

Scope and Organisation

The goal of this work twofold. First, we aim to give a comprehensive overview of the theory
of SVMs with emphasis on regression estimation that is accessible for readers which are not
familiar with terminology from machine learning, statistical learning theory, optimisation
theory and kernels. Second, we want to demonstrate how SVMs can be applied to the
specific problem of chaotic time series prediction and compare their performance to other
approximation approaches. Although we attempt to hold the exposition as self-contained
as possible, a detailed treatment of all aspects in connection with SVMs would go beyond
the scope of this work. In particular, we will not cover implementational issues, and we
will omit all proofs. The interested reader is referred to the literature.

The work is organised in three chapters which can be read in a modular fashion. In
the first chapter, the theory of SVMs is summarised. In the second chapter, we introduce
the problem of chaotic time series prediction and show how SVMs can be applied to this
problem. In the third chapter, numerical results for prediction on four chaotic time series
are reported.

Chapter 2 is divided into six modules. In Section 2.1, we introduce the reader to
statistical learning theory. We give ourselves satisfied with the classical concepts of risk
minimisation and Vapnik Chervonenkis theory and omit recent developments such as data
dependent structural risk minimisation and the luckiness concept, as these are still subject
to active research. If we need results that emerge from beyond the classical concepts, we
quote them and refer the reader to literature. In Section 2.2, we introduce the concept of
margin and shortly talk about SVMs for classification, and then bring all concepts together
and derive the support vector algorithms for regression estimation in Section 2.3. At this
point, we already need techniques from optimisation theory and kernels. Since the key idea
of SVMs is contributed by statistical learning theory, we move a self-contained exposition
on optimisation theory and kernels to Sections 2.4 and 2.5. Readers not familiar with
these topics may take a look onto these sections already before reading Section 2.2 and
2.3. In Section 2.6, we address the important question of how the parameters involved in
the SVM algorithms can be assessed in practise. A discussion on how SVMs are related
to other function estimation techniques can be found at the end of Section 2.3, where we
establish the connection between maximum likelihood estimation and loss functions, and
at the end of Section 2.5, where we show how SVMs are related to Gaussian processes.

In Chapter 3, a short introduction to chaos in dynamical systems is given. The problem
of embedding observed chaotic data in practice is discussed, and it is shown how SVM
can be applied to chaotic time series prediction.

Chapter 4 describes in detail the SVM models and the time series we consider for
prediction, and summarises the experimental setup we use for obtaining our results. The
prediction results for the Hénon time series, the Mackey-Glass time series, the Lorenz
time series and the Santa Fe Data Set A are discussed and illustrated and compared with
results reported in literature.



Chapter 2

Theory of Support Vector Machines

2.1 Statistical Learning Theory

The basic problem we are dealing with in this work is the problem of approximating or
estimating a function from given data. In difference to approximation, where we know
that our data are correct and we want to obtain a function that (up to a certain precision)
produces the same values as our measurements, in the case of function estimation the data
may be corrupted by noise, and in many cases we may not even know the noise model.
Both problems can be treated with the same formalism by choosing an appropriate loss
function (see Section 2.3.10).

Out of the considerable body of theory that has been developed in statistical learning
theory, we briefly review some concepts and results necessary for the development of
support vector learning algorithms. For details, we refer to [67] and [68], on which this
section is mainly based.

2.1.1 Problem Setting

We consider the problem of estimating a desired dependency using only a limited number
of observations.

Learning Problem

Suppose we are given N i.i.d. samples, the training set

S = {(thl)v"' 7(XN>Z/N)}7 (2'1)

where each sample (observation) consists of a vector x,, € X C R" of attributes from
the input space X and a label or target! y, € Y, and a class of functions H, called the

hypothesis space
H={h|X CR™— Y}

The functions h € H, y = h(x) are called hypothesis functions or hypotheses, and H
defines a learning machine. The training set (2.1) is drawn according to some fixed but
unknown probability distribution P(x,y).

!Throughout this work, we will consider the space of target values to be either Y = {—1,1} or Y C R.
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The learning problem is now to choose the function h* € H that has lowest error on
unseen samples drawn from P(x,y). More precisely, by penalizing deviations by means
of a loss function L(y, h(x)), with L(-,-) > 0 and L(z, z) = 0, the solution to the learning
problem is the hypothesis h* € ‘H that minimises the expected value of the loss or risk,

R(h) = Epey {L(y, h(x))} = / (v h(x))dP(x, y). (2.2)

h* = argrhr.lelﬁR( ).

Thus, the goal of learning is to select h € H that minimises (2.2) in the situation where
the joint probability function P(x,y) is unknown and the only information is contained
in the training set (2.1) drawn i.i.d. from P(x,y). Notice that within the setting of the
learning problem, it is not necessary that H contains the target function generating the
training set (2.1), possibly corrupted by noise.

Example: Binary classification.

Binary classification is performed by using some function h(x) such that the
input x is assigned to the positive class if h(x) > 0, and to the negative
class otherwise. Let H = {h|R"* — {—1,1}} and Y = {—1,1} such that a
sample (x,,y,) belongs to the positive class if y, = 1, and to the negative
class otherwise. For the loss function

st = 1

(2.2) gives the probability of classification error. The learning problem is
therefore to find the hypothesis that minimises the classification error when
P(x,y) is unknown but the data (2.1) is given.

As a simple classification example, consider the training set S1 = {(zn, yn)}
= {(-1.5,1),(-1.1,-1),(0.3,—-1),(0.9,—1),(1.4,1), (1.8, 1)} with (z,,y,)
R x {—1,1}. A possible hypothesis would be

1 > 1.2
h(x,) = {+ | =

S

—1 otherwise.

This hypothesis produces no classification error on the training set Sy, but we
cannot say whether it is the minimiser of (2.2).

The property of a function to have low error on unseen samples is often referred to as
generalisation, and the expectation of the error of a hypothesis on unseen examples drawn
iid. from P(x,y), the risk, as generalisation error.

2.1.2 Risk Minimisation

Equation (2.2) is the fundamental problem to solve in statistical learning theory. Unfor-
tunately, the risk cannot be minimised directly, as the underlying probability distribution
P(x,y) is unknown. What we can do is to try to choose a hypothesis that is close to the
optimal one, based on the available information (the training set (2.1) and the properties
of H). For that, we need an induction principle.
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Empirical Risk Minimisation (ERM) Induction Principle

Approximating the unknown probability distribution by the empirical probability density
function [60]

N
1

pemp<X7 y) = N Z 6(X - Xn)é(y - yn)a

n=1
leads to the empirical risk functional
A
Remp(h) =/ L(y, h(X))pemp (X, y)dxdy = ZL Yn, h(%n)) (2.3)
XxY

measuring the mean error rate on the training set (2.1). In using the Empirical Risk
Minimisation Induction Principle (ERM Principle), we approximate the risk (2.2) by the
empirical risk (2.3):
Definition 1 (ERM Principle). Replace the risk functional (2.2) by the empirical risk
functional (2.3). Then, approzimate the hypothesis h* minimising (2.2) by the hypothesis
hiry minimising (2.3),

h‘ERM = arg If}l€171'[1 Remp(h)-

It is possible to give conditions on H under which the empirical risk (2.3) converges
asymptotically (N — oo) to the risk (2.2). However, for a small sample size N, large
deviations may occur?. What is more, trying to minimise the empirical risk (2.3) generally

4

Training Test

Figure 2.1: The overfitting dilemma: Given only a limited number of data, both the dotted
and the solid hypothesis might be true. The dotted hypothesis has lower error on the
training set, and the solid hypothesis has lower capacity. The empirical risk minimisation
induction principle would therefore select the dotted hypothesis, and the solid one would
be chosen by the structural risk minimisation induction principle introduced below (left).
The dotted hypothesis is subject to overfitting, i.e. it is too complex (right).

leads to an ill-posed problem [66], i.e., the map from S to h may be discontinuous. This
results in a phenomenon well-known as overfitting (Figure 2.1), i.e., the selected hypothesis
may be too complex. One way to avoid overfitting is to restrict the capacity of the function
class H, typically by introducing a reqularisation term [66]. This raises the problem of
how to find the optimal capacity of the function class, known as model selection.

2Consider e.g. choosing h such that h(x,) = y, for (x,,y,) € S and h(x) = 0 for (x,y) € X\S. This
function has zero empirical risk, but it is unlikely that it is the minimiser of (2.2).
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Structural Risk Minimisation (SRM) Induction Principle

Within the framework of statistical learning theory, a remarkable family of bounds on the
risk (2.2) has been derived, governing the relation between the capacity of a function class
and its performance in terms of generalisation. The theory grew out of consideration under
which circumstances and how quickly the mean of some empirical quantity converges to
the true mean as the number of data points increases. These bounds originally motivated
SVMs, as introduced by Cortes and Vapnik [12]. The bounds typically consist of an
empirical risk term Remp(h) and a confidence term & that grows monotonically with
increasing capacity ¢ of the function base used. Roughly speaking, the capacity measures
how flexible or complex a function base is. For instance, linear functions are of lower
capacity than polynomials. One particular capacity measure ¢ of a function class is
the Vapnik-Chervonenkis dimension (VC dimension)?® d (e.g. [69]). The VC dimension
measures how many vectors we can correctly classify with a function in all possible ways
of labelling.

Example: VC dimension of hyperplanes.

Given n, + 1 vectors {xi, -+ ,Xp,+1} in n,-dimensional space R™*, we can
assign labels {y1, - ,Yn, 11}, vy € {—1,1} to them in 2"=*! different combi-
nations. There exists a set of n, + 1 such vectors for which we can find a
hyperplane h(x) = (w, x) + b, x,w € R" for each 2"=! possible way of la-
belling that separates the vectors with positive labels from the vectors with
negative labels, i.e. we can find hyperplanes such that the vectors with posi-
tive lables are on the one side of them, and the vectors with negative labels are
on the other side (Figure 2.2). We say that the hyperplanes in R™ shatter the
n, + 1 vectors {Xy,- - ,Xp,+1}. Therefore, the VC dimension of hyperplanes
in R"™ is equal to d = n, + 1 [67].

Definition 2 (VC dimension). The VC dimension of a set of indicator functions H
is d if there exists a set of d vectors Xi,--- ,Xq which can be separated in all 2¢ possible
ways of labelling using functions of this set (is shattered by H), and there exists no larger
set of vectors that can be shattered by H. If for any d there exists a set of d vectors which
can be shattered by 'H, then the VC' dimension is equal to infinity.

The VC dimension d of the set H of real-valued functions h is defined to be the VC
dimension of the set of indicator functions

The bounds provided by statistical learning theory are of the form

R(R) < Remp(h) + (N, (,5), (2.4)

3The bounds formulated in terms of the VC dimensions are only the last elements in a series of tighter
bounds formulated in terms of other capacity measure concepts.
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Figure 2.2: Illustration of VC' dimension of hyperplanes. In n, = 2-dimensional input
space X C R?, a mazimum of d = n, +1 = 3 vectors can be shattered by hyperplanes, i.e.
they can be separated by hyperplanes in all 2¢ = 8 possible ways of labelling.

where N is the size of the training set (2.1), 1 — § is the probability by which the bound
holds true, and ( is the capacity of the function class h belongs to (e.g. its VC dimension
d). The confidence term ®(N,(,0) grows monotonically with increasing capacity (. A
constructive example of such a bound will be given in Section 2.2. Remarkably, these
bounds on the risk are all independent of the probability distribution P(x,y) and can
therefore be used for our learning problem. What is more, they are in themselves inde-
pendent of the dimensionality of the input space X and can thus address the curse of
dimensionality (see e.g. [41]).

Thus, with such a bound on the risk at hand, we can replace the ERM induction
principle and approximate the minima of the risk (2.2) with the minima of a bound (2.4)
on the risk. This is formulated in the structural risk minimisation induction principle

(SRM principle).

Definition 3 (SRM Principle). Introduce a structure in H by dividing H into a nested
sequence of hypothesis classes Hy C Hy C -+- C H, C -+ C Hyy, such that the capacity
measure (p,, e.g. the VC dimension d,,, of each subset can be computed or bounded. Then
the capacities of the subclasses satisfy (1 < (o < -+ < (G < ++- < (. Choose the
hypothesis subclass H,, for which the bound (2.4) on the risk functional is minimal. The
function h* minimising the risk (2.2) is approrimated by

hipm = arg hrgi{n Remp(h).

Therefore, the SRM principle suggests a trade off between the quality of approximation
and the complexity of the approximating function. For any distribution function, the SRM
method provides convergence to the best possible solution with probability one [69]. An
illustration of the SRM principle is given in Figure 2.3.

2.1.3 Constructing a Learning Machine

One can think of two strategies for minimising bounds of type (2.4):

1. Keep the confidence term ®(N,(,0) fized by choosing an appropriate construction
of a machine and minimise the empirical risk Remp(h).
This is equivalent to ERM and is implemented by neural networks, where one defines
a network structure beforehand and then minimises the empirical risk.
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Bound on Risk

~Y

§S0S0s. .. S, Capacity

Figure 2.3: Illustration of the structural risk minimisation inductive principle. A nested
sequence of hypothesis, with capacity measure ¢ (left). The bound on the risk, determined
on the one hand by the empirical risk, and on the other hand by the capacity  of the
hypothesis class that decides on the value of the confidence term ®(N,(,d) (right). The
SRM solution is found as the hypothesis having lowest empirical risk within the hypothesis
subclass producing the lowest value of the bound on the risk.

2. Minimise CRemp(h) + ®(N, (., 9), a trade off between empirical risk and confidence
term, measured by a reqularisation parameter C.
This is equivalent to SRM* when used over a nested sequence of hypothesis classes.

The SRM principle provides us with a powerful induction principle for constructing learn-
ing machines for the general learning problem of Section 2.1.1. Each particular structure
on a particular hypothesis space gives rise to a learning algorithm, consisting of performing
SRM in the given structure of sets of functions. Support vector learning machines em-
ploy the particular hypothesis space of linear functions in some high-dimensional feature
space implicitly defined by a kernel (see Section 2.5). Soft margin SVMs follow strategy 2
directly, whereas Hard margin SVMs use strategy 2 with C' — oo and thus, do not allow
for training errors.

2.2 Support Vector Classification (SVC)

Historically, it has been the classifiers that paved the way for SVMs. Their learning
bias has been derived from a bound on the generalisation by Vapnik [67], by exploiting
a geometric concept called the margin. These results from statistical learning theory
have already been known at the time of the introduction of support vector machines
for classification (SVC). In contrast, support vector machines for regression estimation
(SVR) have been introduced by translating the learning bias employed by SVC for loss
functions suitable for regression estimation. Since Vapnik’s bound does not apply to loss
functions specific for the regression task, SVR have not possessed a clean motivation or
interpretation at the time of their introduction. It was only later that generalisation
bounds applicable for SVR have been found, justifying their induction principle. Whereas
SVC allow for an intuitive and illustrative interpretation of their learning bias in terms

“One can view C as an additional linear scaling in the loss function, such that L'(y,h(x)) =

CL(y, h(x))-
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of the maximal margin hyperplane, this is not the case for SVR, where the margin plays
only a technical role.

We decide to follow the original introduction of the SVM and summarise SVC in this
section. This is done for the sake of completeness of the exposition on SVMs, and for the
following reasons.

e The interpretation of the SVC algorithms and solution provides an intuitive insight
into the nature of this type of learning machine.

e SVC and SVR have properties in common that can be seen as characteristic features
of all types of SVMs.

e The learning bias of SVR can be motivated through an argument involving SVC.
e Most of the literature on SVMs is mainly concerned with SVC.

Apart from the present section, the rest of this work will only be concerned with SVR. A
self-contained introduction of support vector classification would therefore go beyond the
scope of this work. We refer to e.g. [5], [13] and [23] for a more detailed treatment of this
subject, and will mainly follow these works.

In the present and in the following section, we will need results from optimisation
theory that can be found in Section 2.4.

2.2.1 The Classification Problem

Suppose we are given the training data

S={(x1, 1), -, XN, yn)}, X, € X CR™, y, € {-1,+1}, (2.5)

with samples (X, y,) that are drawn i.i.d. according to some unknown but fixed probabil-
ity distribution P(x,y). Let the hypothesis space be fixed to the class of linear indicator
functions in the n,-dimensional space (hyperplanes)®,

H = {h|h(x) = sign((w,x) +b); w,x € R";be R}, (2.6)

where
+1 A>0

sign(4) = {—1 A<0

For the 0/1 loss function

0 ynh(x,) >0

1 ynh(x,) <0, (2.7)

Loji (h(yn, %n)) = {

the risk (2.2) gives the probability that y = h(x) differs from y (classification error).
As discussed in the previous section, the learning problem consists now of finding the

>The inner product (-,-) is defined as (x,z) =x7z =, 1;2;.
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hypothesis that minimises the classification error when P(x, y) is unknown but the training
set S is given.

The choice of hypothesis space we consider may seem very limiting. We will, however,
see that the algorithms derived for this setting can easily and efficiently be generalised to
a rich class of nonlinear functions via the use of kernels (Section 2.5).

2.2.2 A Bound on the Generalisation Performance of a Two
Class Classifier

In order to use the SRM principle (Definition 3) for the classification problem, we need
to have a constructive bound on the risk at hand. Vapnik proposed the following bound
on the generalisation error that applies for our specific problem setting. The bound holds
true with probability 1 — §. It employs the VC dimension d as capacity measure and
has originally motivated the SVMs as introduced in [12]. Its derivation is not trivial and
would go beyond the scope of this work [67].

Theorem 4. Let d denote the VC dimension of the function class H and let Reymp be
defined by (2.3), using a 0/1 loss function defined by (2.7). For all § > 0 and h € H, the
inequality bounding the risk (2.2)

R(h) < Remp(h) + \/d (In 55 }1) —Ing (2.8)

holds with probability at least 1 — § for N > d.

This bound on the risk is of form (2.4), containing the empirical error Ry, and a
confidence term ®(N,d,J) as additive terms. The confidence term grows monotonically
with increasing VC dimension d. Thus, if we are able to calculate or bound the VC
dimension of the class ‘H of indicator functions in R"*, we can bound the expected error
by (2.8). If we in addition find a concept that allows us to divide H into a nested sequence
of hypothesis subclasses H; C --- C 'H,, C --- C Hyssuchthatd; < --- < d,, <--- <dyy,
we can perform SRM and select the hypothesis h* € H,,, for which (2.8) is minimal,

d (025 4+ 1) 13 d (2% +1) —In}
< Remp(hi) +

e1m h* — )

Remp(h*) S Remp(hm)7
h*7hmEHm; hiE{Hl,"' 7Hm—17Hm+17"' 7HM}

Note that alternative concepts for measuring capacity, giving rise to tighter bounds on
the risk functional than bounds employing the VC dimension d, can be found (e.g. [13]).
We will make use of such bounds for motivating the soft margin support vector algorithms
later on in this section and the support vector algorithms for regression estimation in
Section 2.3.
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2.2.3 Constructing the Learning Machines for Classification

The bound (2.8) on the risk of a linear classifier grows monotonically with increasing VC
dimension d. SVMs employ hyperplanes (2.6) in some feature space, and we have seen
in the previous section that the VC dimension of hyperplanes in n,-dimensional space is
d = n, + 1 and thus prescribed by the dimensionality of the input space X. Therefore,
we cannot perform SRM directly on this function class, since the SRM principle requires
to introduce a structure on it, for which we need to be able to control its capacity.

The key to performing SRM is to restrict the flexibility of the hyperplanes (2.6) by
forcing them to have a certain margin on the training set, a concept we will introduce
shortly. It can be shown that the size of the margin bounds the value of the VC dimension
of the restricted hyperplanes independently of the dimension of the space X they live in.
By controlling the size of the margin, we can control the VC dimension of the restricted
hyperplanes, which allows us to introduce a structure on ‘H and perform SRM with bound
(2.8).

Hard Margin Classifier

Suppose there exists a hyperplane h € H that separates the positive samples of the
training set (2.5) from the negative ones without error on the training set (Remp = 0). We
call the distance of a hyperplane to the training vector that lies closest to it the margin.

Definition 5 (Margin). The functional margin of a sample (X,,y,) with respect to a
hyperplane (w,b) is the quantity v, = yn ((W,X,) + b).

The functional margin of a hyperplane (w,b) with respect to a training set (2.5) is the
minimum of the margins of the samples of the training set,

Vs £ min Yn ((W,X,) +0) .
(men)es

The equivalent quantity for hyperplanes with unit weight vector is called geometric margin,

v min y ((wox) +5), [wl =1
(Xn,yn)€S

The geometric margin of a hyperplane with respect to a training set is illustrated in
Figure 2.4 (left).

We note that in the definition of linear classifiers (2.6) lies an inherent degree of
freedom, as we can rescale the weight vectors w without changing the functionality of the
classifier. This can be used to express the geometric margin of a hyperplane in terms of
the norm of its weight vector. By fixing the functional margin of the hyperplane to be
vs = 1 for training vectors® x* and x~ (canonical hyperplane),

Un ((W,Xp) +0)>1, n=1,--- N
the geometric margin v with respect to the training set S is

1 w +—lx_ :L w,x) — (w, x~ 1
7= 3 (g = (=) = gy (e = )

lwll

6For convenience of notation, we use the superscripts +/— for samples lying closest to the hyperplane
and belonging to the positive/negative class, respectively.
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y Hyperplane

Figure 2.4: The geometric margin v of a hyperplane with respect to a linearly separable
data set measures the distance between the hyperplane and the sample or samples that lie
closest to it (left). Introducing a margin clearly restricts the flexibility - and therefore the
capacity - of hyperplanes (right).

It can now be shown that the VC dimension of canonical hyperplanes that are restricted
to have a geometric margin of at least v = m on the training set is bounded by the

following theorem [67].

Theorem 6. A subset of canonical hyperplanes defined on R™ and satisfying the con-
straint |w|| = % < A has the VC dimension d bounded by the inequality

d < min (R2A2,nx) +1,
where R is the radius of a sphere containing all training vectors.

The influence of the margin on the capacity of hyperplanes is illustrated in Figure 2.4
(right).

Theorem 6 allows us to control the capacity of the hyperplanes by constraining ||w|| <
Ap,. Therefore, we can divide the hypothesis space (2.6) into a nested sequence of hy-
pothesis subclasses H; C -+ C H,, C -+ C Hps by setting A; < --- < A, <--- < Ay
and perform SRM. Since the hard margin classifier requires the empirical risk to be zero,
performing SRM consists in this case of simply choosing the hyperplane that has smallest
norm ||w|| and produces no training error. This hyperplane has the smallest VC dimen-
sion of all possible hyperplanes, and therefore minimises the bound on the risk (2.8) with
Remp = 0. We call such a hyperplane (w,b) that separates the training set without error
(Remp = 0) and that has maximal geometric margin vy the optimal separating hyperplane.
Its parameters (w*, b*) are found as the solution of the following quadratic programme.

