Modified FXLMS Algorithms with Improved Convergence
Performance *

M. Rupp
Wireless Technology, Research Dept.
AT&T

791 Holmdel-Keyport Rd.
Holmdel NJ 07733-0400

Abstract

This paper proposes two modifications of the
FzLMS algorithm with improved convergence be-
haviour albeit at the same computational cost of 2M
operations per time step as the original FxLMS update.
The paper further introduces a generalized FrLMS re-
cursion and establishes that the various recursions are
in fact of filtered-error form. An optimal choice of
the step-size parameter in order to guarantee faster
convergence, and conditions for robusiness, are also
derived. Several simulation results are included to il-
lustrate the discussions.

1 Introduction

A widely used algorithm in active noise control is
the so-called Filtered-x Least-Mean-Squares (FxLMS)
algorithm [2, 4, 8]. Fig. 1 depicts a simple noise con-
trol system and serves as a motivation for the FxLMS
scheme. The noise from an engine, usually in an en-
closure such as a duct, is measured by a (detection)
microphone and a filtered version of it is generated by
a loudspeaker (secondary source) with the intent of
diminishing the noise level at a certain location, say
at the location of the right-most (error) microphone.
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Figure 2 is a redrawing of the duct example of
Fig. 1. It shows the measured input noise signal u(3)
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and a filtered version of it, denoted by d(3), which cor-
responds to the signal u(Z) traveling further down the
enclosure until it reaches the secondary source. An

anti-noise sequence d(i) is generated by an FIR filter
of length M at the secondary source with the intent
of cancelling d(¢). The difference between both sig-

nals d(i) and d(i) cannot be measured directly but
only a filtered version of it, which is denoted by

e g) = F[d(i)—d(i)]. The filter F is often assumed of
F{I type and its presence is due to the fact that both
signals have to travel a path before reaching the right-
most (error) microphone. Since this path is unknown,
the secondary controller can become unstable and the
objective is to update the filter weights (denoted by
w) in order to minimize the filtered error e;(i) in a
certain sense. The filter has to emulate the path that
transforms u(?) into d(ﬁ) Depending on the situation,
the whole device can be relatively large (with many
tap weights) and people have often resorted to very
small step-sizes for stabilization purposes. This has
the obvious disadvantage of slow adaptation and con-
vergence.
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Figure 2: Active noise conirol system using feed-
forward control.

The FxLMS algorithm requires 2M operations per
time step and has been shown to exhibit poor conver-
gence behaviour. A modification of it (referred to as
Modified FxLMS) has been proposed in the literature
to ameliorate the convergence problem at the cost of
increased computations, which are of the order of 3M



operations per time step [1, 5]. This figure is still pro-
hibitive in several applications where the value of M
is significantly large.

Motivated by these facts, we pursue here the feed-
back approach suggested in [6] and propose two modi-
fications of the FxLMS algorithm with improved con-
vergence behaviour albeit at the same cost of 2M op-
erations per time step. The results are summarized
in Table 1 where the last two lines refer to the two
variants proposed in this work, and Mg denotes the
length of the error filter F.

Algorithm Complexity | Memory Convergence
(M > Mp) | Capacity Behaviour
FxLMS 2M 4+ Mp 3M Poor
MFxLMS 3M +2Mp | 3M + Mp Good
MFxLMS-1 | 2M +2Mp | 3M + My Good
MFEFXLMS-2 | 2M 4+ 3Mp | 3M + 2Mp | Reasonable
Table 1: Comparison of different variants.

Notation. We use small boldface letters to denote
vectors (e.g., u), “¢” to denote Hermitian conjuga-
tion, and ||x||2 to denote the Euclidean norm of a vec-
tor. We also use subscripts for time-indexing of vector
quantities (e.g., u;) and parenthesis for time-indexing
of scalar quantities (e.g., v(i)). All vectors are column
vectors except for the row vectors u;.

2 The FxLMS Algorithm

The set-up for the FxLMS algorithm is depicted
in Fig. 3. Let w be an unknown weight vector and
assume {d(i)} are noisy measurements that are related
to w via d(¢) = u;w + v(¢). Here, the {u;} are known
input row vectors and the {v(¢)} are noise terms that
may also account for modeling errors.

