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Abstract— In this paper we show that many adaptive filters
used for system identification are contraction mappings. Ap-
plying deterministic methods we give conditions under which
algorithms, like Least Mean Square, Normalized Least Mean
Square, Modified Least Mean Square with Delayed update,
Modified Filtered-X Least Mean Square, Affine Projection,
and Recursive Least Square are a contraction mapping con-
tracting. Based on this result, we investigate the algorithms’
convergence rate for initialization phase and tracking.

I. INTRODUCTION

Although adaptive filter have been used successfully for sys-
tem identification during the last three decades a unique
framework addressing all important properties does not exist.
Even excellent textbooks like [4] use stochastic approaches for
the derivation of the Least Mean Square algorithm (LMS)
and deterministic approaches for the derivation of the Re.
cursive Least Square (RLS) algorithm. Recently, following
a determistic approach, it has been shown that the LMS al.
gorithm is H* optimal [9]. However, other gradient-type
algorithms have not yet been included. In this Paper we
avoid the necessity of minimizing a performance index and
follow the idea that an estimate of an unknown plant should
be improved with every update step of a given algorithm.
Such a behavior can be described by contraction mapping
(CM), which is a well-known property in the field of solving
(non)linear equations and convergence theory of sequences.
Let us first briefly describe the identification problem as de-
scribed in Fig. 1. An unknown plant w(k) is driven by a
sequence u(k). The observation d(k) at the output is cor-
rupted by additive noise v(k). Both observations, i.e., input
u(k) and output d(k), are filtered by A(k) and B(k), respec-
tively. With the filtered ontputs Y(k), (k) and dy(k) the al-
gorithm estimates the unknown plant resulting in an (1 x M)
estimation vector (k). Instead of the (output) error e(k),
the (filtered) error e4(k) is used to update the coefficients.
Thus, a general formulation for the coefficient update and
the error equation is

B(k+1) =
es(k) =

(k) + (k) p(k)eg(k) ¢))
do(k) - DT (K)g(k), 2

where pu(k) is a step-size parameter. As depicted in Fig. 1,
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Figure 1: Adaptive filter structure for system identification

two linear FIR filters A, B can be applied to the input vector.

Fy

¥E) = Y akukk-i) = ABEE] @)
Fy

8k) = D bi(kju(k-i) = BE)u®)]. (4

i=0

This special choice of the vectors Y(k), 4(k) allows us to de-
scribe all common algorithms in a unique framework. Since
the output d(k) of the system can be constructed as a linear
combination of the input values plus additive noise v(k),

d(k) = w'(k)u(k)+ o(k), (5)

Fy
do(k) = D bi(k)d(k i), (6)

=0

the error equation (2) can be rewritten to

es(k) = do(k) — " (k)g(k) 4
= W (R)(k) - 2T (R)B(k) + ve(k)  (8)
= € (R)B(k) + ve(k), (9)

where we have introduced the weight-error vector ¢(k) =
w(k) — @(k) and the filtered noise ve(k) = B(k)v(k)). In
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(8) we assumed that the system changes only very slowly.
This condition is necessary when filtered desired values dy(k)
are used. Many algorithm, however, use B = I, thus they
avoid the filtering at all and (8) is exact. An additional ef-
fect arises in the noise term vy (k), since it is now filtered as
well. To apply the concept of CM, it is necessary to write
the update equation in state-space form, which can be done
by substituting the weight-error vector in (1)

£k +1) = (I~ s(R)p(k)$” (k) (k) — u(k)p(k)ve(k) (10)

where I is an M dimensional identity matrix. For achieving
CM, the inhomogeneous part of the state-space formulation
has to be neglected. Thus, all algorithms in this paper will
be regarded as noiseless. Although, this is a very restrictive
simplification, most properties can be investigated correctly.

II. CONTRACTION MAPPING

Definition 1 If an operator T is defined on a domain D in
a normed linear space, and if there is a constant 0 < C < 1
such that

ITz1 - Tz2|| < Cliza — |

then T is a contraction operator (contraction mapping).

