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Abstract

In the last years several algorithms for adaptive IR filters have been proposed. However, their practical usage involves
considerations such as finding the global minimum, possible occurrence of instability and uncertainty about the speed of
convergence. Following a deterministic approach this paper presents a generalization of these adaptive IIR algorithms.
The algorithms can be classified into two groups: those which do not and those which do filter the adaptation error. For
the first group a normalization rule is presented and convergence properties assuming slow time-variant filters are given.
Stronger results for general time-variant filters could only be given for a small set of algorithms. For the second group
ideas of normalizations are presented and their effects for convergence are shown. Validity is proven by applying these
ideas to the simplified hyperstable adaptivc recursive filter (SHARF) algorithm. Considerations about special constraints
for normalizations close the paper.

Zusammenfassung

In den letzten Jahre wurden verschiedene Algorithmen fiir adaptive 1IR Filter vorgeschlagen. Thr parktischer Einsatz
leidet jedoch an Schwierigkeiten, wie dem Finden eines globalen Minimums, moglichen Instabilitidten und der ungewis-
sen Konvergenzgeschwindigkeit. Einer deterministischen Betrachtungsweise folgend prasentiert dieser Artikel eine
Vereinheitlichung der adaptiven IIR Algorithmen. Die Algorithmen konnen in zwei Gruppen unterteilt werden: solche
ohne und mit Filterung des Fehlersignals. Fir die erste Gruppe wird eine Normierungsvorschrift angegeben und
Konvergenzeigenschaften. basierend auf der Annahme langsam verdnderlicher Filter, angegeben. Fiir eine kleine Gruppe
von Algorithmen konnten sogar Bedingungen fiir allgemeine zeitlich veranderliche Systeme gegeben werden. Fiir die
zweite Gruppe werden Ideen fiir die Normierung prasentiert und ihre Auswirkungen fiir die Konvergenz gezeigt. Die
Giiltigkeit dieser Ideen wird am Beispiel des Simplified Hyperstable Adaptive Recursive Filter (SHARF) Algorithmus
validiert. Uberlegungen fiir spezielle Normierungsbedingungen beschlieien den Artikel.

Résume

Plusieurs algorithmes pour des fiitres RII adaptatifs ont été proposés ces derniéres années. Leur usage nécessite
toutefois des considérations sur des sujets comme le fait de trouver le minimum global, I'occurence possible d’instabilités
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et lincertitude concernant la vitesse de convergence. Suivant une approche déterministe, cet article présente une
généralisation de ces algorithmes RII adaptatifs. Les algorithmes peuvent étre séparés en deux groupes: ceux qui filtrent
et ceux qui ne filtrent pas lerreur d’adaptation. Pour le premier groupe, une régle de normalisation est présentée, et leurs
propriétés de convergence sont donnees, supposant des filtres variants lentement dans le temps. Les resultats pour les
filtres variant dans le temps de maniére générale n'ont pu étre donnés que pour un petit ensemble d’algorithmes. En ce qui
concerne le deuxieme groupe. des idées de normalisation sont présentées, et leurs effets sur la convergence montres. Leur
validité est prouvée en appliquant ces idées a I'algorithme du filtre récursif adaptatif hyperstable simplifié (FRAHS). Des
considérations sur des contraintes de normalisation spéciales closent cet article.

Keywords: Normalization; Convergence; Stability: Gradient-type algorithm; Adaptive IIR filters

1. Introduction

Since the derivation of Feintuch’s algorithm
(RLMS) [9] there have been several suggestions for
improving the behavior of adaptive 1IR filters.
Some ideas like Stearns’ algorithm [24] and alter-
nate filtering mode (AFM) [7] have been dropped.
Others like series-Parallel filtering (SPLMS) [1],
equation error formulation (EEFLMS) [22], bias-
remedy LMS (BRLMS) [14, 15] and simplified
hyperstable adaptive recursive filter (SHARF) [12]
remain as candidates for further research. However,
all of these algorithms are rather difficult to handle
when dealing with applications involving speech
signals. If the filter is in the signal path, e.g. in
a hybrid application, the SPLMS algorithms de-
correlates the transmitted speech, worsening the
quality of the signal. The EEFLMS algorithm
causes a bias in the estimation of the parameter set.
thus resulting in instability. The BRLMS algorithm
offers to reduce the bias but not all problems with
the choice of the step-size have been solved yet.
Even the SHARF algorithm which is based on the
concept of hyperstability cannot ensure stability in
gvery situation.

Since hybrids are typical applications for adap-
tive IIR filters [18], Fig. 1 depicts an example of
echo cancelation on a hybrid. The hybrid G has to
decouple the near- and far-end speech signals. The
near-end speaker signal u(k) has to be transmitted
to the subscriber side whereas the far-end speech
signal n(k) has to be transmitted to the near-end
loudspeaker. Since the hybrid is not an ideal device,
an echo of the near-end speech appears at the
loudspeaker. This echo has to be estimated by

a system identification of the hybrid. As illustrated
in Fig. 1,

eolk) = d(k) — J(k), (1.1a)
d(k) = n(k) + y(k), (1.1b)

M, M, 1

viky =Y aytk —i)+ bjutk — j). (1.1c)
i=1 j=0

The problem consists of finding the parametrs
a;fori=1,...,M, and b; for j=0, ... , M, — 1
while observing the input signal u(k) and the output
signal d(k) of the hybrid. For a clearer description
a vector notation is often used:

a' =[a,.a;, ... .ay ], (1.2a)
b' = [ho.by. ... by, 11 (1.2b)
w' =[a'b'], (1.2¢)

