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ABSTRACT

Cancelling echoes by using the normalized least mean square
(NLMS) algorithm has been state of the art for many years.
In acoustical echo compensation, however, it is common to
estimate more than 1000 parameters resulting in a too s-
low convergence when driven by speech signals. In order
to overcome this drawback, a lot of modifications have been
published in the last years, all having one goal: to decorrelate
the driving process. Beginning with a deterministic approach
we will show that all these different ideas(l, 2, 3, 7, 8, 9, 10
can be arranged in one scheme, allowing a uniform normal-
ization. The different properties of the several algorithms are
then obvious. A comparison of some algorithms with 2N-4N
complexity is presented in the following paper. Surprisingly,
all algorithms do not work perfectly for a big compensator
filter length and speech as input process.

1. Introduction

Hf gradient-based algorithms are used the general adaptation
rule is

wlk +1) = @(k) + p(k)ed (k)(k) (1)
where w(k) are the M estimated coefficients, u(k) is the step-

size parameter, e, (k) the adaptation error and (k) the gra-
dient term, giving the direction of adaptation. If

eo(k) = e(k) = d(k) ~ &7 (k)u(k) (2)

and (k) = wu(k) is used, where u(k) is a vector with
M samples of the driving process and d(k) is the desired
signal, the LMS algorithm is obtained. If the difference
€(k) = (k) - w(k) between the estimated parameter vector
(k) and the searched vector w(k) is considered, a state-space
approach is possible:

ek +1) = (I - p(k)u(k)u” (k)e(k) + p(k)ea(k)u(k). (3)
The error signal can be rearranged to

e(k) = € (k)u(k) - e, (k) (4)

with eo(k) being the additive disturbance (i.e. local speak-
cr). For this state-spacc approach an eigenvalue analysis is
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possible. There exist M — 1 linear independent eigenvectors
orthogonal to u(k). Every corresponding eigenvalue equal-
s one. The last eigenvector is just u(k). Its correspond-
ing eigenvalue A(k) is decisive for the algorithms convergence
speed. Equation (3) leads to:

k) = 1= u(k)uT (R)u(k). (5

Obviously, normalization is done by choosing (NLMS algo-
rithm)

a
Hk) = F o ()

resulting in a time independent eigenvalue A = 1 — o and an
optimal normalized step-size aop: = 1. As a conclusion of
this analysis it can be stated that the NLMS algorithm is ca-
pable to cause fast convergence (i.e. A =0 for a = 1) in one
direction u(k). But for strongly correlated signals like speech
this direction does not change very much, whereas for a white
signal a new direction results with every new input sample.
Similiar to the white process situation algorithms with decor-
relating properties try to find more directions y(k) for every
time instant k in the presence of correlated processes.

2. The Algorithms
2.1. The Concepts

The decorrelation algorithms considered here are charac-
terized by using different values for the adaptation error
€a(k) and the gradient term (k). The several choices are
listed in Table 1. Some algorithms use a filtered version
(k) = Flu(k)) of the input vector u(k) to improve the NLM-
S drawback. The simplest ideas are the Ozeki-Umeda and
the Mboup algorithm. The vector (k) is found by either
filtering the vector sequence u(k) or most simply filtering on-
ly the ncwest element of this vector. But exchanging only
u(k) in the LMS algorithm by a new vector (k) the adap-
tation process may become instable. In order to improve
the situation Acker and Sommen used additional filtering of
the adaptation error signal e,(k). But as will be shown the
improvement works only for small step sizes, resulting in s-
low convergence. Schultheiff, however, found a possibility to
overcome this drawback by filtering the desired signal d(k)
instead of e(k).



Algorithm ea(k) (k) Orthogonality
NLMS e(k) u,(k) no
Ozeki (P=1) | e(k) u,(k) — ﬁﬁﬁé};y‘(k -1) so
Mboup e(k) Flu, (k)] _ co
FA e(k) w(k —i) — ;ﬁﬁﬁ%g(k —-1-1) co
Acker Fle(k = D)] Flu,(k) j co
Sommen Fle(k) Flu, (k) co
Schultheif Fld(k)] — @' (k)Flu(k)] | Flu,(k) vo

Table 1: Choice of e, (k) and ¥(k)

2.2. Normalization

In literature algorithms are usually given with fixed step
sizes. For practical use, however, normalization is necessary
to make the algorithms independent of changings in the in-
put signal level. In [5, 6] it is shown that a good choice
of normalization can cause an enormous improvement of the
convergence speed. Therefore, a good normalization of the
step-size is necessary to compare the various algorithms fair-
ly. Since different values for adaptation error and gradient
term are used, different normalizations lead to optimal eigen-
values. The normalization rules used here can be explained

easily by analysing the algorithms.

