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Analysis of LMS and NLMS Algorithms
with Delayed Coefficient Update Under the
Presence of Spherically Invariant Processes

Markus Rupp and Rudi Frenzel

Abstract—Certain conditions require a delay in the coefficient update of
the least mean square (LMS) and normalized least mean square (NLMS)
algorithms. This paper presents an in-depth analysis of these modificated
versions for the important case of spherically invariant input processes
(SIRP’s), which are known as an excellent model for speech signals. Some
derived bounds and the predicted dynamic behavior of the algorithms
are found to correspond very well to simulation results and a real time
implementation on a fixed-point signal processor. A modification of the
algorithm is proposed to assure the well known properties of the LMS
and NLMS algorithms.

I. INTRODUCTION

In this paper, a modified version of the least mean square (LMS)
algorithm is analyzed, the difference being a delay D € N in the
feedback path of the error signal e(n). Such delays are inherent to
many applications of adaptive filtering, e.g., Viterbi decoding [7]
and active noise compensation [4]. Since even a simple one step
delay can cause instability of the LMS algorithm, modifications of
the algorithm are necessary. In the past analyses for these algorithms
followed two paths: calculating the first moments (see [6], [9]) of the
weight-error vector e(n) = w(n) — w,, i.e., the difference between
the actual filter coefficients w(n) and the Wiener solution w,, and
calculating the behavior of the average mean-squared error (see [7]).
In spite of some corrections which have been published recently
[8], the calculations in [7] involve some simplifications resulting in
practical bounds. The analysis presented in this paper expands upon
the results of [7] by using the classical LMS analysis (5], {10] and
the large class of spherically invariant random processes (SIRP’s)
for excitation, resulting in a recursive vector equation of the weight-
error vector variance matrix. Now, bounds and optimal step sizes are
achievable with only numerical analyses. The results are validated by
simulations and real time experiments.

II. DELAYED LMS ALGORITHM

It is common to the algorithms under consideration that only a
delayed version e4(n) = e(n — D) of the error signal e(n) = d(n)—
ul (n)w(n) is available, where d(n) is the disturbed output y(n) of
a plant G. All equations are in reference to the simplified adaptive
transversal compensator structure in Fig. 1, where all sampling
devices, anti-aliasing filters, and interpolator filters are neglected and
the whole model is purely time-discrete. The design of a modified
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LMS algorithm that is stable for all excitations can be accomplished
in several manners:
1) If an update of the coefficients is done only every (D + 1)
steps, the equations for the LMS and NLMS algorithms are,
respectively’

w(n+1)=w(n— D)+ pes(n)u(n — D)

if n mod (D + 1) =0. ()
wn+1l)=w(n-2D)
(y
+ med(")ﬂ(” - D)
if n mod (D+1)=0. (2)

The vector u(n) of dimension M is the input vector of the
transversal filter, i.e., M samples of the input sequence u(n).
The coefficients of the transversal filter compose the vector
w(n)

"
u

3
“

(n) = (u(n),

(

u(n—1).---,u(n—-M+1))
).

W' (n) = (wo(n),wi(n), . war—1(n

Fig. 2 illustrates the time relationship between the input and
error signals. An analysis of the algorithms shows that all
properties are the same as in the classical case. Since the
adaptation is done only every (D + 1) steps, the convergence
rate is reduced by the same factor.

A delay D in the input vector u(n) is introduced. If a delay D is
taken into account, more samples from the input sequence u(n)
and the error sequence e,(n) have to be stored. The respective
equations of the LMS algorithm with delayed update (DLMS)
and its normalized version (NDLMS) are as follows

2)

w(n+1)=w(n)+ peq(n)u(n—-D) n€Z

(&)

[
ul(n — D)u(n — D)
eqn)u(n — D) :n€Z.

w(n+1)=w(n)+
©6)

An analysis based on the classical approach is presented next.
It provides a deeper insight to the behavior of the DLMS
and NDLMS algorithm. The complexity of the algorithms is
approximately 2.

