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The Behavior of LMS and NLMS Algorithms in the
Presence of Spherically Invariant Processes

Markus Rupp

Abstract—In this paper, the behavior of the least mean square
(LMS) and normalized least mean square (NLMS) algorithms
with spherically invariant random processes (SIRP’s) as exci-
tation is shown. SIRP’s are of particular interest because many
random processes fall under this category and SIRP’s closely
resemble speech signals. Consequently, it is of great interest to
know the influence of SIRP’s on the stability and convergence
speed of stochastic gradient algorithms. The properties of
SIRP’s and the methods used in this paper are not restricted to
LMS and NLMS algorithms but also allow a deeper insight into
the behavior of some derivatives of the LMS algorithm.

I. INTRODUCTION

INCE the derivation of the least mean square (LMS)

algorithm by Widrow and Hoff in 1960, many authors
have published the properties of this algorithm and its
normalized version. However, all the authors have uti-
lized simplifications like those used by Gardner 5] in
1984 which are appropriate only for several practical ap-
plications. In the last few years, more precise calculations
of the behavior have been published. After Feuer and
Weinstein [4] in 1985 published the calculation of the
LMS algorithm behavior for Gaussian input sequences,
Nitzberg [12], [13] showed in 1985 the behavior of the
first moment of the weight-error vector in the normalized
least mean square (NLMS) algorithm, and in 1986 Ber-
shad [1] demonstrated the behavior of the second mo-
ments for the same excitation signal. Unfortunately, most
analyses utilized either the properties of the Gaussian den-
sity function, making it such that the calculations could
not be modified for other random processes, or the anal-
yses used identically independent distributions in order to
simplify the calculations.

It has not been clear until recently how the algorithms
perform with a speech signal as input. Brehm [2], [3] and
Stammler [14] have shown that the statistical properties
of speech signals are well described by spherically invari-
ant random processes (SIRP’s). By incorporating SIRP’s
within the LMS/NLMS algorithm analyses, not only is
the scope of the analyses broadened to include a larger
class of random processes, but the results are germane to
speech applications.

Since not every reader may have been exposed to
SIRP’s, the most important properties of these random
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processes pertinent to this article are summarized in the
following section. In the third section the LMS algorithm
is introduced, and the first- and second-order moments of
the weight-error vector €(n) = wp — w(n) between the
Wiener solution w, and the estimated solution w(n) are
shown. The behavior of the NLMS algorithm is derived
in Sections IV and V in which the first- and second-order
moments of the weight-error vector € (n) are, respectively,
calculated. After a verification of the results with the al-
ready known results for a white noise process and a col-
ored Gaussian process as input sequences, some simula-
tion results with a Ko-process are shown in Section VI.
The article ends with a conclusion in Section VIL

II. SIRP’s

A common problem in the field of signal processing is
to describe the behavior of algorithms in the presence of
speech signals. Gaussian properties do not adequately
model speech signals but are often suitable for calculation
purposes. The use of special one-dimensional probability
density functions (pdf’s) like K, Laplace, or gamma has
led to a better description but has also suffered from being
ambiguous with respect to the higher dimensional joint
density functions. However, Brehm and Stammler [3]
have shown that spherically invariant processes very suit-
ably describe speech signals. This class of stationary ran-
dom processes is characterized by having a multivariate
density function that depends only on a radius r. How-
ever, a more characteristic property of these random pro-
cesses is that all joint density functions are computable
utilizing only the one-dimensional density function. Ex-
periments have shown that speech signals do in fact ex-
hibit these properties, especially the bivariate density
function.

Because SIRP’s are not well known, some important
properties are listed here. A good tutorial is [3] where
more references about SIRP’s can be obtained and the
generation of synthetical SIRP’s with the desired density
function and autocorrelation function (ACF) is also de-
scribed. In speech signals the density functions are not
spherically but elliptically invariant which can be repre-
sented by a correlated SIRP. The density function of a
correlated SIRP u(n) of order M, can be presented as in
the following equation:
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Here f(-, M) is a function that describes an uncorrelated
SIRP of order M, and R, is the autocorrelation matrix.

Thus, to model the speech signal of a certain speaker,
it is only necessary to measure the ACF and the one-di-
mensional density function. The latter can generally be
described by a G-function. These generalizations of hy-
pergeometric functions, introduced in 1936 by Meijer [7],
fit very well the measured density functions of speech.
The G class of functions, which includes the Gaussian,
Ky, Laplace, and gamma densities, was especially suit-
able. The Gaussian density function differs from the oth-
ers in that it is the only ergodic spherically invariant pro-
cess. The other density functions describe nonergodic
processes (e.g., observed speech signals).