Proposition 7 (Optimal Separating Hyperplane). Given the training set
S = ((Xlayl)v e 7(XN7yN)); Xn € any Yn € {_17+1}7 the hyperplane (Wa b) that solves
the quadratic programme

i : > 1 =1
Wegng’lbeﬂgw,w) subject to y, (W, x,) +b) >1; n=1,--- N

is the hyperplane separating S with mazimal geometric margin v = m [13].
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Soft Margin Classifier

If the training set is not linearly separable, Proposition 7 does not have a solution, as
its feasible region is empty. What is more, the maximal margin measure is sensitive to
noise, since single outliers can force the solution to have small margin. Then, the optimal
separating hyperplane cannot be the minimiser of bound (2.8), and we need a more robust
concept that allows for empirical risk Remp # 0 [12].

In order to allow for errors on the training set, slack variables &, > 0 are introduced,

E((Xny Un), 1, 7) = & 2 max(0, vs — yih(x,)),

measuring by how much a training sample (x,,y,) fails to have functional margin ~g
(Figure 2.5). Note that &, > 7 implies misclassification of (x,,y,). Then, for ¢ — 0, the

Figure 2.5: The introduction of slack variables & allows for errors on the training set.
They measure by how much a training vector fails to have functional margin ~vs.

empirical risk is approximated by”

1>

1,

Fg(f) N;gn 50 Remp'

Only the choices ¢ = 1 (1-norm) and ¢ = 2 (2-norm) are computationally efficient and
lead to a quadratic programme. For this choices of o, F,(&) is only an upper bound on
Remp.

Analogous to the hard margin classifier, we can define a generalised separating hyperplane
as the hyperplane that has maximal margin on the reduced training set S” where all the
samples having non-zero &, have been removed (soft margin). Due to Theorem 6, we can
again introduce a structure H; C --- C H,, C --- C Hys on these hyperplanes by forcing
W] < Apy A < --- < A, <+ < Ay and select the hyperplane h* € H,,, that produces
the lowest bound (2.8) on the risk by means of the SRM principle. This hyperplane h*
is called the generalised optimal separating hyperplane. Notice that in contrast to the

"We write the slack variables as the margin slack vector & = €(h, S,v) = [£1, -+ ,€N]
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optimal separating hyperplane, where we have set Reymp = 0, the generalised optimal
separating hyperplane is found as a trade off between the empirical risk, measured by
F, (&), and the capacity of the classifier, measured by the norm of its weight vector ||w/||.
Its parameters (w*, b*) are the solution of the following quadratic programme.

Proposition 8 (Generalised Optimal Separating Hyperplane). Suppose we are
given the training set S = ((x1,y1), -+, (Xn,YN)), Xn € Ry, € {—1,+1}. Then, for
some constant C, the hyperplane (w,b) that solves the quadratic programme

i F
EERivvlglellél”z,beR <W’W> +C U(E)a

subject to  y, ((W,x,) +b) >1—¢,
é-nzoa nzla"'vNa

15 the generalised optimal separating hyperplane with geometric margin v = m with
respect to the reduced training set S', where margin errors are measured by &, [13].

The parameter C' defines the trade off between empirical error and the capacity of the
classifier. In practice, the optimal value of C' is assessed by varying it through a wide
range of values and using some validation technique (Section 2.6).

As the strategy is only efficient for ¢ = 1 and o = 2, it does not directly minimise
bound (2.8), since for these values F; (&) is only an upper bound on Rey,,. Cristianini and
Shawe-Taylor derived the following bounds on the risk of linear indicator functions.

Theorem 9. Consider thresholding real-valued linear functions H with unit weight vector
on an inner product space X and fix v € RT. There is a constant ¢, such that for any
probability distribution P(x,y) on X x {—1,1} with support in a ball of radius R around
the origin, with probability 1 — 6 over N random samples S, any hypothesis h € H has
error no more than

R? + |1€]13
——log

1
S >N +log 5) (2-norm),

C
errp(xvy)<h) S N (

< < [ FHNelits (2)
eIT p(x, < —
P(x,y) N 72

1
log® N + log 5 (1-norm),

where & = &(h, S, ) is the margin slack vector with respect to h and v [13].

Minimising these bounds leads to the same optimisation problems as in Proposition 8.
Therefore, for an optimal choice of C, the solutions of these optimisation problems with
the 1-norm and 2-norm empirical risk measure F, (&) minimise the bounds in Theorem 9,
respectively.

Notice that the support vector approach to finding the (generalised) optimal separating
hyperplanes is not completely consistent with the SRM principle of Definition 3. The SRM
principle requires the structure of sets of functions to be fixed a priori. In the support
vector approach, the structure is defined through the margin after the data has been
seen. This gap of theory is resolved with the so-called data dependent structural risk
minimisation theory and the luckiness framework [62] [76].
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2.2.4 The Support Vector Algorithms for Classification

The support vector approach to selecting the classifier with smallest generalisation error
reduces to a quadratic programme (Proposition 7, 8). The solution to this optimisation
problem is characterised by Lagrangian theory (Section 2.4). It allows for a dual form,
which constitutes the support vector algorithms.

We recommend readers that are not familiar with Lagrangian theory to consult Section
2.4 before continuing with the present exposition.

The Algorithm for Hard Margin Classification

The solution of the optimisation problem (7) is given by the saddle point of the primal
Lagrangian

N
1
Lp(w.b,a) = S {w,w) — D an (yn (W, x,) +b) = 1), 4y >0, (2.9)
n=1
where a = [a, - -+ , ay| are the Lagrange multipliers. It has to be minimised with respect

to w and b, under the constraints a,, > 0. By differentiating with respect to w and b,
imposing stationarity,

OLp(w,b, ) al al

a—wzw—;ynanxn:O :W:;ynanxn,

OLp(w, b ) N
OLp(w,b @) Zynan - = 0= yan

and substituting back into the primal (2.9) we obtain the dual objective function

Z@n -5 Z YmYnOm O, Xmaxn>

m,n=1
that has to be maximised with respect to a,, > 0.

Proposition 10 (Hard Margin SVM). Consider a linearly separable training set
S =((x1,%1), -, (Xn,yn)) and suppose the parameters o solve the following quadratic
optimisation problem:

N N
1
max W(a)= Uy — = Y O Oty Xy X )
N
subject to Zyn@nzo, a,>0; n=1---,N.
n=1

Then the weight vector w* = "0y, akx,, solves the optimisation problem (7) and realises
the mazximal margin hyperplane with geometric margin v = m [15].
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The optimal solution a*, (w*,b*) must satisfy the Karush Kuhn Tucker (KKT) com-
plementary conditions (Theorem 21, Section 2.4),

a;kl(yn(<w7xn>+b+)_1):07 n:17"'7N-

Therefore, only for vectors x,, for which the functional margin is 1 and which thus lie
closest to the hyperplane, the corresponding multipliers «,, are non-zero. These vectors
are called the support vectors. It is only these vectors that appear in the final expression
of the weight vector w and the final hypothesis®

h(x, a*,b*) = sign (Z Ynr (X, X) + b*) : (2.10)
n€lsy
The variable b does not appear in the dual problem, and its optimal value b* can be found

by application of the KKT complementary conditions.

The Algorithms for Soft Margin Classification

The solution of the optimisation problem (8) for F; (&) and Fy(€), respectively, are given
by the saddle points of the primal Lagrangians

N N N
1-norm: LP(W7 b,E, a) = %<W7W> + Oan - Z Qp (yn (<W,Xn> + b) -1+ gn) - Zrnfnv
n=1 n=1 n=1 (211)
1 C N N
2-norm: LP(W7 b? Eu Oﬁ) = §<W7 W> + 5 Z @% - Z Qn (yn (<W7 XTL> + b) -1+ gn) ) (212)

n=1 n=1

Qp,Tp >0

which have to be minimised with respect to w, & and b. By differentiating with respect
to w and b, imposing stationarity,

1-norm soft margin 2-norm soft margin
OLp(w,b,& a,r) al OLp(w,b, &, )
w =W — Zynanxn =0 S =W — ; YnQpX, = 0,
OLp(w,b, € a,r) OLp(w,b, € o)
7%, Qp — T 0E £ —«
oL b OLp( b
P(W £, 0 7) Zynan—o PW 4 ) Zynan—o

8Throughout this work, Zy, denotes the set of indices of the support vectors, i. e., the subset of indices
T € {1, -, N} for which a,, # 0.
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and substituting back into the primals (2.11) and (2.12), we obtain the dual objective
functions

N N
1
I-norm soft margin: W (a) = E an = 3 E YmYnOm On (Xim, Xn),
n=1 m,n=1

N N
1 1
2- ft in: W = nT 5 mYnmn my 4An —Omn |
norm soft margin () nE:104 5 E YmYnQm (<X Xn) + c )

m,n=1

that have to be maximised with respect to the dual variables «,,. The optimal solutions
a*, (w*,b*) must satisfy the KKT complementary conditions (Theorem 21, Section 2.4)

I-norm soft margin:  ay, (yn, ((Xp, W) +0) —1+&,) =0, n=1,--- N,
€n<04n—0)20, lel,"',N,
2-norm soft margin:  a, (y, ((X,, W) +b) —14+&,) =0, n=1,--- N,

implying that all samples (x,, y,) for which y,,((w,x,) +b) > 1 must have corresponding
multipliers «,, = 0, since the slack variables &, cannot be negative. Thus, the solution has
again a sparse representation (2.10) in terms of support vectors.

The optimal b* can be found by application of the KKT complementary conditions.

Proposition 11 (1-norm Soft Margin SVC). Consider classifying a training sample
S = ((x1,y1), -+, (Xn,yn)) and suppose the parameters a* solve the following quadratic
optimisation problem:

N N
1
W = n- a5 mYntmn\&m, An
N
subject to Zynan:(), C>a,>0; n=1---, N.
n=1

Then the weight vector w* = Zﬁle YnOir X, realises the generalised optimal separating
hyperplane, where the slack variables are defined relative to the geometric margin v =

_1
(vanezsv ymynajna;<xm7xn>> ’ /13/

Proposition 12 (2-norm Soft Margin SVC). Consider classifying a training sample
S =((x1,%1), -+, (XN,Yn)), and suppose the parameters a* solve the following quadratic
optimisation problem:

N N
1 1
ma. W(a) = Op — 3 mYnOmQlp, Xmy Xn _5mn
s W@ =3 2005 3 st ({5 + e
N
subject to Zynan =0, a,>0; n=1,---,N.
n=1
Then the weight vector w* = Zf:[:l YnQr X, realises the generalised optimal separating
hyperplane, where the slack variables are defined relative to the geometric margin v =

(Xez, n — gle, a*>)‘% [13].
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2.2.5 Notes on the Support Vector Classification Machines

The SRM solution to finding a linear classifier is the hyperplane that has maximal margin
on the (reduced) training set. These hyperplanes have maximal distance from the training
vectors x,, that produce no training error. Therefore, slightly perturbing x,, will not result
in an error on this vector as long as we do not move at least  units in the direction of
the hyperplane. The (generalised) optimal separating hyperplanes are the most robust
possible hyperplanes with respect to changes in the training samples, since they have
maximal margin®. They thus minimise the probability of classification error on unseen
samples, and therefore minimise the risk.

We note the following key properties of the support vector classifiers:

1. The problem of finding the classifier that is optimal in terms of generalisation is
formulated as a quadratic programme. This quadratic programme can be solved
efficiently. The solution is unique.

2. The weight vector w* of the final hypothesis is a linear combination of only a
fraction of the training vectors, termed support vectors. The solution has a sparse
representation.

3. In both the training algorithms (Proposition 10, 11, 12) and in the final hypotheses
of from (2.10), the data enters only inside of inner products (-, ). This allows for a
generalisation of the algorithms to a nonlinear hypothesis space by simply replacing
all inner products by a kernel (Section 2.5).

We will see in the next section that SVMs for regression estimation as well possess all of
these properties. The regressor with minimal risk is the solution to a convex quadratic
optimisation problem, and has a sparse representation in terms of support vectors. An
extension of the linear support vector regressors to nonlinear hypothesis spaces through
the use of kernels is possible. The interpretation of the solution as the hyperplane having
maximal margin on the training set will, however, be lost. The SVR will choose the flat-
test hypothesis.

Finally, we note that the only difference between the maximal margin classifier algo-
rithm and the soft margin algorithms is that

1. in the 1-norm case, the dual variables «, are subject to an additional constraint
a, < C, and

L is added to the diagonal of the Gram matrix G with entries

2. in the 2-norm case, &

Gmn - <XM7 Xn> .

9The generalised optimal separating hyperplane has maximal margin on the reduced training set whose
samples do not produce training errors and has at the same time small training error.
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2.3 Support Vector Regression (SVR)

2.3.1 The Regression Problem

Suppose we are given a training set
S:{(thl)?'” a(XNayN)}7 XneXanzv ynEYgRa (213)

with N samples (x,,y,) that are drawn ii.d. according to some unknown but fixed
probability distribution P(x,y). Let the hypothesis space be the class of linear functions
in the n,-dimensional space (hyperplanes),

H={hlh(x) = (w,x)+b; w,xe€R"; beR}, (2.14)

Then the learning problem is to select the hypothesis that minimises the risk (2.2),

R(h) = / L(y, h(x))dP(x, ).

based on the training set S, where L(y, h(x)) is a suitably chosen loss function. The loss
function indicates how differences between y and h(x) (residuals) are penalised.

As discussed in Section 2.1, the risk cannot be evaluated directly, but we can try to select
a hypothesis that minimises an upper bound on the risk by means of the SRM induction
principle.

The choice of hyperplanes as the hypothesis space H may seem limiting. Similar
to the algorithms for support vector classification, the algorithms derived for regression
estimation will, however, allow for a generalisation to a rich nonlinear hypothesis space
by simply replacing the inner products through which the data enter the algorithms by a
kernel function (Section 2.5).

2.3.2 The Loss Function: e-Precision Regression

We need to choose a loss function that is appropriate for the regression problem, for
which the labels y are no longer discrete but chosen from Y C R. Vapnik proposed the
e-insensitive loss functions for support vector regression [67].

Definition 13 (e-Insensitive Loss Function). The linear e-insensitive loss function
Lge)(y, h(x)) is defined by

L (y, h(x)) = |y — h(x)|. = max(0, |y — h(x)| - ¢),

where h s a real-valued function on a domain X, x € X and y € R. Similarly, the
quadratic e-insensitive loss function is given by

LY (y, h(x)) = |y — h(x)[> £ max (0, (|y — h(x)| — €)?).
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Li(n) L¥(n)
A A
E ! ! g E 1
I | > ! >
“—& " n=y-h() “— n=y-h(x)

Figure 2.6: Linear (left) and quadratic (right) e-insensitive loss function. Only deviations
larger than € count as training errors. These deviations are captured by slack variables &,

€.

In other words, we do not count a training sample as an error as long as its residual
is below some given value € (Figure 2.6).
Loss functions having an e-insensitive zone ensure that the solution hypothesis has a sparse
representation in terms of support vectors. Thus, the e-insensitive zone can somehow be
seen as an analogue of the margin in classification [52]. This analogy is, however, limited,
since e is fixed before training and not optimised through the training algorithm. The size
of € does not directly enter into bounds on the risk and does not control the capacity of
the hypotheses.

The loss functions LY’ and Lge) can be seen as generalisations of the Laplacian and
Gaussian loss. For a more general discussion on loss functions, we refer to section 2.3.10.

We capture the amount by which a training sample fails to have training target accu-
racy € by slack variables

(%0 Yn), by €) = Eu = max (0, y, — h(x,) — ) ,
s A

f((xn,yn), h,€) =&, = max (0, h(x,) — yn — €) .

Here, ¢ and € correspond to training samples that happen to lie above and below the
hypothesis, respectively'® (Figures 2.6 and 2.7).

2.3.3 Constructing the Learning Machine

Historically, SVR have been introduced by translating the optimisation problem in Propo-
sition 8 for the regression problem [12]. This was done by replacing the empirical risk

measured by F, (&) with an empirical risk measured by the e-insensitive loss functions ng)

10We write the slack variables as the slack vector &€ = &(h,S,v) = [&1 + &1, ,En + En).
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and Lée). The resulting optimisation problem then takes the form

N
min - (w,w) +C ) (€7 +@),
n=1

weR”z beR

subject to  ((w,x,,) +b) — y, < €+ &,
Yn — (<W7Xn> +b) S 6+§n7
gnagnzoa nzlv"'aNa

At the time of their introduction, this analogy has not been theoretically justified, since
the bound that Proposition 8 is derived from cannot be applied for these loss functions.
Later on, bounds on the risk that hold for e-insensitive loss functions have been found,
and minimising these bounds leads to the same optimisation problem as stated above.
We will investigate such a bound in the following subsection.

2.3.4 A Bound on the Generalisation of a Linear Regression
Estimator

» X

Figure 2.7: e-precision regression. Samples that happen to lie outside of a band e around
the hypothesis count as training errors, samples outside a band 46 count as well as test
errors. The sample (x;,y;) counts as a training error, but not as a test error. The samples
(x5,y;) and (Xg, yi) are training and test errors.

We aim to obtain a bound on the probability that a randomly drawn test sample has
accuracy less than 6, i.e., a bound on the risk R(h) = Pr(|y, — h(x,)| > 0) = errp(xy)(h).
For doing so, we introduce a margin v in the training regression accuracy, such that a
training sample counts as an error if |y, — h(x,)| > 6 — v = €. Consequently, in training,
a sample counts as a mistake if it is outside a band of size ¢ = +(f — ) around h(x),
and in testing, a sample counts as a mistake if it is outside a band of size +6 (Figure 2.7).

For this situation, the following theorem can be derived. It provides bounds on the
risk of a hypothesis, i.e. on the probability that a test sample that is randomly drawn
from P(x,y) will be more than 6 units away from the hypothesis.
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Theorem 14. Consider performing regression with linear functions h € H on an inner
product space X and fix v < 0 € RT. There is a constant ¢, such that for any probability
distribution P(x,y) on X X R with support in a ball of radius R around the origin, with
probability 1 — § over N random samples S, the probability that a hypothesis (w,b) € ‘H
has output more than 6 away from its true value is bounded by

o (W3R + €13,
N ~2

1
erT p(xy) (h) < g’ N + log —) (2-norm),

J

o [IwIBR + [1€]310g (1)
N ~2

1
errp(xy) (h) < logZ N + log 5 (I-norm),

where & = &(w, S, 0 — ) is the slack vector with respect to w, 0 and v [13].

Theorem 14 applies directly to linear and quadratic e-insensitive loss functions with
¢ = 6 —~. Note that similar bounds can be derived for other loss functions than the linear
and quadratic e-insensitive loss [56].

Motivation of Theorem 14 through Theorem 9. We try to establish a link be-
tween Theorem 9, bounding the risk of classifiers, and Theorem 14, bounding the risk of
regressors. Let h be from the function class defined by (2.14), and let ¢, = y, — h(x,),
where (x,,y,) are the samples from the training set (2.13).

Now consider the following thresholded linear functions as classifiers:

+1 e =yn—h(x,) =0 <0
he c,) = h¢ n_h n
¢ (cn) “(y (xa)) {_1 otherwise,
+1 cp=yn—h(x,)+0>0
—1 otherwise.

he(cn) = hS (yn — h(xn)) {
If we label the attribute vectors ¢, with y° such that
D:{P(c), P(y"=+l[c)=1, P(y°=—llc) =0},
then Pr(|y, — h(x,)| > 6) is
Pr(lyn — h(xa)| > 0) = errp(hS) + errp(hS).

Therefore, the risk for regression can be expressed in terms of the risk of these classifiers,
since a vector ¢ = y,, — h(x,) produces a classification error if and only if |y, — h(x,)| > 0.

The probability of classification error for h$ and hS with unit weight vector is given
by (9). In the case of regression, it makes no longer sense to fix |w||3 = 1, since rescaling
the weight vector changes the functionality of the regressor, and therefore the term R?
has to change to'! R?||wl|2. The terms [|£||3 and [|£||? do not change as they contain the
slack variables scaled by [[w|3. The left and center column of Figure 2.8 illustrate the
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QO  testerror - |y-h(x)>0

Figure 2.8: Illustration motivation of Theorem 14 through Theorem 9. Samples with
precision less than € and 6 count as training errors and test errors, respectively (left).
The classifiers he. and he for the cases of being above and below target precision. The
probability of classification error equals the probability of |y, — h(x,)| > 0 (center). The
margin vy of the classifiers does not have an influence on the structure of the bounds in
Theorem 14 (right).

connection between Theorem 14 and Theorem 9.0

Minimising the bounds in Theorem 14 over the class of linear functions (2.14) is equiv-
alent to minimising its numerator, since it is the only part we can influence by choosing
the hypothesis. Thus, when the width of the insensitive region € = ¢ — v is fixed, we
minimise the bounds for all values of v and 6, if we ignore the log-factor in the 1-norm
case.

The Support Vector Regressors

Minimising the bounds on the risk given in Theorem 14 is equivalent to jointly min-
imising the norm of the weight vector ||wl|3 and some norm of the slack vector £&. The
theorem proposes optimal values for the trade off between capacity (measured by ||[w||3)
and training error (measured by the 1-norm or 2-norm of the slack variable vector). In
the support vector approach to minimising these bounds, a parameter C' is introduced to
trade off between capacity and training error of the hypothesis, and the optimal value of
C' is assessed via some validation technique. As the parameter C' runs through a range
of values, the norm ||w| varies smoothly through a corresponding range. Hence, in a
particular problem, choosing a value for C' corresponds to choosing a value for ||w|| and
then minimising the 1-norm or 2-norm of the slack vector. Since there is a value of C' that

"Tn deriving (9), one bounds the classification error via the covering numbers of H, and the covering

2
numbers via the fat shattering dimension, which is bounded by faty(y) < (W) [13] [55].
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corresponds to the optimal choice of ||w||, this value of C' will give the optimal bound as
it will correspond to find the minimum of the 1-norm or 2-norm of the slack vector with
the given value of'? ||w]| [13].

Notice that the support vector strategy is not completely consistent with the definition
of the SRM principle. The SRM principle requires the structure on the hypothesis space
to be fixed a priori, and to select the hypothesis having lowest empirical risk within the
hypothesis subclass for which the bound on the risk is minimal. In the support vector
approach, the hypothesis minimising the bound on the risk is found by jointly minimising
the norm of the weight vector and the norm of the slack vector, such that the structure is
defined by variation of the norm of the weight vector after the data has been seen. This
gap of theory is resolved with the so-called data dependent structural risk minimisation
theory and the luckiness framework (for details, see e.g. [62] and [76]).