An additional correction term, as described later, permits a
correction in such a way that the resulting algorithm maintains
essentially the same properties as the classical LMS algorithm.
However, if M equals the order of the transversal filter 1V, an
additional complexity of A operations is incurred.

3)

In the following paragraphs the behavior of the algorithm according
to point 2 is analyzed. In [10] the behavior of the LMS and NLMS
algorithms has been analyzed for spherically invariant processes
as excitation. Since these processes are excellent in modeling the
statistical properties of speech signals [2], [3], the analysis of [10]
has been modified in the following in order to describe the behavior
of the DLMS algorithm.

'"To emphasize random processes they are typed in bold faced letters.
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Fig. 1. Structure of an adaptive transversal filter with a time delay in the
error feedback path.
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Fig. 2. Time relationship of the signals while updating the coefficients.

T

The first moments of the weight-error vector e(n) = w(n) —w,
can be evaluated using some abbreviations. The vector w, is the
Wiener solution to which the algorithm should converge. For a linear,
time-invariant plant G the Wiener solution w, is equal to the first
M impulse response steps of G if the autocorrelation function (ACF)
matrix R.. of the input process is regular. This leads to

e(n) =u’ (n)e(n) + eo(n) 0
e(n+1)=¢(n) — pu(n — D)u’ (n — D)e(n — D)

+ peo(n — D)u(n — D) ®

Ele(n +1)] = Ele(n)] — pRuu Ele(n — D)) )

The error sequence e,(n) is assumed to be statistical independent of
the input sequence u(n) and E[e,(n)] = 0, E[e2(n)] = Jumin. The
Wiener solution causes the minimum mean-squared error Jumin. In
general, the excess mean-squared error E[e2,] = lim, o E[e?(n)]
achieved by the algorithm exceeds Jumin. Since in (9) the ‘Inde-
pendence theorem’ has been used, the results hold only for linear
combinations of statistically independent input vectors but not for
transversal filters. The results that are derived from this simplification
must be considered to be approximations. A stability bound for the
first moments E[e(n + 1)] in dependence of the eigenvalues of R..
and the delay D can be derived [6].

When summing the second moments of the weight-error vector
elements, the system mismatch is obtained

S(n) = E[¢" (n)e(n)]. (10)

For the investigation of S(n) the variance matrix K (n) =

Ele(n )gT(n)] of the weight-error vector will be used. The mean-

squared error E[e*(n)] is easily derived from A (n) by using
Ele*(n)] = Ele (n) Ruue(n)] + Juin

trace (A (n)Ruu) + Juin-

(1)
(12)

The following expression is obtained directly when using (8) and the
definition of K'(n)

K(n+1)= E[(g(n) — pu(n — Dyu”(n - D)e(n — D))
(e(n) = pu(n = D)u” (n = D)etn — D))" |

+ 1#1° Joain Ruu
= K(n)— pR..Ele(n — D)gT(n)]
— pE[e(n)e" (n — D)]Ru.
+Elu(n — D)u’ (n — D)K(n — D)u(n - D)

x u'(n = D))+ #* Joio R (13)
To simplify the expression, the following abbreviation is used
Kij(n) = Ele(n — i)e' (n = j)]. (14)
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Equation (13) with Koo(n — D) = Kpp(n) leads to

Koo(n+ 1) = Koo(n) — pRuuw K po(n) — tlop(n) Ry
+ 1?E[(u(n — D)u” (n — D)Kpp(n)

x u(n — D)u’ (n — D)) + p* Jmin Ruw- (15)