Fig. 1. Adaptive filter structure for echo cancelling.
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YUky=[ytk = Dotk = 21 vtk — M) ]. (1.2d)
u'(k)y = Cuk)utk — .ok = My + 1) (1.2¢)
k) = [y hku" (k)] (1.2)

The parameters for the transversal part b and the
recursive part @ have been combined to form a new
vector w of order M = M, + M,. Now the hybrid
can easily be described as

d(k) = n(k) + " (k)yw. (1.3)

In a very similar way the ccho canceler can be
described by an estimated parameter set

a'(k) = [a,(k).ay (k). ... .ay (k)] (1.4a)
bT(ky = [holk).h (k). ... .y, k)], (1.4b)
wl(k) = [ar(k).by(k)]. (1.4¢)

In order to simplify matters. M, and M, are the
same for the plant G as well as the adapuve filter.
Since the following calculations do not deal with
error surfaces, the results are also true for different
orders. The signal vector for calculating the esti-
mated hybrid output 7(k) can be constructed by
either using former estimated values y(k — m) for

m=1,....M, or observed values d(k — m) for
m=1, .. M,
PUk) = [0k — 1 fk — 2 ftk = M), (1.5a)

d'(k)=[dk = 1)dk - 2. dik — M,)]. (1.5b)

L (k) = [p" (k). u' (k)] (1.5¢)
ze(ky =[d"(k).u'"(k)]. (1.5d)
Table 1

Possibilities for gradient-based algorithms

Depending on the choice of signal vector of the
canceler, an output error (subscript ‘0’) or an equa-
tion error (subscript ‘¢’) method is used. Now, the
formula for a gradient-based algorithm can be
given very generally:

wik + 1) = wik) + p(k) e (k) y(k). (1.6)

In (1.6) an adaptation error e,(k) e {e,(k), e.(k),
eAk)] and a gradient term ¥ (k) € {z,(k), z.(k), z.(k),
Zrolk), Zse(k), 2e(k)} defining the direction of adapta-
tion are used. The algorithms can be described
according to the choice of adaptation error and
gradient term. A summary of the possibilities is
given in Table 1. The subscript "¢’ 1s used for a cor-
rection term,

(k) = t(k)zo(k) + (1 — (k) zc(K), (1.7)

which is necessary for incorporating the BRLMS
algorithm [15] within the same description scheme.
The variable t(k) lies between zero and one and its
influence will be described later. Although the
Steiglitz-McBride [25] algorithm is usually of
Newton type, a gradient algorithm is possible as
well. The same filter structure has also been used
for the Filtered-u LMS algorithm, an extension to
the Filtered-x LMS FIR version, which has been
applied successfully in active noise cancelation [6].
Recently. two new algorithms [3, 4] being also
a member of this table appeared in the literature.
Thus the adaptation error e,(k) can be
1. the output error, e,(k) = d(k) — wT(k) z,(k),
2. the equation error, e (k) = d(k) — W (k) z.(k),
3. a corrected error, e (k) = d(k) — w' (k) z.(k),

Gradient g (A)

€y -0 Zfo Zfe Zfe
¢, RIL.MS Stearns’ AFM

R SPLMS. EEFLMS BRI MS GIVE

e, (BR1.MSI) (BRI.MS2)

ey SHARF Steiglitz McBride, FuLMS (4]
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4. a filtered output error, eg,(k) = e (k) + ¥F_, ¢;
X eo(k — i),
5. a filtered equation error, e (k) = e (k) +

Yioy cieelk — i),

6. a filtered corrected
vP o ociedk — ).

In a very similar way the gradient term (k) can

be

1. the vector with the estimated output signal

2,(k),

2. the vector with the measured output signal z.(k),
3. the corrected vector z.(k), a linear combination

of z,(k) and z.(k),

4. a filtered version of z (k) zpo(k) = go(k) +

T d(k) zeolk — i),

. a filtered version of z.(k): zr(k) = z.(k) +

YLy di(k) zgolk — i),

6. a filtered version of gz (k). zi (k) =z (k) +

ZIM=1 a; (k) g (k — i).

Thus, 36 different algorithms are possible and these
can be divided into two groups. The first group, in
the first three rows, does not filter the adaptation
error. The remaining algorithms in the second
group all use a filtered adaptation error. Of the 36
different algorithms, only nine (labeled in Table 1)
have been thoroughly investigated. The two algo-
rithms in parentheses (BRLMS1, BRLMS2) will be
discussed later as examples.

The main topic this paper addresses is how the
step-size u(k) can be chosen to guarantee conver-
gence for all these algorithms. The difference be-
tween convergence of the algorithm and stability of
the resulting filter must here be emphasized. In
contrast to transversal filters it 1s possible that
a convergent algorithm produces an unstable IR
filter. In this case the parameter set w(k) moves to
a region in the parameter space corresponding to
poles outside of the unit circle. Section 2 presents
normalization rules to assure convergence of the
first group. Section 3 proposes concepts for conver-
gent algorithms for the second group and uses the
example of the SHARF algorithm to illustrate how
the concepts influence the convergence behavior.
Section 4 validates the normalization rules for the
main algorithms by results of real-time measure-
ments. Section 5 presents additional ideas for
normalizations of adaptive IIR filters with special
constraints.

error, ¢, (k) = e (k) +

N

2. Normalization of algorithms without filtered
adaptation error

Normalization has often been shown to be a use-
ful tool in improving the behavior of adaptive algo-
rithms. Normalization used in the LMS algorithm
has demonstrated the following properties [ 19, 26]:
1. The algorithm is independent of the input signal

level.

2. Convergence of the algorithm is guaranteed in-

dependent of the input sequence.