2.3.5 Support Vector Regression with Linear e-Insensitive Loss
Theorem 14 suggests to minimise the expression
al 1
Rl + 3 2 o, (3] + 0o (1)
n=1
The support vector approach is ignoring the log-factor and minimises
1 N
Slwlis + O L (g, (W, x0) + 1),
n=1

by varying C' through a range of values as described above to arrive at the optimal solution.
This can be reformulated as a quadratic programme,

N
. 2 g

wemin Wl + C;@n + &), (2.15)

subject to  ((W,%,) +b) —yp < €+ &y, (2.16)

Yn — ((W,xn) +b) < €+ &, (2.17)

§n,£n20, n:17"'7N7 (218)

where the two slack variables &,,&, are for the cases of exceeding the target value by e,
and for being more than ¢ below the target value, respectively, as illustrated in Figures
2.6 and 2.7.

12 An alternative point of view is to consider the trade off parameter C' as an additional linear scaling in
the loss functions, L'(y, h(x)) = C'L(y, h(x)). Then, the value of C' corresponding to the optimal choice
of ||w|| corresponds to a particularly scaled loss function.
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The primal Lagrangian of this problem is

dn<€ + gn + Yn — <W7Xn> - b)_

M-

N

Lp(w,b € &) = SIWIE+C Y (6 +) -
n=1

(2.19)

(Fnén + ) (2.20)

Mz

n=1

N
_Zan(€+§n_yn+<w Xn +b
n=1

Since the solution of this problem has to be a saddle point (Chapter 2.4), it follows that
the partial derivatives of L p(w,b, & & a, &) with respect to the primal variables w, b, &,,
&, have to vanish,

oL N N
P . s
e -V ;(an — )X, =0 =>w= n:1(an — )Xy, (2.21)
OLp

—C—aq. —r, = =C — 2.22
2%, C—oap—r,=0 =r,=C—aq, (2.22)
e _ ¢ g —i—0 = = C — dy, (2.23)
9&n
OLp = . B
o S 220

Substituting back into (2.19), we obtain the dual objective function

N

W(a, &) = % Z (U — Q) (g — ) (X X (n + gn - GZ(O‘n + &)

N
) +CY )
m,n=1 n=1 n=1
N N N
Z(anén + angn + Z yn n - n) - Z (am - dm)<05n - an)<xm7 Xn>
n=1 m,n=1
N N N .
—b (a - an -C Z &n + gn Z(O‘ngn + dnfn) =
n1:1 N n=1 N N
- _5 Z <am - dm)(an - dn)<Xm7X”> B ez(a” + d”) ™ Zy”(a” N dn)
m,n=1 n=1 n=1

that has to be maximised with respect to the dual variables «,, &,,. The dual optimisation
problem is therefore

N N N
1 . § .
a,ovlfle?ng] - 5 mgzl(am - am)( - an)<xm7 Xn> € ;(an + an) + ; yn<an - an)

N
subject to Z(dn —ap)=0; oy, a, €[0,C].

n=1
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Figure 2.9: lllustration of the KK'T complementary conditions. Samples that happen to lie
inside the e-insensitive region of the hypothesis h(x) must have corresponding Lagrangian
multipliers a,&c = 0. Only samples lying on the border or outside of the e-insensitive
region can have non-zero Lagrangian multipliers and contribute to the solution (support
vectors - circled).

This is still a quadratic programme. We note that &,, aun, &, ¢, must satisfy
£l =0,  and, =0,

as §n£n # 0 or a,d&, # 0 would require non-zero slack variables in both directions.
The KKT complementary conditions (Theorem 21, Section 2.4) corresponding to this
optimisation problem are

oy, ((W,Xn> +b—yn—e—§n>) =0,
o (Yn — (W, Xp) —b—€—=&,)) =0,
&6, =0, Gy = 0,
(a, — ), =0, (G, —0), =0, n=1,--- N.

Therefore, only vectors x,, with |h(x,) — y,| > € can have non-zero multipliers «,, or ¢,.
These vectors are the support vectors. If a strict inequality holds, a,, = C or &, = C.
Samples lying on the border of the e-tube have corresponding multipliers in the range
[0,C], whereas samples lying inside of the e-tube must have corresponding multipliers
with value zero, since the second factor in one of the first two KKT complementary
conditions then is non-zero. As a consequence, the weight vector (2.21) of the solution
has a sparse representation in terms of support vectors, and the final hypothesis has the
form

h(x) =) (aj — @3)(x,, x) + b, (2.25)

TLGISV

The effect of the KKT complementary conditions is illustrated in Figure 2.9. The value
of b* can be found by applying them to a vector (x,,¥y,) with non-zero multiplier «a,, or
.

By substituting the expansion coefficients 3, for our original multipliers «,,&,, B8 =
a — &, we can rewrite the dual problem in a form closely resembling the classification
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case (Proposition 11),

N N N
1
max N mPn\Xm,Xn) — € n+ ni~on
L DDA, ;WI ;yﬁ

m,n=1

N
subject to Y 3, =0, B, €[-C.Cl, n=1,--- N
n=1

For y, € {—1,+1} and (@', = y,[3,, the similarity becomes even more obvious, with the
only difference being that ', is not constrained to be in a positive range any more, and
that for non-zero €, an additional weight decay factor involving the dual parameters is
introduced.

In the following proposition, we summarises the support vector algorithm for regression
with linear e-insensitive loss. We have moved directly to a more general hypothesis space
by replacing all inner products appearing in the algorithm with a kernel function K(-, )
calculating the inner product in some feature space (Section 2.5).

Proposition 15 (SVR with Linear e-Insensitive Loss). Suppose that we wish to
perform regression on a training sample S = ((X1,y1), -, (Xn,yn)) and suppose the
parameters 3* solve the following optimisation problem:

N N N
1
max . ﬁmﬁnK Xm,Xp) — € 671 + nﬁn
Jmax -2 ) (omen) < 215l + 3

m,n=1

N
subject to Zﬂn:(), B,€[-C,C], n=1--- N.
n=1

Then h(x) = N 32K (x,, %) +b*, where b* is chosen such that h(x,,) —y, = —€ for any
n with 0 < 8% < C, is equivalent to the hyperplane in the feature space implicitly defined
by the kernel K (x,z), that solves the optimisation problem (2.15-2.18) [13].

The solution to the optimisation problem in Proposition 15 therefore minimises the
bound on the risk in Proposition 14 for linear e-insensitive loss function

2.3.6 Support Vector Regression with Quadratic e-Insensitive
Loss

Theorem 14 suggests to optimise the generalisation of the regressor by minimising

N
RYwli3+ " LY (g, (w,x,,) + ),

n=1

The support vector approach is to minimise

1

C =
SIWIE + 5 D L (4 (w.x0) + )
n=1
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and vary C' as discussed above to arrive at the optimal solution. This can be formulated
as a quadratic programme

1 C .
min - Sflwll+ 2 ) (€ + &), (2.26)

weRnz beR 2

n=1
subject to  ((w,X,,) +b) —y, < e+ &, (2.27)
Yn — (W, %) +b) < e+ &, (2.28)
&nr&n >0, n=1,---,N, (2.29)

where the two slack variables &,, &, are for the cases of exceeding the target value by e,
and for being more than € below the target value, respectively. Thus, they must satisfy

571571 = 07 0Oty = O:

as £,&, # 0 or a,cy, # 0 would require non-zero slack variables in both directions.

Notice that if &, < 0 or &, < 0, the first two constraints will still hold if we set &,,&, = 0,
respectively, while this will reduce the value of the objective function. Hence, we can re-
move the positivity constraints on &,,&, without changing the solution of the optimisation
problem. The primal Lagrangian of problem (2.26-2.29) is

g 1 o N s
LP(Wvb7£a 7a>d):§||wl|2 Z 5 +€ Z €+€n+yn_<w7xn>_b)+
" . (2.30)
N
=) (et & — yn + (W, Xn) +D)). (2.31)
n=1

Since the solution of this problem has to be a saddle point (Section 2.4), it follows that
the partial derivatives of Lp(w,b, €, &, o, &) with respect to the primal variables w, b, &,
&, have to vanish,

OLp l ) a ]

=W ;(an — )X, =0 = w= nzl(an — )X (2.32)
%é_’: = C& —a, =0 =& = % (2.33)
%i;: =C¢, —d, =0 =&, = 6" (2.34)
0@% _ i(@n — ) =0, (2.35)
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By substituting back into (2.30) we obtain the dual objective function

W(a, &) =
1 & . ) Y oran? (@) — )
=5 mzn;(am — Q) (o — &) (Ximy X)) + 5 nz_:l((c) + <C’> ) — eg(an + )
N o & N N
—> (am o Han g+ D ynlom —n) = > (0 — bim) (0tn — Gin) (X, Xn)+
n=1 n=1 m,n=1
N
+b> (dn —an) =
1n§\/ N N
=3 > (am — ) (an — ) (K, Xn) — € (G + 0tn) + Y Yo (0 — i)
m,n=1 n=1 n=1
1 . .
— ol a) +(6,a) =
1 & 1 al
=3 m’znil(ozm — am) (ap, — dy) (<Xm,Xn> + C’(Smn> enz::l(ozn + d)+
N
+ Zyn(an ain)
n=1

that has to be maximised with respect to the dual variables «,, &,,. The dual optimisation
problem is therefore

N N
max - % S (o — om) (O — i) ((xm,xn> + é«smn> — e (n + )+
m,n=1 n=1
N
+ Z Yn (Qn, — i)
n=1
N
subject to Z(dn —ap) =0, ap, d, >0.
n=1

This is still a quadratic programme. The corresponding KKT complementary conditions
(Theorem 21, Section 2.4) are

a, ((W,xn)+b—yn—e—§n) =0,
O‘n(yn_<waxn>+b_€_€n>:07
571571207 andn:07 n:17"'7N'

Therefore, only samples with |h(x,) — yn| > €, hence not lying inside of the e-tube,
have corresponding non-zero multipliers. As a consequence, the weight vector (2.32) of
the solution has again a sparse representation in terms of support vectors, and the final
hypothesis is of form (2.25),

h(x) =Y (a) — @3)(X,, x) + b,

TLGISV
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By substituting 8 = a — & for our original multipliers «,,, &, we can rewrite the
problem in a way more resembling the classification case:

Bnél[%}é - = Z ﬁmﬁn ( X s Xn> + 5mn) Z |ﬁn| + Z ynﬂn

mnl
N
subject to Zﬁn:(), n=1--- N.

For y, € {—1,1} and € = 0, the similarity becomes even more apparent with ', = y,,(,.
The only difference is that ', is not constrained to be positive any more, and that for
non-zero ¢, an additional weight decay factor involving the dual parameters is introduced.
In the following proposition, we summarises the support vector algorithm for regression
with quadratic e-insensitive loss. We have moved directly to a more general hypothesis
space by replacing all inner products appearing in the algorithm with a kernel function
K(-,-) calculating the inner product in some feature space (Section 2.5).

Proposition 16 (SVR with Quadratic e-Insensitive Loss). Suppose that we wish
to perform regression on a training sample S = ((X1,%1), -, (Xn,yn)) and suppose the
parameters 3* solve the following optimisation problem:

N

m,n=1

N
subject to Zﬁn:O,nzl--- ,N.

n=1

Then h(x) = SN B2 K (x,,, %) +b*, where b* is chosen such that h(x,) —y, = —e— 2= for
any n with 3 > 0, is equivalent to the hyperplane in the feature space implicitly deﬁned
by the kernel K (x,z), that solves the optimisation problem (2.26-2.29) [13].

The solution to the optimisation problem in Proposition 16 therefore minimises the
bound on the risk in Proposition 14 for quadratic e-insensitive loss function.

The case ¢ = 0 corresponds to considering standard least squares regression with a
weight decay factor controlled by C, also known as ridge regression. As C' — oo, the
problem becomes an unconstrained least square.

2.3.7 Notes on the Support Vector Regression Machines

The standard support vector regression algorithms for linear and quadratic e-insensitive
loss (Proposition 15, Proposition 16) both possess the following key properties.

1. The hypothesis that has lowest risk is found as the solution of a quadratic pro-
gramme. This quadratic programme can be solved efficiently. The solution is unique.

2. The weight vector of the final hypothesis is a linear combination of only a small
fraction of training vectors, termed support vectors. Therefore, the solution has a
sparse representation. The number of support vectors depends on the training data
S, the parameters C' and ¢, the kernel and the kernel parameters.
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Figure 2.10: Regression example on y = o) yithout noise, employing a linear e-
€T

insensitive loss (from left to right: € = 0.5, € = 0.2, ¢ = 0.05) and a Gaussian kernel.
The trade off parameter C' is set to a large value, such that training errors are heavily
penalised. The SVM selects the flattest possible hypothesis (dashed - true signal; solid -
SVR regressor; dotted - e-insensitive region; circles - support vectors).

3. In both the training algorithm (Proposition 15, 16) and in the final hypothesis of
form (2.25), the data enters only inside of inner products (-,-). This allows for a
generalisation to a rich nonlinear hypothesis space by replacing the inner products
by a kernel (Section 2.5).

Whereas the hypothesis selected by the support vector classifiers minimises the risk as
a consequence of having large margin on the (reduced) training set, such an interpreta-
tion is not possible for the support vector regressors. The solution hypothesis to the SVR
algorithm is characterised by being flat, i.e. having low capacity, and by forcing the norm
of the slack vector to be small, i.e., having low error on the training set (Figure 2.10).
Such a hypothesis minimises the bounds on the risk given in Theorem 14.

We note that the only difference between the support vector algorithms with linear
and quadratic e-insensitive loss function is that

1. with a linear loss, the dual variables (3, are subject to an additional constraint
|Bn| < C (box constraint), and

2. with a quadratic loss, (—1j is added to the diagonal of the kernel matrix K with entries
K = K(Xm, Xp).

Figure 2.11 shows a typical support vector regression on a Smmﬁ - dependency hidden

in additive white Gaussian noise, produced with a Gaussian kernel. The support vectors
(circles) are the 37 training samples that happen to lie outside or on the border of the
e-insensitive region around the hypothesis.
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Figure 2.11: Regression example on y =
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Support vector regression (Gaussian kernel) on 100 points of sinc(x) in Gaussian noise (SNR=11dB)
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—Sinw(z) i additive white noise, employing a linear

e-insensitive loss and a Gaussian kernel.

2.3.8 Solving the Optimisation Problems

Training the SVMs requires solving the optimisation problems in Propositions 10, 11, 12,
15 and 16. The solution involves two steps.

1. First, the entries G, = (X, X,,) of the Gram matrix or, when working in feature

space, the entries K,,, = K(X,,,X,) of the kernel matrix have to be computed.
Given N training vectors, this requires N(NTH) computations of the inner product
between two vectors or evaluations of the kernel. One single inner product calcu-
lation requires O(n,) operations (n, multiplications and n, — 1 additions), where
n, is the dimension of the input space X. The complexity of the kernel evaluation
depends on the type of kernel that is used. The evaluation of inner product type
kernels such as the polynomial kernel and of RBF kernels such as the Gaussian ker-
nel requires O(n,) operations. Therefore, the overall complexity when employing

such kernels or when working in input space is O(N? n,).

. Then, the specific quadratic optimisation problems are fed into a quadratic pro-

gramming problem solver. The support vector optimisation problem can be solved
analytically. The analytical solution requires in the worst case O(N3) operations,
where Ny, is the number of support vectors, and is therefore only feasible for a
small number of training samples [5]. There exists a variety of strategies for solving
quadratic optimisation problems with severely less computational and memory re-
quirements than the analytical solution, such as interior point algorithms and active
set algorithms. They exploit specific properties of the support vector optimisation
problems and are feasible for N and N, being larger than 100000.

We do not aim at exploring the relative merits of different methods for solving the
quadratic programming problems here and refer to [5], [13] and [61] for overviews, and
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to [20] for a detailed exposition on optimisation techniques.

2.3.9 Extensions: Linear Programming and »-SVR Machine

A number of variations and extensions to the standard SVMs described in the previous
sections have been considered. We will shortly review two of them, namely the linear
programming SVM and the v-SVM.

The Linear Programming SVM. Linear programming SVMs select a hypothesis
h(x) =N | B.(x,, %) 4+ b* that minimises a regularised risk functional of form

R1reg = Remp + )\”ﬁl‘%

Generalisation bounds motivating a risk functional of this type can be derived (see e.g. [62]
and [76]). The difference to standard SVMs is that the algorithms of linear programming
SVMs reduce to a linear optimisation problem, which is easier to solve than the standard
support vector algorithms.

The v-SVM. Scholkopf et al. proposed to optimise the width of the e-insensitive zone
within the training algorithm [53] [54]. A constant v > 0 is introduced and defines a
trade off between ¢, the model complexity and the slack variables. The resulting modified
optimisation problem (with linear e-insensitive loss) is

N
1 -
: 2
C NT n n )
. D <V6+N;(§ +¢ ))

subject to  ((w,x,) +b) — yy §e+§n, n=1,--,N,
Yo — (W, X2} +b) <e+&, n=1,---,N,
57175”,6207 nZl,"',N,

The solution to this problem is the saddle point of the primal Lagrangian

. C N 3 N
LP<W7b7€7€7O‘ad7ﬂ7 6) = %HW”% + N Z(‘gn + fn) - Zan(e —+ fn —Yn + <W7X’fl> + b)_
n=1 n=1
(2.36)

N N
_ﬁe_zdn(e"i'én‘i'yn_ WXn _b Zrngn‘*'rnfn +CV€
_ n=1

(2.37)
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and is found by forcing the derivatives with respect to the primal variables w, b, &, €, € to
be zero, yielding the equations

ow —

OLp Y ) B
W—C’V—;(an—kan) 6=0

8Lp_g N _8Lp_£ A — i =0
OLp =

W = ;(Ozn CYn) = 0,

and substituting into the primal (2.36). The v-SVR algorithm is then given by the opti-
misation problem

N N
1
max — = Ay — Qi ) (Qy — O ) (X, X)) + oy, — Gy, 2.38
e =g 3 (= anan = @)+ Vmlan =) (239
N N C
subject to &, — ) =0, a, +a,) <Cv, a,, a, €10,—]. 2.39
] ;( ) ;( ) 0, 5! (2.39)

This is again a quadratic programme and has a sparse solution of form (2.25) in terms of
support vectors. Scholkopf et al. proved the following properties of the v-SVR algorithm
[54].

1. v is an upper bound on the fraction of errors on the training set.
2. v is a lower bound on the fraction of support vectors.

3. If the data are generated i.i.d. from a distribution P(x,y) = P(x)P(y|x) with
P(y|x) continuous, v asymptotically equals both the fraction of errors on the training
set and the number or support vectors.

It can be show that the optimal value for € scales linearly with the variance of the noise [33].
Thus, the v-SVR algorithm can be interpreted as automatically adapting to the noise level.
Still, one has to consider the optimal choice of the parameter v [9].

2.3.10 Maximum Likelihood Estimators and Loss Functions

Till now, the SVR algorithms seem to be rather strange and hardly related to other
existing methods for function estimation. We show now the connection between loss
functions and maximum likelihood estimators, as discussed in many statistics textbooks,
mainly following [60] and [61].



2.3. SUPPORT VECTOR REGRESSION 35

Maximum Likelihood Estimators. Assume the data S = {(x1,41), -, (Xn,yn)} to
be generated i.i.d. by an underlying functional dependency t(x), and additive noise with
density p(§) that is independent of x,

Yn = t(Xn) + &ns
P(y[x) = ply — t(x)) P(x).
Then, the likelihood P(S|h(X)) of S given h(X) = {h(x1), -+ ,h(xy)} is

P(S|M(X)) = [ [ plyn — h(xn)).- (2.40)

Rewriting
ply = hix) = e H109),

for some function L(-), the likelihood P(S|h(X)) becomes
P(S|A(X)) = eXn= Llun—h(en),

Maximising (2.40) is equivalent to minimising

N

—log P(SIh(X)) = D L(yn — h(xa)):

n=1

Hence, the optimal loss function in the maximum likelihood sense is the function

L(y, h(x)) = —log p(y — h(x)). (2.41)

Common Loss Functions. The optimal loss function in the maximum likelihood sense
is given by (2.41). This allows to choose an appropriate loss function if one has knowledge
of the noise distribution in a problem. The loss functions arising from a given noise dis-
tribution through (2.41) may, however, be non-convex. In the derivation of the support
vector algorithms, only the quadratic loss, the Laplacian loss, the Huber loss and the lin-
ear and quadratic e-insensitive losses lead to quadratic programming problems, whereas
other loss functions lead to optimisation problems that are more difficult to solve [60].
For a specific loss function from some real world problem, we can still try to find a convex
approximation for the loss function, leading to a convex optimisation problem. Note,
however, that only loss functions with an e-insensitive region will produce a sparse rep-
resentation of form (2.25) for the hypothesis. Table 2.1 summarises the loss functions
for which the support vector algorithms are quadratic programming problems with cor-
responding density models. They are illustrated in Figure 2.12 for C = ¢ = 0 = 1.

Huber [28] showed that if one only knows that the density describing the noise is
a convex function possessing second derivatives, the best approximation for the worst
possible density is the Laplacian loss function L(y,h(x)) = |y — h(x)|. The linear -
insensitive loss function can be seen as a generalisation of this loss function by introducing
an insensitive zone. Thus, if one knows few about the noise density, the linear e-insensitive
loss is a good choice for robust regression. In all experiments reported in this work, we
employ SVMs with linear e-insensitive loss functions.
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Loss function Density model
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Table 2.1: Loss functions and corresponding density models. The trade off parameter
C > 0 that appears in the SVR algorithms is treated as an additional linear scaling in the
loss functions (Footnote 4).
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Figure 2.12: Common loss functions L(n) (top) and corresponding density models p(n)
(bottom) from Table 2.1, with parameters C = ¢ =0 = 1.

2.4 Optimisation Theory

In this section, we summarise the results from optimisation theory that we use for the
development of the support vector algorithms, mainly following [13] and [20]. Starting
with general definitions and notations for optimisation problems, we specialise them for
our needs, and move on towards Lagragian theory, which characterises the solution of
such problems. The final result, the Theorem of Kuhn-Tucker, provides conditions on the
solution of the support vector optimisation problems.

2.4.1 The Optimisation Problem

The support vector solution can be found as the minimum of some function, subject to
constraints. This can be formulated as an optimisation problem. The general optimisation
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problem is of form

min - f(w) (2.42)
subject to ¢;(w) <0, i=1,---,k, (2.43)
hiw)=0, i=1---,m, (2.44)

with f(w) the objective function, and g;(w) and h;(w) the inequality and equality con-
straints, respectively. The functions f(w), g(w) and h(w) are defined on a domain
Q2 C R™, and the subset Qr C Q on which both the function f(w) is defined, and the
constraints are satisfied, is called the feasible region. An inequality constraint g;(w) < 0 is
said to be active if the solution w* satisfies g;(w*) = 0, otherwise it is said to be inactive.

A point w* € Qp such that there exists no other point w € Qp for which f(w) <
f(w?*), is a solution, or global minimum, of the problem (2.42-2.44). A local minimum is
a point w* € Qp such that there exists € > 0, Vw € Qp, f(w) > f(W*): [[w — w*|| <e.