The first-order moments of the processes considered
here are all assumed to be zero. Without any loss of gen-
erality, the correlated random process u (n) can be consid-
ered as a linear transformation A of an uncorrelated pro-
cess x(n) of the same order M:

u(n) = Ax(n). 2.2)

Furthermore, it is assumed that the variance o2 of every
element of the uncorrelated process x(n) is the same and
equals one (without any loss of generality). However, the
elements of the uncorrelated process are not independent
identically distributed (except for the Gaussian process)
as is sometimes assumed in several derivations. The ACF
matrix R,, can then be obtained by R,, = AA”. Let Q be
an orthogonal matrix' that diagonalizes R,, O'R,,Q = A.
The elements of the diagonal matrix A are the eigenvalues
of the ACF matrix. Q7 can also diagonal-
ize 4, i.e., QT4 = A'/2.

SIRP’s can be represented as statistically independent
with the usage of spherical coordinates. Hereby, the
Cartesian coordinates ET = (x;, * * -, xp) are substituted

by spherical coordinates QT = (r, QT), where r? = x'x
and the angles have the following relations:
o = (b, s Sy (2.3a)
M-1
Xy =r II sin o} (2.3b)
=1
M—k
X =rcos (bpyeq-p) ,H] sin ¢;;
i=
ke@,M-1) (2.3¢)
Xy = I COS @
¢ €[~ 7];
and fork =2 .-+ M — 1: ¢, € [0, 7]
(2.3d)
M-2 _
Ayl ="V I1 ingp¥ ™'/ = M= A(¢)
j=1

(2.3e)

'In the case that the process is complex, Q is a unitary matrix.
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d.& - rMA] A(Q) de = rM—'] drA(Q) d?
(2.3f)

Equation (2.3e) is the determinant of the Jacobian matrix.
Because of the symmetry of the joint density functions of
the uncorrelated process, it is easy to show that all mo-
ments that contain at least one uneven order equal zero,
e.g., the first or third moments.

III. BEHAVIOR OF LMS ALGORITHM

Let u(n) be a correlated input sequence and w(n) the
tap weights of a linear combiner. The LMS algorithm can
then be stated as

e(n) =dmn — wn)'u®)

win + 1) = wn) + pulnje(n). 3.1

Hereby, e(n) is the error of the desired output d(n) and
the estimated process w(n) u(n), and p is the step size.
The following derivations apply for the general linear
combiner case, a special case of which is the transversal
filter (often used in speech applications). Building a
weight-error vector e(n) = wy — w(n) and using the ex-
pectation operator and the independence theory [11],% the
following vector equation results:

Ele(n + DI = (I — pRy,)Ele(n)]. (3.2)

Expressing the ACF matrix R, in terms of uncor-
related x(n) as in (2.2), and using the orthogonal matrix
Q for diagonalization, (3.2) becomes finally Ele(n +
D] = Qd — uNQ'E [e(n)]. Stability is then guaranteed
for every step-size u that satisfies the inequality 0 < p <
2 /Amax> Where N, is the largest of the eigenvalues \; of
the ACF matrix R,,. This does not guarantee the stability
of the complete algorithm, and therefore, convergence of
the second-order moments of the error signal is desired.
The desired d(n) is describable by a linearly predictable
component of order M and a second part ey(n) which is
not linearly predictable for order M:

d(n) = wou(n) — eyn). (3.3)

The first-order moment of ey(n) is assumed to be zero,
and the second moment shall be called the minimum
mean-squared error of the Wiener solution:

Eley(m)] = 0
E[e(z)(n)] = Jmin'

Solving for the second-order moment of the error signal,
there is a relation between the expectation of the squared
error and the covariance matrix of the weight-error vec-
tor:

(3.4)
(3.5)

E[€(m)] = tr RuE[eMe M) + Jun  (3.6)

*The independence theory [6] is commonly used in which the input vec-
tor sequence u (n) is regarded as statistically independent. This can be true
in the linear combiner case, whereas in the transversal filter case it is usu-
ally wrong. However, experiments often show good agreement with this
assumption even in the case where the assumption fails.
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The trace term is to be minimized in order to minimize
E[é*(n)]. Let K(n) = E[e(n)€e’(n)] be the covariance ma-
trix of the weight-error vector. K(n) can then be ex-
pressed as a recursion:

Kn+ 1) =E[ — pumyu’m)Kn)(I — pun)u’(n)]
+ WElu(nyu’ (n)ejn)]. (3.7)

The terms (I — pu(m)u’(W)e(mu’(n) d(n) and u(n)
efmd - ug(n)gr(n)) d(n) are neglected since their ex-
pectation is zero. For the second term on the right-hand
side in (3.7), it is assumed that ey(rn) is uncorrelated with
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K (n) can finally be expressed as
Kin+ 1) =Kmn — pR,K@n) — pK(mR,
+ wW’mP? QR,K(M R, + tr (Z(n)R,,

+ A diag Zm)A'(y = 3)

+ R min- (3.13)

For SIRP’s y always equals three, and the term (y — 3)
can thus be omitted. To prove this, the moments are writ-
ten in spherical integral form neglecting all parts that are
equal:

e Mea T vl M—-1 M-1M+1
cos” ¢, sin d: S sin d —

m® ~ So 1 ¢\ do, . ¢, do, 1-2 m + TR .
2,2) — T T = = 3,

my 2, M S 2 . . M—3 M—-1 M-1M+1 M=-2

d d - 1 —
So cos” @, sin” @, do, . cos” ¢, sin ¢, do, < M M M+2 M- 1
(3.14)

the input process u(n), which is a correct assumption for
sufficient order M. The second term of (3.7) is then sim-
plified to p’Efu(n)u’(n)ed(n)] = p’RuJmn. After also
solving the first term, (3.7) can be expressed as

K(n+1)=K@n — puKMmR, — uR.K®n)
+ WPElu(myu’(n) K (nyu(n)yu'(n)]

+ 1R min- (3.8)

Now consider the term with K (n) that is proportional to
u’. After replacing u(n) by the decorrelated process x (n)
and using the abbreviation Z(n) = ATK (n) A with respect
to spherically invariant processes, the following results:

Elx(mx ) Zmxn)x"(n)];; (3.9a)
= 20 2 EL (m) 10 Zy () x, (), (w)] (3.9b)
2m§2'2)Z,«](n); fori #j
|z, + 2 ZaomY fori = j
(3.9c).
where?
m@? = Elx;(n)xjm]; fork #1 (3.10a)
m® = E[x};(n)]. (3.10b)
Defining v and diag (Z(n)) as
m®
Y = m 3.11)
Zy@ny O
diag (Z(n)) = ) (3.12)
0 Zym(n)

3For the Gaussian case m>? is one, but all other SIRP’s have a second
second moment greater than one.

A very similar derivation shows that the quotient of the
normalized fourth-order moment m}  and its joint fourth-
order moment counterpart m} >?, both of which are used
in the NLMS algorithm case, also equals three. Using
QTK(n)Q = C(n) and diagonalization with the matrix Q
leads to

Cin+ 1) = Cn) — pAC(n) — uCM) A
+ @2m>PQRAC)A + tr (AC(n)A)

+ “2A‘]min' (315)
Because all terms on the main diagonal of C(n + 1) de-
pend only on terms of the main diagonal of C(n), these
terms can be written in a vector c¢(n). Thus, (3.15) can be
expressed using a vector ¢(n + 1), where

c(n + 1) = Bc(n) + p’ N (3.16)

The vector A is filled with the eigenvalues from the di-
agonal matrix A. The entries of B are

B = {“zm(xz'a)\ixﬁ i+

) a2 R € V)]
1 — 2uN + 3 mE PN i=j.

With the theorem of Gershgorin, it can be shown that the
algorithm is stable when the step-size p satisfies the fol-
lowing inequality:

2 1

u < 3 R meD (3.18)
For a Gaussian process the inequality is the same result
as that from Feuer and Weinstein [4]. The limit in (3.18)
should not mislead the reader; in the transversal filter case
when the input sequence is strongly correlated, the step-
size u has to be much smaller because the independence
assumption no longer holds.

To complete the calculations, the relative system mis-
match S, (n) and the average excess mean-squared error
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is given:
Elem)e(n)]

Su® = Fle 07Ol

(3.19a)

B0 + pin = BT = BYM,,
- tr (C(0)) '

(3.19b)

The final system mismatch can be calculated by using the
matrix inversion lemma:
M

1
i =11 = pmdPN
St () = Tw“ i (3.20)
WMo e N
0 - pm@N

In the same way the average excess mean-squared error
is obtained:

E[éX(®)] = tr (RuK (%)) + Juin (3.21a)
M \,
i1 1 — pm®PN
= H'Jmm M“ - )\
2 — 2.2) Z i
M AT = um&IN;
+ Juin- (3.21b)
For small step-sizes p the term 1 — ;me‘z) Ni = 1, and in
the presence of a Gaussian process (m> = 1) the aver-
age excess mean-squared error simplifies to
M
2N
E[€()] = plpn — 57— + Juin  (3:22)
2 - Z.‘;l N

which is also given in [8]. Equation (3.21b) leads to a
more stringent bound for the step-size u then (3.18). To
limit the average excess mean-squared error the following

two conditions for all i = 1 - -+ - M have to be satisfied:
|
0< pu < QG537 .
M CEY (3.23a)
a A
2.2) i

Since the largest eigenvalue N8 of the matrix B deter-
mines the convergence speed, it is of greatest interest. It
is bounded by

1= 2Ny + 268mE N < Moo (3.24)

If only the linear terms in p are considered, it is possible
to give an estimate for NP dependent on the eigenvalue
ratio X = >‘mau(/)\mim
uMo,
M-1+x

uMo,,
1+ M - Dy

(3.25)

1-2 =\® <1-2

IV. BEHAVIOR OF THE FIRST-ORDER MOMENTS OF
NLMS ALGORITHM

The step-size u in (3.1) is replaced with a step-size o
and a normalizing term:

o

u'(mun) -1

u =
This leads to a new recursive equation for the expectation
of the weight-error vector € (n):

u(mu’(n)

Ele(n + D] = E|:I - am

} Efe(m]

un)

_ =\ T
o E{gr(n)y(n) (d(m) _VEOE(n))}-

4.2)

Two terms are of particular interest: first, the normalized
ACF term, and second, the error term at the end.

In the following investigations the usage of the matrices
A(B) and L = L(B), which are dependent on a scalar f3,
proved to be useful. The two matrices are related as fol-
lows:

L) = AB®ABT
= R +28D)7"

(4.3)
(4.3b)

where I is the identity matrix. As can be seen, for3 =0,
(4.3b) reduces to the ACF matrix. It is desired to solve
the expectation of the normalized matrix:

N [u(n) yT(n)}

w = E| ) @4

To facilitate this, a function F;;(8) is introduced:
Sﬁ OF;;(x) 0

© dax

F;(®)

1 S (uu")
M2 Jdet Ry Yo Y Wl
- Mtimes

 f(u'L 7', M) du 4.5)
where f (-, M) is a function that depends only on a scalar,
the radius r of the SIRP. Thus, for 3 = 0 corresponding
to L(0) = R, F;;(0) is the i, jth element of the normal-
ized ACF matrix.

The next step is to differentiate Fj; (B) with respect to 8
and to describe the correlated process u(n) with an un-
correlated process x(n) and a matrix A(B). In Appendix
A it is shown that under the condition

lim s"/2f(s, M) — s"/2f (s, M)|;—o = 0 (4.6)

5§

F;;(8) can be written for spherically invariant processes

as
dFyB) | dee @
a8 NdetRw)

4.7
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Therefore, the matrix Q that diagonalizes the ACF matrix
also diagonalizes the normalized ACF matrix

® -1 -1
FO) = 0 S (A7 + 28I)

B0’
0 M
,Lgl (1 + 28N\

= QAYQ" (4.8)

where A" is the normalized eigenvalue matrix. This is the
same result as Bershad’s [1] for Gaussian processes. So it
can be seen that every spherically invariant process leads
to the same normalized ACF matrix that depends only on
the eigenvalues and no longer on the density function.

Continuing with the concept of Appendix A and the
methods of [1], it can be shown that the second term in
(4.2) equals zero. Because all normalized eigenvalues are
less than one, stability is guaranteed for 0 < o < 2. The
integral in (4.8) is particularly significant and justifies
close examination. Every eigenvalue A is transformed into
its normalized counterpart X! by

A = r \; dB
! 0

= .
(1 + 28N\) III (1 + 28\)
\[,:

This elliptical integral is rather difficult to solve in the
general case, but with the help of Schwarz’ inequality an
estimate is obtained (see Appendix B):

4.9

M M2
M < \/4 Z] ——————In\;.  (4.10)
i
=\
k:II‘IW (N = M)

This inequality is very useful. When the eigenvalue spread
is not too large (a typical value is less than 100), the so-
lutions are very exact. But the most important concept is
that the ordering sequence of the eigenvalues holds: i.e.,
if the eigenvalues are ordered and numbered according to
increasing value (A\pin = N < Ny <+ - < Aoy < Ay
= Amax), after the transformation the normalized eigen-
values will also remain in increasing order (A, = A <
N<- < oo, < Ny = AN ). This can be illustrated
by the differences between two neighboring eigenvalues.
The quotient of the difference A of the eigenvalues and
A" of the normalized eigenvalues is always positive. An
estimation for the difference between the largest and the
smallest normalized eigenvalue (AY,, — AN, is as fol-
lows:

— D= AN - N2
M+2(X ) max 1l

(4.11)

where ¥ is the eigenvalue spread of the ACF matrix R,,.
Equation (4.11) suggests the superiority of the NLMS
over the LMS algorithm. The normalized eigenvalue
spread is approximately only the square root of the eigen-
value spread.
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V. THE BEHAVIOR OF THE SECOND-ORDER MOMENTS
OF THE NLMS ALGORITHM

The calculations for the second order moments of the
weight-error vector €(n) proved to be very similar to the
second-order case of the LMS algorithm. Using the same
abbreviations as in Section III,

g(n)g’(n))

*dmumn

< u(nyu'(n)
CKm (I - «a ———)]

w'(nyu(n)

Kn+ 1) = E{(I -

. ZE[ u(nyu'(n) ]J_
*El @ mamumum ™
(5.1

The last term describes the behavior of the minimal er-
ror term and can be solved, if the following conditions for
the pdf are satisfied:

lim sM/? f G M) _ mp2 af (s, M)
s o ds ds =0

(5.2a)

lim s™/2-1f(s, M)y — sMP7 f(s, M)|;_p = O.

s

(5.2b)

The calculations are similar to those in Appendix A. Us-
ing the zeroth order normalized moment

1
N©O) _
™ ELcT(n):_dn)} G-
the term reads as
u(n)u'(n) ]
[_ET(n)y(n)yT(n)y(n)
=M -2m!?Q
S“‘ §°" (A" +28,)" dB, dB; ¢
. Q .
0 JBi=82 M
,/[Il (1 +28:N\)
(5.9

Solving for the first terms in (5.1),
u(nyu'(n) con (1 u(n) ﬂn)ﬂ
EK' e ﬂn)g(n)) ™ < T W mun
= K@) — aR)K(n) — aK(n)Ry,

u(n)u'(n)

" W myun

) {y(n) u'(n)
(07

u'(nyu(n)

}. (5.5)
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Using C(n) = Q'K (n) Q again, the term in o’ can be ex-
pressed in a form very similar to (5.4):

{g(n)gﬁn) u(n)u'(n
dwum y’(n)g(n)}
(A7 +28,D)7"

o[, e
0 JBi=p2 M
JIL @+ B

CeCcmnTt + 2807
+tr (Cm A+ 28,H)7HD) dB, dB,Q".
(5.6)

To prove (5.6), the derivations from Section III and the
methods from Appendix A must be used. It is then nec-
essary to show that the normalized moments

(x (), (x(n))°
N@2.2) _ =\ . . .
e = [ (" mxm) } fori #J
) = E( (Tx(n)i)”‘ }

& mxm)’

show the same dependency as their unnormalized coun-
terparts, i.c., ml® = 3mY®?, independent of the pdf.
Furthermore, it can be shown that

1
o e X

* MM + 2)
which simplifies (5.1) to (5.6) under the conditions
M/2)+1 af (s, M) M/ af (s, M)

(6.7

i
Yin; s ds as s=0 0
(5.8a)
lim sM/2f(s, M) — s"f(s, M)|;_o = 0.
(5.8b)

All conditions (4.6), (5.2a), (5.2b), (5.82) and (5.8b) are
valid for the common density functions (Gaussian, La-
place, gamma, K;). Composing a vector ¢ (n) with diag-
onal terms of C(n) leads to a vector equation similar to

that of the LMS algorithm case:
cn + 1) = Be(n) + &M = Dm{ O N o (5.9)

The vector N is filled with the diagonal terms of the in-
tegral in (5.4), and B is a matrix with the following ele-

The elements of the matrix B determine its eigenvalues
and also the stability bound of «. For the case that all
eigenvalues are equal, it is easy to find a proof for stabil-
ity for the bound o = 2. A general proof is given in Ap-
pendix C where it is shown that for 0 < o < 2, stability
can be guaranteed independent of the eigenvalues. As with
the investigations in Section IIL, it is possible to estimate
the largest eigenvalue N8 of the matrix B. If the terms
in o are dropped and inequality (4.10) is used,
AB = 1 — _Ol__
max \/—ATX_
In contrast to the LMS case, here only the square root of
the eigenvalue spread influences the convergence speed.

