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Abstract

In this paper a comparison of adaptive IIR filters with gra-
dient based adaptation algorithms is presented. The classifica-
tion structure employed clearly illustrates the relationships of
the algorithms to each other; additionally, other new feasible
filter methodologies for further investigation become revealed.
All algorithms were implemented on a Motorola 56001. Cor-
rect normalization of the adaptation stepsize played a critical
role in the results, which were obtained by real time measure-
ments. Only the SHARF(Simple Hyperstable Adaptive Recur-
sive Filter) and BRLMS(Bias Remedy LMS) algorithms fulfill
the requirements of a low cost hybrid echo canceller.

1 Introduction

The disturbing phenomenon of hybrids in telephone net-
works is the occurence of unavoidable electric echoes. On
the one hand, these echoes may disturb the local speaker;
on the other hand, in long distance calls the energy of the
echo may largely exceed the energy of the subscriber’s
signal and thus cause severe quantization problems with
the A/D converter which follows the hybrid. Echo can-
cellation is desired to minimize the impact of imperfect
conditions at the hybrid and to ensure a natural speak-
ing environment. Since every new telephone connection
changes the transfer function of any given echo path,
the echo canceller must be adaptive. The least mean
square (LMS) algorithm is commonly used together with
a transversal filter because of its well-understood, favor-
able properties, e.g., guaranteed stability, an unimodal
error surface structure, and easy implementation [1,2].

Linear electronic circuits, in this context, hybrids, are
known to have impulse responses that are sums of ex-
ponentials, which suggests a recursive model {3]. With
feedback it is possible to realize a long-duration impulse
response with a lower order filter than if a transversal
filter were used. This together with the appeal of a bet-
ter, or even an exact, model has provided the impetus for
exploring the possibilities of adaptive IIR filters.

During the last few years several ideas based on IIR
filters were proposed as solutions to the echo problem. Of
these algorithms, several have recently been implemented
on a fixed point DSP and tested on the Motorola 56001.

*The author is now with Electronic Tools, Zum Blauen See 7,
D-4030 Ratingen.

This paper compares the real-time behavior and empha-
sizes those algorithms with promising performances. In
particular, the following algorithms were investigated:
Series Parallel LMS (SP-LMS) [4], Equation Error For-
mulation (EEF-LMS) [5], Bias Remedy LMS (BR-LMS)
6], Alternate Filtering Mode (AFM) [7], Simple Hyper-
stable Adaptive Recursive Filter (SHARF') [8], and Nor-
malized LMS (NLMS), which served as a FIR comparison

case.

2 Gradient Based Algorithms

To easily illustrate the commonalities and differences of
the various algorithms, the model in Figure 1 will be
utilized.
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Figure 1: Adaptive filter structure for echo cancelling

For all algorithms two sets of coefficients, one for the
transversal and one for the recursive part of the model,
are used to estimate the echo path. In the case of NLMS,
the set of recursive coefficients is empty. The investigated
adaptation algorithms can all be expressed in the same
manner. The estimated coefficients ®(n) are adapted in
the direction of the negative error gradient that is pro-
portional to a vector ¥(n):
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@n + 1) = dB(n) + pln)enl(n) (1)

where p(n}) is the stepsize and e,{n) is the adaptation er-
ror at time n, which will be described later in this section.
The variables used in this paper are defined as follows:
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As can be seen in Figure I, w(n) and d(n) are the input
and output signals, respectively, of the hybrid. The coef-
ficient vectors W(n) and w(n) each consist of M, + M+ 1
elements (M, and M; + 1 elements for the recursive and
transversal parts, respectively). In [3] it is shown that
M, = 3 and M, = 8 is a good choice, and these values
were used in the algorithms described here except for the
NLMS, for which M, = 0 and M; = 31 were used. The
signal n(n) stands for the subscriber’s speech but can
also be seen as a perturbation like noise, interchannel
interference, or signalling impulses.

