ON THE ROBUSTNESS, CONVERGENCE, AND MINIMAX PERFORMANCE
OF INSTANTANEOUS-GRADIENT ADAPTIVE FILTERS

ALl H. SAYED AND MARKUS Ruprp

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560

Abstract—The paper establishes several robust-
ness, optimality, and convergence properties of the widely
used class of instantaneous-gradient adaptive algorithms.
The analysis is carried out in a purely deterministic
framework and assumes no apriori statistical informa-
tion. It starts with a simple Cauchy-Schwarz inequality
for vectors in an Euclidean space and proceeds to derive
local and global energy bounds that are shown here to
highlight, as well as explain, several relevant aspects of
this important class of algorithms.

I. INTRODUCTION

One of the most widely used algorithms in current
practice is the Least-Mean-Squares (LMS) algorithm of
Widrow and Hoff (1960). Its simplicity and widespread
applicability have led to an enormous interest in the
analysis of its performance and convergence proper-
ties, and to the introduction of many different variants
with the intent of improving several of its characteris-
tics (see, e.g., [1]-[5] and the references therein). But
most of the available studies and convergence analy-
sis, however, rely on certain fundamental statistical as-
sumptions that, in many respects, are restrictive and
far from the conditions under which the LMS algo-
rithm and its several variants have proven themselves
in practical situations. This paper addresses these is-
sues and provides a novel unified analysis of a wide class
of instantaneous-gradient adaptive algorithms within a
purely deterministic framework. Several new local and
global error-energy bounds are established that explain
the robustness behaviour of the gradient recursions on
a step-by-step basis, as well as over intervals of time. A
convergence analysis is also provided that shows, un-
der certain deterministic conditions on the data and
noise sequences, that the estimate of the weight vector
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converges to the true weight vector (rather than the
Wiener solution). The analysis provided herein leads
to a much-needed theoretical validation of this class of
adaptive algorithms.

For the special case of the LMS algorithm, it was
recently argued in [6], using arguments based on the
notion of estimation in indefinite metric spaces, that
the LMS algorithm is an optimal H*-filter as time pro-
gresses to infinity, thus leading to connections with re-
cent work in the fields of robust estimation and control.

The current paper provides a new unified frame-
work that extends this, and other results, in some di-
rections. The derivation given here encompasses a wide
range of instantaneous-gradient algorithms with the
LMS case being a special example. It also exhibits
new local error-energy bounds for the varied gradi-
ent recursions. These bounds explain the behaviour
of the update-recursions on a local level, i.e., from one
time-instant to another. The approach also provides
a global optimization criterion that is valid over finite
intervals of time, and with no assumptions neither on
the noise sequence nor on the data sequence. A con-
vergence analysis is also provided that employs no sta-
tistical considerations and establishes the behaviour of
the algorithm as time progresses to infinity.

We may also remark that the analysis in this paper
extends equally well to the class of IIR gradient-based
schemes as well as to filtered error variants. These ex-
tensions will be discussed elsewhere (e.g., [10]) and, in
fact, can be regarded as special cases of a class of so-
called (linear and nonlinear) H*® adaptive filters stud-
ied in [11].

Finally, we shall use small boldface letters to denote
vectors and capital boldface letters to denote matrices.
Also, the symbol “#” will denote Hermitian conjugation
(complex conjugation for scalars).

II. THE STOCHASTIC MODEL

For the sake of illustration and completeness, this sec-
tion reviews the standard stochastic model that is of-



ten used to motivate gradient-descent algorithms. This
also serves the purpose of introducing several quantities
that are of interest further ahead.