3. The convergence speed is increased.

These promising results provide adequate motiva-
tion to further investigate normalizations. How-
ever, since gradient-based algorithms are nonlinear
a proof for convergence is required for some prob-
lems. In the past, analyses have fallen under two
broad categories for the input sequences: one deter-
ministic, the other stochastic. Although the deter-
ministic description leads to more general results,
often it is not possible to prove convergence, and,
therefore, stochastic methods are required. In this
paper, however, a pure deterministic description is
presented leading to normalization rules that lead
to convergence conditions for a class of algorithms.

2.1. A deterministic eigenvalue analysis

For the class of algorithms without a filtered
update error, the adaptation rule can be given as
follows:

wik + 1) = wik) + p(k)e,(k)z; (), (2.1a)
e (k) = ey (k) = d(k) — z3(k) W(k). (2.1b)
Here, two different vectors z, (k) and z,(k) are used.
The gradient term z,(k) € {zo(k), zc(k), Zc(k), Zo(K),
zre(K), zo(k)} can be one of the six vectors described

in the last section, whereas z, (k) € {2o(k), z.(k), z.(k)}
is unfiltered. A minimal error e, (k) is introduced:

enlk) = d(k) — 23 (k)w. (2.2)

This is the adaptation error’ when using the
optimal solution w for a given vector z,(k). The

' The concept of a conditional minimal error e, (k) should not
be confused with minimizing the performance index E[e2(k)].
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adaptation error can therefore be rewritten in terms
of the weight-error vector g(k) = w — w(k) as

e,(k) = eq(k) — &' (k) z5 (k). (2.3)

It is now possible to describe the weight-error
vector g(k) as an inhomogeneous system of first order:

ek + 1) = g(k) + u(k)yd(k)z, (k)
— u(k) 2, (k) 23 (k)w(k)
= (Iy.c — pik)zy (k) 2} (K))E(K)
+ p(k) em(k) 24 (k). (2.4)

where I, ,, denotes the identity matrix of dimen-
sion M. The objective of finding conditions for
convergence is now related to the eigenvalues of the
transition matrix T(k) = Ly .y — (k) 2, (K) 22 (K).
For time-invariant transition matrices it is suffi-
cient to show that no eigenvalues are outside the unit
disc in order to ensure convergence. We shall follow
this idea even though the transition matrix is time-
varying now. If the transition matrix is slowly time-
varying, additional to the condition on the eigen-
values, it is required that |T(k) — T(k — 1)} < ¢
[23]. All the conditions that have to be satisfied are:
1. No eigenvalue of T (k) lies outside the unit disc.
2. T(k) is bounded, i.e. | T(k)| < .
3. T(k)y is slowly time-varying, i.e.
Tk—-1D| <ec

Thus, we assume the transition matrix to alter very
slowly, which is true either for small step-sizes or
strongly correlated input sequences. The eigenvalue
analysis of the transition matrix leads to one time-
varying eigenvalue

Ak) =1 — p(k) zi(k) 22(k) (2.5)

corresponding to the right (left) eigenvector z,(k)
(z2(k)). The remaining M — | eigenvalues equal one
(geometric multiplicity of order M — 1) corres-
ponding to the M — 1 linear independent eigenvec-
tors that are orthogonal to the right (left) eigenvec-
tor z, (k) (z2(k)). In order to bound the time-varying
eigenvalue A(k), a first hint for a normalization is
revealed,

I T(k) —

Normalization 1:

X

= o
MR = oz

resulting in a constant eigenvalue A = 1 — . Thus,
no instantaneous eigenvalues of the system are out-
side the unit circle for the normalized step-size
2 between zero and two. Obviously, the smaller the
angle between the two vectors z, (k) and z,(k), the
smaller the step-size u(k). The concept of having
the eigenvalues inside the unit disc is equivalent to
the requirement that the corrupted a posteriori
error is smaller than the a prion error:

lea(k. [l + 1)] < e, (k).

Plugging in Normalization 1 into definition (2.3)
for e,(k) we obtain

ealk,e(k + 1) = (1 — %) e,(k),

and, therefore, the a posteriori error becomes small-
er than the a priori error for o between zero and
two.

Although the eigenvalues remain bounded,
condition 3 for slowly time-varying systems may
not be satisfied, since a|(z;(k)z3(k)/z](k)z,(k))
—(z1(k — Dzitk — D/zi(k — Dza(k — )] is not
necessarily bounded. Also even if the homogeneous
system may cause a decreasing weight-error vector,
the driving term can increase (k). The squared L,-
norm of the perturbation in (2.4) with Normaliz-
ation 1 is considered:

12 Z(k z—{(k)zl(k) > 2 2 1

" 2T (k) 22 (K))? > o’ em(k) m . 2.7

Therefore, problems can occur if z1(k)z,(k) = 0 or
if ||z2(k)| , is not bounded from below. If we
assume persistent excitation, i.e. |z,(k)|, > 0, the
latter 1s not a problem; if not, adding a positive
constant in the denominator does not help since the
inner product of z](k)z,(k) can become negative.
Therefore, this normalization can cause the in-
homogeneous part exceeding every limit, even if
lzy (k). and |z,(k)||, are very large. The more
orthogonal the vectors are, the more emphasized
the effect of the driving term; even in the case
z1(k) = z;(k), there can be an amplification. In
a stochastic approach, the strength of this effect
depends on the statistics of the input process [26,
19]. An improvement for the undesired amplifica-
tion can be achieved by using the step-size
u(k) = a/(c + z1(k)z,(k)) since the inhomogeneous
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part is now bounded by the positive constant c.
However, if z{(k)z,(k) < O the eigenvalue

T
) 21(k)z5 (k)
i) =1 — g Rz
(k) c+zik)z (k)

will become larger than one for every positive x.
Therefore. this idea is not further considered.