We can make further statements on the solution of the general problem (2.42-2.44)
if the real-valued objective function f(w) is convex for w € R", and therefore, for any
0 €(0,1), Vw,u € R", satisfies

fOwW+ (1= 0)u) <0f(w)+ (1 —0)f(a).

Then, any local minimum w* of f is also a global minimum [13].

The problem (2.42-2.44) is called a convex optimisation problem if the set €2, the
objective function and all constraints are convex. In the special case where the objective
function f is quadratic!® and all constraints g, h are linear, the problem (2.42-2.44) is
a quadratic programme. We will see that for convex optimisation problems, solving the
primal and the dual Lagrangian problem is equivalent and leads to the same solution.
The solution is unique and is a saddle point.

The Support Vector Optimisation Problems. All problems arising in the derivation
of the support vector algorithms are problems defined over the convex domain 2 = R",
with linear constraints that can be expressed in terms of affine functions y(w) = Aw +Db,
and a convex and quadratic objective function [13]. Therefore, we are confronted with
quadratic programmes.

2.4.2 Solving the Optimisation Problem

The solution of an optimisation problem (2.42-2.44) is characterised by Lagrangian theory.
We restrict ourselves here to the special case of quadratic programmes.

Unconstrained Problem. The solution of the unconstrained problem (2.42) is char-
acterised by the stationarity of the objective function.

Theorem 17 (Fermat). A necessary condition for w* to be a minimum of f(w), f € C*,

is % = 0. If f is convex, this condition is also sufficient (e.g. in [13]).

13A quadratic function is a function of form f(w) = aw’w +b’w +¢, a #0.
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Equality Constraints. When there are constraints, we need to find a function that

holds information on both the objective function and the constraints, and whose station-

arity can serve to detect solutions of the problem. This function is called the Lagrangian.
For optimisation problems with only equality constraints,

L f(w)

subject to h;(w) =0, i=1,---,m,

the Lagrangian function is defined as
Lp(w,B) = f(w) + Zﬁihz’(w)a
i=1

where the coefficients (3; are called the Lagrange multipliers.
For w* being a local minimum of such a problem, 8f(§:: ) is possibly non-zero, since
moving in the directions in which we could reduce the objective function may cause

us to violate one or more of the constraints. For fulfilling all of them, we can only move
perpendicular to ahg(vvvv ) , and therefore perpendicular to the subspace spanned by {8%(‘:3’ ).
i =1,---,m}. For linearly independent ahé(:vv*), no move within the feasible region can
reduce the objective function if 8fa(vv:*) lies in this subspace, % +>", ﬂi% = 0.
This leads us to the following result, describing the solution of optimisation problems with

only equality constraints.

Theorem 18 (Lagrange). A necessary condition for a normal point w* to be a minimum
of f(w) subject to hy(w)=0,i=1,---,m, with f,h; € C', is

oLp(w'.B) _,
ow N

(9Lp(w*,ﬁ*) —~0
B N

for some wvalues B*. The above conditions are sufficient provided that Lp(w,3%) is a
convex function of w (e.g. in [13]).

The solution is obtained by jointly solving the two systems, where the first one gives
a new system of equations, and the second one returns the equality constraints.

Equality and Inequality Constraints. For an optimisation problems that is subject
to both equality and inequality constraints,

L f(w) (2.45)
subject to  ¢;(w) <0, i=1,--- Kk, (2.46)
hi(w)=0, i=1--- m, (2.47)
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the generalised Lagrangian function is defined as
k m
Lp(w,c,B) = f(w) + Y aigi(w) + Y Bihi(w) =
i=1 i=1

= f(w) + a’g(w) + 8" h(w),

with Lagrangian multipliers «; and ;. For this problem, we can define a dual problem,

L. 0(cx, B) (2.48)
f(e.B) = inf Lo(w.cx.f) (2.49)
subject to a >0, (2.50)

in which the dual variables @ and 3 are considered as the fundamental unknowns. The
primal and dual problems (2.45-2.47) and (2.48-2.50) possess specific properties with re-
spect to each other. First, they are connected through the weak duality theorem:

Theorem 19 (Weak Duality Theorem). Let w € Q) be a feasible solution of the primal
problem (2.45-2.47) and (e, B) a feasible solution of the dual problem (2.48-2.50). Then

f(w) = 0(a, B) (e.g. in [13]).

The difference of the values of the solution of the primal and dual problem is known
as the duality gap. If the duality gap is zero, f(w*) = 0(a*,8%), w* and (a*, 8%) solve
the primal and the dual problems respectively, and o} g;(w*) = 0, for i = 1,--- | k, since
the inequality in the weak duality theorem then becomes an equality. It is not always
guaranteed that the solutions of the primal and dual problem have the same value.

For the specific case of an optimisation problem on a convex domain, however, with
the constraints being affine functions, the strong duality theorem holds, and the duality
gap is zero.

Theorem 20 (Strong Duality Theorem). Given an optimisation problem with convex
domain 2 C R",

we )
subject to  ¢;(w) <0, i=1,---k,
=0,

hl(w) i=1---,m,

where g; and h; are affine functions, that is h(w) = Aw — b for some matriz A and
vector b, the duality gap is zero (e.g. in [13]).

In this case, the solution (w*, a*, 3%), with w* € Q, a* > 0, is a saddle point of the
primal problem, satisfying

LP<W*7a7/8) S LP<W*7a*aﬂ*> S LP(W7a*7ﬂ*)

for all w € Q, a > 0 (saddle point condition). Therefore, we can equivalently solve
the dual problem instead of the primal problem, and the dual objective function can be
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obtained by forcing the partial derivatives of the primal objective function with respect
to the primal variables w to be zero.

We are now in position to quote the final result, the Kuhn-Tucker theorem, providing
conditions for the solution to the optimisation problem we are confronted with when
training SVMs. It brings together Theorems 17 to 20.

Theorem 21 (Kuhn-Tucker). (e.g. in [13]) Given an optimisation problem with convex
domain 2 C R™,

v )
subject to  ¢;(w) <0, i=1,---Fk,
hi(w) =0, i=1, ,m,

with f € C' convex and g;, h; affine, necessary and sufficient conditions for a normal
point w* to be an optimum are the existence of a*, 3" such that

OLp(w*, a*, 3")

ow =0,
OLp(W*, a*, 3") _0
0B ’
algi(w)=0, i=1--- k,
gi(w*) <0, i=1,---k,
ar >0, i=1--,k

The third relation, known as Karush-Kuhn-Tucker (KKT) complementary condition,
implies that for active inequality constraints a; > 0, whereas for inactive constraints
the Lagrangian multiplier must be zero. In the first case, with the solution point being
on the boundary of the feasible region, the conditions for the optimal solution are given
by Lagrange’s theorem with non-zero «;, whereas in the second case, with the solution
point lying on the inside of the feasible region, Fermat’s theorem applies. The KKT
complementary conditions imply that for certain optimisations the number of variables
involved may be significantly smaller then the full training set size.

Lagrangian treatment of convex optimisation problems leads to an alternative dual
description. The primal objective function can be transformed into the dual objective
function by setting the derivatives with respect to the primal variables to zero, and sub-
stituting back. The resulting objective function depends only on dual variables and must
be maximised under simpler constraints.

2.5 Kernels and Feature Space

In this section, we clarify how the SVM algorithms can be made nonlinear by replacing
the inner products with a kernel function. The exposition will mainly follow [13]. Since
introductory literature on the theory of reproducing kernels is rare, we decide to hold the
section as self-contained as possible.
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2.5.1 Explicit Mapping into Feature Space

The representation of a functionality that one wishes to learn largely determines the
difficulty of the learning task. For instance, take the training examples (x,y), x € R?, y €
R that stem from a functionality y = ax? + bzyzs + ¢ of monomials of degree 2 of the
coordinates of the attributes x, which cannot be learned by a linear machine. This
functionality becomes linear under the mapping x — ¢(x) = (22, 1122, 73).

The strategy of pre-processing the original attributes x, by mapping the input space
X into a new space F = {¢(x)|x € X}, called feature space,

X =[x, ,x,] = d(X) = [P1(X), -, du(X)],

is common in machine learning since a long time (Figure 2.13 gives an illustration of this
strategy). As the number of features ¢; increases, however, both the computational and

Figure 2.13: Mapping the input space in a feature space, and working in this feature space,
can highly facilitate the learning task. A functionality that can not be learned by a linear
machine in input space (left) can become linear in feature space (right).

the generalisation performance of the learning machine can decrease. The computational
cost grows with the number of features, and a large number of features makes the learning
machine more flexible such that it can become subject to overfitting. This is problematic,
since with a larger set of possibly redundant features it is as well more likely that the
target functionality can be learned by a standard machine, a phenomenon often referred
to as the curse of dimensionality. If, for instance, we consider monomials and features of
degree d in our simple example from above, the dimension of the feature space becomes
v = (”’”J“dd_l), which is computationally intractable already for quite small degree d and
dimension of the input space n,.

The specific construction of SVMs makes it possible to go around the curse of dimen-
sionality. The problem of generalisation is avoided by using a learning machine with an
induction principle that is based on results from statistical learning theory (Section 2.1),
and the computational problem is avoided by replacing the explicit mapping strategy with
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an implicit one, as will be made clear in the following subsections. This allows SVMs to
work even in infinite dimensional feature spaces.

2.5.2 Implicit Mapping into Feature Space

In order to be able to learn a nonlinear relation with a linear machine, we need to represent
the data through a set of non-linear features ¢ : X — F, so that the set of hypothesis
will be of type

h(x) = Z 0:0:(x) + b.

We have seen in Sections 2.2 and 2.3 that the support vector hypotheses can be represented
in a dual form

h(x) =Y an(p(x,), $(x)) +b,

which can be evaluated by using only inner products between input and training vectors.
The training vectors enter the SVM training algorithms (Proposition 15, 16) as well only
inside of inner products. If there would be a way to calculate the inner products in
feature space, (¢(x), ¢(z)), directly from the input vectors x and z via some function, the
computational complexity would depend only on how easy the evaluation of this function
is, and not on the dimensionality v of the feature space. Such a function is called a kernel.

Definition 22 (Kernel). A kernel is a function K(-,-) : X x X — R, such that for all
X,z € X,

K(x,2) = (¢(x), ¢(2)),

where ¢ is a mapping from X to some inner product feature space F.

Thus, if we find a kernel that can be evaluated efficiently, the evaluation of our hy-
pothesis

h(x) = ZanK(me) +b

takes at most N kernel computations. Interestingly, the underlying feature map ¢(-) does
not even have to be known explicitly. It is implicitly defined by the choice of kernel K (-,-),
that calculates the inner product in some feature space F.

Kernels can be viewed as a generalisation of the inner product, and the simplest kernel
is the one corresponding to the identity map as the feature map ¢(-),

K(x,z) = (x,z).

By defining the feature map as a fixed linear transformation x — Ax, the kernel function
is

K(x,z) = (Ax,Az) = x"ATAz = x"Bz.

Other examples are polynomial kernels

K(x,z) = (x,2)% and K(x,z) = ((x,2) + ¢)* (2.51)
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with the (”””J:idfl) and ("zjd) monomials of z; and z; up to degree d as features, respec-

tively, and the Gaussian kernel
K(x,2) = exp(~|jx — z||*/0®) = exp(—[x — 2]*), (2.52)

with an infinite number of features.

Finding a kernel that is easy to evaluate is the key issue in the approach of implicitly
defining a map into some feature space. Without the use of kernel functions, SVMs - as
linear learning machines - would have to use explicit feature maps and suffer from the
same computational problems as other methods. It is the pleasing fact that kernels can
be naturally introduced in both the hypothesis and the training algorithm that, together
with their foundation on statistical learning theory, renders SVMs so powerful.

In the next subsection, we will give a mathematical characterisation of kernels.

2.5.3 Characterisation of Kernels

For directly defining a kernel function that is the inner product in some feature space, and
therefore implicitly determines a feature map, we need to know more about the general
properties of such a function K(-,-). It is obvious that it must be symmetric,

K(x,2) = (¢(x), ¢(2)) = (#(2), p(x)) = K(z,x),

and that it necessarily has to satisfy the inequality

K(x,2)" = (¢(x), ¢(2))" <
< lle@)*- ll¢(2)]* = (p(x). ¢(x))(B(2). $(2)) = K (x,x)K(z,2),

These conditions are, however, not sufficient for the existence of a feature space, and we
are in need of a more precise characterisation of kernels.

Mercer’s Theorem

Mercer’s theorem, which we will quote below, characterises when a bivariant function
K(-,-) on an input domain X C R"™ is the inner product in some feature space F. Before
considering the case of a compact input domain, we will introduce the condition for K (-,-)
to be a kernel over a finite input space. As we will see, this condition, extended to any
finite subspace of the input domain, is equivalent to Mercer’s condition.

Finite Case. Suppose we are given a finite input space X = {x;, -+ ,xx}, and a
symmetric function K (x,z) on X. We define the kernel matrix
K = (KXmXo )N 0 Ky = K (X, %),

which is symmetric. Therefore, we can write K = VAV, with the diagonal matrix

A of eigenvalues \; of K, and the orthogonal matrix V' of corresponding eigenvectors
N

_ N - , N
v; = (Ujn)n—; as columns. What is more, we define a feature map ¢ : x,, — (, /ijjn)j_l
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into a feature space with an inner product, generalised by introducing a non-negative
weighting «y; for each coordinate,

(p(x), 9(2)) = Z%’%(X)%(Z)-

With non-negative eigenvalues, the inner product between two feature vectors is

/RSt /21
< o Vim T Vin > N
/AN AN j=t
YN UNm N UNn

=|[lvi--on) | o : =
0 - Ay v%

= (VAvT)mn = Kmn - K(Xmaxn)7

(P(xm), d(xn)) =

AjUjmUjn =

mn

showing that K (-, -) is the kernel function corresponding to the map ¢(-). The eigenvalues
have to be non-negative, as for a negative \; with corresponding v, a point

N Ao Ao Ao Vk1
~oU21 o) ~oUaN
=Y vplx,)=| VoV Ve | =
n=1 : :

UVkN

A1

AL T
M A

= : : Uy
0 AN vy

has norm squared
] = (,9) = vl VVAVAV v, = v VAV v, = vl Ko, = A < 0.
This proves the following proposition.
Proposition 23. Let X be a finite input space, and K(-,-) a symmetric function on

X. Then K(-,-) is a kernel function if and only if the matriz K = (K(Xm,xn))g’n:1 is
positive semi-definite [13].

Infinite Case. For feature vectors ¢(x) = [¢1(x), -+, ¢P;(x),---] Mercer’s theorem
gives the characterisation for a bounded, symmetric and continuous function K(x,z)
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to be a kernel?,

2) =Y 765()6,(2)

Theorem 24 (Mercer). (e.g. in [13]) Let X be a compact subset of R", and K
a continuous symmetric function such that the integral operator Ty is positive for all
f e LX),

T :La(X) — Lo(X), (Tic f)(- /K

K(x,z)f(x)f(z)dxdz > 0.
XxX
Then we can expand K(x,z) in a uniformly convergent series on X x X in terms of
the normalised eigenfunctions of Tk, ¢; € Lo(X) : ||¢jll, = 1, and associated positive

etgenvalues A\; > 0,
z) = Nobi(x)¢;(z)
j=1

The condition on a finite set of points {xy,- -, Xy} is recovered by choosing f as the
weighted sums of delta functions at the x,,. Requiring the corresponding kernel matrix
to be positive semi-definite for any finite subset on X is therefore equivalent to Mercer’s
conditions, which is useful in practice for showing that a specific function is in fact a
kernel.

The theorem suggests the feature mapping x — @(x) = [p1(x), -+, ¢;(x),---] into
the Hilbert space defined by the weighted inner product (6, é) = ZOO A;0;0; with non-
negative eigenvalues \;, since then

z) = Zm(xm(z) = (¢(x), P(z)),

which is equivalent to K(x,z) being an inner product in the feature space F O ¢(X),
where F is the ly-space of all sequences ¥ = [y, -+ ,1;,- -] for which 2;’11 )\jw?- <
0o. These features ¢;(-) are orthonormal functions in Lo(X) (Mercer features). The
orthonormality condition is, however, not necessary. We can equivalently use a feature
mapping with basis functions ¢;(-) in which we rescale each coordinate, x — P(x) =
[a1¢1(x), -+ ,a;¢;(x),- -], into the Hilbert space defined by the weighted inner product
(0,6) = D e 2—;65 Then, the inner product of two feature vectors in F satisfies again

(P(x), P(z)) = Z;o 1 22 a;jp;(x)a;p;(z) = K(x,z). Orthogonality is not required either, as
the case of the polynorjmal kernel shows, whose features are not in general orthogonal.
Mercer’s theorem allows a representation of the input vectors x by means of their
image in the feature space F with an inner product defined through the potentially infi-
nite number of eigenvalues of the kernel. The sub-manifold formed by the image of the

4This contribution from functional analysis comes from studying the eigenvalue problem
[ K(x,2)¢(z)dz = A\p(x). For a function K(-,-) to be bounded, it has to satisfy [ [ K(x,z)dxdz < oo,
a property that is also known as finite trace.
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input space is defined through the eigenvectors of the kernel. The inner products can be
calculated using the kernel function without computing the images ¢(x).

Up to this point, we have determined the properties a function K(-,-) must have to
be a kernel. Consider now a feature space with countably many linearly independent
features x = [z, - ,xn] — @(X) = [P1(X), -+, P;(x),-- -], in the l,-space F defined by
the weighted inner product (6,6) = P \;0,0;. We can define a function space H on
the input space X to be the image of F under the mapping

T:0— iﬁj@(x), (2.53)

which for finite dimensional F corresponds to the function class we effectively use when
applying linear functions in feature space, since it is the set of all linear combinations of
the basis functions. For an F of infinite dimension, H may not contain all the possible
hypothesis functions h(x) = Z;L i0i(x) + b, since they may be images of points that
have an infinite norm in F, or equivalently H may contain too many functions. In order
to ensure that H contains exactly the set of hypothesis functions, we need to choose a
particular feature map, which will be introduced in the next paragraph.

Reproducing Kernel Hilbert Spaces (RKHS). Assume we have a feature space
given by the map x = [z1,--+ ,2n] — @(X) = [p1(X), -, ¢;(x),---], in the l,-space F
defined by the weighted inner product

Z)\QQJ,Wltthz Z)\]¢]

7j=1

Now consider introducing a weighting proportional to A;, so that the image of x in F is
of form

X = P(x) = [1(x), -+, (%), ] = b (%), -+, X d(%), -+, (2.54)

with appropriate inner product

. 0,0

Z T such that ((x), 9 (z))) = K(x,2). (2.55)
The image of F under the mapping (2.53) is H. For two functions in H

= Zejgbj( and g(x Zejgﬁ]
j=1

we define an inner product in H,

P9 = ﬂ—

=1
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making (2.53) an isometry. The particular weighting (2.54) has a couple of special prop-
erties. First, applying the map (2.53) to the image of an input point z,

z)) = Z%’(Z)%(X) = Z Ai9i(z)9;(x) = K(z,%),

shows that K (z,-) € H. Therefore, functions h(x)=3"""_, a,, K (x,,x) in dual representa-
tion are in M. Next, taking the inner product of a general function f(x) = >°72 | a;¢;(x) €
H with K (z,-) gives

[e.9]

(), K Z % ]@ =2 w6@) = /(2

(reproducing property), implying that H has to coincide with the closure of the subspace

N
= {Zan[((xn,x) D (xq,0 ,XN) € X} :
n=1
since if
VfeH: fLK
= f(z) = {f(), K(z,-))n =0,Vz € X
= f=0.
Thus, ‘H does not contain functions that cannot be arbitrarily well approximated in the
dual representation. Finally, the evaluation functionals defined by Fy(f) = f(x) Vf €

‘H are linear and bounded, since due to the reproducing property there exists § =
|K(z, )|l € RT such that'

(N = 1f(2)] = (f(), K(2, ) < ([ K (2, )l fllre < Bl flloe VF € R

These properties of the evaluation functionals of a Hilbert space H are exactly the defining
properties of a reproducing kernel Hilbert space (RKHS). The importance of that is due to
the Riesz representation theorem, which states that if F{.)(-) is a bounded linear functional
on a Hilbert space H on F, then there is a unique vector 8 in F such that Fy(f) = (f, 0).

Theorem 25. For every Mercer kernel K(x,z) defined over a domain X C R" there
exists a RKHS H of functions defined over X for which K is the reproducing kernel (e.g.

The converse holds true as well, so that for any Hilbert space H of functions in which

the evaluation functionals are linear and bounded, there exists a reproducing kernel. A
reproducing kernel is also a Mercer kernel, since for f(x) = ZnN=1 an K (x,, %),

flis = <Zanf<<xn, 0D K (x,, ->> = am Y K (%, VK (%5, ) =
n=1 H m=1 n=1
= > K (Xm, Xn),

m=1n=1

5Remember that K (-,-) has finite trace.
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which proves that K is positive semi-definite for every finite subset of X, implying the
positivity of the operator!® K.

Therefore, the set of hypothesis we actually employ when replacing the inner product
in the support vector algorithms with a kernel K(-,-) is the RKHS H defined by the inner
product (2.55) in a space of features (2.54), with corresponding reproducing kernel K (-, -).

2.5.4 Combining Kernels

We can construct more complicated kernels from simple building blocks. This is useful if
one is in need of more complex kernels than the standard kernels, the Gaussian and the
polynomial kernel, for a specific problem.

Proposition 26. Let K; and Ky be kernels over X x X, X C R™, a € RY, f(:) a
real-valued function on X, ¢ — R™ with K3 a kernel over R™, B a positive semi-definite
nxn-matriz, and p(-) a polynomial with positive coefficients. Then the following functions
are kernels:

8. K

1. K(x,2) = K\(x,2) + Ks(x,2),
2. K(x,2) = aky(x,2),
3. K(x,2) = K\(x,2)K»(x,2),
4. K(x,2) = f(x)f(2),
5. K(x,2) = Ks((x), 6(2)).
6. K(x,z) = x" Bx,
7. K(x,z) = p(Ki(x,z)),
(

A proof for the rules quoted in the above proposition can be found in e.g. [13].

2.5.5 A Probabilistic View on SVMs

In this subsection, we want to establish a connection between SVMs and a particular form
of Bayesian learning, known as a Gaussian processes. A Gaussian process is a stochastic
process for which the marginal distribution for any finite set of variables is Gaussian.
From now on we will, without loss of generality, assume all Gaussian distributions to be
Zero mean.

