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Abstract

This paper provides a time-domain feedback anal-
ysis of the Percepiron Learning Algorithm. It stud-
tes the robusiness performance of the algorithm in the
presence of uncertainties that might be due to noisy
perturbations in the reference signal or to modeling
mismaich. In particular, bounds are established on
the step-size parameter in order to guarantee that the
resulting algorithm will behave as a robust filter in the
sense of H® —theory. The paper also establishes that
an intrinsic feedback structure can be associated with
the training scheme. The feedback configuration is mo-
tivated via energy arguments and is shown to consist
of two major blocks: a time-variant lossless (i.e., en-
ergy preserving) feedforward path and a time-variant
feedback path. The stability of the feedback structure is
then analyzed via the small gain theorem and choices
for the step-size parameter in order to guarantee faster
convergence are further derived by appealing to the
mean-value theorem. Simulation results are included
to validate the findings.

1 Introduction

Applications of neural networks span a variety of
areas in pattern recognition, filtering, and control.
When supervised learning is employed, a training
phase is always necessary. During this phase, a recur-
sive update procedure is used to estimate the weight
vector of the linear combiner that "best” fits the given
data [1, 3, 5). The recursive procedure often requires
that a suitable adaptation gain (or step-size param-
eterf be chosen and, in most cases, heuristics and
trial-and-error experiences are used to select a suit-
able step-size value for the training period.

The ”common” practice is to choose small adapta-
tion gains. But the smaller the adaptation gain the
slower the convergence speed. In several cases, espe-
cially in large-scale applications with many weights
and many training patterns, this may require a con-
siderable amount of time and machine power.

In recent work on the robustness analysis of adap-
tive schemes [6], we have addressed the following two
1Ssues:

1. We have shown how to select the adaptation gain
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in order to guarantee a robust behaviour in the
presence of noise and modeling uncertainties.

2. We have also shown how to select the adaptation
gain in order to guarantee faster convergence.

Our formulation highlights an intrinsic feedback
structure for most adaptive schemes and combines
tools from system theory, control, and signal process-
ing such as: state-space descriptions, feedback analy-
sis and the small gain theorem, H® —tools, and trans-
mission lines and lossless systems.

In this paper we focus on the so-called Perceptron
Learning Algorithm (PLA, for short), which involves
a nonlinear functional in the update equation due to
the presence of an activation function (usually a sig-
moid function). We show how to extend the feedbac%(
arguments of [6] in order to handle the presence of the
nonlinearity. In particular, we also establish the exis-
tence of a feedback structure that can be associated
with the training algorithm.

The feedback structure provides physical insights
into the energy propagation as the algorithm pro-
gresses in time. This enables us to suggest modifica-
tions to the training algorithm, in terms of selections
of the adaptation gain, in order to accelerate the con-
vergence speed during the training phase.

Notation. We use small boldface letters to denote
vectors (e.g., u), “#” to denote Hermitian conjuga-
tion, and |[x|| to denote the Euclidean norm of a vec-
tor. We also use subscripts for time-indexing of vector
quantities (e.g., u;) and parenthesis for time-indexing
of scalar quantities (e.g., v(¢)). All vectors are column
vectors except for the row vectors u;.

2 The Perceptron

Consider two sets, Sg and S;, of M —dimensional
complex-valued row vectors u that are characterized
by either property A or property B. If the two sets are
linearly separable, then a classification scheme that
can be used to decide whether a given vector u belongs
to one class or the other is to employ a perceptron
device [1, 3, 5].

The perceptron consists of a linear corbiner, whose
column weight vector we denote by w, followed by a
nonlinearity f(z) (also known as an activation func-
tion), as depicted 1 Figure 1. A common choice for



f(z) is the sigmoid function
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Figure 1: The Percepiron structure.

But, more generally, it can be any monotonically
increasing function. The outcome f(z) can be inter-
preted as the likelihood that the input vector belongs
to Sy or 8.