So let w be a column vector of M unknown pa-
rameters that will be referred to as the weight vector.
Consider further a zero-mean random signal d(i) and a
zero-mean input row vector u; with o2 = E(d*(i)d(1)),
R = E(u}u;), and p = E(u!d(:)). Here the letter
E stands for expectation. Let v(i) denote the dif-
ference v(¢) = d(i) — u;w, which thus represents the
noise component that explains the mismatch between
d(?) and w;w. The v(i) is again a zero-mean random
variable whose variance will be denoted by J(w) =

E(v* (i)v(3)),
J(w)

(1)

The objective is to determine an estimate for the weight
vector w, say w?, so as to minimize the variance J(w)
of the noise component v(i). The optimal estimate,
w?, can be easily seen to be the solution of the normal
system of equations p = Rw?.

III. GRADIENT-DESCENT ALGORITHMS

A major inconvenience of solving the normal equa-
tions is that they require apriori knowledge of the auto-
correlation and cross-correlation quantities R and p,
respectively. But even if these quantities were avail-
able, the M x M linear system of equations still needs to
be solved for the optimal weight w°. This may require
a significant amount of computational effort, especially
for large values of M.

A way out of this is to employ an approximate
gradient-descent solution. In this method, weight es-
timates are recursively updated along the negative di-
rection of the instantaneous gradient of J(w), leading
to the so-called LMS recursion:

0? —p*w—-w'p+ w'Rw.

(2)

where p is a positive step-size parameter and w_; is
an initial guess.

Several other variants (such as e—~LMS, a—LMS,
projection LMS, etc.) have been proposed in the liter-
ature with the intent of improving several of the conver-
gence and robustness properties of (2). These employ
time-variant step-sizes and take the general form

w; = Wi_1 + puj [d(i) — uyw;_q],

(3)

with many possible choices for u(i). Here, and for the
sake of generality, a general time-variant step-size (%)
will be considered, rather than focus on special choices.
Also, it should be added that the framework of this
paper is equally applicable to recursions with matrix
step-sizes.

W; = W;_1+ ;A(i)u: [d(z) - u.~w,-_1] , W1,
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IV. QUESTIONS TO BE ADDRESSED

Several open issues regarding the behaviour of recur-
sion (3) will be addressed in this paper:

(i) The instantaneous-gradient algorithm (3) does not
lead to the exact minimization of J(w) in (1). It
is thus natural to seek an optimization criterion
for which (3) is a natural solution. The answer is
provided in Theorem 2 below.

(ii) The second point that is addressed here is the
study of the basic properties of recursion (3) on a
step-by-step, as well as a global, basis and with-
out any statistical assumptions. This is addressed
in Theorem 1 below.

(iii) The last issue to be studied here establishes the
convergence, under purely deterministic condi-
tions, of the gradient-based estimates w; rela-
tive to the true weight vector w, rather than the
Wiener solution w°. This is established in Theo-
rem 3 below.

V. LocAL ERROR-ENERGY BOUNDS:
PAssIvITY RELATIONS

We now invoke a simple Cauchy-Schwarz argument (see,
e.g., last Section in [7]) to establish several local energy
bounds that characterize the behaviour of the gradient
recursion (3) on a step-by-step basis. For this purpose,
it is instructive to ignore the gradient recursion (3) all
by itself and to simply note the following: pick any
positive real number u(i) that satisfies p(i)||ju;]|3 < 1,
and pick any vector q as an estimate for the unknown
weight vector w. This is clearly a very crude estimator:
it randomly picks a vector q and uses it as an estimate
for w. But still, and because of the condition on u(7),
this estimator guarantees that the following bound is
always satisfied:

lu;w — u;q/?
oW —af = @
This follows from the Cauchy-Schwarz inequality |u;w—
u;q|? < [lu;|}3 ||w — q|3. We have assumed above that
the obvious choice q = w is avoided so as to avoid a
ratio with zero numerator and denominator. However,
here and in later places in the paper, we can avoid
this technicality by working all through with differences
rather than ratios, say |[u;w—u;q|?—p~1(i)|jlw—q|3 <
0. But we shall continue, for now, to express our results
in terms of ratios for convenience of exposition.