3. Analysis of the Algorithms
3.1. Demands

Various algorithms use different concepts to cause decorrela-
tion of the input process. Since ¥(k) gives the direction of
the update, it is desirable to have a new direction with every
step. This can be achieved by the following demands:

1. strict orthogonality (so):

YT (k)p(k—j)=0 for j = 1.M,

2. vector orthogonality in the mean (vo):

Ep” (k)w(k— )] =0 dor j = 1.M,

3. components orthogonality in the mean (co):
E[wT (k) (k=) =0 dori=1.M,j=1.M.

In principle, every one of these demands can be used to cal-
culate a new direction ¥(k). Demand 1 leads to one unique
solution. For j = 1 Ozeki-Umeda’s AP algorithm is obtained.
This concept can be expanded to j = 1,2...,p, .., M=1, result-
ing in faster algorithms for AR(p) processes. The drawback,
however, is the increasing computational complexity of order
(24 p)M. Although various decorrelation procedures can be
applied for items 2 and 3, the authors used either Levinson-
Durbin |1, 7] or an NLMS algorithm as predictor [2, 8, 9].
When Levinson-Durbin algorithm is used, a predictor order

of P = 8 is typical. Since speech signals change their charac-
teristics only after 10-20ms the decorrelating procedures do
not have to be applied very often saving computational load.
But every time the predictor filter coefficients have been cal-
culated anew, the whole vector (k) has to be recalculated,
preventing transient effects. Since this is not done very often
the effort is low iu comparison to M. The NLMS algorithm,
however, is used every step for investigating the predictor co-
efficients. Since the coefficients do not change very fast from
step to step, the transient effects are low and therefore, recal-
culating of ¥(k) is not necessary. In principle, it is possible
to exchange the decorrelation part of the several procedures
resulting in new derivatives of the algorithms.

3.2. Classification
The algorithms can be grouped into three classes:

1. Only the gradient term (k) is chosen different to the
LMS algorithm: [2, 3, 10], leading to the following state-
space approach similar to (3):

e(k+1) = (I-p(k)p(k)u" (k)e(k)+p(k)es(k)p(k). (T)

If it is assumed that the vectors u(k) and ¢(k) are not
orthogonal there are M — 1 eigenvectors orthogonal to
u(k) corresponding to the eigenvalue one. The decisive
eigenvalue is:

Alk) = 1= p(k)u” (k)(k). (8
Two normalization rules can be applied [6):

{a) Normalization Rule 1:

a
R = Twee)
{b) Normalization Rule 2:
)= au” (k)$(k)
= AT eyu(R) T (k)w(k)

Both normalizations set the decisive eigenvalue into the
unit circle for o € [0,2]. Rule 1 has the advantage of fast




convergence of the homogenious system in (7) but the
disturbence term can be increased dramatically if u(k)
and (k) are close to be orthogonal. Here, Rule 2 is
better but may result in lower convergence speed. If the
state-space approach in (7) is considered as a mapping
operation, the whole mapping, however, is not necessar-
ily contracting!

. Additional to ¥(k) the adaptation error is filtered as in
{1, 8, 9:

P
ca(k) = Fle(k)] = e(k) + 3 _ fie(k=4).  (9)

=1

Here, the filter coefficients f; are fixed, but in order to
be able to track the changing correlation properties of
the input sequence, the filter coefficients have to change
slowly in time. Equation (9) leads to a state-space ap-
proach with a difference vector equation of higher order:

ek+1) k) = p(k)w(k)u” (k)ek) (10)

P
= wlk)glk) Y fiu"(k —i)e(k - i)

,
R(k)i(k) (e,m +) fieolk = i)) .