3 The Perceptron Learning Algorithm
Consider a collection of input vectors {u;} with the
corresponding (desired) output (or reference) values
{y(?)}. The {y(:)} are assumed to belong to the range

of the activation function f(-), i.e.,
(2)

This is in agreement with the models and assumptions
used in [2, 7].

In supervised learning, the Perceptron is presented
with the given input-output data {u;,y(:)} and the
objective 1s to estimate w. The Perceptron Learning
Algorithm computes recursive estimates of w as fol-
lows (using an initial guess w_;):

wi = Wiy + puf [y(i) — fluwizn)]. (3)

For generality, we consider in this paper the pos-
sibility of noisy perturbations in the reference signal
y(7). These can be due to model mismatching or to
measurement noise. We denote the perturbed refer-
ences bﬁ {d(?)} (which are now the given data instead

of {y(4)}), say
d(?) = f(uiw) + v(3) = y(3) + v(é), ()

where v(Z) denotes the noise term. Correspondingly,
we study the following general form of recursion (3):

= W1+ u(z)u: [d(l) - f(uiwi—l)] ) (5)

where d(3) replaces y(i) and where we have allowed for
a time-variant step-size parameter u(3).

3.1 Error Measures

The following error quantities are useful for our
later analysis: w; denotes the difference between the
true weight w and its estimate w;, w; = w — w;,
eq(?) denotes the a priori estimation error, eq(i) =
w;Wi_1 = 2(3) — £(3), and ep (i) denotes the a posteri-
ori estimation error, e, (i) = u;W;. It follows from (5)
that the weight-error vector satisfies the recursion

Wi = Wiy — p(i)uf [d(5) — fluiwioy)].

y(%) = f(u;w) for some w.

Wi

(6)
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3.2 Robustness Issues

In the sequel we focus on model (4) and study the
robustness behaviour of the update recursion (5).

Intuitively, a robust algorithm is one for which the
estimation errors are consistent with the disturbances
in the sense that “small” disturbances would lead to
“small” estimation errors, no matter what the distur-
bances are! This is not generally true for any adaptive
filter: the estimation errors can still be large even in
the presence of small disturbances.

The robustness issue is addressed here in a purely
deterministic framework and without assuming prior
knowledge of noise statistics. This is especially use-
ful in situations where prior statistical information
is missing since a robust design would guarantee a
desired level of robustness independent of the noise
statistics. In loose terms, robustness would imply that
the ratio of the estimation error energy to the noise
or disturbance energy will be guaranteed to be upper
bounded by a positive constant, say the constant one,

<1. U]

estimation error energy
disturbance energy

From a practical point of view, a relation of the form
(7) is desirable since it guarantees that the resulting
estimation error energy will be upper bounded by the
disturbance energy, no matter what the nature and
the statistics of the disturbances are. One of the con-
tributions of this work is to show how to select the
adaptation gains u(7) in (5) in order to guarantee i)
a robust behavior and ii) faster convergence. This is
addressed in the next sections.

4 A Contractive Mapping

We denote the difference [d&i) — f(u;w;_1)] in (6)
by €4(%) and note that it is equal to Esa (ii)+i5(i) , where
the modified disturbance #(7) is defined by:

50 = —eali) + Fuiw) = fiwizs) + v(3) 8)

This allows us to rewrite (6) as

&)

If we now compute the squared norm (i.e., energies)
of both sides of (9), we conclude that the following
equality always holds,

13113 + () lea(@)I” + 1(8) (1 = p(i)llwill3) [€a(0)I
= [Wi-allf + u(i) 195G

This equality allows us to conclude that the follow-
ing energy bounds are always satisfied, where we have
introduced the parameter f(i) = 1/||u;||3.

Wi = Wi_1 — /L(i)il:é'a(i).

Lemma 1 Consider the perceptron learning recursion
(3)-(4). It always holds, at each time instant i, that

95l + ) e )P { Sp v
[1¥0:-1113 + () [5(5)1? for Zgz))>ﬁ((z))

where ¥(2) is the modified disturbance given by (8).