With this paper’s notation, 20 different gradient based
algorithm are possible, depending on gradient and adap-
tation error assumptions. Table 1 illustrates these possi-
bilities and shows the algorithms already reported upon.
Many new algorithms reveal themselves from this pre-

gradient $(n)
€5 Ty T Tfo T fe T
e, | Feintuch’s Stearns” AFM
€ | $P-,EEF-LMS BRLMS
ego | SHARF
Efe

Table 1: Possibilities for gradient based algorithms.

sentation. Feintuch’s [9] and Stearns™algorithms [10] are
not, further examined. .

The stepsize g was replaced with a normalized stepsize
a/norm{n} because of the following considerations:

1. Fhe behavior of the algorithm should be indepen-
dent of the input signal power. The expectation of
Y (n)g(n) as well as of e3(n) are proportional to
the input power. Therefore, every norm that is pro-
portional to the input power can be used.

2. The stepsize of the various algorithms should be
comparable.

3. Within the normalization an improvement of the al-
gorithm performance is possible. For example, the
NLMS algorithm is known to be superior in com-
parison to the unnormalized LMS -algorithm{11].

In general, it is not easy to give the best choice of the
norm for every algorithm in Table 1. In some of the liter-
ature norms are stated; see, for example, those used for
AFM [12] and BREMS [6}. The norm for SP- and EEF-
LMS: uses the same justification as that for the NLMS
algorithm. However, to be more general a derivation for
two cases is: given here: For the two. algonthms in which
the gradxent and error product results in a e.(n} "n)
term, for ¢ = {o,e}, the norm is given by z¥ (n)z:i(n
The motivation for this choice is as follows. Suppose
that the adaptation is done by:

(n + 1) = d(n) + p(n)d(n) - FF a)lzn)  (17)
With the error vector e{n} = w ~ B(n},

e(n)— p(n)zi(n)zf (n)e(n)

p(m)w” (2ln) — zln)) + n(n)lzln} (18)
[ - p(n)zi(n)a] (n)]e(n)

)l (z(n) - z(n)) + n(n)lz(n). (19)

If the norm for the stepsize u(n) is chosen to be z7 (n)z(n),
the matrix f( o) is obtained in Eq, 19 and this ma-
trix has the property that its eigenvalues equal either zero
or one. For adaptation it is further assumed that reduec-
ing the error vector also decreases the difference between
the input vector z(n) and the vector z/{n}). The square
of the Ly-norm of the error vector s a Ljapunov func-
tion for a certain choice of the stepswe a. Because of the

idempotence of the matrix :é(‘:n}:. & the following results:

en+ 1}
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with the abbreviation A{n) = wT(z(n} — zi(n)) + n(n).

Taking the expectation of both sides of Eq. 20 leads fo a
simpler equation for which the linear term in ¢(n) can be

~ 1542 -



neglected. The expectation E[ef(n)z{n)] = Elei(n)] is
zero, because it is supposed that the input sequence has
zero mean. The matrix E [: 8)’:(:)] is positive semidef-
inite with eigenvalues between zero and one. Therefore,
for v(n) = E[e7(n)e(n)] the following inequality is ob-
tained:
A’(n)
2_-_——
v(n+1) < (1 - a2 —a)(n)+a Tz
which is true for 0 < a < 2. Since the term A%(n) is
also dependent on v(n), stability is generally found for a
stepsize o much lower than two.

(21)

The norm for SHARF is chosen equal to zZ (n)z,(n).
Following the prove of stability in [13] it is possible to
show that with this norm the algorithm also fulfils the
hyperstability properties.

Not only the gradient and the adaptation error e,(n)
differ amongst the several algorithms, but also the output
signal s,(n), since it is chosen to equal either the output
error e,(n) or the equation error e.(n). Table 2 expands
upon Table 1 by further specifying the signal choices used
for the output error and the norm.

3 Measurement Results

All these algorithms were implemented on the Motorola
56001 fixed-point DSP. In Table 3 the results of the mea-
surements and the advantages/disadvantages of the de-
scribed algorithms are listed. The measurements were
made with a white random process as excitation. The
differences resulting from using speech signals as exci-
tation are discussed later. All real-time measurements
contained a noise disturbance n(n) at the location indi-
cated in Figure 1. Usually the noise power was relatively
low and influenced the steady state values. The case of
subscriber’s speech in n(n) is discussed at the end of the
section.