Comparing (10) with the above definition we can use the ma-
trix (L - u(k)i(k)f‘(k)) as the operator T. In this paper we
will focus on the properties of T and find vectors P(k), $(k)
such that the matrix is a CM. The squared L;~norm of the
weight-error vector leads to convenient expressions

lle(k + 1)[12 (@ - skyek)™ ) e®)): (1)
le(k)IE C(k), (12)

where C(k) equals

(k)7 (B)e(k)$7 (R)e(k) — w* () Iw ()13 (87 (k)e(k))?
- EOIE '

Thus, we have to find conditions such that 0 < C(k) < 1.
Obviously, not every vector $(k), #(k) leads to CM; for ex-
ample vectors that are orthogonal to ¢(k) cannot lead to an
improvement and must be excluded from the set of allowed
vectors. Fig. 2 depicts the situation graphically. Given a
weight-error vector ¢(k) and an update direction (k) what
amount of y(k) has to be added in order to obtain CM? Ap-
plying some geometry, the figure leads to the following basic
theorem.

Theorem 1 a) For any given direction ¥(k) not orthog-
onal to (k) a certain amount of Y(k) can be added to
€(k) such that e(k + 1) will become smaller.

b) The mazimal range Ac(k) that contracts ¢(k) is given by

P (R)e(k)
Ag(k) = ZWYL(") .

¢) If a certain amount Ae(k) is known to cause a contrac-
tion than every amount aA¢(k) causes a contraction for
0<a<l

¥(¥)

Figure 2: Update equation

We can separate the algorithms into two classes: symmetric
and unsymmetric. Symmetric algorithms use only one vec-

tor ¢(k) = ¢(k), whereas unsymmetric algorithms use two
different vectors.

A. Symmetric Algorithms

In the case of a symmetric algorithm (A(k) = B(k)) CM is
obtained for positive step-sizes

0 < p(k)= for0<a<?2, (13)

o
IZOTH

which is in agreement with Theorem 1b. It can be expected
that the convergence speed can be maximized by finding a
specific . Derivating with respect to o, the solution for
maximal convergence speed reads oo, = 1. This solution,
however, implies that the choice of o does not influence the
term k3 (k) = |97 (R)e(k)]” /(9 ()IBe(k)IB. The resulting
value of C(k) is Cmin(k) =1 — &} (k). Thus, the convergence

speed is still dependent on % (k). Table 1 depicts a list of al-
gorithms that fall into the category of symmetric algorithms.

(k) = u(k) LMS algorithm

¥(k) = u(k - D) Modified DLMS alg. [8]
w(k) =Y 2 aiu(k — i) Modified FXLMS alg. [2]
P(k) = 2 : S0 i (E)u(k — §) | A(k) for decorrelation [10]

Table 1: Special cases for symmetric algorithms

B. Unsymmetric Algorithms

If we use B(k) # A(k) we obtain an unsymmetric algorithm.
Since a filter B(k) always causes the drawback of permitting
only a slowly time-varying system, common algorithms use
the instantaneous error e(k) instead of a filtered one (B=1,
or equivalently ¢(k) = u(k)) resulting in

I(k) = L- p(k)p(k)u" (k). (14)

In this case several well-known algorithms fall into
the unsymmetric category: Block Least Square (BLS),
Ozeki/Umeda’s Affine Projection algorithm (AP) [6], RLS
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algorithm [4], and the Orthogonal Least Squares (OLS) al-
gorithm [3]. BLS and AP are both underdetermined LS
algorithms, both minimizing the LS problem over the last
Fa < M observations. Their main difference is that BLS
makes an update every F, steps (contigues window), whereas
AP updates every step (sliding window). If we collect the F,
past input vectors in a (F, x M) matrix U(k)

U(x) (w(k), u(k - 1), ..., u(k - Fa+1)) (15)
(u(®), O(R)) , (16)

the update equation in state-space form can be written as

&(k)