>1




The first two inequalities in the statement of
the lemma establish that if the adaptation gain is
chosen such that p(¢) < [(i), then the mapping
from the signals {W;_y,\/u(?)v(:)} to the signals
{¥;:,v/p(i)eqa(?)} is contractive. [A linear map that
takes z to y, say y = T[z], is said to be contractive if
for all £ we have ||T[:c]||§ < |lz|)3. That is, the output
energy does not exceed the input energy].

But since this contractivity property holds for each
time instant 7, it should also hold globally over an

interval of time. Indeed, assuming p(}z‘) < j(i) over
0 <1< N, it follows from Lemma 1 that
N

N
(W 113 + Zu(i) lea()I* < W1l + Zu(i)lﬁ(i)lz-

5 A Feedback Structure

The bounds of Lemma 1 can be described in an
alternative form that leads to an interesting feedback
structure. For this purpose, we first note that it can
also be shown that the update equation (5) can be
written in the form (cf. the analysis in {6]):

wi_1 + g eq(?) — e, (3)] ,

where we have used the fact that

W; (10)

ep(9) = ¢a() = 203 [ (0iw) — f(uiwis) +2(0)].
(11)
Consequently,
Wi = Wi_1 — p(duf[eq(?) — ep(7)] (12)

Relation (12) has the same form as the update (9),
except for a different disturbance (%(7) is now replaced
by —ep(i)) and for a step-size that is equal to f(7)
itself. Ii—lence, the same arguments that led to Lemma 1
would imply that the following equality holds for all
possible choices of u(7):

19413 + ) lea O _ |

1113 + AG) lep (5)]* (13)

This establishes a lossless mapping 7; from

{Wi_1, V/B(D)ep ()} to {Wi, \/a(2)eq (i)}
If we further apply the mean-value theorem to the
activation function f(z), we can write

fluiw) = f(uiwi_1) = f'(n(i))ea (i),

for some point 7(7) along the segment connecting u;w
and u;w;_;. Therefore, (11) leads to

p@d) [ / ﬂ(i)] Lo
v(i)—|1— —=| B2(2)eq(2).
L)~ 1= £ (5 | 7 0eati)

This shows that the overall mapping from the origi-
nal (weighted) disturbances 1/z(-)v(-) to the resulting

— i3 (i)ep (i) =
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Figure 2: A time-variant lossless mapping with gain
Jeedback for the perceptron learning algorithm.
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a priori (weighted) estimation errors y/fi(-)eq(+) can be
expressed in terms of a feedback structure, as shown
in Figure 2.

The stability of such feedback structures can be
studied via tools that are by now standard in system
theory (e.g., the small gain theorem [4]).

6 [,—Stability
Define 7y(N) = maxo<i<n p(8)/A(%) and
(e B0
1— [ad 4
OEY
That is, A(N) is the maximum absolute value of the

gain of the feedback loop over 0 < i < N.
It can be shown that if A(N) < 1 (e.g., [6]) then
1-A(N)

| | -

Expression (14) compares the energies of a priori
estimation errors and the disturbances (but now nor-
malized by f(7) rather than u(%)). In particular, it

establishes that the map from {W_1,/a(-)v(-)} to

{v/i(-)ea()} is la—stable (it maps a finite energy se-
quence to another finite energy sequence) [4]. The con-
dition A(N) < 1 can be interpreted as a manifestation
of the small gain theorem [4]. It is also straightforward
to verify that A(N) < 1 means that pu(z) should satisfy

A(N)

max
0<i<N

N 1
S lea)* <

N
-1l + (W) | D B@G)

i=0

0 < u(@f (n(®) < 2a(i) =

(15)

[ 1%

2
{hasl|

7 Energy Propagation

The flow of energy through the feedback connection
of Figure 2 provides further insights into the conver-
gence behaviour of the training algorithm. For this
purpose, let us ignore the measurement noise v(%).