Continuing with (4), it is certainly true that if its
denominator is increased by any positive value, say by



the noise term |v(?)|?, then the ratio is still bounded
by 1,
juiw — u;q/?
- — <1. 5

T = all + )P ®)
The inequalities (4) and (5) are valid for any data u; as
long as u(i)|jui||2 < 1 and they are valid for any choice
of q. They are, therefore, certainly valid for a q that
is generated by the gradient recursion (3). So if q is
replaced by w;_; it follows that

lagw — wyw;_q |2
r(Ow — wizi|lf + ()2 ~

One might then wonder in what sense does the gradi-
ent recursion (3) alter (6)? It can be easily seen that
it allows a further tightening of the inequality and to
conclude that the following also holds,

s Alw = will3 + lea ()]
p@NIW —wia|lF + ()2 T

where we have replaced, for notational convenience, the
term u;(w — w;_1) by e4(7) — also known as the apriori
estimation error. This establishes a local error-energy
bound: it states that no matter what the value of the
noise component v(7) is, and no matter how far the
estimate w;_; is from the true vector w, the sum of
the energies of the resulting errors, viz., p~1(i)||w —
wi||2 + |ea(7)|?, will always be smaller than or equal to
the sum of the energies of the starting errors (or dis-
turbances), p~1(i)||w — wi=1]|3 + |v(¢)|®. This can also
be interpreted as a passivity relation. In fact, other
similar local relations can be established by follow-
ing similar arguments, and we shall forgo the details
here. We instead collect the results into a theorem:
let ep(¢) = uyw — u;w; denote the so-called aposteri-
ori estimation error at time ¢. Also, define the factor

(@) = () - il

Theorem 1 (Energy Bounds) The following local en-
ergy bounds always hold at eack time instant i:

llw — will? + p()lea (i)

(6)

(M)

Wit B+s@OpOF = 1
leali)[? + lepli)f? ,
0w —wiB+pOE =
AOlIw = willd +le O |
AW —wi B+ RGE S 1
leali)l? + Jeali+ DI? N

p1(Dllw — wisa|lf + ()2

where it is assumed that p(i)||u;||2 < 1 for the first three
bounds, while p(i) < min {1/||wi|3, 1/||wi 1|3} for the
last bound.
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These local bounds show, on a step-by-step basis,
how the energies of the apriori and aposteriori residuals
compare with the energies of the disturbances due to
(i) and to the weight estimation errors, (w — w;_;)
or (w — w;). They also lead to an important con-
clusion regarding the optimality and convergence of
instantaneous-gradient algorithms as we now verify.

VI. GLOBAL ERROR-ENERGY BOUNDS:

CONTRACTION MAPPING

Assume we run the gradient recursion (3) from time
i = 0 up to time N and that, at each time instant 2,
the p(i) is chosen to satisfy u(i) |ju;||2 < 1. It then
follows that the first inequality in Theorem 1 holds for
each0<i< N,

p()lea(@* < llw—wisall3 = [Iw—will3 + u(D)|v(3) .

Summing over ¢ we conclude that we must have (we
now use the simplifying notation w; = w — w;)

~ N - .
I¥nlE + Titolea®
-1 ]I13 + S/, 1932

where we have also introduced the normalized apri-
ori residuals and the normalized noise signals, &,(i) =
V 1#(3) eq(3) and %(i) = /p(3) v(i). The numerator of
(8) is the sum of the energies of the normalized apriori
residuals &,(i) over 0 < i < N, and the energy of the
final weight-error at time N. Likewise, the sum in the
denominator consists of two terms: the energy of the
normalized noise signal over the same time interval and
the energy of the weight error due to the initial guess.
Consequently, (8) establishes a global energy bound
over the interval of duration (N +1): it states that the
(block lower triangular) matrix that maps the normal-
ized noise signals {#(i)}}L, and the initial uncertainty
Ww_; to the normalized apriori residuals {&,(#)}{L, and
the final weight error W is always a contraction map-
ping — see Figure 1 further ahead. This means that the
2—induced norm of this mapping, denoted by Ty, is
always upper bounded by one (||7n]|2,ing < 1) —in the
language of robust filtering and control (e.g., [8,9]), the
2—induced norm is often referred to as the H*®—norm
(due to connections with a frequency domain interpre-
tation that we forgo here).

