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Bursting in the LMS Algorithm

Markus Rupp

Abstract—The least mean square (LMS) algorithm is known to converge
in the mean and in the mean square. However, during short time periods,
the error sequence can blow up and cause severe disturbances, especially
for non-Gaussian processes. This contribution discusses potential short
time unstable behavior of the LMS algorithm for spherically invariant
random processes (SIRP) like Gaussian, Laplacian, and /\y. The result
of this investigation is that the probability for bursting decreases with
the step size. However, since a smaller step size also causes a slower
convergence rate, one has to choose a tradeoff between convergence speed
and the frequence of bursting.

I. INTRODUCTION

For the past few decades, the convergence of the least mean square
(LMS) algorithm has been analyzed, either in the mean or in the mean
square, depending on the statistics of the input sequence. Since these
analyses are based on ensemble averaging, it is still possible that the
error sequence for a particular realization bursts up during a limited
time period. In speech applications, like adaptive hybrids, hands-
free telephone sets, or noise control, these bursts severely disturb a
conversation. As we shall see, the probability of the occurrence of
the bursting phenomenon depends strongly on the statistics of the
input sequence and the chosen step size. For unbounded processes,
like Gaussian, Laplacian, or A, the probability of failure will be
nonzero, even if the step size is very small. We shall see that for step
sizes that correspond to the fastest convergence speeds, bursting can
happen relatively often, and thus, smaller step sizes and, therefore,
lower convergence speed may be necessary.'

The update equation for the LMS algorithm is given by

Wik + 1) = W(k) 4 pu(k)[d(k) — u’ (k)W(k)]

where d(k) = u? (k)w+ r(k) is the observed plant output corrupted
by additive noise r(k), and u(k) is a vector with M samples of
the input sequence. If the algorithm is written in state-space form
using the weight-error vector e(k) (which is the difference between
the estimated taps W(k) and the optimal solution w), the update
equations become

e(k + 1) = [I — pu(k)u’ (k)]e(k) — pa(k)r(k) (1)

where I is an M-dimensional identity matrix. Since we are not
interested in the effect of the noise r(k), we consider only the
homogeneous part of the equation and do not take the noise into
account. Thus, the algorithm’s contraction mapping property with
respect to the weight-error vector can be applied. Deterministic
descriptions including the effect of the noise can be found in [1]. The
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!n practice, all input sequences are bounded because of the A/D converters,
and using a very small step size would be appropriate to assure convergence.
A small step size, however, will not be appropriate for fast convergence, and
the improving effect of the adaptive filter will be compromised. To simplify
matters, we shall completely neglect the bounding effect of the converters.
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Fig. 1. Failure probability Py as a function of u’ for a Gaussian process
with filter orders M = 5.20. 100. 300.

squared L, norm of the weight-error vector (&), which is obtained
from the homogeneous part of (1), is given by

lleCk + DI = [le(k)]

21+ meaByplla(R a2 - 2)).

The term ke, (k) = w; lies between zero and one. Thus,
He(R)ZTulk)lz

for 0 < p|lu(k)|2 < 2, the update equation is a contraction mapping
of the weight-error vector. Consequently, the algorithm fails at time
k if pllu(k)||3 > 2, as long as ~.. (k) # 0. Thus, the algorithm
becomes unstable at time instant k if [|u(k)||3 > f—,

Depending on the filter structure, the occurrence of this instability
can affect the output of the filter differently. In a linear combiner,
where at every time instant independent vectors u(k) are applied, it is
just a short burst, and it is very likely that this does not repeat at future
time instants. In a transversal filter, however, the norm ||u(k)|3 may
not change very quickly, especially for long filters. If one sample «.(%)
is very high, the norm may exceed the bound of 2 for about .M steps,
and the bursting becomes rather perceptible. A common stability
limit for the mean square approach is y < 2/ (a2 M) (see [2]). In
order to obtain more convenient expressions, a normalized step size
i’ = pMa? will be used throughout the correspondence. Since the
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algorithm is not necessarily contracting for [[u(k)})3 > ——, the

probability P; of algorithm failure at time instant & can be defined
as a function of the normalized step size '

. 2
2Mo;, ) @)

Pr(p') = Pr(llu(k)ll% 2=
Since the squared L, norm is never negative, a very rough approx-
imation can be given using the Tchebycheff inequality (see [3]):
Prp') < &