The output of a function f(x) for fixed x € X, with f chosen according to some
distribution D over a class of real-valued functions F, is a random variable. Therefore,
{f(x) : x € X} is a collection of potentially correlated random variables, known as a
stochastic process. The distribution D can be interpreted as the prior believe on how
likely it is that a function f will solve the problem under consideration. Such a prior

16 A symmetric matrix A is positive semi-definite if and only if Vx # 0 = xTAx > 0.
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is a characteristic of Bayesian learning, in which one attempts to calculate the posterior

probability of F, P(F|S) = %, given the data S. This is highly simplified by
assuming the prior distribution to be Gaussian. For a finite data set S = {x1,--- ,xn},
the Gaussian distribution is specified by a symmetric positive definite covariance matrix

C, and defining such a prior distribution

Pron ((F(x0), - fOo)} = {on - o) s esp(—5yTCTly) (256)

corresponds to defining a Gaussian process on f(X)'". The entries of the covariance

matrix measure the correlation between f(x,,) and f(x,), Cnn = Epup{f(xn)f(xn)},
which depends only on x,,, and x,.. Thus, a symmetric covariance function K(x,z) exists
such that C,,, = K(x,,,X,). The covariance matrix has to be positive definite for all
finite sets of input points, which is exactly the property defining a Mercer kernel, and
hence defining a Gaussian process over a set of variables on X is equivalent to defining a
Mercer kernel on X x X [75].

Usually, a Gaussian process is defined by specifying a covariance function C(x,z)
as this avoids the explicit definition of the function class F. It is possible to define a
function class and prior for which the kernel is the corresponding covariance function.
Consider the class of linear functions in the space F of Mercer features x — ¢(x) =
(#1(x), -+ ,0j(x),---) in the Ly space defined by the weighted inner product 6,0) =

> o1 Aiti0;,
00 N
X) =Y 0;0;(x) = > anK(xp,X). (2.57)
j=1 n=1

By choosing the prior D on the weight vector @ as an independent zero mean Gaussian
in each coordinate, with variances y/A;, the correlation C(x,z) between x and z can be
computed [13]:

C(x.2) = Fo-n {()f(2)} = Foon {Z 0,05(x) Zequj(z)} =

/Zejgbj Zejgb] )dD(6 ZZ@(X)@( )/GHdD(B)
_ZZ@ Zqﬁj z)\; = K(x,z).

=1 j5=1

Thus, defining a Gaussian prior on the weights @ of (2.57), independent and with variance
\/)\_j in each coordinate, is equivalent to defining a prior distribution (2.56) with covariance
matrix C,,,, = K (X, %X,,) on f(X).

Now consider again the class of linear functions (2.57) in the space F of Mercer features
as above, in the more specific case when S = {(x1,41), -, (Xn,yn) is assumed to be
generated i.i.d. according to

P(x,y) = P(ylx)P(x),

"We write f(X) = [f(x1), -+, f(xx)] for the column vector of the output values of f at the points
Xy
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with noise distribution
P(y|x) = P(y — f(x)) oc exp(—CL(y — f(x))). (2.58)
The likelihood of f is then

P(S[f(X)) = exp (—CZL(yn - f(xn))> :

By defining the prior Pr.p as a Gaussian process (2.56), with covariance matrix K x,x =
{K (X, Xn) } iy 1, Where K(-,-) is a kernel as discussed above, the posterior distribution
takes the form

PUFx)Is) = NI
X exp <_%fT<X)KX1Xxf(X) — CZL(yn _ f(Xn))> ‘

The maximum a posterior estimate for f(x) is f(x)map = arg max ) P(f(X)|S). Equiv-
alently, we can use the log-posterior,
N

1 _
f(x)map = arg min §fT(X)KX1><Xf(X) +C Y Ly — f(x)). (2.59)
n=1
By substituting for our latent functions f (2.57),
ZnNzl OcnK(Xn, Xl) N K(Xm Xl) (651
f(X) = : =Y : =Kxxx | ¢ |, (2:60)
ZnNzl anK(er XN) n=1 K(Xna XN) an

and substituting (2.60) back into (2.59), the maximum a posterior estimate for f(x)
becomes

T
ay Qq N
1 )
f(X)map = arg min o Kx.x| @ | +C Z Ly, — f(x4)).
an an n=1

This corresponds exactly to the type of criterion that is optimised in all the SVM algo-
rithms, which is of form

N
1£13+C Y Liyn — £(xn)),

since the norm || f||3, can be expressed as

N N
1113, = <Z IS (X %), Y kK (Xp, %)
m=1 n=1

N T~——"
I
B
[~]=
o
3
o
3
=
%
3
X
=
e
g
\J
I

N N a1 a1
= Z Z Uy K (X, X)) = | ¢ Kxxx |

an
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Therefore, the solution of the support vector algorithms is equivalent to the MAP estimate
by a Gaussian process with covariance function K(-,-), when a noise distribution of type
(2.58), with L(-) a loss function as discussed in subsection 2.3.10, is assumed.

2.6 Hyperparameter Selection

SVMs have the advantage over other function estimation methods, e.g. classical neural
networks, that they are capable of controlling the capacity of the hypothesis, even when
the hypothesis space is very rich. The algorithm chooses the subspace of the hypothesis
space that is optimal in terms of some bound on the generalisation of the hypothesis. The
"architecture” of the learning machine is therefore determined by the learning algorithm
itself. This leaves only very few parameters to be chosen by the user. Concretely, the user
has to determine the value of the trade off parameter C', the width of the e-insensitive
zone or the corresponding parameter v, and the kernel parameter(s). We write these
J hyperparameters ©; jointly as a parameter vector @ = [@j]}']:1 € I', where I' is the
parameter space.

Up to this point of the work, the question of how to choose these parameters © has
been left unanswered. The different possibilities for determining them will be summarised
in this section.

It is known that the excellent empirical performance of SVMs depends crucially on
a good choice of hyperparameters. Although several different approaches exist for their
selection, the problem of how to practically choose a good set is still far from being solved.

2.6.1 Generalisation Estimation and Parameter Space Search

Hyperparameter selection methods consist of two building blocks. The first block esti-
mates the performance (generalisation) of the learning machine for a specific parameter
setting ©;, given only an available set of N samples S = {(x1,%1), -, (Xn,yn)}. The
second block determines how such candidate settings ©; are selected in parameter space
I.

Generalisation Estimators

We distinguish three approaches:

e Empirical methods approximate the generalisation by evaluation of the hypotheses
on dedicated subsets Syaq C S of the available set of samples S. For each validation
set Syaiiq and parameter setting ©;, the hypothesis'® he,(Syaim = S\ Svana) has to
be known'?.

e Methods based on bounds on the risk approximate the generalisation by the value
of a bound. The bounds depend on properties of the available set of samples .S and

18Tn this section, we write shortly he,(S) for the hypothesis that is obtained through training on the
training set S with hyperparameters ©;.

In the case of SVMs, finding the hypothesis he,(S;) means running the support vector training
algorithm for this specific parameter setting and training set.
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of the hypothesis hg,(S). The method therefore requires the computation of he,(.S)
for each parameter setting ©; considered.

e Heuristic methods aim at finding an empirical functional relationship between ©;
and the generalisation of its corresponding hypothesis heg,(S). The functional rela-
tionship is parameterised only by properties of the available set of samples S and
does not depend on properties of the specific hypotheses hg,(S). Therefore, it is not
necessary to compute hg,(S) for each ©,. Heuristics are usually only valid within
a particular problem setting.

A heuristic method for SVR is reported in [11]. We could, however, not produce
good results with this method in own experiments. We will not consider heuristics
any further.

Searching the Parameter Space

Both empirical methods and methods based on bounds require the hypothesis to be known
for each specific parameter setting ®; under consideration. For that, candidate vectors
®; have to be selected in I'. The number of candidate vectors ©; largely determines
the computational requirements of the hyperparameter selection procedures, since the
hypothesis has to be computed for each specific hyperparameter setting and validation
set.

Grid Search. A common brute-force approach towards selecting candidate hyperpa-
rameter vectors ©; is known as a grid search. For each of the J hyperparameter ©;, a
discrete set of n; values ©; = [©;1,- - ,0;y,] is selected, and every possible combination
of these hyperparameter values is considered. This places a finitely sampled grid sup-
ported by H}]:l n; ~ n’ vectors ©; in the parameter space. For each ©;, the hypothesis
he,(S) has to be evaluated.

Gradient Descent Techniques. If the generalisation estimator Err(@, 5) is differen-
tiable with respect to the hyperparameters ©;, gradient descent type methods can be
used. Starting from an initial hyperparameter vector ®1, the next vector ©, is chosen to
be in the direction of steepest descent _9Em(®.5) e procedure is iterated until some
termination criterion is fulfilled. For each ©;, the hypothesis hg,(S) has to be evaluated.

2.6.2 Empirical Generalisation Estimators

All empirical methods have in common that the available set of samples S is split into
training sets and validation sets S; train, Sivatid: Sitrain U Sivalid = S5 Si train 1 Sivalid = { }-
The hypotheses he, (Sirain) are determined on the training sets Sy, and the validation
sets Syaiiq are sacrificed for estimating the generalisation.

Empirical methods can be used for performance evaluation of any function estimation
technique. They are suitable for all types of SVMs we have considered.

Empirical generalisation estimators Err(©,S) are not differentiable with respect to
©;. Therefore, gradient descent techniques are not applicable, and a grid search has to
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be performed. Thus, they are very costly in terms of computation time, although there
exist strategies to speed up the procedures [§].

In general, empirical generalisation estimators produce good, nearly unbiased esti-
mates of the generalisation error [10] [15]. We distinguish between hold out testing, k-fold
cross validation and leave one out estimators.

Hold Out Testing. The available set of samples S of length N is divided into a single
training set and a single validation set of length m and n, respectively, such that

Straina Svalid: Strain U Svalid = Sa Strain N Svalid = {}

For each choice of hyperparameters ©;, the machine is trained on Si;.,, and the general-
isation is estimated on Sy.q by the estimator

m,n 1
Erri” (he,) = " Z L (he,(xi,y:)) -

(xi »Yi ) eStest

The procedure is repeated for all other choices of hyperparameters ®; € I', and the hyper-
parameters @ with the best estimated generalisation, Vi: Errggn) (he+) < Errg%’") (he,),
is selected.

k-Fold Cross Validation. The available set of samples S is split into & mutually
exclusive subsets S; of approximately equal size n, S;: Ule S; =8, ﬂle S; = {}. For
each particular choice of hyperparameters ®;, the machine is trained on the training
sets S train = Ui# Si, 5 =1,--- ,k, and then tested on the corresponding validation sets
Sivalia = Sj, J = 1,--- ,k, consisting of the subset that has not been used for training.
The estimated generalisation for a specific hyperparameter setting ©; is then the average
of the validation error on the validation sets Sjyaia. Therefore, the machine has to be
trained k times for each candidate ®;. The estimator is given by

k
n 1 1
Errlgc)v (hje,) = 7 Z " Z L (hje,(xi,yi))
j=1

(%4,Yi) €55 valia

The procedure is repeated for all other choices of hyperparameters ©; € T', and the
hyperparameter setting ®* with the best estimated generalisation, Vi: Errggv (he) <
Errl(:é)v (he,), is selected.

k-fold cross validation gives better estimates of the generalisation than simple hold
out testing, at the expense of approximately k times the computational cost [10] [15].

Leave One Out Estimator. The leave one out estimator can be seen as an extreme
form of the k-fold cross validation estimator for which k is equal to the number of available
samples N. Thus, only one sample is left out for testing, and training and testing has to
be repeated N times for each particular setting of hyperparameters ®;. The estimator is

given by
N

1
EITSO)O (hngz) = N Z L (hnG)i (Xna yn)) :

n=1
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The procedure is repeated for all other choices of hyperparameters ®; € T', and the
hyperparameter setting with the best estimated generalisation is selected.

The leave one out estimator is known to give the best estimate on the generalisation of
all empirical methods, at the expense of approximately N and % times the computational
cost of hold out testing and k-fold cross validation, respectively [10] [15].

2.6.3 Estimators based on Bounds on the Generalisation

Instead of using empirical estimates of the generalisation performance, for which a par-
tition of the training data has to be dedicated to validation, we can try to approximate
the generalisation performance by theoretical bounds. Then, for each choice of hyper-
parameters ©; € I', the performance is assessed via the value of the bound. This is
computationally less costly than empirical estimates if the bounds are differentiable with
respect to the hyperparameters ©; and a gradient descent technique can be employed,
since then the number of tested hyperparameter settings ©; may be considerably lower.
Reliable and robust generalisation bounds for hyperparameter selection are still subject
to active research, which mainly focuses on bounds for classifiers. We will therefore not
go further into details and leave the reader with selected examples and corresponding
pointers to relevant literature.

The xzi-alpha bound is an upper bound on the leave one out estimate and can be
computed without extra cost when training support vector classifiers [15] [30]. Other
bounds for classification are the generalised approzimate cross validation (GACV) and
the span bound. The GACV approximates the generalised comparative Kullback-Liebler
distance, which is seen as an upper bound on the misclassification rate, and can be com-
puted directly once the SVM is trained on the whole training set [36]. The span bound
approximates the leave one out estimate [10] [70].

All bounds introduced in Section 2.2 and 2.3 can be used to approximate the general-
isation [5]. As this bounds are considerably loose, they may, however, not produce usable
estimates [15].

2.6.4 Practical Considerations

Cross validation and leave one out estimates are known to produce good estimates of
the generalisation, but they are practically not feasible for tuning many parameters (e.g.
when using kernels with multiple parameters) due to the computational cost of these
techniques.

Computationally less expensive methods are still subject to research and discussion.
Past efforts focused on finding tight bounds on the leave one out estimate (e.g. xi-alpha
bound, span bound), but they are not satisfactory in many situations. A comparative
study of inexpensive generalisation measures for tuning the trade off parameter C' and
the width of a Gaussian kernel in the case of support vector classification can be found
in [15], for a variety of data sets. It is observed there that the xi-alpha bound gives
hyperparameters that are sometimes not close to the optimal ones, GACV is worse than
the xi-alpha bound on some data sets, and the VC bound (2.8) does not give useful
estimates at all.
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Until reliable bounds and iterative techniques are found, empirical techniques depend-
ing on validation sets will be the methods of choice for selecting the hyperparameters of
SVMs. This shortcoming of reliable hyperparameter selection techniques clearly restricts
the power of SVMs in practice:

1. Due to the computational cost of all empirical techniques, the parameter space can-
not be sampled arbitrarily fine when performing the necessary grid search. There-
fore, it cannot be guaranteed that the hyperparameter setting selected is optimal
for a particular problem.

2. The computational cost of a grid search is approximately proportional to n”, where
n is the size of the set of discrete values considered for one single hyperparameter
©;, and J is the number of hyperparameters involved. Therefore, the computational
cost depends crucially on the number of hyperparameters J. This limits SVMs to
the use of kernels with only one or very few kernel parameters.

In the practical experiments reported in Chapter 4 of this work, we use simple hold out
testing on a single validation set. Although this is the computationally least costly em-
pirical parameter selection technique, it leaves us restricted to considering only standard
kernels of Gaussian and polynomial type (2.52) and (2.51).






Chapter 3

Application to Chaotic Time Series
Prediction

3.1 Chaos and Dynamical Systems

A variety of experiments have shown that a measured time series can in many cases be
viewed as driven by a nonlinear deterministic dynamical system with low dimensional
chaotic attractor [14].

A deterministic dynamical systems describes the time evolution of a state & in some
phase space or state space P C RP. The system can be expressed by ordinary differential
equations or, in discrete time , by maps of the form

2(n+1) = f(a(n)), (3.1)

where x(n) are the states of the system at time instance n. The time evolution of these
states in the phase space P is known as an orbit or trajectory.

The state x(n) of a deterministic dynamical system gives all the information necessary
to determine the entire future evolution of the system. Under minimal requirements on
the smoothness of the equation (3.1), the existence and uniqueness properties hold. They
assure that through any point @(n) = (z1(n),--- ,zp(n)) € P, there exists a unique
trajectory with @(n) as the initial condition. Therefore, the future of the system that
unfolds from the state x(n) is uniquely determined by x(n) [50].

Chaos can occur as a feature of such orbits (n), if they are arising from nonlinear
evolution rules which are either systems of differential equations with three or more de-
grees of freedom, or of invertible discrete time maps (3.1) with two or more degrees of
freedom, or of noninvertible maps in one or more dimensions. The degrees of freedom
of a system of differential equations is the number of required first order ordinary dif-
ferential equations, and the degrees of freedom of invertible discrete time maps (3.1) is
the number of components in the state vector &(n) [1]. Chaos manifests itself as com-
plex time traces of the state variables x(n), with continuous, broad band Fourier spectra
and non-periodic motion. As a class of observable signals, chaos is logically situated in
between the domain of predictable, regular, or quasi-periodic signals, and signals with
truly stochastic behaviour, which are completely unpredictable. With conventional linear

o7
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tools such as Fourier transforms, chaos looks like "noise”. This is because frequency do-
main methods lack applicability, as chaotic signals typically possess a continuous Fourier
spectrum, whereas time domain methods become inappropriate because a single model
no longer applies to the entire state space underlying the signal. Nevertheless, chaos has
structure in an appropriate state or phase space [1] [50].

A characteristic feature of deterministic chaotic systems is an extreme, exponential sen-
sitivity to changes in initial conditions, while the dynamics is still constrained to a finite
region of the state space, called a strange attractor. This sensitivity places a fundamental
limit on long-term predictions. For given initial conditions with finite precision, the long
term behaviour cannot be predicted, except to say that the states are constrained to a
certain finite region of the state space. Initially nearby trajectories may diverge exponen-
tially for chaotic systems!. Still, the determinism of the system suggests possibilities for
short-term prediction: Random-looking data may contain simple relationships, involving
only a few irreducible degrees of freedom [18] [32].

Observed Chaos. Chaotic behaviour is usually observed as a property of measurements
in form of a time series. A time series can be thought of as a (usually scalar) sequence of
observations

{s(n) = Q(x(n)}, n=1,---,N, (3.2)

performed with some measuring function €2(-). When we observe a time series (3.2), the
system f, its attractor dimension? d,, and the measurement function  are unknown.
We possess only knowledge of the measurements themselves and of the sampling time? ¢,.

3.2 Predicting Chaotic Time Series

In many situations in science and technology we face the necessity of predicting the
future evolution a time series (3.2) of measurements of the state of a system from its past
observations. The classical approach is to build an explanatory model from assumptions
on the system and measure initial data. Mathematical models of the system are then
investigated by writing down the equations of motion and by trying to integrate them
forward in time, to predict the future state of the system. Unfortunately, this is not always
possible, due to a lack of knowledge of the system and/or a lack of initial data [18] [43].

Another approach to prediction is to identify the present state of the system which is
producing the time series, and to use the available history of states to estimate its future
evolution. By studying the evolution of the observable following similar states, information
about the future can be inferred. Due to the existence and uniqueness properties of
deterministic dynamical systems, the present state a(n) contains all information needed
to produce the state 7, time steps in the future,

x(n+7) = f,(x(n)).

!The rate of the exponential divergence of trajectories is measured by the Lyapunov exponent.

2For definitions of dimension measures for chaotic systems, for instance the box counting dimension
and the Lyapunov dimension, see e.g. [1]

3The sampling time ¢, is connecting the discrete time n and the continuous time ¢ through ¢ = to +nt,,
where t( is some constant offset.
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When taking this approach, the prediction problem naturally breaks down into two sub-
problems: a representation problem and a function approximation problem.

In the representation problem, we attempt to reconstruct the present state from the
scalar time series (3.2) or, in other words, to use the available data to find a vector
y(n) with which to replace the theoretical state x(n). Since the available sequence of
observations {s(n)} in itself does not properly represent the (multi-dimensional) phase
space of the underlying dynamical system, we have to employ some technique to unfold
this multi-dimensional structure. We have to seek to reconstruct an attractor from the
available scalar data in an embedding space that preserves the invariant characteristics
of the original unknown attractor of f. A particularly elegant solution to the problem is
delay coordinate embedding, where each state x(n) is identified with a unique vector y(n)
in an Euclidean space R™ [63]. The embedding dimension m will in general be different
from the unknown dimension |d4] [26] [32]. This approach will be made clear in the next
subsection.

Once we found a proper representation y(n) for the theoretical state x(n) of the
system, the problem remaining is to find an efficient approximation pr for the prediction
function P,

P, :R"—R (3.3)
P :R™—R (3.4)
P, (y(n)) = s(n +7,) = Q=z(n +7,)) = AF, (x(n))) (3.5)
P, (y(n)) = 8(n+7) = P, (y(n)) = s(n+7,), (3.6)

using the available data. If a good approximation can be found, prediction involves
locating the present state vector y(n), and evaluating P, [50].

3.2.1 Representation Problem

The answer to the question how to go from scalar observations (3.2) to a multivariate
phase space is contained in Takens’ embedding theorem [63] and its refinement by Sauer
et al. [51], leading to the time delay coordinate embedding.

The theorem tells us that if we are able to observe a scalar quantity €2(-) of some
vector function g(x(n)) of the dynamical variables of a deterministic dynamical system

z(n) — f,(®(n) =z(n+7),

then the geometric structure of the multivariate system can be unfolded from this set of
scalar measurements {2(g(x(n))), in a space made out of new vectors with components
consisting of () applied to powers of g(x(n)). These vectors

define motion in an m-dimensional Euclidean space. With quite general conditions of
smoothness on the functions €2(-) and g(«), it is shown that if m is large enough, then
many important properties of the unknown multivariate signal x(n) at the source of the
observed chaos are reproduced without ambiguity in the new space of vectors y(n). In
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particular, it is shown that the sequential order of the points y(n) — y(n + 7,), the
evolution in time, follows that of the unknown dynamics x(n) — x(n + 7,). In other
words, the state x(n) of the deterministic dynamical system, and therefore its future
evolution, is completely specified by its corresponding vector y(n) [1] [50].

Any smooth choice for () and g(x) is possible and we can, in particular, use for the
general function g(«) the operation which takes some initial vector & to the vector time
delays 6 = 7 - t, before. Then the vectors

y(n) =[s(n),s(n —71),s(n —27),--- ,s(n— (m — 1)71)],

are simply composed of the observations at time lags 7. These time delay vectors y(n) €
R C R™ replace the scalar measurements s(n) with vectors in an m-dimensional Euclidean
space in which the invariant aspects of the sequence of points x(n) are captured with no
loss of information about the properties of the original system. The new space R is
related to the original space P by smooth, differentiable transformations. This means
that we can work in the reconstructed time delay space R and learn essentially as much
about the system at the source of our observations as we could if we were able to make our
calculations directly in the "true” space P in which the true states x(n) live. What time lag
7 and what embedding dimension m to use are the central issues of this reconstruction [1].
Takens proved that for an infinite amount of noise free data it is sufficient that

m > 2dy + 1,

where d 4 is the box counting dimension of the attractor of f. The theorem guarantees
that the attractor embedded in the m-dimensional state space R is "unfolded” without
any self-intersections. Under the idealized conditions of the theorem, the actual values
of 7 and the sampling interval ¢, of the discrete time system are irrelevant; in practice,
however, this is not the case.

The condition m > 2d4 + 1 is sufficient but not necessary, and an attractor may in
practice be successfully reconstructed with an embedding dimension as low as |d4]+1 [32].
We will investigate methods for determining prescriptions for the embedding dimension
m and the delay 7 directly from the observations in the next subsection, after a geometric
interpretation of Takens” Theorem.