Without any loss of generality, the correlated random process u(n)
can be considered as a linear transformation A of an uncorrelated
process x(n) of the same order M: u(n) = Ax(n). The white
process x(n) can be chosen in such a way that its ACF matrix is the
identity matrix I (without any loss of generality). The ACF matrix
of the colored process is then: R.. = AAT. The matrix () can be
chosen not only to diagonalize the ACF matrix but also to: QTA=
A2 The diagonalization of the ACF matrix (QTRuwQ = A) in
(15) leads to Q7 Kij(n)Q = Cij(n) and

Coo(n + 1) = Coo(n) — pACpo(n) — pCop(n)A
+12E[AY?x(n = D)x" (n = D)AY*Cop (n)AM?
x x(n = D)xT(n — D)AY?] + p2 Jin A (16)

Cop(n+1) = Cop-1(n) — pACpp-1(n) (17)

result. The trace of the weight-error vector variance matrix Coo(n)
equals the system mismatch S(n). Due to the invariance of the trace
to diagonalization, only the elements on the diagonal of Coo(n) are
of interest. From step n to n+1 only the diagonal elements of C.;(n)
influence the elements of C'x;(n+1). Setting up a new variance vector
¢,;(n) for i,j =0---D with only the diagonal elements of Cij(n),
the following simpler presentation for ¢ ,(n) and ¢y,,(n) is obtained

coo(n+ 1) = ego(n) = 2pAgop(n) + P mEPAN" +24%)
X cpp(n) + 1 JuinA (18)
cop{n+1) =cop_q(n)— pAcpp_,(n). (19)

The term S = pzm(f‘z)(MT + 2A%) has been calculated in [10].
There, the joint moment of order four has been used
for i # j.

m?? = E[x*(n — Hx3(n - j)] (20)

The vector A consists of all eigenvalues of R,., which are the
diagonal elements of A.
For the delays D = 1to D = 3, (18) and (19) are described

in a matrix form in which the disturbance term p®JwinA has been

suppressed.
For D = 1:
Cooln+1) I —2uA S Coo(m)
cpin+1) | =1 —-pA O Coq(n) 21
¢ (n+1) I 0 0 cyp{n)
For D = 2:
Coo(n + 1)
oy (n+1)
Copln+1) |
cnln+ 1) | 7
E12("+1)
Conl(n +1)
I 0 —2uA O 0 S Copln)
I 0o —uA O O O cop(n)
o I 0 0 —pA O Coa ()
I 0 0 0 0 0 ¢y (n) (22)
o I 0 o 0 O Cyo(n)
00 0 I 0 0 Coq(n)
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For D =3: (23)

Coo(n +1)

cor(n+1)

Cop(n+1)

Coz(n+1)

en{n+1) [ _

cia{n+1) B

cz(n+1)

Can(n +1)

cos(n+1

cy3(n+1)
I 00 —2¢4A 00 0 0 0 S\ [cgpn
I 00 —-pA OO O O O 0 coq(n)
oI o0 0 00 —pkA O O O Cpa(m)
0 0 I 0 00 0 0 —-pA O Co3(n)
7100 0o 00 0 0 0 0flem
070 0 00 0 0 0 0]|cyn
00 0O 00 0 0 0 O0j|csn
000 0 I 0 0 0 0 0]cyin
000 0 0 I 0 0 0 0]]|cyn)
000 0 00 0 I 0 0/ \eum

Block matrices with zero elements are indicated by 0. The eigen-
values of these matrices determine the dynamic behavior of the
algorithm. By varying the step-size y, it is possible to find an
optimum value for which the absolute value of the largest eigenvalue
is minimal. Furthermore, it is also possible to find the critical step
size for which the algorithm becomes unstable. Since the matrices
are of no special structure (i.., symmetrical), some eigenvalues may
be complex. This means that an oscillation can occur in the learning
curve, and simple exponential behavior cannot be expected.

The analysis of the NDLMS algorithm can be treated similarly. In
[10] it is shown that instead of using the eigenvalues A; of the ACF
matrix, normalized eigenvalues )\f}w must be considered. Accord-
ingly, joint moments are replaced by their normalized counterparts.
Because of the protracted calculations the details are not repeated
here. The main results will be summarized at the end of the paper.