Echo Return Loss Enhancement (ERLE) is defined as
—10log g[;—:ﬂ-((%}% in dB. Because of the difficulties in cal-
culating expectation values in real time measurements,
short-time averaged values were taken instead. The val-
ues in the ERLE column reflect the variation range of the
steady state values when the algorithms were subjected
to different connections, which were short (100m), long
(9km), and in-house calls. In-house calls led to the best

Algorithm | s,(n) | es(n) P(n) norm(n)
NLMS | ec(n) | ec(n) z.(n) 2 (n)z.(n)
SP-LMS | ex(n) | ec(n) z,(n) 27 (n)z(n)
EEF-LMS | e,(n) | e.(n) z.(n) 2l (n)zo(n)
BRLMS | eo(n) | e(n) | zo(n) — m(n)es(n) | (1+27(n))z7 (n)z.(n)
AFM eo(n) | eo(n) zso(n) zf,(n)zso(n)
SHARF | eo(n) | es0(n) z,(n) 7 (n)zo(n)

Table 2: The algorithms as defined by their particular variable

choices.

Algorithm | Time a | bias | convergence stability ERLE remarks

NLMS < 100ms 1 no yes sure 12 — 26dB

SP-LMS | < 100ms 1 yes yes reached 14 — 294dB

EEF-LMS | < 100ms yes yes reached 7—22dB

BRLMS < 100ms | 0.125 | no yes reached 9—21dB

AFM <ls 0.01 | no no reached only | 3 —23dB often
with low noise instable

SHARF < 100ms 1 no yes reached 8 —23dB | difficult to

specify ¢;
Table 3: Algorithm properties and implementation results.
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results because of correct impedances on the subscriber
side.

Adaptation time is specified as the time from the be-
ginning of the adaptation until the output error signal
34(n) has reached its “steady state” value. The adapta-
tion time depends strongly upon the choice of the con-
stant a. In the cases of BRLMS and AFM a low stepsize
is mecessary to aveid instability. The adaptation time
of the BRLMS algorithm with speech as excitation is a
few hundred milliseconds; that of AFM is even slower be-
cause an even smaller & must be used to avoid instability.

LMS based algorithms for IIR filters always have a
bias in the estimated coefficients [5], which can lead to
instability; consequently, only bias-free methods are fur-
ther compared.

In the above table convergence and stability refer to
different conditions. Convergence implies that the algo-
rithm ensures that the coefficients move to a fixed point in
the parameter space, whereas stability specifies that this
point is a stable filter point. In the SHARF algorithm
only one coefficent ¢; for the output error filtering was
used. The size of this coefficient was found heuristically
and cannot be proven fo be appropriate for all hybrid
wire combinations. The BRLMS and SHARF algorithms
show only infrequently instable behavior, which can yet
be decreased by two supplements to the algorithms.

Because of parameter drift [14], it is useful to have
a leakage compensation in the algorithms. Furthermore,
& double tall detector is implemented to set the step-
size @ to zero when the subscriber is speaking, All al-
gorithms were tested, when the subscriber was speaking.
With an double talk detector the adaptation time can
substantially increase, because adaptation is performed
only during breaks in the subscriber’s speech. However,
the steady state ERLE values, once reached, typically
decrease less than one dB or two. With these two addi-
tions the behavior of the algorithms is much improved,
such that additional monitoring to guarantee stability is
no longer necessary.

In the case of AFM, which in spite of & low stepsize,
often tends to become instable, using leakage compen-
sation and a double talk detector slightly improves the
behavior but still does not eliminate the instable ten-
dency. Monitoring, however, is not an attractive solution
because the different corrections often corrupt the speech
signal to an audibly disturbing degree.

4 Conclusion

In conclusion, together with. coefficient leakage compen-

sation and a.double talk detector; the BREMS and SHARF
algorithms are the two most: stable of the implemented

IIR algorithms. With the additional advantages of bias-

free coefficients and ERLE in the vicinity of 22dB, these:

two: algorithms appear to be the most appropriate for

compensation of hybrid echoes.
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