The FIR filter F is assumed known, of length Mp
and coefficients {f; }?{:‘“{3"1. The signal &,(i) denotes
the difference €4(i) = d(¢) —u;w;_1, where w;_; is an
estimate for w that is generated as follows. Starting
with an initial guess w_1, the FxXLMS algorithm pro-

vides recursive estimates of w via the update relation
(see[2]-{3]):
wi = wi_1 + p(d) Fluf] FlA() —wwioi], (1)

where the {y(?)} are time-variant step-sizes.
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Figure 3: Set-up for FxLMS.

The following error quantities are useful for our
later analysis: w; denotes the difference between the
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true weight w and its estimate w;, W; = w — w; and
ea(i) denotes the a priori estimation error, eq(s) =
u;jw;_1.

3 A Generalized FXLMS Algorithm

For the sake of generality, and for reasons to become
clear later, we study the more general update form:

w; = wi_1+u(i)F[af]G(, ¢~ Fld(8) —wiwi-i], (2)

where a time-variant filter G(4, ¢~!) has been included
in the update relation (compare with (1)). We shall
show in the sequel how to choose G(i,¢~1) in order to
improve the convergence performance of {1)

But for now we first show that (2) can be rewritten
in a filtered-error form (see (6) and (7) further ahead).
For this purpose, we use (2) to conclude that

Wi = Wioy — p())Fi] G, ) FlE@)], ()

which allows us to express W; in terms of W;_1-p, for
some p,

R :
Wi =Wi_1-p— Z (i — k)Flul_,] GG — k,q~Y) Fléa(i - k)]
k=0
or, in a form more suitable for our investigation,

P
Wioi—p=Wic1+ Y al(i~K)Flu}_,]G(i—k,q7") Flea(i=k)].
k=1
Now using the fact that €,(¢) = v(2) + eq4(7), along
with the linearity of F', we obtain
Flea ()] Flu(d)] + FluilWi—a
Mp—1
+ Y eli,k) G~ k,q7) Fléali — k)],

k=1

where the coefficients c(Z, k) have been defined by
c(i, k) = p(i — k) Fe[w]Flui_y], (4)
for k= 1,.., Mg — 1, and where F}[] denotes the fol-
lowing filter: Filu;] = E;W:Fk—l Jiwij.
We therefore conclude that

o 1
FeeOl= T 66 a6,
which allows us to rewrite the weight-error update
equation (3) in the equivalent form
G(é,97") [Flu(i)] + Fluiwi_1]
1-C(,9"1)G(4,971)

[Flo(d)] + Fluilwi-1], (5)

Wi = Wi—1 — p(i)Fu]]

. (6)

This equation is of the filtered-error type, as
claimed earlier. In other words, if we introduce the
new signals

o' (3) — Flo(3)], 0'(5) «— Fu], d'(i) —ulw +v'(3),

then expression (6) corresponds to the weight-error
update of the following algorithm:

wi = wi1 + p(iyu M(i, ¢ )[d'() — ujwi-a], (7)
where

M(i,q7*) = G(i,g™1)/(1 = C(i,a7")G(i,a7"))-
Algorithm (7) is a filtered-error algorithm.



4 An Optimal Choice for G(i,¢7*)

It follows from (6) that the update equation for the
generalized FXLMS recursion (2) is (7). If M(i,q™?)
were equal to one, then (7) would have exactly the
same structure as an LMS update. In this case, the
convergence performance of the modified algorithm
would be similar in nature to that of an LMS algorithm
(and superior to the original FXLMS update (1)).

The condition M(i,¢~!) = 1 can be met exactly, or
approximately, in different ways as we now explain.

4.1 The MFxLMS Algorithm

One way is the so-called Modified FXLMS algo-
rithm, recently introduced in [1, 5]. It employs the
following update:

w; = wi_1 + p(i)Fu]] (F[éa(?)] + Flu;wi—1] — Flu;}w;—1 )8.