Geometric Interpretation of Embedding. The basic idea of this construction of a
new state space is the following. If one has an orbit, coming from an autonomous set
of equations, seen projected onto a single axis €2(-) or s(n) on which the measurements
happen to be made, then the orbit may have overlaps with itself in the variables s(n) by
virtue of the projection, not from the dynamics (i.e., two points quite far apart in original
space may be projected near each other along the axis of scalar observations, Figure 3.1).
As a consequence of the uniqueness theorems about the solutions of autonomous equations,
there are no intersections of the orbit with itself in the true set of state variables. By
providing enough independent coordinates m for a multidimensional space made up of the
observations, we can undo the overlaps resulting from the projection and recover orbits
which are not ambiguous.
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Lorenz attractor 2d-projection (x—z—plane): 2 nearest neighbours Lorenz attractor 3d: 2 nearest neighbours in x-z-plane
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Figure 3.1: Projection of the Lorenz attractor (equations 4.4-4.6) onto the z-z-plane (left).
Two nearest neighbours in the projection are far apart in real state space (right). The
projection introduces overlaps that do not exist in the true state space P C R3.

Practical Choice of Delay 7 and Embedding Dimension m

Autocorrelation and Mutual Information: Choosing the Time Delay 7. Tak-
ens’ theorem requires the time series to be noise free and that an infinite amount of data
is available. Under these idealised conditions, it allows for any choice of time delay 7 to
use in constructing the m-dimensional time delay vectors y(n). In practice, however, a
reasonable choice of the delay gains importance through the fact that we always have to
deal with a finite amount of possibly noisy data with finite precision. The choice is guided
by the following considerations:

1. The time lag has to be a multiple of the sampling time t,.

2. If the time delay 7 is too short, the coordinates we wish to use in our reconstructed
vector will not be independent enough. Not enough time will have evolved for the
system to have explored enough of its state space to produce new information about
it.

3. Since chaotic systems are intrinsically unstable, if 7 is too large, any connection
between the measurements s(n) and s(n + T') is lost. The vectors y(n) will thus be
(seemingly) randomly distributed in the embedding space R.

A common, but ad hoc, choice for 7 is the time step T" at which the autocorrelation
function,

N

> (s(n) = sn)(s(n+T) — 5x)
s(n),

—_

n—

N

2

n=1

C(T)

==
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has its first zero. Then the coordinates are linearly uncorrelated. The choice of the first
zero of the autocorrelation function is the optimum linear choice from the point of view of
predictability of s(n + T') from knowledge of s(n), in a least squares sense. What such a
linear choice has to do with the nonlinear process relating s(n) and s(n + T') is, however,
not clear at all [1].

A more sophisticated prescription for 7 is given by the average mutual information.
Unlike the autocorrelation function, it also takes into account nonlinear correlations. The
mutual information between a measurement a; drawn from a set A = {a;} and a mea-
surement b; drawn from a set B = {b;} is the amount learned by the measurement of

a; about the measurement of b;. In bits this is log, %, where Pap(a,b) is the
i j

joint probability density for measurements from A and B, and P4(a) and Pg(b) are the

individual probability densities. The average mutual information between measurements

from A and measurements from B is
P AB(CM, bj)

Iap = PAB(CLZ-,b logy ——————.
%: i) ? Pa(a;) Ps(by)

In a deterministic system, we evaluate these "probabilities” by constructing a histogram of
the variations of a; or b; seen in their measurements. Taking as the set of measurements
A the values of the observable s(n), and for the measurements B the values of s(n + T),
the amount (in bits) learned by measurements of s(n) through measurements of s(n + 7))
is

I(T) =Y P(s(n),s(n+T))log, p](gs((syiy;))iﬂs(i?n++T%>>) '

The choice suggested is to take 7 as the first minimum of the average mutual information
I(T). There exist good arguments that if the average mutual information exhibits a
marked minimum at a certain value of T', then this is a good candidate for a reasonable
time delay 7. Still, there is no guarantee that the mutual information has a clear cut
minimum, given the time resolution ¢, [1] [26] [32].

False Nearest Neighbours: Choosing the Embedding Dimension m. Takens’
embedding theorem gives a sufficient condition on the embedding dimension m, if one
knows the fractal dimension d4 of the dynamical system underlying the time series under
consideration. The condition is not necessary, and in practice the fractal dimension will
often be unknown. Therefore, we wish to have a method to determine directly from
the data the integer dimension at which we have the necessary number of coordinates
to unfold the observed orbits from overlaps arising from projection of the attractor to a
lower dimensional space. One such method is the method of false nearest neighbours.
Suppose the minimal embedding dimension for a given time series is mg. This means
that in an mg-dimensional time delay space R the reconstructed attractor is a one-to-one
image of the attractor in the original space P. In particular, the topological properties
are preserved. Thus, the neighbours of a given point in P are mapped onto neighbours
in the reconstructed space R. Suppose now we embed in an m/-dimensional space with
m’ < mg. For this embedding the topological structure is no longer preserved. Therefore,
points are projected into neighbourhoods of other points to which they would not belong
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in higher dimensions m > mg. These points are called false neighbours. Thus, what we
have to find is the lowest dimension at which no false neighbours occur.

In practice, we start by embedding the time series with low dimension m;. For each
vector

Y, () = [s(n),5(n = 7), -, s(n = (my = 1)7)]

we find the u nearest neighbours and check whether in the next higher embedding of
dimension m; + 1 they are false neighbours or not?. The procedure is iterated up to an
embedding dimension m* at which the percentage of false neighbours drops to zero. At
this dimension we assume to have the necessary number of coordinates for unfolding the
observed orbits.

3.2.2 Function Approximation Problem

In the previous subsection we have described a method for constructing an embedding
space R for the scalar observations s(n) in which the orbits of the dynamical system
are unfolded, and we have shortly talked about practical considerations concerning this
technique. Once an appropriate embedding for the observations is found, solving the
function approximation problem means finding a prediction function (3.6)

P,

P

(y(n)) : R™ — R (3.7)
that efficiently approximates (3.5),
Pr,(y(n)) = Q£ (z(n))), (3.8)

using the available data. For chaotic systems, P, and therefore PTP, is necessarily non-
linear®.
Assume we are given a time series S = {s(1),--- ,s(N)} and have found an embedding

space of dimension m, using a delay 7. The number of embedding vectors y(n) is therefore
M=N—-(m-1)r,
and the number of samples for the map s(n + 7,) = P, (y(n)) is
Ng=N—(m—1)T — 7,

These samples {(y(n), s(n+7,))} can be used to estimate a prediction function §(n+7,) =
P, (y(n)).

We will now give a short non-exhaustive overview over possible methods for estimating
the prediction function (3.7), and pointers to literature in which these techniques have
been successfully applied for predicting chaotic time series.

4The nearest neighbours of a vector y(n) are the set of vectors SEN C Sy, indexed by nyn, with

Sy = {y(1),--- ,y(M)} being the set of all available embedding vectors y, for which [|y(n) — y(7)| <

ly(n) —y(m)ll, i € nnn, m € {1+, M} \ nnx
®A linear prediction function (3.7) can approximate (3.8) only locally.
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Global Methods

One obvious possibility is to find one approximation 157?, estimated from all Ny available
samples, that is valid in the entire reconstructed state space. Methods fitting one model
to the complete state space are called global methods. They are necessarily nonlinear.

Global Polynomials. A possible approximation for (3.8) is a polynomial of degree d
in the m delay coordinate variables,

Sn-+7) = P, (y(n) = > wisi(y(n),

where w; are the parameters. The basis functions ¢; are powers and cross-products of
the components in y(n). Since the parameters w; enter linearly, they can be fit to the
data using standard least squares techniques. A disadvantage of polynomials is that
the number of independent parameters equals (m;:d), which for large degree d becomes
computationally intractable and increases the risk of overfitting.

Neural Networks (NN). Another class of global methods are neural networks. They
typically employ sigmoid shaped basis functions, e.g. ¢(z) = tanh(z) or ¢(z) = $,
and have an elaborate network structure of input layer, output layer, and hidden layers,
where the outputs of one layer are used as weighted inputs for the nodes of the next
layer. In contrast to global polynomials, the weights in neural networks do not enter
linearly, so that iterative parameter estimation methods are required, among which the
backpropagation algorithm is probably the most widely used one.

Neural networks may approximate any smooth function to any degree of accuracy,
given enough sigmoid functions with accompanying weights. Typical disadvantages of
this method are the long parameter estimation time, potential local minima, and the risk
of overfitting, which can be reduced by regularisation techniques. Neural networks and
the slightly different functional networks [7] have been considered for chaotic time series
prediction in numerous variants, with generally high performance. The first to apply
neural networks to prediction were Lapedes and Farber in [34]. Among other work, we
mention [2][43][72], using standard neural networks, and [3][21][24] considering recurrent
neural networks for this problem. Extensions to the classical neural networks for prediction
are e.g. the usage of violation-guided learning algorithms [71], minimum description length
neural networks [57][58], and neural networks employing Markov probabilities [14][73].

Radial Basis Functions (RBF). Applying s basis functions, RBF approximants take
the form

S(n+1) = Pr(y(n) = Zwi@(\ly(n) =<',

where ¢;(r) are the radial symmetric basis functions centered at ¢'. Different types of
RBF functions ¢; lead to universal approximants. RBF are global methods with good
location properties, and were e.g. used as RBF networks in [44] and [48]. Depending on
the type of radial basis functions used, the parameters w; may not enter linearly, and time
consuming parameter estimation techniques may become necessary.
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Support Vector Machines. The function approximation problem (3.7-3.8) can be
interpreted as an m-dimensional regression problem, which will be made clear in the next
subsection. This can be efficiently solved within the framework of SVMs; as discussed in
Section 2.3.

SVMs for regression estimation have been considered for chaotic time series prediction
in various works in literature. Standard SVMs for chaotic time series prediction has e.g.
been used in [42][65]. In [64] a modified SVM with "forgetting window” has been applied
to financial time series prediction. Ralaivola et al. [47] have used SVMs for determining
the preimage from a kernel space, in which linear Kalman filters performed chaotic time
series prediction. The kernel recursive least squares algorithm has been employed and
compared with standard SVM technique in [17].

Local Methods

One of the main disadvantages of global methods is that changing a training sample may
change the estimate everywhere in the embedding space R. Local approximants overcome
this drawback by using only a limited number of neighbouring samples for estimating a
local prediction function for each single prediction, therefore working only in a subspace
of the embedding space. Moreover, approximating the prediction function (3.8) locally
may be easier than finding a predictor for the entire state space (Footnote 5). We can
distinguish three approaches towards local prediction.

1. The simplest way to predict is to identify the nearest neighbour in embedding space,
and to use it as a predictor.

2. An improvement is to find u nearest neighbours and to use the average of their
single step evolution as a predictor, which has been employed in e.g. [40].

3. The most successful local methods fit a function to approximate the single step
evolution from u nearest neighbours. The simplest local fit is a local linear model
and was first reported in [18]. In [50] local linear models have been successfully used
for the Santa Fe benchmark on time series prediction.

Note that all nonlinear function approximation methods described as global methods
can be made local by estimating the prediction function locally from nearest neighbours.
Local v-SVMs for predicting chaotic time series benchmarks are used in [19]. In [4], local
nonlinear regression is employed for this task. A probabilistic framework to determine a
neighbourhood called "relevance vectors” is described in [46] and uses kernel regression for
prediction. Local functional networks have been considered in [39)].

Another possibility for introducing locality is to partition the embedding space into
a number of subspaces, within which "experts” are trained to approximate the (local)
prediction functions. For performing prediction, one first determines which expert the
state vector under consideration belongs to, and then uses this expert for prediction.
In [6], this method is described for SVMs as experts, and neural networks to determine
the subspaces of validity for the experts.
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Direct vs. Iterated Prediction

Assume we are given a time series {s(n)}»_, and asked to provide a continuation. Maps

(3.7) approximating (3.8) are one-step predictors. We can apply our prediction function
PTP to predict a step 7, ahead and get an estimate §(N + 7,). If it is desired to predict
more, e.g. r steps, ahead in spite of the increasing uncertainty, there are two obvious pos-
sibilities. First, we can repeat the one-step prediction r times (iterated prediction), using
previously estimated predictions as inputs to the single step predictor (3.7). Alternatively,
we may estimate the first r predictions directly, which means finding r different prediction
functions P;, Py, - - - , P, (direct prediction). The reliability of direct prediction is suspect
because it is forced to predict farther ahead. When the prediction horizon H increases,
the function Pg(-) = Q(fg(+)) gets very complex and hard to approximate [35]. On
the other hand, iterated prediction has to use the estimates §(N +1),--- , (N +r — 1),
which are possibly corrupted. Farmer [18] argues that iterated prediction is superior,
although under ideal conditions that may not be realised in practice.

We will only consider iterated prediction with 7, = 1 in all experiments reported below.

3.3 Support Vector Machines for Chaotic Time Se-
ries Prediction

In the previous two sections, we have developed the framework necessary for predicting
chaotic time series. We will now show how support vector regression machines can be
applied to this problem.

3.3.1 Time Series Prediction as a Regression Problem

Suppose we are given a time series {s(n)}2_, of length N, and suppose it is embedded in
an embedding space of dimension m, with a time delay 7. Thus, we are given M = N —
(m—1)7 embedding vectors {y(n)} of the form y(n) = [s(n), s(n—7),- -+, s(n—(m—1)7)].
Moreover, we have access to Ng = N — (m — 1)7 — 7, samples (y(n), s(n + 7,)) for the
input-output mapping of a single step predictor (3.8),

P.():R™—R
s(n+7) = Pr(y(n)) = Pr(s(n),s(n—7),-+,s(n—(m—1)7)),

predicting 7, steps ahead. The function approximation problem (3.3-3.6) can therefore

be viewed as an m-dimensional regression estimation problem [s(n),s(n — 1), ,s(n —

(m—1)7)] — s(n+7,) (Figure 3.2) with a training set of available input-output pairings
N—,

S=A{(y(n),s(n+ Tp))}n:(ni_UTH- (3.9)

The support vector regressor for this problem is of form (2.25),

N—T1p

sth+m) =P (y(k) =hy(k) = > BK(yn)yk)+b, k>N-1, (3.10)

n=(m—1)7+1
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where 37 and 0* are the solutions to the optimisation problems in Proposition 15 and 16,
respectively, and K(-,-) is a kernel®.

y(k) = [s(k), s(k-T), .., S(k-(M-1)7)] s(k+T))
Gy
2 o - - S *—»
k-(M-1)1  k-(M-2)7 e k ket N

Figure 3.2: Time series prediction from embedding vectors y(n) can be interpreted as a
regression estimation problem [s(n),s(n —7),--- ,s(n — (m — 1)7)] — s(n+7,).

Global Support Vector Prediction. The global support vector predictor is found
by solving the optimisation problems in Proposition 15 and 16 for the entire available
training data (3.9). Once the 8; and b* are found, the prediction §(k + 7,) is obtained by
evaluating the hypothesis (3.10) at the desired position y(k). The prediction $(k) is

$(k) = h(y(k — 7)) = Pr,(y(k — 7)) = (3.11)
= Z BiK(y(n),y(k — 7)) +b" = (3.12)
n=(m—1)r+1
N s(n) s(k— 1)
i s(n—1) stk —m,—1)

= Y  BK : , : +b*. (3.13)

nme T sin—(m—107)| stk =7 —(m—1)7)

The first 7, predictions §(k), k = N +1,---,N + 7,, are obtained by predicting from
embedding vectors y(k — 7,) contained in the training set (3.9). For obtaining predictions
further ahead (5(k) for k > N + 7,), the predictor (3.11-3.13) is iterated on embedding

vectors y(k—1,) = [(g)(/{}—Tp), (/S\)(k?—Tp—T), e (A)(k 7,—(m—1)7)], whose coordinates
are themselves predictions §(k) for & > N. The procedure is illustrated in the left column

of Figure 3.3.

Local Support Vector Prediction. For each single prediction step, a new local pre-
dictor, §(k +7,) = hi(y(k)) is found by solving the optimisation problems of Proposition
15 and 16 for the local training set

Snn(k) ={(y(n),s(n + 7—p))}nGnI\IN(k)'

6We call hypotheses of form (3.9) SVR predictors, support vector predictors or simply predictors when
the context makes it clear that we are talking about SVR predictors.
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It consists of the u nearest neighbours of y(k) in the training set (3.9) indexed by nnx (k).
When the 3 and b* for the local support vector predictor are found, the prediction is

(k) = hi(y(k — 7)) = (3.14)
s(k —1,)

sth =7 =7) Fb. (3.15)

= 2

nennn (k—7p)

R K : ;

sin—(m—17)| sk =7 —(m—1)7)

As discussed for the global support vector predictor, predictions of observations that are
further ahead in time (5(k) for k > N + 7,) are obtained by iterating the predictor (3.14-
3.15) on embedding vectors whose coordinates are themselves predictions §(k) for & > N.
The procedure is illustrated in the right column of Figure 3.3.

Global SVR Local SVR

Predicting s(k + 7, + 1):

Predicting s(k + 7, + 1):

train global SVR on training set - h
S={yli)si}i=(m-1)+1....n-7

Buurel |

create state vectorﬂf‘rom obAslervations/ pAr\edictions D
yik+ 1)=[s(k + 1),k +1- 7).k +1-(m-1)7)]

Prediction s(k + 7, + 1):

k'

create state vector from observations / predictions D

Yok + D=fslk + 1), 'Stk + 1 - 0),...80k + 1 - (m - 1)7]

\ 4

find N nearest neighbours " o
Nk 1) [ly(k + 1) -yl = [ly(k + 1) - (o)l

NIV

predict S(k + 7, + 1) .
8k + 1, + 1) = h(y(k + 1))

v

train local SVR h,,; on training set
Syt + 1) = {(y(i),s(i)}. i in nyy

e |

write prediction in data buffer D
D= [s(1). ..., 5(n), 5(n + 1), ..., S(k + 7, + 1]

y

predict s(k + T+ 1) .
Sk + 1, + 1) = iy (Y(k + 1))

write prediction in data buffer D

D=[s(1). ..., s(n). 8(n + 1), ..., S(k + 7, + 1)]

Figure 3.3: Flow chart for time series prediction with SVR: global model (left) and local
model (right). In the global case, one single predictor is trained on the entire training set,
whereas in the local case, a new local predictor is trained on a local training set of nearest

neighbours for each prediction iteration.



Chapter 4

Results

4.1 Experiments

4.1.1 Simulating Chaotic Systems and Evaluating Prediction
Performance

Numerical Integration of Chaotic Systems. If we want to perform prediction on
a synthetic, continuous-time dynamical system, we first have to calculate trajectories by
numerical simulation. The integration of chaotic systems poses a special problem, since its
sensitive dependence on initial conditions implies that any arbitrarily small error may grow
exponentially and affect the behaviour of the simulated system. Therefore, no integration
routine can estimate with any accuracy the state of a chaotic system after a long period
of integration. Despite the fact that every integration routine introduces an error, if the
local integration error is small, the output points of the integration routine may not lie on
one "true” trajectory, but still approach the attractor, as a strange attractor is attracting.
Nevertheless, simulation of chaotic systems requires careful interpretation [45]. Figure 4.1
illustrates this problematics. It shows the z-coordinate of the Lorenz attractor, obtained
by a fourth order Runge-Kutta numerical integration of the Lorenz equations (4.4-4.6) on
two different machines.

Prediction Performance Measures. It is not immediately evident how to evaluate
the performance of a predictor on a dynamical system exhibiting chaotic behaviour.

One possibility of performance evaluation is in terms of whether the predictor has
captured the dynamics and preserves the invariant measures of the system, such as fractal
dimension and global Lyapunov exponents. Calculating the invariant measures from the
prediction is not trivial, requires large amount of data and computation time [1]. Invariant
measures are therefore not considered by many authors, or assessed visually through phase
plots.

Another commonly used choice of performance measures are the single step prediction
error and iterated prediction error, expressing how close the prediction is to the true series.
They have the advantage of being easy to assess and to compare. What is more, in many
applications it is of great interest how closely the prediction follows the true observation®.

1For instance, think of a financial time series, where a deviation of the prediction from the true series

69



70 CHAPTER 4. RESULTS

x—coordinate of Lorenz trajectory (h=0.05) obtained on 2 different machines
T T

[N
=

Lorenz x ma&hine 1
(=]
|

1
0 500 1000 1500
T

=
o

Lorenz x machine 2
(=]
|

|
=
o
T
|

|
o
=}

1 1
500 Integration step 1000 1500

=}

Figure 4.1: Numerical integration of Lorenz equations (4.4-4.6) obtained on two different
machines. The trajectories diverge after approximately 1000 steps. Both trajectories stay
confined to the region determined by the strange attractor.

A widely used prediction error measure is the normalized mean squared error (NMSE).
Given observations {s(n)}Y_| to be predicted, the normalized mean squared error is de-
fined as

NMSE =

LS (s(n) — ()

oIV 4
where s(n) and §(n) are the observations and the predictions, respectively, and

N |
F= e Do) — s sw= 1D s(n)
n=1 n=1
are the sample variance and the sample mean of the observations in the prediction interval
considered. A value of NMSE = 1 corresponds to simply predicting the average. The
normalized mean squared error has the advantage over other error measures, e.g. the
mean squared error, that it is insensitive to rescaling of the data [74].

Unfortunately, there is quite a large number of literature in which custom error mea-
sures, e.g. a "fit” expressed in percent [16], are used, which renders comparisons very
difficult.

In our experiments, we use the normalized mean squared error for single step prediction
and iterated prediction as a performance measure. If appropriate, we consider plots for
qualitatively evaluating how well a predictor captures the dynamics of the system.

4.1.2 The Support Vector Predictors

For all experiments reported below, we use global and local support vector predictors
(3.11-3.13) and (3.14-3.15). We employ standard polynomial and Gaussian kernels (2.51)

essentially incurs loss of money due to the unexpected behaviour of the quantity, e.g. a currency exchange
rate
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and (2.52), and a linear e-insensitive loss function. All results are obtained with SVM-
light [29] (http://svmlight.joachims.org), a fast implementation of the support vector al-
gorithms for classification and regression written in C, through a MATLAB®) interface.

After properly embedding a specific time series, prediction with SVMs consists of two
phases: a parameter evaluation phase, and a prediction phase.

Parameter Evaluation Phase. In the parameter evaluation phase, we perform a grid
search with simple hold out validation (Section 2.6) to select appropriate hyperparameters
for the SVM?2. For a time series of Niain Observations, the SVM is trained on the first
Ngridtraining - Ntrain - (m - ]-)T —Tp — Nvalid training Samples (y(n)7 S(n + Tp))' Then, a
prediction is performed on the validation set consisting of the remaining N,.;q samples
s(n), and the performance of the hyperparameter setting is assessed by the single step
prediction error on this validation set. The hyperparameter setting with the lowest single
step prediction error is selected and used for the prediction phase.