(b)) = (L-al(b) (L™ BU®) 27 0) { oL
an
For describing a LS problem a =1, but in literature a smaller
step-size 0 <a < 1 has also been used (Gauss-Newton type).
Although the LS minimization property is lost, the algo-
rithms behave still like a CM, which can be seen if (k)
is separated into one part that is a linear combination of
U(k), say U(k)B(k), and another part from the complemen-
tary space, say r(k). Thus ¢(k) = U(k)B(k) + (k) with
£T(k)U(k) = 0. Applying this to the state-space form (17)
above, we get ¢(k+1) = (1—a)U(k)B(k) + r(k), whose norm
is smaller then ||¢()||3 for 0 < a < 2. For o =1 the LS solu-
tion at time k shows the well-known orthogonality property
of the a-posteriori errors I T(k)g(k) = 0. Thus, for the AP
algorithm the term from (17) becomes

k
||r/3¢1((k))u; a"(B)e(k)

with a vector $(k) that is a linear combination of the past

input vectors .
¥(k) = u(k) - U(k)a(k)

U(k) (UT(R)U(K)) " UT (R)e(k) =

with the property

T
( gr((:)) ),g(k) = ( ﬁrg(") ) . (18)
Thus, (17) can be rewritten as a symmetric algorithm
oy $BY(R)
e(k+1) =¢(k) - __r__(k)f(k)g(k)' (19)

The RLS algorithm is not much different from the AP and
BLS algorithm. The direction $(k) is also chosen to be or-
thogonal to the past input vectors. As long as a set of F,
input vectors is not spanning the whole space RM , the di-
rection $(k) can be strict orthogonal and the behavior is the
same than that of an AP(F,) algorithm. After the directions
span the whole space, the orthogonality can only be achieved
in a LS sense. An advantage of RLS is the normalized choice
gT(k)¢(k) = 1, such that 0 <a < 2 can be chosen directly,
leading to CM. The most amasing result here is that both al-
gorithm types, symmetric and unsymmetric, can behave the
same, as long as the unknown system does not change too
quickly.

Like in AP where the direction ¢(k) is orthogonal to the
F, past input vectors g"(k)g (k) =0, it is also possible to

€(k—Fa) BLS.

choose the update vector to be orthogonal to the previous

directions

T
(F)m - (1)
$(k) = @(kq),g(k—r.)). (21)

The desired direction can be investigated by a recursive filter

Fe
PE) =u(k) = ) cip(k—i).

=1
Applying ¢(k) to both sides of (22) we directly obtain
$T()p(k) = $T(k)u(k) and applying Pk — 1) we get the
coefficients
sT(k)p(k - 1)

RO,
To understand the algorithm’s behavior it is necessary to con-
sider the first update equations. We initialize the recursive

filter with zeros: y(~1) = ¥(=2) = $(—F.) = 0 and obtain
the following relation when using o =1

T (k—De(k) =0 for ! = 1..F, . (24)

Applying the instantaneous direction ¥(k) to the update
equation and using the result (24), we again find the rela-

tion

BT (k)e(k) = uT (K)e(k) , (25)
which leads to a symmetric algorithm. Like the AP algorithm
we obtain CM for 0 < a < 2. Similarities and differences in
the behavior of both will be explained in the next section.
The procedure of deriving the directions in the last method
can also be described as a Gram-Schmidt orthogonalizing
procedure. If the procedure is continued to Fo = M, we
obtain the OLS algorithm [3], which has proven to be effi-
cient for radial basis neural networks. Finally, Table 2 lists

v (W) =0

(22)

alk) = (23)

BLS and AP(F,)

min{{l¢" ()U(k)IF} | RLS-algorithm
v (k)$(k) =0 Orthogonal direction alg.
min{|l¢"(k)$(k)|Z} | OLS-algorithm

v (kU (k)] =0

Table 2: Special cases for unsymmetric algorithms

Mboup algorithm [5]

common unsymmetric algorithms.
III. SPECIFIC RESULTS

For computing the convergence speed we assume that the
following set of M vectors 4,..8), build an orthogonal ba-
sis. Then, every vector ¢(k) can be written in terms of its
projections

