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Abstract—Adaptive hybrids are one way of canceling
the echoes in telephone systems. Since the ratio of
the far-end and the local speaker’s signal level can be
very high the quantization effects of the A/D convert-
ers can diminish the speech signal’s quality additional
to the echo. A simple automatic gain control (AGC)
cannot solve the problem. In this paper a new analog-
digital solution is proposed to overcome the problem.
Since the error path transfer function can mainly be
constructed as a pure delay a least mean-square algo-
rithm with delayed update (DLMS) is used to find the
optimal echo estimator.

I. INTRODUCTION

One disturbing phenomenon of hybrids in telephone
networks is the occurence of unavoidable eiectric echoes.
Echo cancellation is necessitated due to imperfect con-
ditions at the hybrid and to ensure a natural speaking
environment. However, when transmitting speech signals
the signal level of the far-end speaker can be very low
compared to the actual echo of the hybrid. Since digital
solutions for echo compensation need A/D converters to
calculate with sampled values the speech quality is not
only diminished by the echo of the hybrid but also by
quantization effects. Fig. 1 pictures the signal-to-noise ra-
tio as a function of the input signal variance when using a
12bit A/D converter with a range of £2.5V. A Ko-density
function has been used to closely resemble speech signals
and a Gaussian density to compare. As can be seen, with
Ky only 55dB can be achieved maximally, but an increase
of the variance by a factor 5 already results in a 30dB
decrease of the signal-to-noise ratio. On the contrary the
Gaussian density allows a wide range of almost constant
signal-to-noise ratio.

II. AN ANALOG-DIGITAL SOLUTION

The undesired quantization effect can be diminished by
using an automatic gain control (AGC) before quantizing.
However, the ratio of the local speaker echo and the sub-
scriber’s signal remains unchanged by an AGC. Therefore,
it seems better to subtract the estimated echo first, before
quantizing. To improve the situation a combined analog-
digital solution is proposed as illustrated in Fig. 2. The
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Figure 1: Signal-to-noise ratio on the output of a 12bit
A/D converter (£2.5V) as a function of the variance for
K, process (solid line) and Gaussian process (dashed line)

bandpasses F; and F, ensure the correct use of the sam-
pling theorem. The subtraction node to cancel the echo is
now implemented in the analog part by an operational am-
plifier (OpAmp). This allows locating the AGC direct in
the hybrid path before the echo cancellation node, so that
the AGC’s transfer function is added to this path and not
to the error path from f(n) to ep(n). The advantage of
this movement is to obtain a error path transfer function
close to a simple delay. To make the adaptive filter insen-
sitive to the gain variations of the AGC the signals §(n)
and ep(n) are scaled corresponding to the actual AGC
gain. The adaptive filter itself is a 32tap transversal fil-
ter. Subtracting the echo by an OpAmp a filter function
is added in the error path. Fig. 3 illustrates the mea-
sured impulse response of the error path setting d(n) =0
(Sampled signals are written with discreete argument n,
whereas the corresponding continuous signals are written
with argument ¢ and tilde.):

ep(n) = H[§(n)]lgny=0 (1)
P

= > hij(n—i). (2)
1=0
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Figure 2: Adaptive transversal filter with AGC and analog subtraction node

The most interesting fact in Fig. 3 is the shape of the
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Figure 3: Measured error path impulse response h;

impulse response. Only two coefficients are dominant,
whereas the remaining coefficients are smaller. The mea-
sured function consists of one unit delay by A/D and D/A
converter and of the OpAmp’s transfer function. The spe-
cial shape of the transfer function has important conse-
quences for the choice of the algorithm.

II1. THE CHOSEN ALGORITHM

To adaptate the filter W in Fig. 2, two algorithms are
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possible. The more complex solution uses the FXLMS [6]
algorithm which needs the measurement of the error
path transfer function. A simpler solution is the usage
of the LMS algorithm with delayed coefficient update
(DLMS) [5]. To deal with this algorithm a pure delay
as transfer function for the error path is necessary. Al-
though the measured transfer function H does not show
this desired behavior, the concentration around a delay
D between two and three is obvious. The observed error
signal can be modelled as

ep(n) = hp (d(n - D) - &"(n - D)yu(n - D))  (3)
using the abbreviations:

@T(n) = (do,..., Iar—1)
wT(n) = (u(n),u(n—1),.,u(n—M+1)).

Assuming this model the DLMS algorithm can be applied
and is supposed to have good results. To make the algo-
rithm independent of the input signal level, a normalized
version of the DLMS algorithm (NDLMS) has been used.
The update equations are as follows:

@(n + 1) = @(n) + p(n)ep(r)u(n—-D) . 4)

To analyze the properties of the algorithm two ways are
possible. On one hand the input sequences can be looked
upon as random signals. An analysis of the unnormalized
algorithm can be found in [5], when using spherically in-
variant random processes [7] which closely resemble speech



signals in [8]. On the other hand the input signals can be
handled as deterministic sequences. An analysis of this
kind will be presented in the following section.