-]

+

Typically, smaller step sizes are mecessary to assure
convergence[4] and therefore, usually worse dynamic be-
havior occurs. In the next step the homogeneous solu-
tion of the case (P = 1) for a system of order one is
investigated:

ek+1) | _

k) |7
[l—u&(k)yr(k) —fxuf(k)!r(k—l)” (k) ]
I 0 k-1) |-

For small step sizes it can be assumed that ¢(k) does not
change very quickly, and the resulting difference equa-
tion is of first order again. The optimal normalization
for this case reads:

[

n(k) FluT (k) Flu(k)]
(o3

w7 (k)p(k) an

This rule has been used successfully for the two algo-

rithms. Using this normalization the only eigenvalues
unequal to one or zero are:

l1-a 1-a\’
A'): —— p—
1.2 ) i\/( ) ) flo

Obviously, the eigenvalues are still varying with time
depending on the incomming data. Let be:

W (k=1)y(k)
©7 (k) (k)

. (12)

L uT(k=1)e(k)
a = IIW' (13)

The coefficient ¢, varies with time, also depending on
the correlation of the input process. If the predictor
coefficient f; is computed as in the AP algorithm, ¢; =
0. Figure 1 depicts the situation.

Figure 1: Eigenvalues A2 = 132 % 1/(332)’ ~cia as a

function of ¢,

3. Additional to u(k) the desired d(k) is also filtered {7] by
F resulting to the following state-space equation:

ek +1) = (I - p(k)p(k)p7 (k))e(k) + p(k)eo(k)y(k) .

(14)
Obviously, the system is again of order onc, and more-
over, symmetrically as the NLMS algorithm. Therefore,
the simple Normalization Rule 1:

@
k) = —m——— (15)
HR) = o gm
achieves a contracting mapping and, thus, a convergent

algorithm.

4. Simulation Results

Simulation results of the considered algorithms are given nex-
t. A measured room impulse-response of M = 1024 coeffi-
cients has been used. Speech samples as well as a correspond-
ing AR-SIRP(4, 5] have been applied as driving processes. S-
ince a speech signal allows to compute only one sample func-
tion, averaging with the artificial SIRP gives stronger results.
The first column gives the averaged ERLE of 10 random runs
using the AR process, the second column the resulting ERLE
using a speech sample function (SF). All algorithms has been
implemented with the decorrelation parts as decribed in the
referenced papers. Other combinations have been checked,
but no result is worth mentioning. FA is a new simple filter
algorithm with very low complexity. It works like Mboub's
algorithm but with only one decorrelation coefficient calcu-
lated as in Ozeki-Umeda's AP algorithm.

Since every algorithm has some freedom in the choice of its
parameters, they have been chosen to cause highest conver-
gence speed for the given situation. Because of the high com-
putational load all algorithms have first been checked with a



Algorithm ERLE (AR) in dB ERLE (SF) in dB Complexity
NLMS (white) 212 212 theoretical limit
NLMS 25 33 2M

Ozeki (P=1) 42 38 3M

Ozeki (P=2) 52 45 4M

FA 38 42 © 2M

Mboup 25 15 2M

Acker 19 24 2M

Sommen 38 23 2M

Schultheif 38 37 M

Table 2: Simulation results after 50000 iterations

filter order M = 50. Here, almost every algorithm shows
the same relative good behavior. But for larger filter length-
s the differences become evident. For all algorithms a clear
improvement over the NLMS algorithm has been expected
but amazingly, has not been occured. The explanation for
this behavior depends on the class the several algorithms be-
long to. The Mboub algorithm beclongs to class 1. Because
the direction (k) and the input vector u(k) are different,
Normalization Rule 2 has to be chosen to prevent increasing
error terms. Although, there is an improvement in the choice
of the direction (k), the corresponding eigenvalue cannot be
chosen minimal causing a slower convergence. The remaining
algorithms [1, 8, 9] use filtered errors and therefore, small step
sizes (a = 0.3) to assure convergence. Only the algorithms of
Ozeki-Umeda and SchultheiB allow an optimal step-size and
therefore fastest convergence. For both algorithms, Normal-
ization Rule 1 and 2 are identical. Surprisingly, although the
FA algorithm with Normalization Rule 2 (o = 1) does not
show good behavior for small compensator filter lengths, it
behaves as well as other algorithms for long filters and speech
signals. In order to improve the situation a much larger pre-
dictor length has to be chosen. The AR process used here
to describe the speech signal bas an order of P = 77. But
the computational load for the various algorithms would be
increased a lot when applying this predictor filter length.

5. Conclusion

As a conclusion it can be stated that all algorithms with
decorrelating properties did not work as well as expected for
speech signals. Ozeki-Umeda’s AP algorithmus as well as
Schultheifl algorithmus show very good theoretical properties
resulting in optimal behavior. In spite of the improvements
there is still a big gap in comparison to the NLMS algorithm
with white excitation. Surprisingly, a very simple algorithm
with only a 2N-complexity behaves very well for long filter
lengths and speech signals.
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