2.2. Normalization Rule 2

Since Normalization Rule 1 leads to difficulties
for the disturbance term. another rule has to be
found. Applying Schwarz’s inequality it can be
shown that

23 (k)25 (k) ‘
T - <
(k)2 (kyza(k) 22 (k)

I
— . 28
zl(k)zé(k)‘ (=8

Since both terms have the same sign, the left term
can be used instead of the right one. This leads to

Normalization 2:

-
%21 (k) z2(k)

k)= —= . 29

N( ) zT(k)Zl(k)z]z-(k)Zz(k) ( )

Because of (2.8) Normalization 2 is always lower
than or equal to Normalization 1 and hence also
satisfies the condition that no eigenvalue of the
homogeneous part of (2.4) is outside the unit disc.
Under the assumption of a time-invariant
transition matrix convergence is again guaranteed
for 0 <« < 2. However, for slowly time-varying
systems the step-size has now to satisfy the condi-
tion | T(k) — T(k — 1)|| < ¢. Thus,

| 1(k k)z, (k)5 (k

I ? k)Z1(k Z2{l\)<’n

HW‘UQW*UQW*UdW*U|<(
itk — Dzy(k — Dbk — Dzak — 1)

This condition can be satisfied for every vector
21(k), Za(k) if « 1s small enough.

Furthermore, Normalization 2 also bounds the
inhomogeneous system (2.4) for lower bounded
vectors z,(k) which can be proved by the Schwarz’s
inequality as well. The squared L,-norm of the
inhomogeneous part is considered again:

(z1 (k) z2(k))?
zi(k) 2, (k) (23(k) 22 (k)

< 2 eh (k) ! (2.10)

¢ T( 12(k) .

Eq. (2.10) shows that the driving term is now
bounded as long as ||z5(k)|, is lower bounded. In
the case of nonpersistent excitation, adding a small
positive constant to the denominator provides
boundedness again. Although normalization can
guarantee convergence of the homogeneous equa-
tion, the inhomogeneous part can be amplified and,
thus, the steady-state error can increase. Based on
the statistics of the input signal [26, 19] this effect
can be quantified.

The various normalization terms for the known
algorithms are listed in Table 2. Having no eigen-
value of the update system outside the unit circle
is certainly a desirable property. However, as
mentioned before, while dealing with general time-
varying systems, this property does not guarantee
convergence.

%% e2 (k)

Table 2
Possible normalizations for gradient-based algorithms without
a filtered adaptation error

Algorithm Normalization | Normalization 2
1 1
Feintuch ——
eimue 2 z,(k) 2 k2,00
Stearns —————l ____z{,(k)zo(k)
" zho(k) 25(k) 2o (k) 25(k) zfalk) 26 (K)
1 k) zo(k
AFM ; ] g )io( )
Zre(k) 2o(k) 2o (K) 2o(k) zre (k) 2re (k)
SPLMS, 1 1
EEFLMS —_— _—
2l (k) ze(k) 21 (k) z.(k)
1 (k) zo(k
BRLMS Ze (k) ze(k)

2 (k) zo(k) 2 (k) 2o (k)
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2.3. Contraction mapping

It is possible that time-varying systems are not
convergent although no eigenvalue is outside of the
unit circle at any time. The previous approach of
calculating the decisive eigenvalue certainly gives
good hints but not a strict proof for convergence. In
order to lead to a convergent algorithm the homo-
geneous part of (2.4) must describe a contraction
mapping. The mapping operator

T(k):[uxw - ,ld’\}Z](/\)fE(/\) (21“

1s called a contraction operator. if for every (k) and
an arbitrary norm

1T(k) Le(k) ]l = (k) lle(k) (2.12)

the Lipschitz constant (k) < 1 for every time in-
stant k. The question arises whether it is possible
to find a step-size u(k) in order to set (k) <1
without a knowledge of the error vector &(k).
Because of the Schwarz's inequality two constants
— 1 < K;(k) < 1 exist. such that

Kitk)y, 8" (k) (k) zF (k) (k) = &' (k) 2, (k)
fori=1,2. (2.13)

If the L,-norm is applied. ;(k) can be interpreted
as the largest singular value of T(k), 1Le.
maXy, (k) = [ T (k)i - Plugging (2.11) and (2.13)
into (2.12), the following 1s obtained for y(k):

P =1 = 2k K (k) K (k) 2l k) 2y (k) 250 25 (k)
+ (k) K3tk 2l (k) 2ok 2 (k) za (k). (2.14)

Both K, (k) and K, (k) depend on the unobservable
weight-error  vector &(k) and their product
K (k) K,(k) can have the opposite polarity of the
step-size u(k) not leading to a contraction operator.
Only if z,(k) = z2(k) it follows K, (k) = K,(k) for
every time instant k and the result 18

P =1 = Ki(k)z{ (k) 2, (k)
X (2u(k) — 12 (k)21 (k) 2, (k). (2.15)
Since both vectors z, (k) and z,(k) are now identi-
cal, both normalization rules coincide and assure
contraction for o e[0.2]. Therefore. only three
(symmetric) algorithms are convergent for every
arbitrary input sequence: RLMS. SPLMS and

BRLMS2 (see Table 1). The convergence of all
other algorithms depends strongly on the statistics
of the driving signal u(k). Given the joint statistics
of z,(k), z,(k) the expectation E[y(k)] can be cal-
culated, resulting in contraction in the mean. Thus,
the contraction mapping concept leads to condi-
tions on the largest singular value, whereas the
concept of slowly time-varying systems and time-
invariant systems require conditions on the largest
eigenvalue. A more rigorous treatment of gradient-
type algorithms including the noise can be found in
[21] and extensions to adaptive IIR filters in [20].