IV. ANALYSIS OF THE ALGORITHM

For the analysis the system to identify W(z) =
Fagc(z)Fa(z)G(2) is supposed to be time-invariant with
an impulse response series w; (i = 0..M — 1), defining
a vector w. With this definition the weight-error vector
¢(n) = @(n)—w is introduced. The requirement for a con-
vergent algorithm is a vector ¢(n) whose length decreases
with growing time n. The error from (3) can be rewritten
as

ep(n) = hp(em(n) — e (n - D)u(n— D)),  (5)

where ey, (n) is the remaining signal after echo compensa-
tion (originated mainly from the subscriber side when the
far-end speaker is active) and hp is the gain constant of
the error path. The adaptation (4) can now be written in
terms of the weight-error vector

€(n) — u(n)hpu(n — DY (n — D)e(n ~ D)
+u(n)hpem(n)u(n - D). (6)

gn+1) =

This is a vector difference equation of order D+1. It can
be written in a compact form using

) = (f(n-1),..,(n—D))
uI(n) = (7(n-D)07,..,07)
R(n) = u(n-D)"(n-D),
1 O O —u(n)hpR(n)
I O 0 0
B(n) - 0o I (0] 0
00 . I 0
e,(n+1) = B(n)g,(n)+ p(n)hpem(n)u,(n) . (7)

Here, I is the M x M identity matrix and O isa M x M
matrix with zero elements. Calculating the eigenvalues
Xi(i = 1..M(D+1)) of the matrix B(n), only D+1 eigen-
values influence the convergence behavior. For these the
following characteristic equation is obtained:

2P(z~ 1)+ p(n)hpu’ (n = D)yu(n - D).  (8)

Equation (8) can be rewritten using the normalized step-
size a:
(n) = - (9)
MM = 1p oT (n—D)u(n—D)

(hp has to be measured before using the algorithm) to:

P(z=1)+a=0. (10)

Obviously, the solutions of (10), i.e. the eigenvalues, are
not depending on the input sequence any further and are
constant with time. Fig. 4 depicts the root loci for D = 3
corresponding to the measured error path transfer func-
tion when « varies from zero to one. Each root once pass-
ing the unit circle due to an increasing a never returns.
The root loci behavior is approximately determined us-
ing classical rules [3] for evaluating. It can be seen that
D roots start in the origin with o = 0, then radiate like
beams towards the outside of the circle. At the origin ad-
jacent radials have an angle equal to %5%}, while asymp-

totical radials have an angle equal to %%?—;—. Only one ini-

tial root lies at the point (1,0). This root runs first in
an inwards direction before it changes and leaves the cir-
cle as well. This root is decisive for both the speed of
convergence and the stability bound of the weight-error
vector. Similar to the considerations in [4] a bound for
convergence and stability can be found:

D
0<oa<2cos (2D—+——1—7r> .

For D = 3 the bound a; = 0.445 is obtained. Simulations

(11)
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Figure 4: Root loci of the characteristic polynomial for
D =3 as a function of «

proved the correctness of this bound. The more corre-
lated the input process is, the smaller is the difference of
the simulated and the calculated bound. For white pro-
cesses however, the bound could be almost twice as much.
The calculation of optimal step-sizes depending on the
correlation of the input process can be found in [5,8).

V. MEASUREMENT RESULTS

Fig. 5 illustrates a comparison of the achievable gain de-
pending on the input signal level using a 32tap transversal
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filter W. The solid line demonstrates the improvement of
using an AGC while the dashed line indicates the classical
normalized LMS (NLMS) solution. As can be seen in this
application the NLMS algorithm depends strongly upon
the input level. Especially for small input levels the be-
havior is improved using the AGC. For all measurements a
white Gaussian process has been used. According to Fig. 1
the improvement for K processes is expected to be much
bigger. Fig. 6 illustrates the measured Echo return loss
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Figure 5: Classical NLMS (dashed line) in comparison to
NDLMS algorithm (solid line) with AGC

enhancement (ERLE) using the analog-digital structure
of Fig. 2. The convergence rate is fast and the obtained
echo cancellation is as good as in pure digital solutions.
However, the quality of a low level subscriber signal is not
lowered any further. For the delays D = 2 and D = 3
the measured ERLE in Fig. 6 was the same. Even for
an FXLMS algorithm with 14 taps for the error path the
curve did not change. But a simple delay unequal to two
or three made the algorithm unstable.

To control the AGC an estimate for the level of the
error signal ep(n) is used. This works perfectly to im-
prove the ERLE when the error signal consists mainly of
uncompensated echoes, originated from u(n). However,
if the far-end signal has a higher level the AGC control
adapts to it. A switching between the two states —far-end
active/inactive- is currently being investigated.

Since adaptive IIR filters showed good results for tele-
phone hybrids [2] instead of an NLMS algorithm for
transversal filters the SHARF algorithm has also been im-
plemented. Here, three coefficients for the recursive and
only nine coefficients for the transversal part have been
used, achieving the same steady-state error. With the
normalization rule from [2] the algorithm possessed its
fastest behavior with a step-size of @ = 0.05, which is
much smaller than the step-size of the NLMS algorithm
(e = 0.25). A smaller step-size, however, causes a smaller
steady-state error. This seems to be a slight advantage

when using the SHARF algorithm.

ERLE (dB)
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Figure 6: Measured ERLE for NDLMS algorithm
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