(5.11)

VI. EXAMPLES

In this section several examples will be presented,
whereby results of simulations and calculations are com-
pared. Two SIRP’s were used as input sequences: first, a
Gaussian SIRP for comparing already known results, and
second, a K,-SIRP as an approximation of speech signals.
The variance of both processes was chosen to be one. The
equivalent fourth-order moments were three m&? = 1)
and nine (m®? = 3) for the Gaussian and the K, case,
respectively. The SIRP’s were generated by a product
process a{n)n(n) as described in [3]. The first factor
o(n) of this product was a slowly varying Gaussian pro-
cess that was optionally passed through a nonlinearity to
obtain the desired probability density functions. The sec-
ond factor 5 (n) was derived from a white Gaussian pro-
cess colored by a linear filter to obtain the desired ACF.
Both SIRP’s were provided in white and colored versions.
The colored signals were produced by the following re-
cursion:

n(n) = 0.99%49(n — 1) + 0.109w (n) 6.1)

where w(n) was a white Gaussian process. In Fig. 1 a
single realization of the colored K,-SIRP is presented. In
the following examples, a system of order M = 4 was to
be adapted. The cigenvalue ratio of the corresponding
ACF matrix exceeded 1000, which is typical for speech
signals. The output of the system was disturbed with a
white noise (Jin = 107'9).

In the first example a white process with identical ei-
genvalues, i.e., N=AN({fori=1"-"-" M), was used. The
matrix A was therefore N'/2I, and the orthogonal matrix
0 equaled the identity matrix I. First, the eigenvalues of
the first-order moments of the LMS algorithm were in-

ments:
o2 S S Ak df, 4B, ; fori #j
0 B2 M
(A + 280 + 28:0) [T (1 + 280
8 k=1 (5.10)
! 1 - Za)\fv + 3012 g S )\I dﬁl de ) fori = ]
0

82 M
a+ 2ﬁl>\,.)2J;_l (1 + 28,
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T 1
5000 10000

Steps

Fig. 1. Single realization of a SIRP with K, density function.

vestigated. These eigenvalues were equal to (1 — uM)
which resulted in a first bound for the step-size u: 0 <
< 2/\. The eigenvalues describing the convergence of
the second-order moments were not all equal. The com-
ponents of the matrix B were described as

B = iuz)\zmﬁf'z); fori +#j ©6.2)
! 1= 2uN + 32Nm@?;  fori = j.

Defining E as the matrix with all components equal to
one, the matrix B could be rewritten as
B = NmPPE + (1 — 2u\ + 2N P) L (6.3)

Because M — 1 eigenvalues of E were zero and one was
equal to the order M, each eigenvalue of B assumed one
of two values:

1 — 2uN + 202mE 2N
1= 2u\ + M + 2)u2m>IN.

The second value was always the larger and therefore it
determined the behavior of the algorithm. For stability, p
must meet the following condition®:

2

0< < —FHr T A~ 4
ST+ )N 64
It was even possible to derive the optimal step size:
1
Hopt = (6.5)

mEPM + )N

The curves shown in Fig. 2 were obtained by averaging
100 independent trials and depict the first 1000 steps of
the relative system mismatch S,,. The step sizes were

“The stability bound given here is an extension to that in [5]. For general
density functions of white, ergodic processes, the author of [5] derived a
bound depending only on the fourth-order moment. Thus, the results for
the case of a Gaussian process coincide.

chosen to be optimal (x = 1/6 and p = 1/18 for the
Gaussian and the K, cases, respectively). For the LMS
algorithm with colored signals, an analytic calculation was
more difficult, therefore, numerical results were used. The
step sizes remained the same as in the previous simulation
but were not optimal in this case. In Figure 3 the simu-
lation results are depicted.

In the following, the performance of the NLMS algo-
rithm is summarized. For the white processes the nor-
malized eigenvalues \" were all equal. The normalized
ACF matrix RY, equaled (1/M)I, and therefore, the ei-
genvalues responsible for the first-order behavior were 1
— (a/M). Stability was guaranteed for: 0 < a < 2M.
This interval was surely much too large for stabilty of the
second-order moments. Considering the second-order
moments, the entries of B now simplified to

2
o

m; fori #j
B = ) 6.6)
1—2£+—£——-—' fori =j
M~ MM +2) I
As in the LMS algorithm case, two different eigenvalues
resulted:

The second value was the larger one and again determined
the algorithm behavior. It can be seen that in the undis-
turbed case the curve was independent of the density
function (fulfilling some conditions as stated in the Ap-
pendix A), which remained true for colored sequences.
However, in a disturbed environment the steady-state
mismatch depends on the zeroth order normalized mo-
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Fig. 2. Learning curves for LMS algorithm with a white Gaussian (# = pop = 1/6) and K, process (p = Hopt = 1/18).
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Fig. 3. Learning curves for LMS algorithm with a colored Gaussian (u = 1/6) and K, process (u = 1/18), x > 1000.

ment as can be seen in (5.4). The zeroth order normalized
moment is in contrast to a Gaussian process not finite for
a Ky process. In simulations the value for this moment
was obtained by averaging. The results are illustrated in
Fig. 4. Stability was guaranteed for 0 < o < 2, which
coincided exactly with the result known from observed
data. In this case an optimal step-size Qo could be cal-
culated. From the largest eigenvalue 1 — 2(« /M) +
o’ /M, the optimal step size was Qo = 1.

In the fourth example the NLMS algorithm was excited
by colored sequences. In comparison with the LMS al-
gorithm (see Figs. 2 and 3) the difference between white
and colored signals was not so large. The steady-state
mismatch was also larger than in the white signal case.

The results of the simulations and calculations are shown
in Fig. 5.

A comparison of the linear combiner case to the trans-
versal filter has also been performed. Only the NLMS al-
gorithm, which seemed to be superior, was used for ad-
aptation. With the white process no great difference
between transversal filter and linear combiner was found,
whereas in the colored case a greater difference was noted.
It can be inferred that in the colored case the independ-
ence assumption does not hold. Nevertheless, the differ-
ences to the linear combiner were not too large and sta-
bility held also for a step-size « less than two. Therefore,
the concepts stated here can be applied as an approxima-
tion.
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Fig. 5. Learning curves of NLMS algorithm with a colored Gaussian and K, process (o = 1, x > 1000).

VII. CONCLUSIONS AND SUGGESTIONS

Spherically invariant processes (SIRP’s) are character-
ized by their rich mathematical structures and their suit-
ability for modeling speech signals. In the study of LMS
and NLMS algorithms it is therefore of great interest to
examine the behavior of these algorithms in the presence
of SIRP’s. Stability bounds have been derived and a ma-
trix has been presented for which its eigenvalues deter-
mine the adaptation process. It turns out that the behavior
of the LMS algorithm relies essentially on the fourth- and
joint fourth-order moments, whereas the performance of
the NLMS algorithm (with the exception of steady-state
error) is independent of the probability density function.
The method presented in this paper provides a means for
algorithm comparison. For some special cases analytical
expressions for optimal step sizes could be determined.

In contrast to describing behavior by empirical obser-

vation, spherically invariant processes enable one to cal-
culate the behavior of some derived LMS algorithms (see
also [10]), for instance, the signed LMS algorithm and an
LMS algorithm with delayed coefficient update:

win + 1)

w(n) + p,sign (u(n))e(n)
w(n) + ppu(n — D)e(n — D).

win + 1)

The latter appears useful in many applications (see also

[9D.

APPENDIX A

Although the derivations here are similar to those in
[1], they are briefly listed again to point out the extensions
for spherically invariant processes, since Bershad used
exclusively the properties of the Gaussian pdf. It will be
shown under what conditions the function F;;(0) is di-
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agonizable by the same unitary matrix Q as the ACF ma-
trix. The calculation is started with (4.5) from Section IV,

N pep—— Sg
! TM/Z ‘/det (Ruu) e e ETH
- Mtimes

< f(u'L'u, M) du (A.1)

where L = (R;.! + 2B81)~" = A(8)A"(8). In the following
calculations, A(B) is simply written as A, which should
not be confused with 4 (0). Differentiating F;;(8) with re-
spect to 3 leads to

dF;;(8) _ 2 S o S (™),
dB 'IK'M/ZVdCt (Ruu) P -
- Mtimes
CAf(r’, M)
—~—-—ar2 du. (A.2)

Here, the fact is used that u L™ 'u can be written as the
squared radius r2. Substituting the correlated process u ()
by the matrix A and the uncorrelated process x (n) changes
the equation above to

dF;(8) 2 det (A) 4 S S r

= U

dg ™/2Jdet Ry) \ e
- Mtimes

2
. af(r, M) dxd”

ar? - (A.3)

i

The introduction of spherically invariant processes leads
to

M af(r?, M)d
ar?