Prediction Phase. In the prediction phase, the final prediction on the time series is
obtained. The SVM is trained on all N.,;, available observations, using the hyperparam-
eter setting selected in the parameter evaluation phase. Then, the prediction is performed
on the test set(s) of length Nies. If applicable, we measure the prediction performance as
the average of the prediction error on N, subsequent test sets.

4.1.3 Data Sets and Experimental Setup

The time series we consider are chosen in order to allow for comparison with previously
obtained results described in literature.

The Hénon Map

The Hénon map [27] is a two-dimensional quadratic map given by the equations

z(n+1)=1—azx(n)®*+ by(n) (4.1)
y(n+1) = 2(n).

It is one of the simplest 2-dimensional invertible maps and has been studied in detail for
the parameter setting @ = 1.4 and b = 0.3, where numerical evidence of chaotic behaviour
was found.

The fractal dimension of the attractor is d4 ~ 1.26 [49]. Therefore, the embedding
dimension according to Takens’ theorem is m = 4. The Hénon attractor can, however,
be successfully reconstructed with an embedding dimension as low as m = 2, if the
coordinates of the time delay vectors are chosen to be y(n) = [z(n),z(n — 1)|, and 7, is
chosen to be 1 [32]. This does not come as a surprise, since the observable z(n + 1) is
completely determined by the knowledge of z(n) and x(n — 1).

2Apart from the hyperparameters for the SVM, the number of nearest neighbours u for the local
predictors is chosen through the grid search. For data set A, we consider as well the embedding dimension
m as a parameter to be assessed by the grid search.

3For Santa Fe data set A, Ny, = 1 (see Subsection 4.1.3).
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Figure 4.2: Average mutual information and false nearest neighbours analysis of Hénon
time series (top). The average mutual information does not possess a clear cut minimum,
and the false nearest neighbours analysis suggests an embedding dimension m > 6. A part
of the Hénon time series and a typical iterated prediction on it (bottom), obtained with a
global Gaussian SVR. The prediction (solid line) loses the time series (dashed line) after
approximately 18 iterations.

At a first look, the analysis of the average mutual information does not confirm this
specific choice for 7, since it does not have a clear cut minimum at all (Figure 4.2 top
left). It is, however, observed that in such a case the delay should in fact be set to 7 = 1.

The false nearest neighbour analysis would suggest values m > 6 (Figure 4.2 top right).

Experimental Setup. We follow the prescription of the average mutual information
analysis and set 7 = 7, = 1. Since we know that the attractor can then be successfully
reconstructed for m > 2, but the false nearest neighbours analysis suggests m > 6, we
compare time delay embeddings with embedding dimensions m € {2,3,4,5,6}.

The time series s(n) = x(n) is obtained by iterating the map with initial conditions
z(0) = y(0) = 0 and parameter values a = 1.4 and b = 0.3. The first 10000 samples are
skipped to ensure that all transients have settled down*. We consider having a sequence
{s(n)} of Nizain = 500 observations at our disposition.

For the grid search, this set is split into a set of 450 observations for training, giving

4Modelling the attractor from data with transients present is difficult and usually not considered
in literature. We are only interested in the part of the time series for which we are already in the
attractor. For most measured physical time series (e.g. electro-encephalogram (EEG)), it is ensured that
the transients have already settled down.
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Ngridtrain = 450 — (m — 1)7 — 7, training samples (y(n), s(n + 7,)), and a remaining set of
Nyaiia = 50 observations for validation. The hyperparameter combination with the lowest
single step prediction error on the validation set is chosen for the final prediction.

The prediction performance of the final predictors is assessed through N, = 50 runs
on subsequent test sets of length N = 50.

The Mackey Glass Delay Differential Equation

The Mackey-Glass equation is a delay differential equation (dde) that has been proposed
as a model of white blood cell production [38]. It is given by

ds  as(t—T)

pri m — bs(t). (4.3)

The values of the constants a, b and ¢ are usually taken as 0.2, 0.1 and 10, respectively.
For different delay parameter 7', the attractor possesses different fractal properties. If T'
is chosen large, the fractal dimension d4 of the attractor gets large as well, an attempts
to predict the time series may not be useful since attractors with high fractal dimension
usually have a large positive Lyapunov exponent, resulting in a very fast divergence of
the trajectories (Table 4.1).

T | da
17 |1 1.95
23 | 2.44
30 | 3.15
100 | 7.5

Table 4.1: Fractal dimension da of Mackey Glass delay differential equation for different
time delays T' [32].

Experimental Setup. To obtain the time series for our experiments, (4.3) is solved
with the MATLAB®) function dde23, with a delay T" = 17 and a history vector with
values s(0) = --- = s(A — 1) = 0.9. The first 10000 samples are skipped to ensure that
all transients have settled down, and the time series is downsampled® by 6. This ensures
being consistent with earlier experiments reported in literature®.

Figure 4.3 (top) shows that the false nearest neighbours and average mutual informa-
tion analysis of the time series suggest to choose an embedding dimension of approximately
m > 6, and a time delay of around 7 = 2. Preliminary experiments motivate us to use
the values m = 7 and 7 = 7, = 1 instead.

We consider having a sequence {s(n)} of Nyaim = 500 observations at our disposition.
For the grid search, this set is split into a set of 450 observations for training, giving
Ngridtrain = 450 — (m — 1)7 — 7, training samples (y(n), s(n +7,)), and a remaining set of

5We shortly write MG for this series.
6Note that predicting n steps of a time series downsampled by 6, with 7 = 7, = 1, is (if we ignore
differences in the training sets) equivalent to predicting 6n steps of the original series, with 7 = 7, = 6.
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Figure 4.3: Average mutual information and false nearest neighbours analysis of Mackey-
Glass time series (top). The average mutual information has its first minimum at delay
T = 2, and the percentage of false nearest neighbours drops to zero for embedding dimen-
sion m > 6. A part of the time series and a typical iterated prediction on it (bottom),
obtained with a global Gaussian SVR. The prediction (solid line) is of very high accuracy

up to iteration 60 and keeps on staying close to the true series (dashed line) when iterating
further.

Nyaia = 50 observations for validation. The hyperparameter combination with the lowest
single step prediction error on the validation set is chosen for the final prediction.

The prediction performance of the final predictors is assessed through N, = 50 runs
on subsequent test sets of length N = 100.

The Lorenz Equations

The famous Lorenz equations [37] are the set of three simultaneous differential equations
given by

d
d—f = —ox+ 0y (4.4)
d
d_z =—xz+rr—y (4.5)
d
d—; = xy — bz. (4.6)

In the early 1960s, Lorenz accidentally discovered the chaotic behaviour of this system.
It has fractal dimension dq = 2.06 [22].
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Figure 4.4: The Lorenz attractor, obtained by numerical integration of the Lorenz equations
(4.4-4.6) with integration time steps h=0.01 and h=0.05.

Experimental Setup. We consider prediction on the time series s(n) = z(n) given by
the z-coordinate of the Lorenz system, with o = 10, r = 28, b = % and initial conditions
z(0) = y(0) = z(0) = 1. The time series are obtained by a fourth order Runge-Kutta
integration method with time steps h = 0.01 and A = 0.05. The first 10000 samples are
skipped to ensure that all transients have settled down. The corresponding attractors are
shown in Figure 4.4.

The false nearest neighbours and average mutual information analysis of the time series
suggest to use an embedding dimension m = 3, and an time delay of approximately 7 = 16
and 7 = 3 for integration time step h = 0.01 and h = 0.05, respectively (Figure 4.5). Our
numerical results have been obtained for m = 3, 7 = 16 and 7 = 2 for integration time
step h = 0.01 and h = 0.05, respectively, and a prediction step size of 7, = 1.

The observed sequences {s(n)} we use consist of Niam = 1000 samples each. For
the grid search, these sets are split into sets of 900 observations for training, giving
Ngidtrain = 900 — (m — 1)7 — 7, training samples (y(n), s(n + 7,)), and the remaining sets
of Nyaig = 100 observations for validation. The hyperparameter combinations with the
lowest single step prediction error on the validation sets are chosen for the final predictions.

The prediction performance of the final predictors is assessed through N, = 50 runs
on subsequent test sets of length N = 100.

Santa Fe Data Set A (Laser)

Data set A has been used as one of the benchmark time series in the Santa Fe compe-
tition [74]. Since then, it has been analysed in many publications. Data set A consists
of samples of the fluctuations in a far-infrared laser, approximately described by three
ordinary differential equations, and has been recorded in a laboratory experiment [25].
For the competition, the first 1000 samples of the series were given, and it was asked to
provide a continuation of the subsequent 100 samples, starting at sample 1001 (Figure
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Figure 4.5: Average mutual information and false nearest neighbours analysis of the z-
coordinate of the Lorenz attractor for integration time steps h=0.01 (left) and h=0.05
(right). The average mutual information has its first minimum at delay T = 16 (h = 0.01)
and T = 2 (h = 0.05). For both integration time steps, the percentage of false nearest
neighbours drops to zero for embedding dimension m > 3.

4.6, bottom). The problem is considered as hard, due to the presence of measurement
noise, and since a collapse of the laser intensity has to be predicted in the test set and
appears only once in the training set. In [31] it has been pointed out that this task is in
fact a pattern matching problem, as the first 73 samples of the continuation are nearly
identical to a sequence of 73 samples in the training set.

After the competition, a longer continuation has been provided for experiments, and
four additional test sets have been established, starting at samples 2181, 3871, 4001 and
5181.

Experimental Setup. We follow the original setup of the Santa Fe competition and as-
sume to have knowledge of only the first Ni.,;, = 1000 samples for choosing the embedding
dimension and the time delay, and for training the predictor.

The analysis of the first 1000 samples of data set A suggests a delay of 7 = 1 or 2,
and an embedding dimension of m > 10 (Figure 4.6). We set the delay to 7 = 1, and the
prediction step to 7, = 1.

A good choice of the embedding dimension gains importance through the fact that the
series is known to contain measurement noise. As the false nearest neighbours analysis just
gives prescriptions, we decide to incorporate the embedding dimension m as a parameter in
the grid search. Embedding dimensions m € {15,--- ,25} are considered, and the model
with the lowest single step prediction error on the validation set (m* = 18) is chosen for
the “competition” prediction that we compare with results reported in literature”.

“The predictors obtained for the other embedding dimensions are not used for comparisons with results
reported by other authors. They will be considered separately in the discussion on Figure 4.17.
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Figure 4.6: Average mutual information and false nearest neighbours analysis of Santa Fe
data set A (top). The analysis suggests using a time delay T =1 or 2, and an embedding
dimension m > 10. The training set and the first test set of data set A (bottom). The
training set consists of the first 1000 samples of the time series (solid line), and the first
test set of the subsequent 100 samples (dashed line)

For the grid search, the set of Ni.in = 1000 samples given at the competition are split
into a set of 900 observations for training, resulting in Ngiderain = 900 — (m — 1)7 — 7,
training samples (y(n), s(n + 7)), and the remaining set of Ny.;q = 100 observations for
validation. The best hyperparameter setting in terms of single step prediction error on
the validation set is selected.

For the predictions, the SVMs are trained on all Nyam = 1000 — (m —1)7 — 7, available
training samples. The performance is then evaluated on the five test sets of length Ny =
100 starting at samples 1001, 2181, 3871, 4001 and 5181, and reported separately®.

4.2 Results

In this section, we summarise and discuss the single step and iterated prediction results on
the data sets described in Subsection 4.1.3. We consider both global and local predictors,
with Gaussian and polynomial kernels, for the experiment setups described above®.

4.2.1 Prediction on the Hénon Time Series

The time series generated by the Hénon map and a typical iterated prediction on it,
obtained with a global Gaussian predictor, are shown in Figure 4.2 (bottom). We observe

8We emphasize that the predictions on all test sets are obtained with a predictor that is trained only
on the first 1000 samples of the series.

9We write shortly global Gaussian, local Gaussian, global polynomial, and local polynomial to distin-
guish between these predictors.
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that the prediction is of high accuracy up to prediction step 18, and then loses the true
trajectory. Nevertheless, the series produced by the iterated prediction appears to stay
in the attractor even after it diverges from the true signal. In Table 4.2, results obtained
with global and local Gaussian and polynomial predictors of dimension m € {2,3,4,5,6},
averaged over 50 subsequent test sets, are summarised together with results reported by
other authors. The performance of all predictors is compared in Figure 4.7.

Method m | Niain | Nrun - Niest || Single step 5 step 10 step 20 step
Global G | 2 | 500 50 - 50 768-10"7 | 4.02-107° | 2.56-107° | 3.04-1071
3 1.09-107% || 2.21-107® | 1.80-1073 | 3.23-10!
4 1.30-107% || 2.00-107% | 1.62-10°3 | 3.17-10!
5 830-107% | 2.82-107° | 2.18-1073 | 3.68-107!
6 2.26-107° || 3.72-107* | 1.74-1072 | 3.76-107!
Local G | 2 | 500 50 - 50 1.34-107% || 9.05-107° | 4.38-1073 | 4.65-107!
3 1.15-107% || 4.73-107° | 3.15-10"3 | 3.53-107!
4 2.24-107% | 4.37-1075 | 462-1072 | 3.29-10"1
5 1.17-107° || 8.22-107° | 4.63-1073 | 3.83-10'
6 7.48-107° || 2.43-107* | 1.19-1072 | 4.26-107!
Globalp | 2 | 500 50 - 50 6.83-1077 || 5.19-107° | 2.64-1073 | 5.40-10~"
3 7.95-1077 || 9.28-107° | 4.65-1073 | 3.67-107"
4 5.37-1077 || 3.06-107° | 2.05-1073 | 4.13-107"
5 7.53-1077 || 2.88-107°% | 1.64-10"3 | 3.50-10""
6 512-10"7 | 5.60-107° | 3.91-10"% | 3.35-10"!
Local p 2 | 500 50 - 50 842-1077 | 4.22-107° | 2.71-1073 | 3.62-107"
3 7.69-10"7 | 5.09-107° | 3.00-1072 | 4.35-107!
4 9.60-10"7 || 2.48-107°% | 1.61-10"3 | 3.15-10"!
5 867-1077 | 4.13-107° | 2.51-107% | 3.47-107"
6 3.35-107° || 1.67-107* | 852-1073 | 3.32-107!
RBF [44] 4000 1000 7.4-107° - - -
NN [71] 5000 5000 34-107° - - -

Table 4.2: Comparison of prediction performance on Hénon map (a=1.4, b=0.3). All
results are normalized mean squared errors. The test set and training set size are given in
samples. The second part of the table gives the single step prediction error, and the third
part the 5-, 10-, and 20-step iterated prediction error. Own results are averaged over 50
runs. "G” stands for Gaussian kernel, "p” for polynomial kernel. "RBF” stands for radial
basis function network, "NN” for neural network. Best results are marked in bold for each
part of the table.

Single Step Error and Iterated Prediction. We note that the predictors that give
the best single step prediction do not have lowest iterated prediction error. The predictors
with worst single step prediction error, however, do as well have bad iterated prediction
performance (Table 4.2). Thus, the single step prediction error is not clearly connected
to the iterated prediction performance. This performance measure alone can therefore
not give clear statements on how well a predictor captured the dynamics of the Hénon
system.
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Figure 4.7: Prediction on the Hénon time series: Iterated prediction performance of global

Gaussian (top left), global polynomial (top right), local Gaussian (bottom left) and local

polynomial (bottom right) SVR predictors with embedding dimensions m € {2,3,4,5,6}.

The iterated prediction error is averaged over 50 subsequent test sets.

Influence of the Embedding Dimension. As a second result, we observe that the
prediction performance gets worse with increasing embedding dimension. For global and
local Gaussian predictors as well as for local polynomial ones, the worst predictor is the
one having the highest embedding dimension (Table 4.2, Figure 4.9). This demonstrates
the importance of the choice of the embedding dimension m, even in the case of noiseless
data as considered here. Increasing m above the minimal value necessary to unfold the
attractor can make matters worse. The global polynomial predictor is less affected by the
choice of m, and has prediction performance of the same order of magnitude for all m.

Global vs. Local - Gaussian vs. Polynomial. Although the task of learning a
predictor locally is generally considered as being easier than learning a global predictor,
using a local instead of a global predictor gives no improvement (in fact, it makes matters
slightly worse). This may be a consequence of the relatively small training set size.

The choice of the kernel does not play an important role either. Despite of the fact
that the polynomial kernel achieves slightly better single step error than the Gaussian
one, the iterated prediction performance with both kernels are similar (Table 4.2). This
is illustrated in Figure 4.8, where we compare the four global and local predictors using
polynomial and Gaussian kernel that achieve best single step prediction performance.

Comparison with Previously Reported Results. In the bottom part of Table 4.2,
we quote results obtained by other authors, using neural networks and RBF networks.
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Figure 4.8: Prediction on the Hénon time series: Comparison of iterated prediction per-
formance of best global Gaussian, global polynomial, local Gaussian and local polynomial
SVR predictors. The iterated prediction error is averaged over 50 subsequent test sets.
The single step errors of the predictors are given in brackets in the legend. The predictors
all have similar performance.

Hénon: single step prediction error vs. embedding dimension N Hénon: 10 step iterated prediction error vs. embedding dimension
10 T T T T T T 10 T T T T T

—©- Global G —©- Global G
— Local G — Local G
—+— Global p e —— Global p
—*— Local p —— Local p

Figure 4.9: Prediction on the Hénon time series: Influence of embedding dimension m
on the prediction performance in terms of single step (left) and iterated (right) prediction
error (mean on 50 subsequent test sets). The prediction performance degenerates for high
embedding dimension m.

Unfortunately, we are only aware of results in terms of single step prediction error. A com-
parison demonstrates that the support vector regressor approach to prediction achieves
excellent performance. Even the worst SVR predictors considered have single step error
of the same order of magnitude as the quoted results. This is remarkable, even more since
these results are obtained using a considerably larger training set.

The Reconstructed Attractor. Figure 4.10 demonstrates this extraordinary perfor-
mance of the SVR predictors. It shows the Hénon attractor reconstructed from 1000
samples of the true series, and compares it with the attractor reconstructed from a 1000
step iterated prediction, obtained with a global Gaussian predictor of dimension 2. We
observe that the two attractors are in fact indistinguishable, indicating that the predictor
was able to entirely capture the dynamics of the system. We remark that in [3], the at-
tractor that is reconstructed from an iterated prediction, obtained with neural networks,
shows considerable deformations.
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Figure 4.10: Hénon attractor, reconstructed from the true series and from a 1000 samples
iterated prediction. The two attractors are in fact indistinguishable.

4.2.2 Prediction on the Mackey Glass Time Series

The MGy; time series generated by the Mackey-Glass delay differential equation and a
typical iterated prediction on it, obtained with a global Gaussian predictor, are shown
in Figure 4.3 (bottom). The prediction is indistinguishable from the true series up to
around prediction step 60, and keeps on staying close when iterating further. The results
obtained using global and local predictors with Gaussian and polynomial kernel, averaged
over 50 subsequent test sets of length 100, are given in Tables 4.3 and 4.4, together with
results reported by other authors.

Ref. | Method Nirain | Nrun - Niest || Single step
Global G 500 50 - 100 1.81-107°

Local G 500 50 - 100 1.82-107°
Global p 500 50 - 100 5.52-107°

Local p 500 50 - 100 1.99-107°

[3] | Neural net | n.a. n.a. 1.44-1074
[71] | Neural net | 500 1500 5.7-107°

Table 4.3: Comparison of single step prediction performance on MGq; time series. All
results are normalized mean squared errors. The test set and training set size are given
in samples. Own results are averaged over 50 runs. "G” stands for Gaussian kernel, "p”
for polynomial kernel. Best results are marked in bold.

Single Step Error and Iterated Prediction. As already observed for the Hénon
time series, the predictor with best single step error performance (global Gaussian) does
not coincide with the predictor achieving the best iterated prediction (local Gaussian).
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Ref. 5 step 10 step 20 step 40 step 50 step 100 step
Global G || 2.63-107° | 5.81-107° | 4.15-107% | 1.94-1072 | 4.64-1072 | 8.53-1072
Local G |/ 1.62-107% | 3.37-107° | 1.71-107% | 1.15-10°3 | 2.44-1073 | 3.82-1072
Globalp || 833-107° | 2.45-107* | 1.19-1073 | 5.17-1073 | 1.23-1072 | 1.44-107!
Local p 1.92-107° | 3.22-107% | 2.78-107% | 1.68-1072 | 3.57-1073 | 5.53 1072

3] 324-104[361-107%|361-10°%|1.23-10°3 - -
[71] - - - - - 1.8-1072

Table 4.4: Comparison of iterated prediction performance on MGy time series. All results
are normalized mean squared errors. Own results are averaged over 50 runs. "G” stands
for Gaussian kernel, "p” for polynomial kernel. Best results are marked in bold.

Iterated prediction on MG, ; (mean - 50 runs): comparison of models (best single step error)
T T T T T T T T T

—©- Global Gaussian (1.81e-05)
—*— Global polynomial (5.5241e-05)
—— Local Gaussian (1.8205e-05)
| ; ; ; ; ;[ = Local polynomial (1.9882e-05)

0 10 20 30 40 50 60 70 80 90
Prediction horizon

100

Figure 4.11: Prediction on the Mackey-Glass time series: Comparison of SVR predictor
performance (mean on 50 runs). The single step prediction errors are given in brackets
in the legend. The local Gaussian predictor outperforms all other predictors.

For the M G1; series, however, the difference in single step error for these two predictors
is very small. The SVR predictor with worst single step error (global polynomial) has
again worst iterated prediction performance.

Global vs. Local - Gaussian vs. Polynomial. We observe further that the choice
of kernel plays an important role for predicting the Mackey-Glass time series. For both
global and local predictors, the Gaussian kernel outperforms the polynomial kernel.
What is more, the local predictors achieve considerably better results than the global
ones, despite of the small training set. These facts are illustrated in Figure 4.11, comparing
the single step and iterated prediction performance of all four SVR predictors considered.

Comparison with Previously Reported Results. The comparison with results ob-
tained by other authors, using neural networks, demonstrates the good performance of
the SVR predictors on this time series. The prediction error for single step prediction
and iterated prediction up to iteration 40 is lower than any result we are aware of, and
the 100 step iterated prediction is comparable with the one obtained in [71]. Notice that
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we use the same training set size as in [71], and that the training and test set size is not
given in [3].

4.2.3 Prediction on the Lorenz Time Series

We consider the series given by the x-coordinate of the Lorenz attractor, obtained by
numerical integration with integration step h = 0.01 and A = 0.05. Typical predictions
on both series are shown in Figure 4.12. We observe that the iterated predictions lose
track of the true trajectories after approximately 40 prediction steps, both at a point
where the series reaches a value of x ~ 0. This region of the state space is critical, since
here the evolution of the states is very fast.

In Tables 4.5 and 4.6, we compare the performance of local and global predictors with
Gaussian and polynomial kernel, averaged over 50 subsequent test sets.

