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ABSTRACT

In this paper, two fundamental subspace invariances of
Quasi-Orthogonal Space-Time Block Codes recursively
derived from the Alamouti Code (Jafarkhani Codes, Ex-
tended Alamouti Codes) are proven: (i) an eigenbasis
of the code word distance matrices can be found which
is invariant with respect to the chosen modulation al-
phabet, and (ii) the eigenspaces of the virtual channel
matrices are invariant with respect to the channel state
realization. These subspace invariances lead to impor-
tant conclusions: The subspace invariance (i) enables
efficient transmission schemes with very small amount
of channel state feedback. As a corrolary of (ii), an ex-
tremely tight analytical bound for the bit error rate can
be obtained.

1 INTRODUCTION

Since the introduction of MIMO transmission concepts
in wireless [1, 2], the research booms in this area. Cur-
rently Space-Time Codes (STC) are under heavy inves-
tigation [3] in order to find flexible schemes allowing
various data rates while benefitting from the high poten-
tial diversity of MIMO systems. Although Orthogonal
STC (OSTC) like the Alamouti Code [4] are optimal
in the sense that they offer full diversity at full rate,
only very few such OSTCs exist hindering scalability
of data rates. Quasi-orthogonal schemes (QOSTC) on
the other hand [5] often based on the Alamouti idea [6]
and thus called Extended Alamouti Codes [7] (EAC),
allow much more flexibility and higher data rates. How-
ever, they do not benefit in full of the diversity offered
by the channel [8]. Many improvements have been pro-
posed [9, 10] to overcome such drawbacks leaving the
QOSTC becoming prominent members for MIMO trans-
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mission schemes. Although it was known that for the
four [7] and even eight transmit antenna [11] scheme
the virtual channel matrices obtained by EAC can eas-
ily be diagonalized with sparse matrices independent of
the channel realization, such knowledge was not known
for general antenna configurations of the form 2k. This
paper will close this gap by showing that indeed for all
antenna configurations the modal matrices that diag-
onalize the virtual channel matrix are simple, sparse
matrices independent of the channel realization. Con-
sequences of this are that the modal matrices of EAC
are independent of the instantaneous channel parame-
ters. Efficient, low-complexity beamforming is feasi-
ble by feeding back the eigenvalues only without the
eigenvectors. Furthermore, we show that the code dis-
tance matrices exhibit a corresponding invariance prop-
erty. This greatly simplifies the computation of a lower
bound [12].

1.1 Recursive Definition of Transmission Code
Words

Starting with the standard Alamouti scheme:

S1 =
(

s1 s2

s∗2 −s∗1

)
, (1)

the first extension leads to the EAC matrix for nT =
2k = 4 transmit antennas:

S2 =

(
S(1)

1 S(2)
1

S(2) ∗
1 −S(1) ∗

1

)
,

where S(i)
1 , i = 1, 2 are standard Alamouti matrices. In

general, EAC matrices are defined as:

Definition 1: A general (2k × 2k) EAC matrix for
nT = 2k is recursively defined by:

Sk =

(
S(1)

k−1 S(2)
k−1

S(2) ∗
k−1 −S(1) ∗

k−1

)
,

the initial value given by (1) above.
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As first stated in [3], the performance of STCs
strongly depends on the eigenvalues of the so-called dis-
tance matrix Ak = BH

k Bk. Where the difference matrix
Bk is defined as the difference between two allowed STC
words Sk − S̃k. It is noteworthy that if Sk and S̃k are
EAC matrices according to Definition 1, then also the
code word difference

Bk = Sk − S̃k =

(
B(1)

k−1 B(2)
k−1

B(2) ∗
k−1 −B(1) ∗

k−1

)
(2)

exhibits the same structure as the EAC matrix.
Before stating some important properties on the dis-

tance matrix Ak two additional matrices and their re-
cursive structure have to be defined:

Definition 2: The matrices A(i)
k , X(i,j)

k and Y(i,j)
k

are defined as:

A(i)
k = B(i)

k

H
B(i)

k

X(i,j)
k = B(i)

k

H
B(j)

k −B(j)
k

T
B(i)

k

∗

Y(i,j)
k = B(i)

k

T
B(j)

k

∗
+ B(j)

k

T
B(i)

k

∗

Note that in the following the superscripts (i, j) are
sometimes omitted. These matrices exhibit the follow-
ing simple but important properties:

Lemma 1: The matrices Ak, Xk and Yk are real
valued and additionally

AT
k = Ak

XT
k = −Xk

YT
k = Yk

holds.
Proof: The first properties of Lemma 1 are shown by

induction. Starting with a joint proof of Xk and Yk to
be real by showing:

Xk = X∗
k

Yk = Y∗
k

This can be done by inserting the recursive definition of
Bk. With this, it can be shown that Ak is real in the
same way.