2.4. Examples

Some examples might emphasize the advantages
of Normalization 2. Fig. 2 depicts the first example.
A system to be identified is specified by three poles
(M, =3. M, =5) and is taken from a measured
hybrid. The transfer function is

G(o) =

0315 — 1.7982" ' — 0365272 + 3.06z > +0.1z"*
1 1.186z" 1 —0.185z "2 + 0.446z 3

(2.16)

having one complex pole pair. First, the Nor-
malized Stearns (NStearns) algorithm is tested.
Its normalized step-size « varies from 0.2 to 1.8
in steps of 0.4. In the figure averaged sample
functions of the relative system mismatch
S.alk) = E[€" (k) e(k)/e"(0)£(0)] are shown. The de-
picted curves are sample averages for 500 trials. If
instability of the filter occurred for a longer time,
the sample function was dropped. The driving pro-
cess was a white process with a modified Bessel
function K, pdf which closely resembles speech
signals [2]. This particular density function is given
as (see [11, p. 958, no. 8.432.3])

l x - |xt
T -1

In Fig. 2 a steady-state noise with a variance of
— 20 dB has disturbed the signal. Its variance has
been increased to +20 dB for 2000 steps ( = 1/4's
for an 8 kHz sampling rate), as can be seen in the
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20
S;e) in dB

-25 —

0 1000 2000 3000 4000

5000 6000 7000 8000 9000

Number of stepa

Fig. 2. Relative system mismatch of NStearns algorithm. The curves are associated with different step-sizes a.

figure. The fastest convergence is reached for an
o = 0.2. Even for « = 1.8 convergence is obtained.
For a > 2 the algorithm shows instability as ex-
pected. After a strong perturbation the algorithm
does not show the same convergence behavior as in
the initial condition case. Here, the example shows
that convergence can be obtained even for the
Stearns’ algorithm, which often shows instability,
when not using normalization. However, it should
be noted that the filter itself resulting from these
adaptation processes was often unstable. Only the
algorithm remained convergent.

A second example is the BRLMS algorithm. As
already shown in Table 1 there exist three BRLMS-
like algorithms. Only the one entitled BRLMS has
already been published in the literature. In [14, 15]
it has been shown that under certain conditions, the
algorithm behaves in a stable manner, but the re-
sulting filter was not proved to be stable as well.
Normalization Rule 2 has been applied to the three
algorithms  obtaining Normalized BRLMS
(NBRLMS, NBRLMSI1, NBRLMS2) algorithms.
The rule for the variable 7(k) has been chosen as

o Sk i)

i=1
When the disturbance is small then the quotient
of the d(k) and ¢,(k) expression will be small in the

beginning and larger when the adaptation causes
a decreasing weight-error vector. If suddenly a lar-
ger disturbance occurs, the quotient is again small
and the variable t(k) large. This behavior is depic-
ted in Fig. 3 as well as the relative system mismatch
for the NBRLMS?2 algorithm. All three algorithms
have been tested under the same conditions as
those in the Stearns example. While NBRLMS
and NBRLMS2 both showed good results, the
NBRLMS1 version showed worse properties. The
adaptation process for NBRLMS1 removed only
small parts of the echos, whereas NBRLMS and
NBRLMS2 showed a strong echo cancelation
effect. The depicted curves are sample averages
for 500 runs. The number of unstable filter results
was slightly smaller for NBRLMS?2 (11) than for
the other two algorithms (NBRLMS:44 and
NBRLMS1:55). Under these circumstances all
NBRLMS-like algorithms behaved at least in
a convergent manner.

3. Normalization for algorithms with filtered
adaptation error

Although it was possible to show the efficiency of
Normalization 2 in the case of algorithms with
unfiltered adaptation error, the second group of
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BRLMS!1

BRLMS2
BRLMS

Fig 3 Relative system mismatch of NBRLMS algorithms using x = 0.1.

algorithms is more difhcult to handle. As in the
previous section the state-space approach will be
used to describe the situation. With a filtered error
the adaptation equation can be written as

wik + 1) = wk) + u(kle (k) z (k). (3.1a)

e,(k) = Cle,(k)] (3.1h)
P

=er(k)+ Y cealk — 0l (3.1¢)

=1
where the error e,(k) 1s the same as in (2.1b).
Describing the situation with the weight-error
vector &(k) and using e,(k) = d(k) — w' (k) z5(k)
= en(k) — e"(k) z,(k) a vector differential system or
order P is obtained:
P \

ek + 1) =elk) + ;t(k)zllkl(e;(k) + Y cieptk - 1))

g t=1 ,

(3.2a)

=y v — pk) 2, 1K) 23 (k) &(K)

,
— p(k)z (k)Y cizhth ~ etk — i)

i=1

. P
+ k)2 (k) emlk) + Y coenlk — i))

i1 /

{3.2b)

The first line of (3.2b) shows the homogeneous
equation and the second line describes the distur-
bance term. Treating such a system is very difficult.
In the literature it is common to simplify the situ-
ation by assuming only slow changes in g(k) for
small step-sizes u(k), resulting approximately in
a first-order system again. But as (3.2b) shows there
is indeed a system of higher order and thereby
different dynamic behavior occurs. The possible
difference will be demonstrated later in this section
on the example of the SHARF algorithm. In order
to clarify the effect of the higher order, the simplest
case, being the homogeneous solution for a system
of order two (P = 1), is investigated:

‘e(k + 1)
(8 e(k) ):