If p(i) is such that p(i)f'(n(¢)) = A(F), then the
feedback loop is disconnected. This means that there



is no energy flowing back into the lower input of the
lossless section from its lower output e4(-).- The loss-
lessness of the feedforward path then implies that
Ey(i) = Eyw(i — 1) — E(i), where we are denoting
by E.(i) the energy of \/ji(¢) eq(i) and by E, (i) the
energy of w;.

But what if u(d)f'(n(i)) # A(i)? In this case the
feedback path is active and the convergence speed will
be affected (becomes slower). Indeed, we now have

-~ 12
Eu(i) = Bu(i—1) - (1 - ‘1 —f’(n(i))% ) E.(i),

-~

(¥)

where we have defined the coefficient (7). It is easy
to verify that as long as u(2)f'(n(i)) # B(?) we always
have 0 < 7(¢) < 1. That (1s, 7(2) 18 strictfy less than
one and the rate of decrease in the energy of w; is
lowered.

8 Optimal Choices of Step-Sizes

The energy arguments suggest that faster conver-
gence occurs when u(i) is chosen such that p(é) =
2@/ ' (n(3)) gvhich is the middle point of the inter-
val suggested by (15)). But (i) is still unknown and
we therefore need to come up with suitable approxi-
mations.

The first (but not the most suitable) choice that
comes to mind is to assume an upper bound on f’(-),
say f'(n) < fhax for all . Then condition (15) can
be replaced by the conservative requirement

0 < (i) < 2/(frnaxlluill3)-

For a large bound f},,., this condition can lead to
small step-sizes and, 'ﬁence, to slow convergence. For
the commonly used activation functions, the maxi-
mum value of the derivative occurs at the origin. For
example, for the sigmoid function we obtain f'(0) =
B/4. We can therefore take fimax = (/4 and choose
the step-size parameter u(7) according to 0 < (i) <
8/(B|lu;|)2). This is the same bound suggested in [2].
For improved convergence one might then be tempted
to employ u(i) = 4/(B||u;||3). However, this value is
very conservative and usuaﬁy leads to unsatisfactory
results, as the simulations at the end of this paper
demonstrate.

For this reason, we take here an alternative route
that avoids upper-bounding the derivative of the ac-
tivation function. Instead, we provide good estimates
for the instantaneous derivatives f’(n).

To begin with, recall that f’(n) is defined by
f'(n) = [f(2) — f(uiwi_1)]/[z — wiwi_,], where z =
w;w. Unfortunately, z and f(z) are not availablesince
w itself is not known. But one possibility to proceed
here is to employ d(7) as an estimate for f(z) since
d(i) = f(2)+v(7). This is especially useful if the refer-
ence sequence is noise-free or if the noise itself is suffi-
ciently small. Now, with a "known” f(z), it becomes
possible to solve for z. This motivates us to suggest

(16)
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the following expression for the optimal step-size pa-
rameter (we refer to this construction as method A):

Inlf”_(d(5))-1] -1;‘. = 4 wywi,
d(i) - f(u;w;_l) ’ !
(17)

where T is used as a threshold value in order to pre-
vent large step-sizes. This construction of the step-size
requires the evaluation of a logarithm at each step.

An alternative procedure is to approximate f'(7(z))
by the average of f'(2) (or &~ f'(d(3))) and f'(u;w;_1).
This is a convenient approximation in light of the
” piecewise-linear” form of the activation function. We
thus write

o (i) = (i) min

2
@) + f'(uiwio) + €’

where, for the sigmoid function, f'(z) = Bf(z)(1 —
f(z))- The positive number ¢ is introduced in order to
avoid large step-sizes.