Since Py < 1 even for p/ > 2, the above inequality only provides
a bound that is good for small step sizes. If, however, exact equalities
are desired, the statistics of the input process have to be known. Since
Gaussian statistics are very frequently used in analyzing the LMS
algorithm, P is first discussed for these statistics in the next section.
In the third section, this approach will be extended to the larger class
of spherically invariant random processes (SIRP) since they closely
resemble speech sequences. Examples for the special SIRP’s with Ko
and Laplace density will be presented.
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II. GAUSSIAN INPUT SEQUENCE

If it is assumed that the input sequence is an uncorrelated Gaussian
random process with unit variance (o2 = 1), the statistics of M
random variables are circularly symmetrical, and their joint density
depends only on the distance from the origin r, i.e., the probability
Py from (2) can be written in terms of a squared radius s = =% (see

[3, pp- 133)
2M>
> =
M

The radial density of an M -dimensional Gaussian process is given by

P(u) =Pr<s

s%f
po(8) = ———e U (s)
27 (M)

where U(s) is the unit step function. Thus, the desired probability

can be calculated
p 1 it _
Pf(p):—————/ sTlem /2 s
: %F(M) Py

(3)

The function I'(a.x) is known as the incomplete gamma function
(see [4, 8.350]) and can be computed using Matlab. Fig. 1 depicts
the failure probability for various choices of the filter order M as a
function of the step size ;'. It can be seen that for 1’ < 1. Py is very
small, whereas it increases drastically for u’ > 2. The semilog plot
on the right side emphasizes the behavior for small z'. This can be
calculated explicitly. For % being an integer value, the incomplete
normalized gamma function can be given as a series (see [4, 8.352.2])

(M s Mo (m)*
2% ! Z n! — A

ey . @

As long as % > 1»2_1 the series can be approximated by its largest

component
M_,
r (M M) M\2
20 - n e_ %

r) G-
Thus, for small step sizes, the probability of failure is given explicitly.
If the filter order ]\4 is fixed, then the failure probablhty behaves
essentially like e ry or in the semilog plot like — ‘— For large step
sizes ' > M, the behavior can also easily be deduced from (4)

k=0

_ M
o

sze [N

for by = 0. —0.2. and —0.4.

Although this is not of practical importance, it gives an indication of
the behavior of Py(u') for large p.

Since the stability limit is stated as p' = 2. P for this step size is
of special interest and needs further calculation. As can be observed
from Fig. 1, the value for ¢’ = 2 tends to 0.5 as M increases. We
prove in the Appendix that indeed P tends to 0.5 for p' = 2 as
M goes to infinity; in other words, the probability for short-time
instability at this limit equals at most 0.5 even for large filter orders.
The value for maximal convergence speed ;' = 1 has a very low
probability of failure, and this probability vanishes as .}/ tends to
infinity. However, if statistics other than Gaussian are applied, the
situation can become much worse, and the occurrence of bursting
becomes more likely.

III. SIRP INPUT SEQUENCE

Spherically invariant processes are defined as being those for which
all joint density functions are only dependent on the radius and not
on any angles (see also [5] and [6]). A suitable description of these
pdf’s can be given in terms of Meijer’s G-functions [4]. They are
defined by a Mellin-Barnes integral

G (; a”)
(b — s) ;':lr(l—(11+s)

271']/ H, g1 F(l b1+s)H§’:”+1 I'(a; - s)

ds

(5)

where the parameters are divided into two subsets «,, and b,. In the
case where only simple poles appear, the integral can be expressed as
a sum of hypergeometric functions and can be computed numerically.
Applications of G-functions to LMS, NLMS, and delayed update
LMS (DLMS) algorithms can be found in [7] and [8]. We consider
only two types of G-functions: GV and G2Z% with one and two
parameters, respectively. Both are known very well and can be
expressed explicitly as
by —x

~10
GOI Ilbl =X €

Goal oy by) = 20"

KL, 0, (207)

where L', (x) is the modified Bessel or McDonald function of the
second kind for order n (see [4, 8.432]). Since G-functions have the
advantage that almost every linear operation is simply a change in the
parameter sets, this family of functions is very suitable for calculating
the failure rates. As shown in [5] and [6], pdf’s of bandlimited speech
signals can be described by chosing the two parameters b; and b».
A suitable form for pdf’s is

pe(a) = AGY (Aa*[)7)

pq
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Fig. 3. Failure probability P as a function of p' for G3%densities with by = 0, —0.2, —0.4, and filter order A = 20.
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Fig. 4. Failure probability P, as a function of ' for a Laplace process with filter orders M = 5. 100.