A deterministic description [11], however, leads to a bound for the
normalized step-size a, similiar to that of the first moments [6]

0<a<25in( (24)

™
202D + 1) ) '
Surprisingly, this bound depends only on the delay D and not on the
system order M or on any other parameters.

In the following an improved algorithm will be derived. As already
mentioned, in most applications the delay D is caused by an ‘analog
summation point’ (e.g., in active noise compensation). Therefore,
only the following signals are available for the compensator pro-
cessing units at time n:

« the delayed error e(n — D) = eq(n),

« the estimated system output ¥(n), and

« all previous input vectors u(n — k), k =0---D.

Both adaptation equations (1) and (2) indicate that the error e(n)
caused by the input u(n) to the plant G and the compensator W
does not influence the following updates until D time steps later. In
other words, each update is done without any information learned
from the former (D — 1) updates. This causes the drawbacks of the
convergence behavior of the DLMS and NDLMS algorithms.

To show how this ‘lack of information’ can be overcome, the error
e(n — D) is first split into its components

=y(n—-D)-
=y(n-D)-

e(n - D) y(n— D)

w’'(n—D)u(n—D). (25
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Fig. 3. Analysis structure of an adaptive transversal filter with the modified
LMS or NLMS algorithm.

It can be seen that if the old filter vector w(n — D) in (25) is replaced
by the current vector w(n), the resulting modified error

&n—-D)=y(n-D)-w' (nu(n—-D)

carries all the information about the previous updates up to time
n. If the pure system output y(n — D) is not available (e.g., as in
active noise compensation applications), the modified error must be
computed according to

(26)

w’ (n)u(n — D).

&n—-D)=e(n—D)+3y(n—-D) @7

With this, the modified adaptation equations for both algorithms are
obtained

w(n+1) = w(n) 4+ p&(n — D)u(n — D). (28)
_ é(n — D) B
w(n+1) 7ﬂ(")+“_ﬁ—_—T(n— Dyaln _D)u(n D).
29

The output equations remain in both cases the same as in (25). The
analysis of the new algorithm becomes easy if the plant G is assumed
to be time-invariant. In this case, the plant G and the delay D may
be exchanged, and the two delay blocks can be replaced by one
(see Fig. 3). Obviously, the new algorithms (modified DLMS or
NDLMS version) work like their well known original counterparts
driven by a delayed input signal. From this it is concluded that all
known properties of the initial convergence hold further on. The same
approximately applies for the tracking behavior of the DLMS and the
NDLMS algorithms after short, burst-like changes of the plant G.

The modified algorithms, in comparison to the originals, require
a larger amount of computation. The same holds for the storage
capacity, since the previous compensator outputs up to y(n D) must
be stored. Furthermore, the additional inner product w T(n n)u(n—D)
has to be computed in each sampling interval. Simulations as well
as implementation in active noise cancellation proved the superior
behavior of the modified algorithm.

III. SIMULATIONS AND AN IMPLEMENTATION EXAMPLE

In this section the theoretical results are compared with simulations.
The algorithms were excited by samples of a spherically invariant
Ko process. According to [2], [3] this type of process has similar
properties as speech signals. For simulations a white and a colored
version were used. The colored process was generated by AR(1)
filtering of the white process. The resulting eigenvalue ratio was
chosen to be greater than 1000, since it is known to be typical for
speech signals. In the following simulations a SIRP signal of variance
one was used. Additionally, white noise of variance Jumin = 107°
was added to the system’s output. Fig. 4 depicts the learning curve
of the relative system mismatch Scei(n)

E[e" (n)e(n)]
E[T(0)e(0)]

For Gaussian as well as Lo processes and for white and colored
versions the theoretical results and simulations agreed very well.
Only minor differences of less than 1 dB were observed. Typically, a

Srel (T‘) = (30)
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Fig. 4. Learning curve of the DLMS algorithm with a colored Ko process.
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Fig. 5. Magnitude of the largest eigenvalue over step-size pt.

moderate step size resulted in the dynamic behavior of the algorithm
as well as the steady-state mismatch being approximately proportional
to the step size. Due to the given demands it is possible to choose
a step size that is either optimal for the dynamic behavior of the
algorithm or optimal for a small steady-state mismatch. A comparison
with the results given in [7], [8] shows differences of 10 dB for the
steady-state value of the excess mean-squared error.