The remaining properties can simply be shown by in-
serting the definition of the matrices (Definition 2) and
applying the first part of the property (the matrices are
real valued).¤

With Definition 2, the matrices Ak, Xk and Yk are
recursively defined by:

A(i)
k =

(
A(i1)

k−1 + A(i2)
k−1 X(i1,i2)

k−1

−X(i1,i2)
k−1 A(i1)

k−1 + A(i2)
k−1

)
(3)

X(i,j)
k =

(
X(i1,j1)

k−1 + X(i2,j2)
k−1 Y(i1,j2)

k−1 −Y(i2,j1)
k−1

−
(
Y(i1,j2)

k−1 −Y(i2,j1)
k−1

)
X(i1,j1)

k−1 + X(i2,j2)
k−1

)

Y(i,j)
k =

(
Y(i1,j1)

k−1 + Y(i2,j2)
k−1 X(i1,j2)

k−1 −X(i2,j1)
k−1

−
(
X(i1,j2)

k−1 −X(i2,j1)
k−1

)
Y(i1,j1)

k−1 + Y(i2,j2)
k−1

)

Note that due to the structure of the distance matrix
Ak the eigenvalues exhibits specific properties:

Lemma 2: The distance matrix Ak defined in Defi-
nition 2 has pairs of identical eigenvalues.

Proof: Using the general definition of eigenvalues
λ and eigenvectors e: Ake = λe and the structure of
Ak shown in (3), it can be shown that if a eigenvector
(aT bT ) exists for a given eigenvalue λ, then the eigen-
vector (−bT aT ) is also an eigenvector for the same
eigenvalue λ.¤

1.2 Recursive Definition of Virtual Channel
Matrix

A common model for MIMO transmission is:

y = hST + n ,

where y = (y1, y2, ..., ynT
), h = (h1, h2, ..., hnT

), n =
(n1, n2, ..., nnT ). If S is the well-known Alamouti code
matrix, an equivalent description, and for some cases a
more suitable model, is:

ỹ = Hs + ñ , (4)

where ỹ = (y1, y
∗
2 , ..., ynT )T , s = (s1, s2, ..., snT )T , ñ =

(n1, n
∗
2, ..., nnT

)T . The so called virtual channel matrix
H can recursively be generated, starting with:

H =
(

h1 h2

−h∗2 h∗1

)
. (5)

Definition 3: A general (2k×2k) EA virtual channel
matrix for nT = 2k and nR = 1 is recursively defined
by:

Hk =

(
H(1)

k−1 H(2)
k−1

−H(2) ∗
k−1 H(1) ∗

k−1

)
,

starting with (5) above.

2 MAIN RESULTS

Theorem 1: If S(1)
k−1 and S(2)

k−1 are two different EAC
matrices defining a new code word Sk according to Def-
inition 1, then the following property for Ak holds. The
distance matrix Ak can be diagonalized by the matrices
Vk and Wk starting with k = 2, 3, ..:

(1) ΛAk
= 2−(k−1)VT

k AkVk

(2) ΛAk
= 2−(k−1)WT

k AkWk

where Vk and Wk is recursively defined by:

Vk =
(

Vk−1 Wk−1

−Wk−1 Vk−1

)
,

Wk =
(

Wk−1 Vk−1

Vk−1 −Wk−1

)
,
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with the initial values

V1 =
(

1 0
0 1

)
and W1 =

(
0 −1

−1 0

)
.

Additional properties are:

(3) WT
k X(i,j)

k Wk + VT
k X(i,j)

k Vk = 0

(4) WT
k Y(i,j)

k Vk −VT
k Y(i,j)

k Wk = 0

(5) WT
k A(i)

k Vk −VT
k A(i)

k Wk = 0

(6) WT
k X(i,j)

k Vk −VT
k X(i,j)

k Wk = 2kΛXk

(7) WT
k Y(i,j)

k Wk + VT
k Y(i,j)

k Vk = 2kΛYk

The proof of this theorem is shown in Appendix A.
Note that in this form the theorem requires a scaling
term 2−(k−1). The authors are well aware that this
term could be consumed in the matrices, however, in
the form presented, the entries of the matrices Vk,Wk

are always in {−1, 0, 1} and thus very suitable for
implementation. The formulation of the theorem with
an explicit scaling term reflects such properties.

