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ABSTRACT

In the last years several algorithms for adaptive IIR
filters have been proposed. However, their practical
usage involves considerations such as finding the global
minimum, possible occurence of instability and un-
certainty about the speed of convergence. This pa-
per presents a generalization of these adaptive IIR al-
gorithms. The algorithms can be classified into two
groups: those which do not and those which do fil-
ter the adaptation error. For the first group a nor-
malization is presented and convergence is proven. For
the second group ideas for normalizations are presented
and conditions for convergence are given. Special con-
straints for normalizations close the paper.

1. INTRODUCTION

Since the derivation of Feintuch’s algorithm (RLMS) [3]
there have been several suggestions for improving the
behavior of adaptive IIR filters. Some ideas like
Stearns’ algorithm [10] and alternate filtering mode
(AFM) [2] have been dropped. Others like series-
parallel-filtering (SPLMS) [1], equation error formula-
tion (EEFLMS) [9], bias remedy LMS (BRLMS) [6]
and simplified hyperstable adaptive recursive filter
(SHARF) [5] remain as candidates for further research.
However, all of these algorithms are rather difficult to
handle when dealing with applications involving speech
signals.

Figure 1 depicts the situation of echo cancellation on
a hybrid. The hybrid G has to decouple the near and
far end speech. The near end speaker signal u(k) has
to be transmitted to the subscriber side whereas the
far end speech signal n(k) has to be transmitted to the
near end loudspeaker. Since the hybrid is not an ideal
device, an echo of the near end speech appears at the
loudspeaker. This echo has to be estimated by a system
identification of the hybrid. As illustrated in Figure 1,

eo(k) = d(k)—g(k) (1.1a)

d(k) = n(k)+ y(k) (1.1b)
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Figure 1: Adaptive filter structure for echo cancelling.

For a clearer description a vector notation is often
used:

T

g [a1, a2, ...,an.], (1.2a)
8T = [bo,b1, e biaya), (1.2b)
ot = [d7,87), (1.2¢)
k) = [yk—1),5(k=2), ., y(k— M,)], (1.2d)
ul (k) = [u(k),u(k—1),..,u(k— M +1), (1.2)
k) = [k, (k). (1.2f)

The parameters b and a have been combined to form
a new vector w of order M = M, + M;. Now the
hybrid can easily be described as d(k) = n(k)+27 (k)w.
The problem consists of finding the parameters &; for
i = 1.M, and b; for j = 0..M; — 1 while observing
the input signal u(k) and the output signal d(k) of the
hybrid. In a very similar way the echo canceller can be
described by an estimated parameter set:

@' (k) = [a1(k),aa(k), ..., an, ()], (1.3a)
8'(k) = [Bo(k),b1(k), ..., Baty ()], (1.3b)
&k = [@Tk),E (). (1.3¢)

The signal vector for calculating the estimated hybrid
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Table 1: Possibilities for gradient-based algorithms.

output §(k) can be constructed by either using former
estimated values g(k — m) for m = 1..M, or observed
values d(k):

k) = [k —1),9(k = 2), ... ik — M,)), (1.4a)
dT(k) = [d(k—-1),d(k—2),...d(k— M,)], (1.4b)
Z k) = [§ k), 4" (k)] (1.4¢)
(k) = [d"(k),u"(k)]. (1.4d)

Depending on the choice of the canceller’s signal vec-
tor, an output error (subscript ’0’) or an equation error
(subscript ’e’) method is used. Now, the formula for a
gradient-based algorithm can be given:

@(k +1) = (k) + p(k) ea(k) P(k) .

Here, an adaptatlon error e,(k) and a gradient term
¢T(k) [¢T(k) $T (k)] are used. The algorithms can
be descnb_g accordmg to the choice of adaptation er-
ror and gradient used. A summary of the possibilities
is given in Table 1. The subscript ’¢’ is used for a
correction term, z.(k) = 7(k)z,(k) + (1 — 7(k))z.(k),
(r(k) € [0,1]) which is necessary for incorporating
the BRLMS algorithm within this same description
scheme. Although the Steiglitz-McBride [11] algorithm
is usually of Newton type, a gradient algorithm is pos-
sible as well. The adaptation error ea k) can be:

1) the output error, e,(k) = d(k) — lc) z,(k),

2) the equation error, e.(k) = d(k) — " (k)z,(k),

3) a corrected error, ec(k) d(k) - wT(k)_c(k),

4) a filtered output error, eso(k) = e,(k) +

iz & ok = ),

5) a filtered equation error, ej.(k) = e.(k) +
P )

iz Gi ee(k —9),

6) a filtered corrected error, es.(k) = e.(k) +

Pio ci ec(k — ).

In a very similar way the gradient term (k) can be
the vector with the estimated output signal z,(k), the
vector with the measured output signal z.(k), z.(k),
a linear combination of z,(k) and z,(k), or a filtered
version of all these three. Thus, 36 different algorithms
are possible and these can be divided into two groups.
The first group, in the first three rows, does not filter

the adaptation error. The remaining algorithms in the
second group all use a filtered adaptation error. Of the
36 different algorithms, only six (labelled in Table 1)
have been thoroughly investigated.