Alternatively, if we denote by Ax(w_1,v(-)) the
difference between the numerator and the denominator

of (8),
(9)

{ }

(8)

]

An(w-1,v()) =

N
}— {II*—lIl% + )l

=0

N
Wl + D lea(d)?

=0



then we also conclude from the argument pior to (8)
that we always have, for any w_; and v(:),

An(w-1,9()) 0. (10)

Global bounds similar to (8) and (10) and that are
based on aposteriori residuals can also be established
by invoking the third inequality in Theorem 1. We
shall not pursue these details here for obvious reasons
of brevity. Instead, we shall expand on the significance
of such global relations. This will be achieved, for in-
stance, by showing how the global relation (8) allows us
to provide a statement concerning the minimax nature
of gradient algorithms.

VII. MINIMAX OPTIMALITY OF

GRADIENT RECURSIONS

The global property (8) (or (10)) is valid for any initial
guess w_; and for any noise sequence v(-), as long as
the u(i) are properly bounded. One might then wonder
whether the bound in (8) is tight or not. That is, are
there disturbances {w_y,v(:)} for which the ratio in
(8) can be made arbitrarily close to one (or Ay in (10)
arbitrarily close to zero)? The answer is positive. To
clarify this, we rewrite the gradient recursion (3) in the
alternative form

wi = Wi+ p(uffea(®) +o(@)] . (11)
We can now envision a noise sequence v(i) that satisfies
v(i) = —eq(i), at each time instant i (after all, we

have no saying in the values that the v(-) can assume).
In this case, the above gradient recursion trivializes
to w; = w;_; for all 7; thus leading to wy = w_;
and the ratio in (8) will be one for any w_; # w.
Correspondingly, Ay will be zero for any w_;. This
means that the maximum value of the ratio in (8), over
the unknowns {w_1,v(-)}, is equal to one,

8 AN, o() =0

N — g
Iw = wivllg + T leali)?
N —
ltw — w_1[3 + 325z, [9()1?
Another question of interest is the following: how does
the gradient recursion (3) compare with other possi-
ble recursive algorithms! for the update of the weight
estimate?
As a motivation, we first consider the important
subclass of algorithms that involve update-recursions of

max
{(W_1#W ()} {

Also,

1 We assume the algorithms are causal in the sense that the
weight estimate at time i is only a function of the data {u;, d(j)}
up to and including time i.
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the form: w; = w;_; +f(ui, v(3) + e4(%)), f(u;,0) =0,
where f(x, 2) is any (linear or nonlinear) vector func-
tion with arguments (x, z) that satisfies the condition
f(x,0) = 0. This includes the gradient recursion (3)
as well as the RLS recursion [1,7] as special cases. It
is immediate to see that for any such algorithm, if we
choose w_; # w and set v(i) = —e,(7) then the ratio
in (12) will be one and, consequently, the maximum
over all (w—1 # w,v(.)) will necessarily be larger than
or equal to 1.

More generally, let A denote any given causal algo-
rithm and assume we perform the following experiment
on A. We initialize it with w_; = w and define the
noise sequence v(i) in terms of the resulting (succes-
sive) apriori estimation errors as follows: v(#) = —e,4 (%)
for 0 < i < N. Then it always holds that

N

2

$=0

N
[56)? < lw — wn[3+ ) [ea(d)?
i=0

no matter what the resulting value of wy is. There-
fore, this particular choice of initial guess (w_; = w)
and noise sequence {v(-)} will always result in a differ-
ence Ay that is nonnegative. This implies that for any
causal algorithm it always holds that

W {An(w-1,v(-))} > 0.