Fig. 5 shows the magnitude of the largest eigenvalue dependent
on the step-size pt for the four cases above. The investigation of the
curves directly corresponds to the matrix in (23). While the cases with
white excitation showed a clear optimum, the colored cases showed
very flat curves. Their optimal point for fastest convergence was
very close to the stability limit and within that range the convergence
was very sensitive to changes in the step size. Depending on the
different joint fourth-order moments the cases with white excitation
had different optimal step sizes and also different optimal eigenvalues.
Tt seemed that a larger joint moment caused a larger eigenvalue and
correspondingly a lower convergence rate. When comparing with the
expressions in [8], the choice for optimal step size and the bound
coincided for the Gaussian process, but larger differences occured
for the Ko process. The reason for this could be found in the
simplification of [8] for the joint moment m* . The flat minimum
of the colored processes was approximated especially poorly. The
substitutions given in Section II also allow an examination of the
behavior of the NDLMS algorithm.

Fig. 6 shows the magnitude of the largest eigenvalue of the matrix
corresponding to (23) for the NDLMS algorithm over the normalized
step-size o As expected the probability density function does not
have any influence on the dynamic behavior and the curves for
Gaussian and R excitation coincide. In both types of excitation,
colored and white processes, the optimal eigenvalue is smaller than
in the DLMS algorithm, which proves again the superiority of
normalized algorithms. As in the DLMS case, the NDLMS algorithm
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Fig. 6. Magnitude of the largest eigenvalue over normalized step-size a.
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Fig. 7. ERLE of the NDLMS algorithm.

with colored excitation reaches a much lower convergence rate.
However, the curve for colored excitation is not so flat and the
optimal step sizes for both types of excitation are close together. The
normalization seems to equalize both the effects of the probability
function as well as the effects of colored input sequences. Equation
(24) delivers the stability bound o = 0.445, which was verified
for both cases. However, this bound was very restrictive for white
processes. The more correlated the process is, the closer are its
stability bound and the bound according to (24).

For echo cancellation in hybrids a transversal filter of order
M = 32 was implemented using a fixed-point signal processor
DSP 56001. Measurements have been made on a real ‘PBX’ with
an input sequence close to a Gaussian process. The transfer function
of the hybrid was determined by a 10 km wire connection to the
subscriber. For several reasons the summation point of the desired
and the echo replica has been built up by an analog device. A delay
of D = 3 is inherent to the hardware, originating from the A/D
and D/A converters of the system. In Fig. 7 the echo return loss
enhancement (ERLE) of the NDLMS algorithm with a normalized
step-size a = 0.5 is depicted as a function of time.

IV. GENERALIZATION AND CONCLUSION

Having a filter F instead of a pure delay in the error path, the
FXLMS algorithm may be applied. However, the considerations with
the DLMS algorithm allow an alternative solution. Since F' has to
be known, the inverse filter F’ —! can be calculated. With respect
that F may have a non-minimal-phase property, the inverse filter
F~! includes noncausal parts. These parts can be approximated by
introducing an additional delay. Linear filtering in the error path can
be at least approximately compensated by the inverse filter and an
additional integer delay D.