2. NORMALIZATION FOR ALGORITHMS
WITHOUT FILTERED ADAPTATION ER-
ROR

Normalization used in the LMS algorithm has demon-
strated superior properties [8]: the algorithm behaves
independent of the input signal level, the convergence
is independent of the input signals PDF and the con-
vergence speed is increased. In the past analyses have
fallen under two broad categories for the input se-
quences: one deterministic, the other stochastic. In
this paper a combination of both leads to new results.
The adaptation rule can be given as follows

Bk +1) B(k) + p(k)ea(k)z, (k)
ea(k) d(k) — 23 (k)ab(k) .

Here, two different vectors z,(k) and z,(k) are used,
either of which can be one of the six vectors decribed
in the last sect1on A minimal error e, (k) is introduced
em(k) = d(k) — 23 (K)w .

It is the lowest error when using the optimal solution w
under the condition that z5(k) is used instead of z, (k).
It is now possible to describe the weight-error vector
€(k) = w — (k) as an inhomogeneous system of first
order:

(2.1a)
(2.1b)

]

ek+1) = (L-p(k)zi(k)z] (k) (k)
+a(k) em(k) 2, (k) . (22)
A first hint for a normalization is revealed,
Normalization 1:
@
S (OO} )

Obviously, the smaller the angle between the two vec-
tors z;(k) and z,(k) is, the smaller the stepsize p(k)

will be. Examining only the homogeneous part of
Eq. 2.2 and using Normalization 1 leads to:
z) (k)23 (k)
e(k+ 1) = (1-oZREC) ). (24)
23 (k)zy(k)

One eigenvalue of the homogeneous equation equals
(1 — @), whereas the remaining (M — 1) eigenvalues
equal one. Thus, a convergent algorithm is obtained
for the normalized stepsize « € [0, 2].

Although the eigenvalues remain bounded, the inhomo-
geneous part may exceed all limits causing an increase
in the weight-error vector as well. The squared L, norm
of the perturbation in Eq. 2.2 with Normalization 1 is
considered:
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262 (1) A BDa)
"B @emey > Y 0 T(k) (k)
Therefore, the inhomogeneous part can exceed every
limit which can cause instability of the algorithm.
To find a better norm a stochastic description is
now used. Calculating the expectation of the
quadratic Ly norm of ¢(k) and diagonalization of
the inner matrix: I — p(z,(k)z3 (k) + zq(k)2] (k) +
w2z,(k) 23 (k)zT (k)z, (k) leads to two eigenvalues un-
equal to zero. Since there are (M — 2) vectors that
are orthogonal to z,(k) and z,(k), the same number
of eigenvalues equals one. The remaining two eigenval-
ues can be found with an eigenvector that is the linear
combination of both z; (k) and z,(k) : Ay 2(k) =
{1 =20 2L (k)zy (k) + 2 2T (k)zy (k)2F (k)2 (k), 1}
Only one eigenvalue is unequal to one and is responsible
for the convergence behavior. A normalization should
ensure that this eigenvalue lies in the desired interval.
It can be seen that the eigenvalue describes a parabola
in the stepsize p(k). Therefore, there exists a mini-
mum value pmin (k) and a limit py, (k) corresponding
to the minimal eigenvalue Apin (k) and max(A(k)) =1,
respectively, for ,u(lc):
| A®Rz) (k)

pmin®) = A DA O® 2
sult leads to
Normalization 2:

o 21 (k)z, (k)

O = I @00 ) 29
Convergence is again guaranteed for 0 < o < 2. With
the help of Schwarz’ inequality it can be shown that
Normalization 2 is always lower than or equal to Nor-
malization 1 and thereby also fulfills the homogeneous
system of Eq. 2.4. The squared Lz norm of the inho-
mogeneous part is considered again

(11 (k)-—2 ) ( )
2T (k)zy (k) (23 (k)zg(k))? = om T(k)ZZ(k)

The various normalization terms for the known algo-
rithms are listed in Table 2. Although Normalization 2
shows several advantages over Normalization 1, draw-
backs exist as well. The algorithm may converge to a
fixed point in the parameter space where the algorithm
remains stable, whereas the filter is instable.

3. NORMALIZATION FOR ALGORITHMS
WITH FILTERED ADAPTATION ERROR
For this group of algorithms the adaptation error eq(k)
must be replaced by the filtered error ey(k), that is
a linear combination of past e,(k) values, ey(k) =
Clea(k)] = eq(k) + Zf__l cieq(k — i) . Describing the
situation with the weight-error vector as in the pre-
vious section and using Eq. 2.1b, a vector differential

(2.5)

em(k)

Algorithm Norm 1 Norm 2
1 1
RLMS FAGRG FAOMAO)
- 22, (F)z, ()
o z,o(k) (&) | Z®)z, ()2, (B)z;,(F)
AFM 1 27, (k)z,(k)
-z-}‘e(kgio(k) zT(k)za(k)zje(k) je(k)
I | Zmam g%(kgze(k)
1 2 ()2, (k)
BRIMS | Z0®) | TRz ®ZRn®)

Table 2: Possible normalizations for the well-known
algorithms

system of order P is obtained:

gk + 1) = e(k) + pzi(k)(em(k) — € (k)zy(k)) +

pz1 () i ciem(k — i) — €7 (k — i)z5(k — 1)) .