Ref. | Method Int. Step | Nirain | Nrun © Niest | Single step
Global G h=0.01 | 1000 50 - 100 1.13-10°*
Local G 50 - 100 2.86-1074
Global p 50 - 100 7.27-107°
Local p 50 - 100 1.39-10*
Global G h=0.05 | 1000 50 - 100 3.12-10°6
Local G 50 - 100 3.30-1076
Global p 50 - 100 2.63-107°
Local p 50 - 100 3.81-1076

[40] | Local average n.a. 3000 - 6.76 - 10~*
[71] | Neural net n.a. 4000 1500 34-107°

Table 4.5: Comparison of single step prediction performance on Lorenz time series. All
results are normalized mean squared errors. The test set and training set size are given
in samples. Own results are averaged over 50 runs. "G” stands for Gaussian kernel, "p”
for polynomial kernel. Best results are marked in bold.

Ref. Int. Step 5 step 10 step 20 step 40 step 50 step
Global G | h=0.01 | 4.37-107* | 2.05-1073 | 1.04-1072 | 2.35-10"! 1.01
Local G 1.66-107%|9.29-107% | 588-1073 | 831-1072 | 1.20-10!
Global p 3.17-107% | 1.94-1073 | 1.38-1072 | 2.80-107"' | 7.11-107!
Local p 1.95-107% | 1.26-1073 | 7.57-1072 | 4.53-10"2 | 3.89-107!
Global G | h=0.05 || 1.77-10~% | 3.67-10~* | 8.07-10~% | 5.64-1072 | 9.21-1072
Local G 5.07-107° | 1.60-107% | 5.04-10"% | 4.03-1072 | 8.02-102
Global p 2.02-107% | 1.40-1072 | 2.16-107" | 6.46- 107" NaN
Local p 6.85-107° | 2.22-107* | 858-107* | 5.90-1072 | 7.68-10"2
[40] n.a. 841-107%* | 1.09-1073 | 3.25-10°3 | 3.03-10°3 -

Table 4.6: Comparison of iterated prediction performance on Lorenz time series. All
results are normalized mean squared errors. Own results are averaged over 50 runs. "G”
stands for Gaussian kernel, "p” for polynomial kernel. Best results are marked in bold.
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Lorenz h=0.01: Iterated prediction example

20

20 40 60 80 . .100 120 140 160 180 200
Prediction step
Lorenz h=0.05: Iterated prediction example
T T T

Figure 4.12: Typical predictions on the Lorenz time series for integration time step h =
0.01 (top) and h = 0.05 (bottom,).

Iterated prediction on Lorenz (mean — 50 runs): h=0.01 L Iterated prediction on Lorenz (mean — 50 runs): h=0.05
10 T T T T 10 T T

T T

—©— Global Gaussian (3.2109e-06) | |
—*— Global polynomial (2.6293e-05)
—— Local Gaussian (3.3009e-06)
—¥— Local polynomial (3.8098e-06)

100 -6~ Global Gaussian (0.00011283) || 1,519
—< Global polynomial (7.2661e-05)
—— Local Gaussian (0.00028557)
—¥— Local polynomial (0.00013874)
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Figure 4.13: Prediction on the Lorenz time series: Comparison of performance of all SVR
predictors (mean on 50 subsequent test sets).

Influence of the Integration Step. The first thing we note is that the prediction
performance depends crucially on the integration step h. Unfortunately, in many of the
literature considering prediction of observations of the Lorenz attractor, the integration
step is not stated, making comparisons difficult. Nevertheless, we can observe qualita-
tive similarities in the prediction performance on both series, and that the prediction
performance is comparable to that reported by other authors, employing local averaging
techniques and neural networks.

Single Step Error and Iterated Prediction. As already observed for the Hénon and
the MGy7 time series, the single step prediction error measure is not sufficient to describe
the performance of the predictors. The SVR predictor with best single step error does
not have best iterated prediction performance. For h = 0.01, it is in fact the predictor
with worst single step error that has best iterated prediction performance, whereas for
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Attractor reconstructed: from x-coordinate Lorenz h=0.01... ...from 4000 step iterated prediction Lorenz h=0.01

Attractor reconstructed: from x—coordinate Lorenz h=0.05...

x(n-4)

Figure 4.14: Attractors reconstructed from the real Lorenz time series (left column), and
from iterated predictions (right column) for integration time step h = 0.01 (top) and
h = 0.05 (bottom). For h = 0.01, the prediction does not explore the whole state space,
whereas for h = 0.05, the attractors reconstructed from the prediction and from the real
series are simailar.

h = 0.05 worse single step error coincides with worse iterated prediction.

Global vs. Local - Gaussian vs. Polynomial. We note further that for both
series, the global predictors perform worse than the local ones, and predictors employing
a Gaussian kernel are better than those using a polynomial kernel. This can as well
be seen from Figure 4.13, where we compare the prediction performance of all four SVR
predictors. The local Gaussian predictor outperforms all others for both series considered.

What is more, we are even unable to obtain a stable global predictor when using a
polynomial kernel for A = 0.05. The prediction and the prediction error grow unboundedly
after 44 prediction steps. Note, however, that the local model with polynomial kernel is
stable (Figure 4.13, right).

The Reconstructed Attractors. In Figure 4.14, the attractors in embedding space,
reconstructed from the x-coordinate of the Lorenz system, are shown. On the left, the
attractor is reconstructed from the true signal, whereas on the right, an iterated prediction
of length 4000 (h = 0.01) and 2000 (h = 0.05) samples, obtained with a local Gaussian
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Iterated prediction Lorenz (mean — 50 runs): global Gaussian — optimality of embedding
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107 Y —©- Embedding Space h=0.01 | |
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Figure 4.15: Prediction on the Lorenz time series: Comparison of prediction performance
of global Gaussian SVR predictors working in embedding space and in true state space. For
integration time step h = 0.01, the difference in prediction performance between prediction
in true state space and in embedding space is very large (up to more than two orders of
magnitude), whereas it is less pronounced for h = 0.05.

model, is used. We observe that for h = 0.01, the prediction at first starts exploring
the phase space, but gets then stuck in a quasi-periodic motion in the lower part of the
attractor. The predictor is therefore not able to correctly approximate the dynamics of
the system. In contrast, for h = 0.05, the iterated prediction continues exploring the
whole state space, and its reconstructed attractor is similar to that reconstructed from
the true signal. This indicates that in this case, the dynamics are well approximated by
the predictor.

Optimal Choice of the Embedding Parameters. The fact that the support vec-
tor predictors are unable to properly learn the dynamics of the system for A = 0.01 is
at least partly due to a non-optimal embedding. This can be seen from Figure 4.15,
where we compare the prediction performance of the global Gaussian predictor working
in embedding space (as considered above) with the prediction performance of a global
Gaussian predictor working in the true state space of the Lorenz attractor'®. We observe
that for A = 0.01, the support vector predictors working in the true state space perform
considerably better than the predictor trained in the embedding space. For h = 0.05, the
difference in performance is less pronounced.

Notice as well the difference in prediction performance for the predictions obtained in
true state space for the two integration time steps considered, demonstrating again the
influence of the integration time step.

10This prediction is obtained by training one SVR predictor per coordinate.
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4.2.4 Prediction on Santa Fe Data Set A

87

The experimental Santa Fe data set A is a famous benchmark set for chaotic time series
prediction. Many authors have considered this time series in their work on time series
prediction, which together with the fact that the training set and test set are prescribed
allows for thorough comparison.
Our results are summarised in Tables 4.7 and 4.8, together with results reported by
other authors. The predictions we obtain on the five test sets are given in Figure 4.16.

Ref. Test set: 1001-1100 | 2181-2280 | 3871-3970 | 4001-4100 | 5181-5280
Global G 9.20-1073 1.46-1072[1.66-10"2 ] 2.03-10°* | 1.32-1072
Local G 1.57-1072 1.85-1072 | 1.77-1072 | 2.48-10~* | 1.98-1072
Global p 1.37-1072 2.29-1072 | 9.49-1072 | 1.93-107% | 1.38-102
Local p 1.02-1072 2.17-107%2 | 6.49-1072 | 2.25-107* | 1.31-1072

[47] 6.3-1072 - - - -

[71] 2.76-1073 . . . -

[72] 2.3-1072 - - - -

Table 4.7: Comparison of single step prediction performance on Santa Fe data set A.
All results are normalized mean squared errors. "G” stands for Gaussian kernel, "p” for
polynomial kernel. Best results are marked in bold.

Ref. Test set: 1001-1100 | 2181-2280 | 3871-3970 | 4001-4100 | 5181-5280
Global G 4.46 -102 3.93-107" | 431-107" | 8.89-107% | 4.81-102
Global p 5.74 1071 NaN NaN 1.81-107% NaN
Local G 2.82-1071 516-10"2 | 3.06-10"! | 1.11-10"2 | 8.33-102
Local p 5.31-107! 1.88-107' | 3.73-107! | 1.61-1072 | 8.27-107!

[47] 1.03 - - - -

[17] 2.6 1072 - - - -

[14] 2.47-1071 - - - -

[4] 2.8-1072 51-107% | 2.55-1071 | 3.9-1072 -

[4]-CV 2.9-1072 28-1072 | 3.0-1073 | 3.0-1072 -

[71] 1.94-1072 - - - -

[57] 6.6 1072 6.1-1072 | 8.6-1072 | 4.79-107! | 3.8-102

[50] 7.7-1072 1.74-107' | 1.83-107' | 6.0-1073 | 1.11-107!

[72] 2.73-1072 6.5-1072 | 487-107' | 23-1072 | 1.6-107!

Table 4.8: Comparison of 100 step iterated prediction performance Santa Fe data set A.
All results are normalized mean squared errors. "G” stands for Gaussian kernel, “p” for
polynomial kernel. Best results are marked in bold.

Global vs. Local - Gaussian vs. Polynomial. We observe that none of the predic-
tors wins on all five test sets, in terms of neither single step prediction error nor iterative
prediction error. This is consistent with results reported by other authors, where no pre-
dictor performs particularly well on all five test sets simultaneously. For the predictors we
consider, this is especially obvious for the global polynomial one, which has worst iterated



88

Iterated prediction Santa Fe data set A: global Gaussian

Test set 1 (1001-1100) ~ global polynomial

CHAPTER 4. RESULTS

Iterated prediction Santa Fe data set A: global Gaussian

Test set 2 (2181-2280)  global polynomial

Pred
250 250 250 | True
200 200 200
150 150 150
100 100 100

AU i NI
50 O 50 50 RN [ I
0 ] 0 0
1000 1020 1040 1060 1080 1100 1000 1020 1040 1060 1080 1100 2180 2200 2220 2240 2260 2280 2180 2200 2220 2240 2260 2280

Local Gaussian

Local polynomial

Local Gaussian

Local (Polynomial

1000 1020 104 e1060 1080

S ampl

1100 1000

1020 1044 e1[)60 1080 1100

Sampl

(a)

Iterated prediction Santa Fe data set A: global Gaussian

Test set 3 (3871-3970) ~global polynomial

2180

2200 2220 2240 2260 2280 2180
Sample

(b)

Iterated prediction Santa Fe data set A: global Gaussian
00

2200 2220, 2240 2260 2280
Sample

Test set 4 (4001-4100) ~ global polynomial

150 150
100 100
50 50
0 0
3880 3900 3920 3940 3960 3880 3900 3920 3940 3960 4000 4020 4040 4060 4080 4100 4000 4020 4040 4060 4080 4100
Local Gaussian Local polynomial Local Gaussian Local polynomial
200 200
150 150
100 100
50 50
0 0
3880 3900 8920 3940 3960 3880 3900 8920 3040 3960 4000 4020 4040 4060 4080 4100 4000 4020 4040 4060 4080 4100
ample ample ‘Sample ‘Sample
Iterated prediction Santa Fe data set A: global Gaussian Test set 5 (5181:5280) ~ global polynomial

250 !

200

150

100

250

200

150

100

50 WAYA 50
\ L
)

0 0

Pred
True

o

180 5200 5220 5240

Local Gaussian

5260

5280 5180

5200 5220 5240

Local polynomial

5260 5280

250

0

|
200
150
100 ‘

' N

1 \ "‘ Al
50 AW ARG

4 N

5180 5200 522( 5260 5280 5180

(e)

0, 5240
Sample

5200 5220, 5240 5260 5280
Sample

Figure 4.16: Prediction on Santa Fe data set A: test set 1 (a), test set 2 (b), test set 3
(c), test set 4 (d), test set 5 (e). In the subfigures, the predictions on the particular test
set obtained with global Gaussian (top left), global polynomial (top right), local Gaussian
(bottom left) and local polynomial (bottom right) SVR predictors are shown.
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Ref. Method
[47] Linear dynamical model in kernel space
[17] Kernel recursive least squares algorithm
[14] Vector quantization
[4] Local regression approach
[4]-CV || Local regression approach with cross validation
[71 Neural network
[57 Neural network
[
[

]
]

50] Local linear model
] Neural network

Table 4.9: Prediction methods employed in the quoted literature.

DSanta\ Fe data set A - prediction error vs. embedding dimension (best single step error parameters)
10 -

|| = Test set 1001-1100: 100 step iterated | |
—©— Test set 1001-1100: single step
10 —— Validation set (training): single step |

15 16 17 18 19 20 21 22 23 24 25

Figure 4.17: Santa Fe data set A: Prediction performance of global Gaussian SVR pre-
dictors on validation set (samples 901 — 1000) and test set 1 (samples 1001 — 1100 ), for
different embedding dimensions m € {15,--- 25}. The predictor in embedding space with
dimension m = 18 has lowest single step prediction error on the validation set and on
the test set. The predictor with lowest iterated prediction error on the test set works in
embedding space of dimension m = 24.

prediction performance for all test sets except test set 4, for which it is not only the best
among all predictors we consider, but as well outperforms the best predictors reported in
literature we are aware of. For three of the test sets the global polynomial predictor does,
however, not even produce a stable prediction.

Nevertheless, we note that all in all predictors with Gaussian kernels, and especially
the global Gaussian one, produce better predictions than the predictors employing a
polynomial kernel for this data set. The global Gaussian predictor produces the best or
at least close to best prediction on all five test sets in terms of single step error, and it has
the best or close to best 100 step iterated prediction performance on all test sets except
test set 3.

Santa Fe data set A is considered as difficult to predict, since prediction involves
forecasting the occurrence of a collapse in three of the five test sets from only one example
of such a collapse in the training set. We remark that the global as well as the local



90 CHAPTER 4. RESULTS

Gaussian SVR predictors are able to forecast these occurrences in all but one cases,
whereas the predictors using polynomial kernels completely fail to forecast the collapses
(Figure 4.16).

Comparison with Previously Reported Results. The global Gaussian predictor
has lowest single step prediction error on the validation set (samples 901 — 1000). There-
fore, it is selected for comparison with other results reported in literature. Notice that for
some of these results, the series has been pre-processed. For instance, in [50] the series is
denoised with some FFT technique and upsampled. Kohlmorgen claims in [31] that this
renders the prediction task easier. We obtain our predictions directly on the series as it is,
without any extra technique. The prediction methods employed in the quoted literature
are summarised in Table 4.9.

The global Gaussian predictor achieves performance one order of magnitude better
than the best result we are aware of on test set 4. It is, however, 2 orders of magnitude
worse than the best result reported on test set 3. For all other test sets, it has performance
comparable to the state of the art.

Influence of the Embedding Dimension. In Figure 4.17, we investigate the influ-
ence of the embedding dimension on the prediction performance on test set 1 for global
Gaussian predictors. Clearly, the predictor of dimension 18 has lowest single step error
on both the validation set and the training set. The best 100 step iterated prediction is,
however, obtained with a predictor of dimension 24. This suggests that our results might
be improvable by choosing a different embedding dimension.

4.2.5 Discussion

We consider predicting three synthetic and one experimental time series exhibiting chaotic
behaviour, using global and local support vector regressors of type (3.11-3.13) and (3.14-
3.15), respectively, with Gaussian and polynomial kernels, as predictors. We observe that
none of the predictors is superior to the others for all data sets and performance measures
considered. The best predictors we find for each data set, however, achieve excellent
performance, especially for the Hénon series, the MG series, and Santa Fe Data Set A.

Global vs. Local Model. A local predictor for a chaotic time series is in general less
complex and therefore easier to learn than a global one, since the prediction function does
not have to approximate the dynamics of the system for the entire state space. There-
fore, local predictors are generally believed to achieve better prediction performance [32].
Nevertheless, the best predictors for two of the time series considered (Hénon and Laser)
are global. These predictors both employ Gaussian kernels, which in themselves possess
already good localisation properties. A second reason for this unexpected result may be
the fact that we consider small training sets, so that the state space and the attractor are
only loosely sampled. In this case, a local predictor has to produce an approximation of
the evolution of a state from a small set of neighbouring states that may be considerably
far away in state space, and therefore may have little to say about the evolution of the
state under consideration. In contrast, if the training set grows large enough, and the
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state space is sampled tightly, the neighbours of a state contribute enough information
about the local dynamics of the state to allow for a good local approximation. What is
more, when considering local models, an additional parameter - the number of nearest
neighbours - has to be determined. For that, no theoretical rule exists, and the empirically
selected number of nearest neighbours may be suboptimal.

Independently of considerations about prediction performance, the local method has
computational advantages for large training set sizes. The global predictor has to be found
on the entire training set, whereas the local predictor is trained on only a small number
of samples. Although a new local predictor has to be found for each single prediction
iteration, the local prediction may therefore be obtained at less computational cost than
a prediction with a global model.

Gaussian vs. Polynomial Kernel. In all cases considered, polynomial kernels are
outperformed by Gaussian kernel in terms of iterated prediction performance. What is
more, some of the predictors employing polynomial kernels become unstable, producing
an iterated prediction that grows unboundedly (Lorenz time series and data set A). This
may be due to the fact that Gaussian kernels possess good localisation properties, such
that states far away from the state we are currently predicting from contribute nearly
nothing to the prediction if the kernel width is chosen properly. The prediction cannot
grow unboundedly for a Gaussian kernel, since the value of the kernel function decreases
fast for two embedding vectors that are far from the support vectors'!.

Polynomial kernels do not posses this property and can therefore produce predictions
that grow unboundedly. Nevertheless, in some cases the best single step prediction error
is achieved with a polynomial kernel.

Prediction Performance Measures. We observe that the single step prediction error
cannot completely describe the quality of a predictor. Specifically, in many cases it does
not allow for statements about the iterated prediction performance (Hénon, MGy7, and
Lorenz time series). This result may seem surprising at the first moment, since a predictor
with lower single step error introduces less errors per prediction step. The single step error
can, however, not measure how these errors propagate when the prediction is iterated.
A model may produce better single step predictions and may at the same time be more
sensitive to the error that is introduced at each prediction step. Then, the initially higher
accuracy of the prediction, as compared with the accuracy of a predictor with larger single
step error but less sensitivity, may be lost after a few iteration steps.

Simulation of Chaotic Systems. When numerical simulations of chaotic systems are
required for obtaining a time series, interpretations of the results have to be taken with
care. This has already been discussed in Subsection 4.1.1, and has been confirmed in our
results on the Lorenz time series. The prediction performance on the two series obtained
from the same system of equations with a different integration time step is far from being
equivalent.

UTf the kernel width is chosen too narrow, it can therefore happen that the predictor output converges
to zero.
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Optimal Choice of the Embedding Parameters. The choice of an appropriate em-
bedding dimension is especially important in the presence of noise, since choosing an
embedding dimension that is larger than needed for unfolding the orbits unnecessarily
amplifies the noise. It is, however, observed that the embedding dimension influences the
prediction performance as well in the noiseless case (Hénon time series). What is more,
in one of the experiments the embedding was not chosen correctly, which significantly de-
generated the prediction performance potentially achievable with the function estimation
technique used (Lorenz time series with A = 0.01).

Optimal Choice of the Hyperparameters. Due to the determination of the SVM
hyperparameters through an empirical validation technique, some tendencies in the results
obtained may be hidden. Although a considerable effort has been undertaken to determine
good hyperparameters, it may not have been possible to find the optimal parameter setting
in all cases.



Summary and Outlook

In this work, we considered SVMs as a nonparametric supervised learning method for
function estimation. SVMs are based on results from statistical learning theory, opti-
misation theory and functional analysis. They choose their modelling function from a
rich function base determined by a kernel and implement an induction principle that al-
lows them to control the capacity of these modelling function. They can therefore avoid
overfitting and address the curse of dimensionality. Moreover, the solution to the training
algorithm is unique and can be found efficiently as the solution of a quadratic programme.

The contribution of this work can be found in two aspects. First, in Chapter 2,
we gave an introduction to the theory of SVMs that is accessible for the reader that
is not familiar with this subject, and provided an outlook on more advanced topics.
Introductory literature bringing together all necessary theory for the development of SVMs
is hard to find, since this approach is still subject to active research. We considered in
detail the derivation of standard SVMs for regression estimation and established their
connection to other function estimation methods, and reviewed the important question of
hyperparameter selection. The chapter covers all theory necessary for understanding and
applying SVMs.

Second, we gave an exhaustive comparison of results for the specific task of chaotic
time series prediction. For that, we briefly introduced the topic of chaos in dynamical
systems and discussed how SVMs can be used to approximate a prediction function.
We have brought together results reported in literature and demonstrated the excellent
performance of SVMs for this specific task.

SVMs report excellent performance for a wide range of applications. In contrast to
neural networks, where an appropriate network architecture has to be elaborated by the
user for each specific application, and where the training procedure may be time con-
suming and affected by local minima, the SVM algorithm is fast, chooses the appropriate
architecture inline according to results from statistical learning theory, and leaves only
very few so-called hyperparameters, namely the trade-off parameter C', the width of the
e-insensitive zone, and the kernel parameters, to be tuned by the user. SVMs could there-
fore be thought of as an excellent tool as well for non-expert users. The choice of the
hyperparameters is, however, not trivial, and restricts some of the flexibility and practical
advantages inherent in this approach. Further work will be necessary to develop efficient
principles for hyperparameter selection and to make the computationally costly and sub-
optimal empirical selection techniques obsolete. Still, SVMs stay an extremely powerful
and advantageous learning machine with excellent empirical performance.
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Appendix A

Abbreviations

Abbreviation
dde

ERM

FNN

GACV

HO testing
kCV

KKT complementary conditions
LOO testing
MAP

MGy

NN

RBF

RKHS

SRM

SVC

SVM

SVR

VC dimension

delay differential equation

empirical risk minimisation

false nearest neighbors

generalised approximate cross validation

hold out testing

k-fold cross validation

Karush Kuhn Tucker complementary conditions
leave one out testing

maximum a posterior

Mackey-Glass time series with delay 1" = 17
neural network, nearest neighbours

radial basis function

reproducing kernel Hilbert space

structural risk minimisation

support vector machine for classification
support vector machine

support vector machine for regression estimation
Vapnik-Chervonenkis dimension
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