M T
_ € (k)u;
(=3 Srs
Thus, the squared L;—norm of ¢(k) can be written as

(26)

M CT u, 2
heceyg = 3 (L Bm)"

fm]

(27
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If we assume that all of the M vectors are equally likely,
we can assume that every term of the sum has an average
value of |le(k)|I3/M, or eqivalently, x%(k) = x3(k) = 1/M.
Applying this to the LMS (NLMS) case, we obtain

Conesh) = 1~ HOIIEC = sAaRR) o
Crnims(k) = 1_9_’%‘ (29)

In fact, equations (28) and (29) describe the convergence
speed for a white input process very well. For white input
processes we can assume that the instantaneous input vector
is always the first of a set of orthogonal vectors, whereas for a
correlated input sequence the vectors can no longer build an
orthogonal set and the convergence speed becomes smaller.
Since (N)LMS uses only ¢(k) and u(k), the tracking and ini-
tial behavior of this algorithm is the same.

This is different for the affine projection algorithm, where
Y(k) is chosen to be orthogonal to past F, input vec-
tors. During the initial phase the first direction is chosen
to be ¥(0) = u(0), whereas the next is orthogonal to it:
$T(1)u(0) = 0. Since the directions at time k are linear
combinations of the instantaneous and the past F, — 1 input
vectors, 7 (§)J(5) = 0 includes also ¥TE)(E = 1) = 0 for
1=1.F, — 1. The initial update sequence can be described
as

N
&i—(t_)—g(ﬂ) 1=1.F,.
¥ ()2()
Thus, the convergence speed, given by the quotient of the
{4+ 1-th and the i-th estimate is

a(2 - a)
M —ia(2 - a)

4
(=€)~

i=m1

(30)

Cap(i)=1- sfori=1..F, (31)
However, the tracking behavior is completely different. We
assume the step-size @ = 1 and obtain (19). If we compare
this update equation with those of the NLMS algorithm, we
can directly conclude that the AP algorithm of order F, per-
forms the same convergence speed as an NLMS algorithm for
a = 1 whose input sequence has been decorrelated by a filter
of order F,. The algorithm that uses orthogonal directions
instead has a faster convergence speed. Substituting the past
P < F, updates, we obtain

P — Tk — i
g(k+1)=£(k_P)_aZ£(k YT (k- i)

=0

WE(’C—P) (32)

Applying the same argument as in the LMS-case, but taking
(20) into account, we get

Chp~1- ﬂ;—;)—}’ for P=1.F,  (33)
which describes C(k) for P steps. If we calculate the quotient

of €52, and Cha! we get the desired factor
Cop =~ MEENE
lle(Fa — 1)13

which is valid for every MA random process with order lower
or equal to Fg.

a(2—a)

T M_Faiz-a)

If Fo is set equal to the filter order M, the RLS algorithm
with rectangular window is obtained from the AP algorithm.
The convergence behavior of the algorithm is now essentially
described by its initialization phase. Since o = 1, the factor
changes to 1/(M — i) with every time step and, therefore

1

Crrs(i) 1 — ——

M= fori=0.M—1.

(35)
After the initialization phase the weight-error vector is min-
imized and as long as the unknown system remains constant
the algorithm only minimizes additional noise. If the system
changes abruptly, the tracking behavior is poor, since the al-
gorithm includes all former (wrong) observations.

The deviation of the CM property assumed an unknown sys-
tem that is at least F = max{F., F3} steps time-invariant.
If a time-varying system can be described as approximately
time-constant for F succeeding steps, than the fastest possi-
ble algorithm uses the F* past observations, resulting in

1
M-F’

Crast =1-

(36)

We finally like to note that if noise is included the approach
still holds for CM in the mean.
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