('lu. v — 1(k)z (k)2 (k) — ¢y puk)zi (k) z3(k — 1))
lﬂx M O,WX!W
gk)y
X(M i ]))A (3.3)

For this equation only two eigenvalues 4, ,(k) un-
equal to one or zero are of interest. They can be
investigated for the two eigenvectors (4,(k)z](k),
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z1(k)) and (A»(k)zi(k).zi(k). The corresponding
characteristic equation is given by

A2k — 2(k)(1 — k) z3tk)z, (k)
+ ¢ pk)zik — Dz (k) = 0. (3.4)
The solution of this reads

1 — (k) zh k), (k
J 1 (k) = (k) za(k) oy (k)

”
%
i ol

I Rtz (k) o |
i\/( ,U( )‘)_( ) 1( )) B (I,U(l\)z;_(l‘_ l)zl(l\’

(3.5

If Normalization Rule 1 for the first-order part is
applied. a simpler expression is obtained:

N 2

| —x -
a2k = e /( J() — ¢y a0lk),  (3.6a)
Y

.
8 Lk — Nz (k)

Ok =0 3.6b)
A PNTY (

Obviously. the term (k) changes with time depend-

ing on the data. Due to its value the coeflicient ¢,

amplifies or damps the effect of d(k). If Normaliz-

ation 2 is used instead of Rule 1. the fluctuations of

d(k) become smaller. Since the product ¢ = ¢, (k)
influences the eigenvalues. we shall focus on its
cflect. The two decisive eigenvalues ., , have been
computed for ¢ running from negative to positive
values. The result of this can be seen in Table 3 and
Fig. 4. When ¢ runs from -1 to zero both eigen-
values go inwards the unit circle. For ¢ =0 onc
eigenvalue equals zero and the second one | — x.
When ¢ > 0 both eigenvalues come closer until at
¢ = (1 — 2)*/4x both eigenvalues coincide. If ¢ is
now further increased. the eigenvalues become
complex. Their real part remains constant (1 - x)-2
and only the imaginary part becomes bigger for
increasing ¢. Eventually. for ¢ = 1. the unit circle
is reached. Thus, the limits are
. 1
-l <otk < . (3.7)
b

Depending on the data. the term d(k) causes
a change in ¢, d(k) with every time instant k. There-
fore. there will not be a time-constant eigenvalue
pair /., ,(k) but there is a continuous movement

Table 3
Decisive eigenvalues 4, > as a function of ¢

¢ /2

-1 A

Re{)}

.1
E=—
o

Aa=1—2/2)
RO 2% 2))* — ¢a as a function of the filter coefficient ¢.

Fig. 4. Root loci  for  eigenvalues

around an average point. The solution in (3.6a)
suggests to normalize the filter coefficient ¢y as well,
in order to avoid this undesired time dependency.
Unfortunately, the inhomogeneous part is affected
as well and will cause increased disturbance.

If both vectors z, (k) and z,(k) are equal to z,(k)
the SHARF algorithm is obtained. The time-vary-
ing term (k) now reads

z(ln(k - l)zo(k)

WK) = — 38
o = T k) (.8)
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Fig. 5. Relative system mismatch for the NSHARFE algorithm using Normalization | { = Normalization 2) and C(z) =1 —0.9z7".
This term shows some boundedness properties. Ap- one cocflicient (¢; = — 0.9) is used. The situation is

plying Schwarz’s inequality again leads to

(z:‘(k - l)z.,(k)*)z
20 (k) zo(k)

I
otk Dyzotk — 1
0 k-1 1. (39
2o (k) zo(K)

Since the length of the vector (k) does not change
much from one step to the next. the absolute value
of the time-varying term is approximately bounded
by one: [3(k)| < L. Incorporating (3.7) and in order
to be on the safe side for reasonable step-sizes » < 1
the filter constant should be i¢;| < 1. Simulations
for the SHARF algorithm have in fact shown that
the time-varying term o(k) moves around 1 for
negative ¢,. but moves around -1 for positive ¢,.
thus keeping the product ¢ o(k) always negative.
The algorithm seems to push the poles back 1o
position in the unit circle. Another extreme is ob-
tained, if the constant ¢, = 0. Then. the SHARF
algorithm simplifies to Feintuch’s algorithm. The
main effect of a filter constant ¢, # 0 is a second
eigenvalue being unequal to zero which enables the
algorithm to increase the convergence speed.

Fig. 5 depicts a simulation example. The Nor-
malized SHARF? algorithm (NSHARF) with only

2Since 7y (k) = (k) both normahizaton rules coincide for
SHARF.

the same as in the previous simulation examples.
The algorithm with a fixed step-size y reached only
5 dB after 4000 iterations and was very sensitive to
additive noise. The small step-size assumption
resulting in a first-order system (P =0) is not
very helpful here. In this case there is only one
eigenvalue decisive for the convergence: A(k) =
1 — pik)zh (k) (zo(k) + ¢ zo(k — 1)). If in this case the
Normahzation Rule | was used. the maximal con-
vergence speed was low and the limit for conver-
gence had already been obtained for small a. Also
Normalization Rule 2 was checked for this case
resulting in a relatively small convergence speed.
The higher-order model (P = 1), however, and the
Normalization Rule 1 chosen for it,

(k) .

SEHTIPAT,

showed much improvement. The normalized step-
size « varies from 0.2 to 1.8 in steps of 0.4. The case
x = 0.6 1s dropped, since the curve coincides with
the » = 1.0 case. The fastest convergence has been
achieved for x = 1. Even for x = 1.8 convergence
has been obtained, but for x > 2 the algorithm
showed instability as expected from (3.6a). This
example shows that there 1s indeed a lot of room to
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improve the convergence speed of already existing
algorithms by a careful choice of normalization.

