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Abstract— The least mean square (LMS) algorithm
is known to converge in the mean and in the mean
square. This does not imply that the algorithm
converges strictly at every time step k. In short-
time periods the algorithm’s convergence can burst
up and cause severe disturbances in speech appli-
cations. As long as Gaussian processes are used to
drive the filter input and the order of the filter is
relatively large, the occurrence of these instabilities
is very rare. However, for other statistics this does
not need to be true. This contribution closes this
gap in the literature by discussing potential short-
time unstable behavior of the LMS algorithm. For
spherically invariant random processes (SIRP), like
Gaussian, Laplacian, and Ky, the probabilities for
the occurrence of instability at a single time instant
k are investigated.

1. INTRODUCTION

For the past few decades the convergence of the least mean
square (LMS) algorithm has been analyzed, depending on
the statistics, either in the mean or in the mean square.
However, this does not necessarily state that the algorithm
is converging at every time step for a specific step-size pu.
Depending on the statistics of the input sequence there is
still a nonzero probability that the algorithm will be unsta-
ble for a short-time, even if the step-size 4 is very small. In
speech applications, like echo or noise control, these short-
time instabilities lead to bursting, severely disturbing a con-
versation. If the input sequence is bounded, as in the case
of a uniform distributed process, then there exists a step-
size that is small enough to ensure the convergence of the
algorithm at every time step. However, for unbounded pro-
cesses, like Gaussian or Ko, the probability of failure will
be greater than zero, even if the step-size is very small.

If the algorithm is written in state space form using the
weight-error vector ¢(k), the difference of the estimated taps
at time k and the optimal solution, the update equations
are

(b +1) = (L— pu(k)u” (k) (k) - pu(k)r(k) (1)

where I is an M dimensional identity matrix, u(k) is a
(1 x M) vector with the M past samples of the input se-
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quence and r(k) is additive output noise. Considering only
the homogeneous equation and not taken the noise into ac-
count, the contraction mapping property of the algorithm
can be applied. Although the paper does not deal with the
normalized LMS algorithm, the normalized step-size

=4
uT(k)u(k)

is used here, but only for the purpose of clarity and will
be substituted back later. The squared L;-norm of the
weight-error vector ¢(k) is investigated next
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The term keu(k) = IIJ“)(I:‘)E(;:)II, lies between zero and one.

Thus, for 0 < ax < 2 the update equation is a contrac-
tion mapping of the weight-error vector. Consequently, the
algorithm fails at time k if ax > 2 depending on the term
keu(k). Since there is nothing known about keu(k) the worst
case is assumed and k.. (k) is set equal to one. Thus, the
algorithm is unstable at time instant k if
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Nkl > 2. @)

A common limit for the mean square approach is g <
2/(0% M) (see [2]). In order to obtain more convenient ex-
pressions, a normalized step-size

u =pM

will be used throughout the paper. Thus, the probability
of failure of the algorithm at time instant k will be defined
as

Pr= (1o > 20) ®

Since the squared L;-norm is never negative, a very rough
approximation can be given using the Tchebycheff inequal-
ity (see [3])
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Of course, this implies that Py <1 for p' 2> 2. If, however,
exact equalities are desired the statistics of the input pro-
cess have to be known. Since Gaussian statistics are very
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frequently used in analyzing the LMS algorithm, P; is dis-
cussed for these statistics in the next section. The approach
can be extended to the large class of spherically invariant
random processes (SIRP) that closely resemble speech se-
quences. This is presented in the third section. Examples
for Ko and Laplace densities are given.

II. GAUSSIAN INPUT SEQUENCE

If it is assumed that the input sequence is uncorrelated
Gaussian with unit variance, the probability Py can be writ-
ten in terms of the squared radius s = r?

Py(z) = P(s>z). (6)

The radial density of an M dimensional Gaussian process
can be given by

8*“ —~3/2
Pa(s) = me U(s) M

where U(s) is the unit step function. Thus, the desired
probability can be calculated:
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The function T';;.(z,a) is known as the incomplete gamma
function [1] and can be computed using Matlab. Figure
1 depicts the failure probability for various choices of the
filter order M over the step-size u'. It can be seen that for
[ll <1 Py is very small, whereas it increases drastically for
/A’ > 2. The semilog plot on the right side emphasizes the
behavior for small 4 . This can be calculated explicitly. For
%‘; being an integer value the incomplete gamma function
can be given as a series (see [1])
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As long as -“—:‘7 > % the sum can be approximated by its

largest value
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Thus, for small step-sizes the probability of failure can be
given explicitly. If the filter order M is fixed, then the
failure probability behaves essentially like e_ﬁ, or in the
semilog plot like —;"{, i.e. if the normalized step-size p’ is
doubled the failure rate is increased to half of the exponent.

For large step-sizes p' the behavior can easily be detected
from (9):

;for u’ > M. (11)

Although this is not of practical importance, it gives an
indication of the behavior.