A very similar statement can be proven for the virtual
channel matrix. In order to do so we have to redefine
the following terms:

A(i)
k = H(i)

k

H
H(i)

k

X(i,j)
k = H(i)

k

H
H(j)

k −H(j)
k

T
H(i)

k

∗

Y(i,j)
k = H(i)

k

T
H(j)

k

∗
+ H(j)

k

T
H(i)

k

∗
,

Theorem 2: If H(1)
k−1 and H(2)

k−1 are two different
virtual channel matrices defining a new virtual channel
matrix Hk according to Definition 3, then the following
property for Hk holds. The virtual channel matrix Hk

can be diagonalized by the matrices Vk and Wk:

(1) ΛHk
= 2−(k−1)VT

k HT
k HkVk

(2) ΛHk
= 2−(k−1)WT

k HT
k HkWk

where Vk and Wk follow the same recursions as de-
fined in Theorem 1. Furthermore, the properties (3)-(7)
of Theorem 1 hold correspondingly. The proof follows
identical arguments as Theorem 1 and is thus not re-
peated.

3 CONCLUSIONS

The implication of both theorems are manyfold as out-
lined in the following:

1. The BER behavior is governed by the eigenvalues
of the distance matrix A as shown in [3]. More impor-
tantly, the constant matrix V (or W) diagonalizes the
distance matrix A, i.e., irrespective of the involved code

word pairs and alphabet. Due to this property an extra-
ordinary tight BER approximation can be analytically
calculated as shown in [12]. These important eigenval-
ues can be calculated with the properties of Theorem
1. As an illustrative example, the eigenvalues of A2 for
nT = 4 (k=2) read:

Λ = diag(λ1, λ2, λ3, λ4)

with

λ1 = λ4 = |(s1−s̃1)+(s4−s̃4)|2+|(s2−s̃2)−(s3−s̃3)|2
λ2 = λ3 = |(s1−s̃1)−(s4−s̃4)|2+|(s2−s̃2)+(s3−s̃3)|2

A direct consequence of such specific eigenvalues is that
the maximum rank is four and its minimum two. It
can be seen in the above equations that zero rank is
not possible since in the case all eigenvalues are zero,
no symbol error can occur. As already shown in [3], the
asymptotic slope of the pairwise error probability (PEP)
curves for high signal to noise ratios is determined by
the minimum rank. Thus, some PEP curves exhibit a
slope of two and therefore the total BER performance
curve has slope two, which can be seen in [12].

2. Similarly the eigenvalues of the virtual channel ma-
trix appear in pairs. In the case of four transmit anten-
nas they are determined by two values h2 and X (see [7])

λ1 = λ4 = h2(1−X), λ2 = λ3 = h2(1 + X).

If for example beamforming is to implement, the power
of the eigenvalue is of less importance and the knowledge
of X ∈ (−1, 1) alone is sufficient channel state informa-
tion to be fed back for optimal beamforming. For larger
antenna schemes, it is common to implement beamform-
ing only on the largest eigenvalue. Since the largest
eigenvalue comes in pairs with two eigenvectors, beam-
forming methods utilizing such QSTBCs are expected
to be very efficient. Next to the largest eigenvalue it
is required to select the corresponding eigenvector. If
all eigenvectures are labeled by numbers, the selection
information can be performed by re-transmitting only
log2(nT ) − 1 additional feedback bits where nT is the
number of transmit antennas.

3. From an implementational viewpoint, we wish to
highlight a beneficial property of the recursively defined
modal matrices Vk and Wk: The elements take values
from {−1, 0, 1}. Thus, the diagonalization of the virtual
channel matrix can be realized without multipliers.

Appendix A

Proof of Theorem 1: All properties are shown by induc-
tion. The results for k=1 are easily obtained by inserting
the initial values for all matrices involved. Starting with
a joint proof of property (3) and (4). In order to get a
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simpler notation in the following we drop the indices (k-
1) and (i,j). Inserting the recursions for Wk,Vk and Xk

into property (3) yields

WT
k X(i,j)

k Wk + VT
k X(i,j)

k Vk =
(

α11 α12

α21 α22

)

α11 =α22=2
[
WT (X− X̃)W + VT (X− X̃)V

]

+2
[
WT (Y − Ỹ)V −VT (Y − Ỹ)W

]