dr;;(8) _ 2 det (A) 4 Sm
g 7M/2Jdet (R,.) 0

- S e SQ@)@T@)A@ do AT

M — 1times ij
(A.4)

where the vector ¢(¢) = x/r is filled with the sine and
cosine terms from (2.3c) to (2.3d) without the factor r,

and the scalar A(¢) is the product term as defined in

(2.3¢) without r~!. Using the substitution s = r°, the

radial term is

z af(r’, M) 1 S“ af (s, M)
mM+1 Y9SN, T - M2 2020 g
So 4 ar? dr 2 Jo § s g

o

1 M/2
== M
55 S, )0 2

. S sMD=1 (s, M) ds.
0

(A.6)

To eliminate the first term of (A.6), it is necessary that
the density function f (s, M) show a certain property at s
= 0 and at s — o. For the typical density functions,
Gaussian, Laplace, gamma, and K| this condition is ful-

filled:
dFy®) _ -Mde ) | S gx_x;T
x'x

B M det (Ry)

Mtimes

S frt M) dx A"

i

(A.7)

Because the determinant of the matrix A4 is the square root
of the determinant of the matrix L, (A.7) can be expressed
as

dF;@) _ —Nde ) (M
dB Jdet R,) \ ™

XXT
: S S:T—f(rz,M)dgAT (A.8)

X

X i

— /det (L) 4"

= - i

Vdet (Ry,)
Equation (A.9) holds because the term between the two
matrices A and A7 is just the expectation of the normalized
uncorrelated ACF matrix, which is 1 /M times the iden-
tity matrix. Integrating with respect to B leads to the de-
sired result for the matrix:

A~ + 280"

FO) = Q SO —_—
ka}l (1 + 28\

APPENDIX B

(A.9)

dg Q'. (A.10)

The inequality in (4.10) is to be proven. Beginning with
4.9):

AV =

S N dB B.1)

0 M '
(1 + 28\) _Hl (1 + 28N)
iz

Applying Schwarz’ inequality to the square root term and
the rest:

(VY = S

N dB S“ dB
1 + 28N) M
o (L 26007 T (1 +26))
j=

(B.2)

The first integral is simply \;/2. The second integral is
written as a sum:

oo dﬁ _ Soo M Ajdﬁ

— (B3
o j=11+ 28N\ (B.3)

0 M
II a +28N)

j=1
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with
A
A = .

N | OV

T ) (B.4)
JFI

First, (B.3) is solved for a particular fixed i and a finite
limit R,

SR A; dB A;
0 T+ 28N, Rln(l + 2RN\)). (B.5)
Summing all terms forj = 1 - -+ M and increasing R to
infinity,
® M 4.d3 1M2'4 1+ 2RN
X =limz X Zlhh———" (B
So ATy a2 A T ry, B
M M-2
! A
== 2 =—2——1In\. B.7
DA oyt B
j#Ei
Finally, the desired result is:
M-2
(N >\/4 Z ———————In\. (B.§)
I oy=-™
k=1,k#j

AprPENDIX C

The proof for e <
some abbreviations:

2 is still open. For this we introduce

N dB
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Differentiating the equation by 3, leads to the desired re-
sult. After these calculations we can prove the stability
bound for the step-size a. Therefore, the Ly-norm v (n) of
the homogeneous solution ¢, (n) of (5.9) is desired: v (n)
=M, (¢, (n));, where (¢, (n)), denotes the ith element
of the vector ¢, (n). The following is obtained:

M

vin + 1) = v - 2o ;} N (ch(n);
M M
N &(,2} (,Z{ N+ 2>\{7> (ghm»,.)
i= ji=
(C.5)
M
= o - a@ — o) 2 N (em)y (€O

< (1 -a@-aNwrm. (CT7)
The parabola in « lies between zero and one for 0 < «
< 2. The minimum of the parabola is 1 — Y, for o =
1, which is an indication of the optimal step size.
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I

r

AN

0 M
(1 + 28X, \/,Hl (1 + 28\)
iz

C.1

NN dBy dB,

o1
/ o Ja

First it will be shown that the following is true:

M
= 2 N\ + 2\).

j=1

1+ 28,M)A + 28,)N)

(C.3)

Because the integrands in (C.1) and (C.2) are positive,
the normalized eigenvalues are also positive values. The
integrand of (C.3) equals:

A 1

I+ 280

g“’ A < i N 2N
= 2 +
B2 1+ 2\ ﬁl =11+ 2)\_}B| 1 + 2)\161>
) dB,
M (C.4)
\/kl_Il (1 + 28\

(C.2)

M
kI_I] 1+ 28\
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