It has been shown that a filtered error—in the simplest case, a
delayed error—can be used for adaptation if the LMS or NLMS
algorithm is modified. If the error is only delayed, the modification
is, likewise, a delay in the coefficient update. The resulting behavior
of the algorithms has been analyzed and compared to the classical
LMS and NLMS algorithms in the context of an application in a
telephone hybrid situation. Moreover, it is possible to avoid the
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drawback of a low convergence rate by adding a correction term.
Indeed, its complexity is increased, but it retains, except in the
case of time-variant systems, the full behavior of LMS (or NLMS)
algorithms.
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Comments on “A Comparison of Two
Quantized State Adaptive Algorithms”

Eweda Eweda

Abstract— This note contains a correction to an error in a recently
published ASSP paper.

1. INTRODUCTION

A nice comparison has been carried out between the quantized
error (QE) and the quantized regressor (QReg) algorithms in an
interesting paper by Sethares and Johnson [1]. This note is intended
for correcting an error in Theorem 1 of [1] that leads to incorrect
conclusions about the performance of the QE algorithm when using
a quantizer with a dead zone. An example of such an algorithm
is found in [2]. The symbols of [1] are used throughout the note.
Equation numbers composed of two digits, such as (3.5), refer to
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equations in [1], whereas numbers having a single digit, such as (3),
refer to equations in this note.

II. THE ERROR

Theorem 1 states that the QE algorithm satisfies (3.5) with 6 =
nu3? M?/2q. As shown below, this result holds for the QE algorithm
using a quantizer without a dead zone and does not hold for the
one using a quantizer with a dead zone. Neither the statement of
the theorem nor its proof exclude the quantizers with dead zones.
Conversely, the proof mentions that the quantizers with dead zones
are included in the theorem. This appears from the condition ¢ ¢
[7: Q(ej) = 0] below the summation signs in (A.1) and (A.2).
This condition allows the existence of j such that Q(e;) = 0 ie.,
quantizers with dead zones are not excluded. Hence, as it stands,
Theorem 1 implies that, even with the use of a quantizer with a
dead zone, the mean absolute error of the QE algorithm can be made
arbitrarily small through the use of a sufficiently small value of the
step size j. This is not correct. To show this error, consider the
following simple example in which

n=1 1)
Xpe{-1.1} )
Q(er) =0 if and only if |ex| < 1/4. 3)

In other words, (1) means that X, and #; are one dimensioned,
(2) means that X is a binary random variable, and (3) means that
the quantizer has a dead zone of width 1/2. (Examples with other
values of the dead zone width may be considered.) Now, assume that
the initial parameter error Oy = 1/8. Then, (1.4) and (2) imply
that |eo] = |Xo|/8 = 1/8 and then, due to (3), Q(es) = O.
Therefore, (1.7) implies that ©; = ©; and ©, = 6, = 1/8. Hence,
le] = 1/8,Q(e1) = 0, and then, (1.7) implies that > = ©; = 1/8.
Continuing in this procedure, one shows that ©; = 1/8 and |ex| =
1/8 for all k. Hence, lim;— o (1/t)Z!_; |e;| = 1/8. Thus, the mean
absolute error in this case cannot be reduced to an arbitrarily small
value via the choice of a small p as indicated by Theorem 1. Thus,
Theorem 1, with the above value of 4, is not correct.

III. THE CORRECTION
In this section, we derive a correct value of 6. The derivation
starts from (A.2) in [1]. Since V; is nonnegative (sum of squares),
then (A.2), with ¢ being replaced by ¢ + 1, implies that
t

>

i—1
i¢[j: Q(e;)=0]
Dividing both sides of this inequality by ¢ and then taking the limit

as t tends to infinity yields
t

2

i=1
i¢[): Qe ;)=0]

0<

[np? 32 M? = 2p gle:]] + V.

lim —
t

t—o0

fe:]

{
i=1
i¢li: Qe )=0]
npudM?
2q

32 172
< Lim 1 np3° M
< ETEE

t—oc

1 t
< Lim 3>

=1
5202
= 7’”"2(1 , o)
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