α12 =α21=0

Here, X,X̃,Y and Ỹ denote X(i1,j1), X(i2,j2), Y(i1,j2)

and Y(i2,j1), respectively. Property (4) yields:

WT
k Y(i,j)

k Vk −VT
k Y(i,j)

k Wk =
(

β11 β12

β21 β22

)

β11 =−β22=2
[
WT (Y + Ỹ)V −VT (Y + Ỹ)W

]

−2
[
WT (X− X̃)W + VT (X− X̃)V

]

β12 =β21=0

Here, X,X̃,Y and Ỹ denote X(i1,j2), X(i2,j1), Y(i1,j1)

and Y(i2,j2), respectively. We jointly show that property
(3) and (4) hold for the (k)-step under the assumption
of fulfilling the properties for the (k-1)-step. If both
properties (3) and (4) are fulfill for the (k-1)-step, the
variables α11, α22, β11 and β22 become the zero matrix
0 either.

Property (5) is shown in same way:

WT
k A(i)

k Vk −VT
k A(i)

k Wk =
(

γ11 γ12

γ21 γ22

)

γ11 =−γ22=2

=0 with Property (5)︷ ︸︸ ︷[
WT (A(i1)+A(i2))V−VT (A(i1)+A(i2))W

]

−2
[
WT X(i1,i2)W + VT X(i1,i2)V

]

︸ ︷︷ ︸
=0 with Property (3)

γ12 =γ21=0

Property (6) and Property (7) have to be shown jointly.
Starting with (6):

WT
k X(i,j)

k Vk −VT
k X(i,j)

k Wk =
(

δ11 δ12

δ21 δ22

)

δ11 = −δ22=2

=2k−1(ΛX−ΛX̃) with property (6)︷ ︸︸ ︷[
WT (X− X̃)V −VT (X− X̃)W

]

−2
[
VT (Y − Ỹ)V + WT (Y − Ỹ)W

]

︸ ︷︷ ︸
=2k−1(ΛY−ΛỸ) with property (7)

δ12 =δ21=0

Here, X,X̃,Y and Ỹ denote X(i1,j1), X(i2,j2), Y(i1,j2)

and Y(i2,j1), respectively. Property (7) yields:

WT
k Y(i,j)

k Wk + VT
k Y(i,j)

k Vk =
(

ε11 ε12

ε21 ε22

)

ε11 =ε22=2

=2k−1(ΛY+ΛỸ) with property (7)︷ ︸︸ ︷[
WT (Y + Ỹ)W + VT (Y + Ỹ)V

]

+2
[
WT (X + X̃)V −VT (X + X̃)W

]

︸ ︷︷ ︸
=2k−1(ΛX+ΛX̃) with property (6)

ε12 =ε21=0

Here, X,X̃,Y and Ỹ denote X(i1,j2), X(i2,j1), Y(i1,j1)

and Y(i2,j2), respectively. We jointly show that property
(6) and (7) hold for the (k)-step under the assumption
of fulfilling the properties for the (k-1)-step. If both
properties (6) and (7) are fulfill for the (k-1)-step, the
variables δ11, δ22, ε11 and ε22 changes to the values
indicated by the brackets. Thus, the following recursion
hold for Λ

X
(i,j)
k

:

Λ
X

(i,j)
k

=
(

ΛX−ΛX̃−ΛY+ΛỸ 0
0 −(ΛX−ΛX̃−ΛY+ΛỸ)

)

(X,X̃,Y and Ỹ denote X(i1,j1), X(i2,j2), Y(i1,j2) and
Y(i2,j1), respectively.) and for Λ

Y
(i,j)
k

Λ
Y

(i,j)
k

=
(

ΛY+ΛỸ+ΛX+ΛX̃ 0
0 ΛY+ΛỸ+ΛX+ΛX̃)

)

(X,X̃,Y and Ỹ denote X(i1,j2), X(i2,j1), Y(i1,j1) and
Y(i2,j2), respectively.) Finally, we can proof the proper-
ties (1) and (2) jointly by inserting the recursion formula
for A(i)

k . With the aid of the above proven properties
(3) - (7) it is easy to show that the properties (1) and
(2) hold. The result of the proof is a practical recursion
for Λ

A
(i)
k

:

Λ
A

(i)
k

=

(
Λ

A
(i1)
k−1

+Λ
A

(i2)
k−1

+Λ
X

(i1,i2)
k−1

0

0 Λ
A

(i1)
k−1

+Λ
A

(i2)
k−1

+Λ
X

(i1,i2)
k−1

)
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