Since the limit is usually given for u' = 2, Py for this step-
size is of special interest and needs further calculation. As

can be observed in Figure 1 the value for ;z' = 2 tends to
0.5 if M increases. It is proven next that indeed P; tends

to 0.5 for u' = 2 if M tends to infinity.
. M M 1
dim 1= T (35) =3 (12)
The filter order M is assumed to be even. Thus, the incom-
plete gamma function can again be written as a series
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1t is recalled that Bernoulli trials can be written as Poisson
trials if the number of trials n tends to infinity, the proba-
bility p tends to zero, but the product np tends to a fixed
number a (Poisson theorem [3])
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and for np > 1,2 > 1 [3]

= (n koo oyn-k 1 k; —np
;(OP (1-9) _2+erf(————\/m). (15)

The following is identified: @ = 4 and k> = ¥ — 1. Hence
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Although u' = 2 is typically given as stability limit [2], it
is shown here that the probability for short-time instability
at this limit equals at least 0.5 even for large filter orders.
The value for maximal convergence speed u' =1 has a very
low probability of failure and this probability vanishes if M
tends to infinity. However, if other than Gaussian statistics
are applied, the situation can become much more drastic.

IT1. SIRP INPUT SEQUENCE

If it is assumed that all high order joint density functions
are only dependent on the radius and not on any angles,
spherically invariant processes are obtained. For a detailed
description of their numerous properties the reader is re-
ferred to [4, 5]. A very suitable description of these pdfs
can be given in terms of the Meijer’s G-functions [1]. They
are defined by a Mellin-Barnes integral

Gy (, ::) = ;}]_ an
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where the two parameter sets ap, by are divided into two
subsets. In the case where only simple poles appear, the in-
tegral can be given as a series with hypergeometric functions
and computed numerically. Applications of G-functions to
LMS, NLMS and Delayed Update LMS (DLMS) algorithms
can be found in [6, 7). Here, only two types of G-functions
are under consideration: G} and G2 with one and two
parameters, respectively, which are known very well. Both
of them can be described explicitly

Gé? (z Ib; ) = zble-z
by +b
G2 (z |6y 55) 2277 Ky, -5, (2V7)

where Kn(z) is the modified Bessel- or McDonald func-
tion of the second kind for order n (see [1]). Since inves-
tigations with these two expressions become very difficult,
G-functions will be used. They have the advantage that
almost every linear operation is simply a change in the pa-
rameter sets. As shown in [4, 5] pdfs of bandlimited speech
signals can be described by chosing the two parameters b,
and b2. A suitable form for pdfs is

ps(z) = AGT" (A12

) (18)

where A and ) are used to normalize the function in order
to be a valid pdf. A and A can be calculated by knowing
the parameters ap, by
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The function py,, (r) describes the density of the L,-norm
of the (1 x M) vector u(k) and can be given explicitly
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Hence, the probability of failure can be written as
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If z = 2% the failure probability can be given for the G323
m
fanction
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Figure 2 presents the failure behavior for a Laplace density.

This can be described by a G33 function with parameters
by = 0,52 = 0.5. The function does not become singular

at zero. A more extreme behavior can be expected from
the Ko—density that is obtained for b; = b2 = 0. For both
densities the variation of the curves is not very large if dif-
ferent filter orders M are applied. The step-sizes for fastest
convergence have been calculated in [6]. They are s’ a1 /2
and 1/3 for the Laplacian and the Ko—density, respectively.
For these values, however, the failure rate is around one per-
cent. The higher the filter order M, the smaller the failure
probability. For larger values of the normalized step-size '
the behavior changes. Even for large filter orders M the
failure probabilities for ;4’ = 2 are lower than 0.5, and the
higher the filter order is, the higher the failure rate, P;. In
comparison to a Gaussian signal the probability of a failure
has increased drastically and even for small step-sizes the
probability of failure is relatively high. Thus, using speech
signals, either very small step-sizes should be used resulting
in slower convergence, or the usage of the LMS algorithm
should be avoided. The projection LMS algorithm (NLMS)
is then to prefer, since because of its contraction mapping
property the algorithm can guarantee convergence at every
time step k, and thus a much better behavior results.

IV. ConcLusIONS

In this contribution it has been shown that although the
LMS algorithm converges in mean and mean-square, short-
time periods exist in which the algorithm does not converge,
even if the step-size is very small. The failure probability
of the algorithm was calculated for several spherically in-
variant processes. For Gaussian processes the failure rates
are only high if the normalized step-size exceeds the limit
two. For step-sizes lower or equal to the optimal value the
effect vanishes for relatively large filter orders M. However,
if other spherically invariant processes, like Laplace and K,
processes, are applied, the failure probabilities are still rela-
tively large, even if small step-sizes are used. Thus, speech
signals can cause severe problems to the LMS algorithm.
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Figure 1: Failure probability Py over s’ for a Gaussian process with filter orders M = 5, 20, 100, 300
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Figure 2: Failure probability P; over ;tl for a Laplace process with filter orders M = 5,100
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Figure 3: Failure probability P; over u' for a Ko process with filter orders M = 5,100
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