where A and A are normalization factors in order for the above to be
a valid pdf with 6, = 1 and can be calculated from the parameters
ap, by as

v o (e D (4 3)
to1 (a0t 3)
A= A% H?:WH-I F(% - bI) f:n+1 F(% + al)
(b0 T T2 - )

The radial density function p.,, (r) describes the density of the
Ly-norm of the (1 x M) vector u{k) and can be given explicitly as

v apitan(vlat,, )

G ap.0
M +1g+1
r(y) “*
Hence, the probability of failure can be written as

P
M-
2 ‘bq

Pray(r) =24

2M

P =1 —/0 . pe (1) dr

2w
ol 8—%Gm+ln
) o p+1g+1

(rs

ayp,0
[V ds
2 ‘bq

M
L(%
/ 2M
:1—AL/\ B mtln As ap_%,_% s
F(%) o prla+l Mo_1b,-1
oA YT 2M gy ((2M Joe, 34
= F(%) #/ p+2q+2 H' %’I——l,bq—%,_ i
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We used typical properties of the G-functions as described in [5] and
[6] to derive the last two equations. For the two specific G-functions

under consideration, we finally get

1
, Vax 2M 2MA|0 2
Pr(p')=1- A= —Ga3 ;
r('z_) / H M _16-L.—1
for the G function and for the Go9
, VA 2M M| F
L(3) S P ST W

Both expressions look very similar; however, depending on the
parameters b; and bo, their behavior can be quite different.

Next, we shall present some quantitative examples. Note that the
G function is completely parametrized by only one variable b;. A
spherically invariant process can be obtained only for —0.5 < b, <0
(see [5]). Fig. 2 depicts the pdf’s for three different values of b;.
For b; = 0, the G-function coincides with the Gaussian density,
whereas for b; < 0, the density functions become singular at zero.
This range of b, is of particular interest since measured speech pdf’s
show a clear singularity at zero as well. Fig. 3 depicts the failure
probability versus the step size u' for several choices of b;. As the
figure clearly demonstrates, the more negative the parameter is, the
higher the failure probability for reasonable step sizes p'.

Fig. 4 presents the failure behavior for a Laplace density. This
pdf can be described by a G235 function with parameters b; = 0,
and b, = 0.5. Unlike the K density (which is obtained with
b1 = bz = 0), the pdf does not become singular at zero. A more
extreme behavior can thus be expected from the A, density. In
both cases, the failure rates do not vary much with the filter order.
The step sizes for fastest convergence have been calculated in [7].
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Fig. 5. Failure probability Py as a function of u’ for a A process with filter orders M =5, 100.
They are ' =~ 1/2 and 1/3 for the Laplacian and the Ay density, REFERENCES

respectively. For these values, the failure rates are approximately 2
and 5%, respectively.

However, even for small step sizes, the probability for bursting has
increased drastically for all three SIRP sequences discussed. Thus,
when using speech signals, the designer of an adaptive filter has
to choose a tradeoff between convergence speed and bursting rate.
The given figures show how various input statistics alter the bursting
rates. If compared with the Gaussian input, the figures enable us to
find step sizes for a given statistic so that the same failure rates are
obtained. If bursting is to be prevented completely, a time-varying
step size (k) = af||u(k)||3 is preferred. Because of its contraction
mapping property for 0 < « < 2, the algorithm can then guarantee
convergence at every time step k for every particular realization, and
thus, a burst-free behavior results.

APPENDIX
We wish to prove that
O T(F5)
g Ty T D
The ﬁlter order M is assumed to be an even number. Thus, substi-

tuting ' = 2 in (4) yields
) 5 )y
N YR ®
2 k=0

Recall that Bernoulli trials can be written as Poisson trials as the
number of trials n tends to infinity, the probability p of a single
event goes to zero, but the product np goes to a fixed number a
(Poisson theorem [3])

k
n n—k a_ —a
(k)pk“"” LT RS ©
n— oo

and for np > 1,n > 1 [3]

= 1 k
ek o — N
Z k p(l—p) _§+erf<2—p).
= np(l - p)
Now, substituting np = M and k, = 5~ — 1 in the above, we get
r(d. o) ety
lim 2];/12 = lim z' e
M—x 1“(7) M—s &~ k!
= lim = +erf -1 = l
A — o0 M 2
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