For the gradient recursion (3) we were able to show
that the maximum has to be exactly zero because the
global property (10) already provided us with an in-
equality in the other direction. This may or may not
hold for any other causal algorithm. We can therefore
state that among all causal algorithms, the gradient-
type recursion (3) is one that solves the following opti-
mization problem:

Angrlirihm{{wa(-)} Anw-1, 4 ))} 19
and that the optimal value is equal to zero. As ex-
plained before, An has the following physical interpre-
tation: for any causal algorithm we define the (block
lower) triangular operator 7 that maps the initial dis-
turbances {W._1, %(-)} to the resulting estimation errors
{Wn,&a(-)}. Then Axn measures the difference between
the output energy and the input energy of 7ny. The
gradient recursion (3) is thus an algorithm that mini-
mizes the maximum possible difference between these
energies over all disturbances. More intuitively, it min-
imizes the maximum effect of the input disturbances
over the resulting estimation-error energy.

Theorem 2 (Minimax Optimality) Among all causal

estimators that recursively estimate the unknown weight



~

——— WxN

In
N
=0

{8(i)Ho — —— {&(:)}

Figure 1: Causal mapping Tn.

vector w, starting with en initial guess w_, and pro-
ducing successive estimates {wo,...,wn} and succes-
sive residuals {e,(0),...,eq(N)}, the gradient recur-
sion (8) is one solution that solves the min-maz prob-
lem (18), where Ay is as defined in (9). Moreover, the
optimal (i.e., the minimum) value is equal to zero.

CONVERGENCE OF GRADIENT
ALGORITHMS

We now study the convergence of the gradient recursion
(3) from a deterministic point of view, and without as-
suming any statistical information. We instead require
the following:

VIII.

(i) Finite noise energy: 3 ;oo #(3)|v(3)]? < oco.

(i) Persistent excitation. That is, the input vectors
{V/1(i)u;} are such that for any sequence of col-
umn vectors x;, the condition lim;_, oo p(8)|uix;|? =
0 implies lim; o x; = 0.

It follows from the global property (8) that (with
0 < p() w3 < 1)

N
Y H(dlea(dF

i=0

N
< Wl 4 s G
=0

We then conclude from the finite energy assumption on
#(-) and from the boundedness of ||W_||3 that

N
Jim Z;#(i)lea(i)lz < oo.
$=

This means that the infinite series 3 ;o p(i)lea(4)|?
is convergent, which implies, by a classical result in
mathematical analysis, that the sequence {p(i)|ea(?)[%}
converges to zero, or limi_ o \/p(i)ea(i) = 0. If we
now further replace e4(%) by its definition, we conclude
that lim;_ o p(i)|u;Ww;—1]2 = 0. It then follows from
the persistent excitation assumption that we must have
lim; oo Wi—1 = 0.

Theorem 3 (Convergence) Assume p(i) |[u;|3 < 1
for alli and that the normalized noise sequence has fi-
nite energy, Y e #(D)|v(9)|? < 0o. It then follows that
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the normalized apriori residuals obtained via the gradi-
ent recursion (3) tend to zero, lim;_.oo \/ps(3)eq(3) = 0.
If the input vectors {/p(i) u;} are further persistently
exciting then lim;_, o w; = w.

IX. CONCLUDING REMARKS

We finally remark that the point of view taken in this
work can be extended to deal with gradient-type re-
cursions that often arise in IIR modeling, as well as
with variants that employ filtered error quantities. In
these cases some nonlinearities arise that can still be
properly handled within the framework of the current
paper. These extensions will be treated elsewhere (see,
e.g., [10,11] and the references therein). In particular,
the gradient recursion (3), as well as the IIR extensions,
can be viewed as special cases of so-called (linear and
nonlinear) H*®—adaptive filters studied in [11].
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