The extra terms that are added in (8) to the origina{
update recursion (1) have the effect of guaranteeing
M(i,q7') = 1in (7) since it can be verified that (using
Flu;w] = Flu;lw)

Flea(i)] + Fluiwi_1] — Flu;lwi—1 = Flu(i)] + Flui]Wi—1. (9)

The additional terms correspond to filtering the input
data u; and the signal u;w;_; by F'; thus amounting
to an increase in the computational complexity from
2M (as in the original FXLMS) to 3M operations per
time step.

An alternative interpretation for the MFxLMS al-
gorithm (8) is to note that it corresponds to employing
a filter, say G,(i,q~'), such that G,/(1 - CG,) = 1,
or, equivalently,

Goli,a™") = 1/(1 4 C(5,¢72)). (10)

This means that the MFXLMS recursion (8) can be
equivalently rewritten in the form (2), viz.,

1

H-C(_i,q‘l) F[d(3) — uiwi—q]. (11)

wi = Wi_y + p()Fluj]

4.2 The MFxLMS-1 Algorithm

We now propose two new modifications with lower
computational requirements than the MFxLMS algo-
rithm. They are based on approximating the optimal
choice Gogi, q~1) with the intent of reducing the com-
putational count to 2M operations per time step, as
in the original FxLMS recursion (1).

The first modification, referred to as MFxLMS-
1, replaces the time-variant coefficients c(3, I{ in (10)
by constant approximations. This is especially useful
when statistical information is available.

In particular, assume that the input sequence
u(?) is stationary with autocorrelation function r; =
Elu(k)u*(k—7)]. If the process is ergodic and the order
M of the input vector u; (with shift structure) is suf-
ficiently large, the terms u;_pu} can be approximated
by w;_puf & Mr,.

We further assume that the time-variant step size
u#(3) in (11) is chosen as

p(@) = of |IFfu)l|3 , (12)
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which is known as the projection step-size. The term
[|F[w]||2 in (12) can be approximated by
Mp—1Mp—1
IFdBaM Y > ricy £i £, (13)
i=0 j=0

and the filter coefficients ¢(z, k) in (4) can also be ap-
proximated by ¢(i, k) &~ a é(k), where we have defined
the averaged coefficients

- ! Z,'A:';_l ricififi
&(k) = Mp—1 =Mz —1 . (14)
Yo gm0 Ti—ifif;

These coefficients depend only on the error-filter F
and on the autocorrelation coefficients {r;}. They can
therefore be computed in advance, assuming knowl-

edge of the error filter F'. Note also that in the special

case of a white random process u(i) with variance o2,

the expression for &(k) can be further simplified since

[|IF[w)||} can be approximated by Mo2 Zf_{_‘;_l 2
and, correspondingly,
Mp—k—1 ,
&(k) = Z‘=°Mp_lf'§'+". (15)
Ei=0 fo'
Once C(¢7!) = Me=1&(k)q* is evaluated, the
w; is updated via
1
w; = wi—1 + p(i)Flu]] T¥86 ) Fld(3) — uiwi_4],

where p(?) is given by (12) and (13).

The above solution requires of the order of 2M com-
putations per time step. It however requires exact (or
approximate) knowledge of the autocorrelation func-
tion of the input process. If this is not available, es-
timates for r; can be calculated (e.g., by sample co-
variances) and the optimal coefficients can be com-
puted at every time instant via (14). However, the
final computational load of the algorithm may exceed
3M depending on how the coefficients are estimated.
For this reason, we suggest here a second modification
that might be more appropriate in such cases.

4.3 The MFxLMS-2 Algorithm
We have shown in Sec. 4.1 that the MFXLMS al-

gorithm can be written in two equivalent forms. The
first one is (recall (8) and (9)):

w; wi_1 + p(i) F[uf] &33),
&) = Flu(i)]+ FluWis,

and the second one is (11).

The difference between both representations is that
the second one operates directly on the available sig-
nal F[€,(i)] by filtering it through 1/(1 + C), while
the first one modifies the update equation as in (8)
and uses the additional filtering operations Flu;w;_1)
and F[u;]w;_1. The net result, however, is the same
since we already know that both representations are
equivalent and, in particular, that

o 1 N —Avgrs (s
&(i) = mﬂea(’)] = Go(i, ¢~ ) F[Ea()] .