This approximation is however inconvenient in the
cases when 7(i) happens to be close to zero, while
z(i) and w;w;_; are reasonably far apart. To avoid
a poor approximation in these cases, we may modify
the above construction as follows: for improved con-
vergence (i.e., with a disconnected feedback loop) we

set, ]
2p(7)

0 < (i) < 2a(3) (18)

Hopt (i) = (@) + f'(aiwi1) + e (19)
if (d(i) - %—) (f(u;w;_l) - %) >0or
() = O (20)

otherwise. We refer to this construction as method B.
A third, and perhaps simpler method, is to first esti-
mate f(n(z)) by the average of f(d(?)) and f(u;w;_1),

ie., f(n(;)) = 05[f(d(i)) + f(uiwi_1], and then
e 05 AL ~ T T i

A7) .
B[ Fa@)(t - F(ni)] +e

e2))

“Opt(i) =

Simulation Results

In all experiments, we have chosen a bipolar white
random sequence with variance one as the input signal.
We provide plots of learning curves for the error energy
lea(?)]?. The curves are averaged over 50 Monte Carlo
runs in order to approximate E[|e,(i)|2]. The weights
to be identified were {1,1,1,1,1,1,1,1,1}. The first
coefficient was used for the offset term while the other
eight were driven by a bipolar input pattern. A neuron
with these weights can be interpreted as one that finds
the patterns with more than three +1.

9



The values of the inner signal z are from the
set {-7,-5,-3,-1,1,3,5,7,9}. Since the 256 dif-
ferent input patterns consisted of the bipolar values
{-1,+1}, we had |lu||2 = M and (i) = 0.1111 at
every time instant i. We have chosen the sigmoid func-
tion (1) with 8 = 0.4,2,4. The first simulation is for
B = 0.4, for which the sigmoid function operates in an
almost linear range. The resulting learning curves are
depicted in Figure 3. The learning curves are given
in terms of the relative system mismatch defined as

Sra(i) = E{[[W: ]3]/ |1¥-1]13.

Srei() p=28
indB
=1
p=06 =2

Number of iterations 7

Figure 3: Learning curves for Percepiron Learning Al-
gorithm with 8 = 0.4 and p =0.6,1,2,2.8.

As expected from (16), and since the sigmoid func-
tion operates essentially in the linear region, the
fastest convergence speed occurs for p = 104 (4/8 =
10), while instability occurs for values p > 20p.

The next simulation shows learning curves for § = 2
(see Figure 4). With fixed step-sizes the fastest con-
vergence was found at g = 0.6, while for 4 = 1.2
the algorithm was already unstable. The bound (16)
for which the largest possible step-size is given by

= 0.4444 is now too conservative and the proposed
modifications (A?,(B) and (C) lead to much faster con-
vergence. For all methods, the step-size was chosen
to be optimal (with 7' = 100 and € = 0.02). Since
method (C) always showed the same behaviour as (B)
it is not depicted here. As the figure demonstrates, the
first choice leads to excellent convergence, however, at
the expense of calculating a logarithm at every time
instant. The second choice, although not as perfect
as the first one, still shows considerable improvement
over the constant step-size choice.

For the third simulation 8 = 4. According to (16),
convergence is expected for u < 871/ = 2 = 0.22222.
As Figure 5 shows, for p smaller than this bound con-
vergence occurs. However, this bound is rather conser-
vative and fastest convergence occurs for larger step-
size values, viz., u =~ 0.4. A learning curve for 4 = 0.8
still shows convergence but with some stopping effect.
It seems noteworthy that even very large step-sizes can
still lead to convergence, although the parameter es-
timates seem to diverge. This effect was not observed
for small 8 and seems to arise from the fact that the
system behaves highly nonlinearly. This effect could
also be observed for 3 = 8, where it was even stronger.

Method (B), with the optimal choice for the step-
size, was applied again and showed much faster con-
vergence than any other choice of a constant step-size.
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Figure 4: Learning curves for Perceptron Learning Al-
gorithm with f = 2 and p = 0.3,0.6,1 and pop: for
methods (A) and (B).

Instability occurred for approximately 2.2p0p:.
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Figure 5: Learning curves for Percepiron Learning Al-
gorithm with 8 =4 and p = 0.1,0.2,0.4,0.8 and pope
Jrom method (B).
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