The case of higher system orders P > 1 can be
handled in a similar way. The corresponding eigen-
vectors to the eigenvalues that are decisive for con-
vergence are (47 (k) zT(k), 28~ Y (k) 2T (k), ... ,zT (k) for
i=1,...,P+ 1. The characteristic polynomial
equation has to be solved:

APk + AP (k) (k) 25 (k) 2, (k) —
P
Z Tk k) 25k — i)z k) = (3.10)

It is to be expected that for larger delays i the
expression z;(k — i)z, (k) will become increasingly
smaller, and, therefore, the parts with a larger index
lose importance.

4. Measurement results

The most important algorithms in Table 1 have
been implemented on a DSP56001 fixed-point sig-
nal processor. The plant to identify was a hybrid in
a real ‘PBX’. The situation has already been depic-
ted in Fig. 1. In order to find the best normalized
step-size o for Normalization Rule 1, the algo-
rithms were driven by speech signals in a first step.
The step-size was increased until the steady-state
error began to sound disturbing. After that, for
measurements the input signal u(k) on the local
speaker side was a white Gaussian noise sequence.
while the disturbance n(k) was the noise from the
PBX. The signal-to-noise ratio was measured to be
about 30dB. For all IIR filters nine transversal
part coefficients (M, =9) and three (M, =3)
recursive part coefficients were used. A 32-tap
transversal filter with NLMS algorithm is given as
a comparison.

Table 4 depicts the results. The echo return loss
enhancement (ERLE) was measured after 166 ms in
order to given an impression of the convergence
speed. A second value gives the ERLE when the
steady-state error has been reached. The column
labeled ‘After-burst’ describes the ERLE reaction
after a short burst arising from the subscriber side.
The AFM algorithm with the normalization from
[8] as well as with the new normalization showed

Table 4
Measured results with Normalization Rule 2

ERLE,s, ERLF,

Algorithm (dB) (dB) After-burst

AFM 277 10 17 17 dB after 500 ms
NAFM 0.25 4 13 13 dB after 500 ms
NStearns 1 1t 15 18 dB direct
NRLMS t 22 23 23 dB direct
NSHARF 1 22 23 23 dB direct
NLMS 0.5 31 31 31 dB direct

undesirable behavior. For both versions the con-
vergence speed was low and the reaction after the
burst was very slow. Generally speaking, both pre-
filtered algorithms, AFM and Stearns, did not show
very good behavior. Even the steady-state error is
bigger than those of the other algorithms although
the same filter order was used. NSHARF as well as
NRLMS showed about the same behavior. Both
algorithms behaved fast and reached 23 dB for
steady-state. The values given here are measures
from one typical situation. There were also situ-
ations where the IIR filters yield the same steady-
state as the 32-tap transversal filter. But even when
the 32-tap transversal filter has lower steady-state
error, it costs more in terms of computational com-
plexity. As mentioned above all the algorithms
were also checked with speech signals in order to
assure that no unexpected effects occur.

5. Other possibilities for normalization

In this section alternative normalizations are
considered. As already mentioned, normalizations
usually serve to make the algorithms independent
of changes in the input level. Since the convergence
behavior depends on the unknown system itself, it
is of interest to make the algorithm independent of
the system as well. A first step in this direction is to
make the algorithm independent of the system gain
additionally to its independence on the signal level.
Fig. 6 depicts the situation. On the one hand, an
algorithm has to be independent of the input signal
level. This can be described by an input signal u, (k)
with constant level one and a multiplication factor
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Fig. 6. Model for changes in the signal level p and system gann ¢

p that denotes the level. e, u(k) = pu, (k). On the

other hand. an algorithm should be independent of

different system gains. Thus, we assume the system
G, to have unit gain and a multiplicative factor
4 describes the gain of the system. In terms of the
plant parameters a and b the gain ¢ influences only
the transversal part coeflicients b but not the recur-
sive part coefficients a. But how arc the signals
affected by p and ¢” Since

At v,
vky= > a;y(k — i)+ Y btk ).
i—=1

e

the input u(k) as well as the output v(k) are propor-
tional to p. Since the system gain ¢ influences only
the transversal part coefficients b. they also affect
the output signal y(k). Thus v(k) is proportional
to pyq. For reasons of simplicity let us further as-
sume that the noise is zero. Then. the update error
e, 18

e, (k) = v(k) — a" (k) (k) — b (k) k).

where we split the gradient into two parts
¥ (k) = [@s (k). i (k)] Since (k) consists of out-
put values, it is proportional 1o py. Since so is the
inner product &'(k)y(k) = b'(kyu(k). the update
error is proportional to pg as well. As long as fixed
coefficients ¢; are used. a filtering of the error does
not change this relation. The normalization rule
should take this dependency into account and pro-
vide an update of the coeflicients @(k) that is inde-
pendent of p and ¢ and of b(k) that is independent
of p but proportional to 4. The following normaliz-

ation addresses both points:

N oA od

au+w4m+ﬁmamqmm%m(mm

. - X

bk + 1) =b(k) + ——— Cle.(k)] (k). (5.1b
k+ 1 ()+w;(k)¢b(k) fea(k)] (k). (5.1b)

Formally, the equations are independent of
changes in the system gain g and in the input level
p. However, since the algorithms are nonlinear in
the parameters, different ¢ cause a slightly different
behavior. Moreover, since the estimated values for
the system output signals are rather small during
the initial phase, the normalization might cause an
extreme gain for parameter set @(k) of the recursive
part which results in instability. This can be reme-
died by adding a small positive constant to the
normalizing term. However, when ¢ is varied, the
constant must also be varied in order to be exact.
The normalization rule in (5.1a) and (5.1b) should
only be seen as an example. In the following, we
shall develop more sophisticated rules following
the results of the former sections.