(16)
(17)

(18)



If we knew é(i) then it could be used in the update
form (16), without the explicit need for the additional
filtering operations of (8).

This sugﬁests the following modification. We have
in (18) a relation between é%i) and 1/(1+ C). The
only known quantity in (18) is F[€,(7)], and we can
rewrite the expression in the form (i) = F[€,(d)] —
C(i,g~1)é(i). Since &(i) is unknown, we need an es-
timate for it, say €(i). The above equation can then
be replaced by é(i) = F[léa i)] — C(i,g)é(i). An ap-
proximate solution would be to use a gradient-type
algorithm to estimate both C(i,¢~!) and &(z):

Mp—1

) = Fla(@)]- Y, &Gi-1,0E-k), (19)
k=1

éG,k) = -1,k + E0)e(i — k) (20)

Mp—1

Ml - k)2

1+
Once the &(i) is evaluated, it is used in w; = w;_3 +
yg)F[u’?] 3&2‘). The reader may refer back to Table 1,
where the different variants of the FxLMS algorithm
are compared in terms of computational complexity
and storage requirements, as well as in terms of their
convergence behaviour as suggested by the simulation
results at the end of this paper.

5 Robustness/[,-Stability

Another point to remark here is that once the gen-
eralized FxLMS algorithm (2) is written in filtered-
error form (7), the feedback analysis of [6] (see also
[7]) can be applied to it. This allows us to provide
conditions on the step-size parameters y(z) in order to
guarantee i{ robustness and ii) improved convergence.

Intuitively, a robust algorithm is one for which the
estimation errors (say eq(Z)) are consistent with the
disturbances (or noise) in the sense that “small” dis-
turbances would lead to “small” estimation errors, no
matter what the disturbances (and their statistics)
are! This is not generally true for any adaptive fil-
ter: the estimation errors can still be large even in the
presence of small disturbances.

Following the analysis of [6], an ls—stable (or ro-
bust) mapping from the (filtered) disturbance signals

{w_1,vp() v'(-)} to the (filtered) estimation errors
{\/u(-) €4()} can be guaranteed by the generalized

FxLMS recursion (2) if a certain contractivity require-
ment is met. This condition can be stated as fol-
lows. Define (i) = 1/[|F[ui]||3, as well as the di-
agonal matrices My = diag(p(0), #(1), ..., p{(N)) and
My = diag(f(0), #(1), ..., s(N)). Let also Cy and
Gg e lowglgﬂtg-ia{ngglgu balé(cl r)rzatrices that dégcribe
the action of the linear time-variant filters C(i,¢™?)
and G(3,¢™1). If we denote the 2—induced norm (i.e.,
maximum singular value) of a matrix by ||-||2,in4, then
the robustness condition is to require

<1,

—_— —4
llI-—MNMN’GN(I—CNGN)_iMN” v
K11
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In the special case of the original FxXLMS algorithm
(1), which corresponds to G =1, and for a constant
step-size u(i7) = p, the above condition collapses to
requiring the following:

<1

[r-2a-cm=
“ 2,ind

(21)

where  is such that fi < mino<i<n {1/||F[wi]ll3} .
Likewise, under the same conditions of Sec. 4.2,
with u(i) = af||F[w]||3 and replacing (i, k) by the
averaged coefficients ¢(k), we can show that an ap-
proximate stability (robustness) condition is

o
1 _-— e 1 .
e 1~ aC(ef) <

(22)

This condition can also be shown (cf.

[6]) to suggest
a choice for o for faster convergence for ll

xLMS, viz.,

[+

1 —,
1 - aC(e’%)

(23)

Copt = minmax
a

6 Simulation Results

In all experiments we have chosen a Gaussian white
random sequence with variance one as the input sig-
nal u(), and the additive noise was set at —60dB be-
low the input power. We provide plots of learning
curves for the relative system mismatch, defined as
Srat() = ||Wil|2/||W-1]|3. The curves are averaged
over onte Carlo runs in order to approximate
E[Srei(?)]- The results in the figures are also indicated
in dB. In all experiments we employed the projection
normalization (12).