In the next step the homogeneous solution of the case

(P =1) for a system of order one is investigated:
e(k+1) | _

k) |
[ I-pzy (k)23 (k)

—c1pzy (k)23 (k—1) ] [ (gk(k)l)
g —

Using Normalization 1 the only eigenvalues unequal to
one or zero are:

l-w 1-a)? T(k 1)z, (k)
=g * \/<'2_> PAB)
k—1)z,(k)

T
The term 13( 7. {5y~ can be assumed to lie mainly
=2 -1

between zero and one depending on the correlation of
the input process. If ¢y is sufficiently small, « € [0, 2]
guarantees convergence again. If ¢; is a high positive
value the eigenvalues become complex. Their real part,
however, remains in the stable region, and therefore, a
stable oscillation occurs. To ensure the convergence for
the inhomogeneous case as well, the choice of Normal-
ization 2 instead of Normalization 1 is again necessary.
If both vectors z;(k) and z,(k) are equal to z,(k) the
SHARF algorithm is obtained. For the special case
(c1 = 0) the SHARF algorithm simplifies to Feintuch’s
algorithm. The effect of a filter constant ¢; > 0 is
to decrease the real part of the eigenvalue and thus
cause a higher convergence speed. Since an increasing
imaginary part has no effect on the convergence of the
algorithm, the choice of ¢; is not critical.

The case of higher system orders P > 1 can be han-
dled in a similar way. To find the eigenvalues that are
responsible for convergence, the following polynomial
equation has to be solved (¢g = 1):

(3.1)
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APHLNP 4 T8 APScip(k)2E (k — i)z, (k) =0.

It is to be expected that for larger delays ¢ the expres-
sion 23 (k — i)z, (k) will become increasingly smaller,
and therefore, the parts with a larger index lose impor-
tance and the first order system remains.

4. MEASUREMENT RESULTS

The most important algorithms in Table 1 have been
implemented on a DSP56001. Measurements have
taken place in a hybrid environment depicted in Fig-
ure 1 with M; = 3 and M = 9 in which the echoes
originate from the local speaker. The input signal on
the local speaker side was a white Gaussian noise se-
quence. Table 3 shows the results. The echo return loss
enhancement (ERLE) has been measured after 166ms
and after the steady-state error had been reached. The
column labelled “Afterburst” describes the ERLE after
a burst from the subscriber side. The AFM algorithm
with the normalization from [2] and with the new norm
showed undesirable behavior. The convergence speed
of the prefiltering algorithms (i.e. AFM, Stearns) is
low and the reaction from the burst is slow. Even the
steady-state error is bigger than those of the other algo-
rithms. All other tested algorithms behaved very well,
especially NSHARF and NRLMS showed good steady-
state values. A 32-tap transversal filter with NLMS
algorithm is given as a comparison.

Algo. a | ERLEjes | ERLE Afterburst
AFM 2= 10dB 17dB 17dB after 500ms
NAFM 0.25 4dB 13dB 13dB after 500ms
NStearns 1 11dB 15dB 18dB direct
NRLMS 1 22dB 23dB 23dB direct
NSHARF 1 22dB 23dB 23dB direct
NLMS 0.5 31dB 31dB 31dB direct

Table 3: Measured results with Normalization Rule 2

5. OTHER POSSIBILITIES FOR NORMAL-
IZATION

In this section alternative normalizations are consid-
ered.

1) Splitting the gradient vector in its original com-
ponents, (i.e. u(n),d(n)) allows to build an algo-
rithm independent of the system gain ¢ (ie. d(k) =
n(k) + q y(k)).

ak+1) = a(k>+mqea(k) ¥, (k)g,

It

gb(k +1) gb(k) + gea(k) ¥,(k).

—_—
¥, (k)9 (k)
With the Schwarz’ inequality it is obvious that conver-
gence is guaranteed for:

O<as+ap <2.

A rule for optimal values of a4 and o has not yet been
determined. Moreover, other rules are possible:

2) The concept of using several different stepsizes can
be generalized. In the extreme case every one of the M
parameters can obtain its own stepsize p;(k);i = 1..M.
The rule for Normalization 2 then reduces to:

T
234(k)z1:(k)
Hi k)=o )
®) = o DB Bz
where the subscript ¢ determines the i-th. component
of the vectors. Again, a convergence bound is obtained:

M
O<Za.~<2.
s=1

3) A squared L, norm can be useful in speech applica-
tions, since the typically low amplitudes of a speech sig-
nal are not markedly further lowered. Since L; > Lo,
convergence i8 guaranteed as well.
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