Since both vector parts have been split, two dif-
ferent step-sizes, one for each part, can allow more
freedom. Therefore, in the next paragraph two dif-
ferent step-sizes u,(k) and p, (k) are considered. The
application of two different step-sizes has been pro-
poscd n the literature [17, 12], but a condition on
these parameters was left open. For the transversal
filter case a condition was given in [16] assuming
Gaussian statistics for the input sequence. The
update equations for algorithms with unfiltered
update error become

.uu(.k)zm(k) T >
ek + 1 =Ty, 4y — 22k k
i b ( e (#h(k)zlb(k)> 2(k) &)

/ta(k)zla(k)>
w e (k . 5.2
m '<ub(k)z.b<k) ©.2)

Since a system of order one is obtained again, there
1s only one eigenvalue decisive for the behavior of
the algorithm:

/”\) B 1 - l‘a(k)z;‘u(k)zlu(k) - #h(k)z—gb(k)zlb(k)
(5.3)
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Here, the vectors z, (k) and z,(k) have been split into
their original components. now specified with the
additional subscript ‘" or 'b’. The corresponding
eigenvector reads (u,(k)z,.(k), pp(k)z;5(k)). Due to
Normalization 2, it is now possible to choose the
following

Normalization 3:
Y 21k 224(K)
¢ z-lra(k)zla(k)zga(k)ZZa(k) )

J1! (k} =y Z}‘b(k)zgh(k)
’ ’ 2 a(K) z21p(K) 20 (k) 2op(k)

Halk) =

(5.4a)

(5.4b)

Applying these normalizations to (5.3) the eigen-
value 4(k) is located inside the unit circle for

0<o, + o, <2 15.5)

Since Normalization 3 also bounds the driving
term, (5.5) gives the only necessary condition in
order to have the eigenvalue /(k) inside the unit
circle. Of course, the transition matrix in (5.2} is
typically not a contraction mapping, and, therefore.
the normalization does not necessarily lead to con-
vergence for every input sequence. The optimal
choice for %, and %, remains an open question as
well.

The concept of using several different step-sizes
can be generalized; for example, partitioning a
longer vector into smaller parts with separate
step-sizes can be of some advantage. In the extreme
case every one of the M parameters can obtain its
own step-size ui(k), i=1,...,M. This has been
proposed, for example, for the SHARF algorithm
[12, 13]. Normalization 3 then reduces to

k) = o - 10K Zailk
' ' ZTi(k)Zu(k) z-gi(k)ZZi(k) '

(5.6)

where the subscript i denotes the ith component of
the vectors. Again, a condition in order to have the
decisive eigenvalue A(k) inside the unit circle is
obtained:

0< Y %<2 (5.7)

A very similar result, but only for adaptive trans-
versal filters, can be found in [16]. If anything is
known about the parameter of the plant, a para-
meter update with individual step-sizes can be help-
ful. However, in this extreme case the homogeneous
part is driven by the term e (k)/z2:(k),i =1, ... ,M.
If a very small value for any element of the vector
2, (k) occurs even once, the whole system will burst
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Fig. 7. NSHARF algorithm for several system gains ¢ using Normalization | { = Normalization 2) and 3 and « = 0.1.
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out. Recently. an algorithm that uses this kind of
normalization but updates only the coefficient for
which e, (k)/z,;(k)| is maximal has been proposed
[5] and showed even faster behavior than Normal-
ization 1. If the normalization 1s positive, i.c.
a norm, the squared L,-norm can be useful in
speech applications, since the typically low ampli-
tudes of a speech signal are not markedly further
lowered. Since L, = L,. convergence is guaranteed
as well.

These ideas have been tested with simulations for
the NSHARF algorithm. The same conditions de-
scribed for the former examples also applied here.
but no disturbance was used. Fig. 7 depicts the
relative system mismatch for several system gains g.
As can be seen. if ¢ varies, the algorithm can result
in very low convergence speed. As simulations
showed, the step-size for optimal convergence
speed depends strongly on the unknown gain g.
Ouly 1f ¢ 1s known, an optimal step-size can be
applied. We used 2 = 0.1 in every run, but it should
not be failed to mention that this step-size has not
always been optimal. When Normalization 3 was
applied, the algorithm behaved unchanged for
every gain ¢. In Fig. 7 Normalization 3 resulted n
a very quick system match.

6. Conclusion

Beginning with a generalization of gradient-
based algorithms, two major groups have been
distinguished: algorithms without and those with
filtered adaptation errors. For both groups, two
normalization rules have been proposed satisfying
the condition to have all cigenvalues of the
transition matrix inside (or on) the unit circle. Since
these systems are time-varyving. and have no eigen-
value outside the unit circle. it 1s a necessary but not
sufficient condition to be convergent. For slowly
time-varying systems we found a normalization
rule that can satisfy all conditions for convergence.
However. for general time-invariant systems. the
more restrictive condition of being a contraction
mapping must be fulfilled to guarantee conver-
gence. Only for three (symmetric) algorithms the
normalization can assure to have a contracting
mapping and thus convergence for every input

sequence is guaranteed. Real-time experiments as
well as simulations validated the proposed normal-
ization rules. However, convergence of an algo-
rithm does not include stability of the calculated
IIR filter function. This remains an open problem.
Other possible normalization rules together with
necessary conditions to make the behavior of the
algorithms independent of the unknown system
gain and to allow more freedom in the choice of the
step-sizes were presented in the last section.
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