6.1 The Delayed LMS Algorithm

In our first example, a transversal filter of order
M =10 is to be identified in the case of a pure delay
filter F(¢g~*) = ¢~*. The FxLMS algorithm in this
case corresponds to the so-called Delayed LMS:

w; = wi-1 + sul_y [dGE —4) — wi—gwis].

o
lui-alz

The curve for the standard LMS algorithm with pro-
jection step-size is also given as a comparison, viz.,

1 .
Wi = Wi_1 + mg-ul‘ [d(s) — wiwi_4].

As Figure 4 shows, the delay causes a degrada-
tion in the convergence behaviour of DLMS algo-
rithm.

In a second experiment, the modified version of the
DLMS algorithm, using the optimal G,(i, g7 1) as sug-
gested by (10), has been used

wi=wi_1+ [d(i ~4) —ui_swi_s],

o« at . 1
sl "7 14+ C(G07)
2

where,
“0'—4“’_5 ui—{“’_s
c(: q_l) =« Ui P
' llwi—sif? [lui—ell
Wi}, o WigUF g
—mnd t 2 ¢ .
iz} [mi—sl3
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Figure 4: Learning curves for DLMS algorithm a =
0.1,0.2,0.4 in comparison to LMS o = 1.0.

This is of course equivalent to a MFxLMS form,

[«3 .
_—2-11;__‘ (d(t —4) - ui_awi_1).
4”2

Wi =Wwi_1+ o
i—

As Figure 5 demonstrates, the modification restores
the convergence performance of the algorithm to a
level comparable to the standard LMS case; the learn-
ing curves of the modified DLMS algorithm and the
LMS algorithm almost coincide. A second curve for
a = 1.5 1s given, a step-size for which the conventional
DLMS algorithm was already unstable.

E[Sre(9)]

0 W ™ M

Number of iterations i
Figure 5: Learning curves for Modified DLMS algo-
rithma=1anda=1.5

6.2 The FxLMS Algorithm

Another simulation was performed with the intent
of identifying a 20th order filter (M = 20) with the
error filter path being now given by F(¢~') = 1 +
¢ ! +¢7% 4 ¢~3, indicating a low pass behaviour as
it is common in acoustic ducts. The coefficients of
the corresponding averaged filter C(g~!) were given
by &1 = 0.75, é&2 = 0.5, ¢s = 0.25, ie, C(g7!) =
0.75¢=* + 0.5¢~2 4 0.25¢~3.

If we use the above averaged coefficients as approxi-
mations, we obtain an approximate stability range for
the MFxLMS-1 algorithm at 0 < a < 0.5 (recall (22));
the optimal convergence speed is attained at o, = 0.45
(recall (23)). In the simulations that were carried out,
the results were very close to these values with a sta-
bility bound at 0.57 and fastest convergence at 0.5. In
particular, the optimal step-size from [2] for this case
is 0.8333, which is already in the unstable region.

E[Sra(i)] L

As Figure 6 shows, the average filter solution that
corresponds to the proposed version MFxLMS-1 leads
to a learning curve (indicated by the letter (c)) which
is close to the optimal one (i.e., the one that corre-
sponds to the MFXLMS recursion and is indicated by
the letter (d) in the figure).

The figure also indicates the result of the second
modification MFxLMS-2 (curve (b)), which is appro-
priate when the statistics of the input sequence is not
known apriori. While curve (b) is less appealing than
the curves (c) and (d), it nevertheless improves on the
convergence of the original FxXLMS recursion, which is
indicated by curve (a}. The optimal convergence speed
for the MFxLMS-2 algorithm was found for a, = 1.15
and stability bound at 1.3. A fifth learning curve for
the LMS algorithm, with w; and v(¢) prefiltered by F,
is not explicitly shown in the figure since it essentially
coincides with the MFXLMS algorithm (curve (d)).

o

S ™ Number of iterations 5
Figure 6: Learning curves for FxLMS algorithm with
a« = 0.5 (a) and modifications: MFzLMS-2 (b) o =
1.15 and MFzLMS-1 (c) o = 1.2 in comparison to
MFzLMS (d) a = 1.2.
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