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Error-Energy Bounds for
Adaptive Gradient Algorithms

Ali H. Sayed, Member IEEE, and Markus Rupp

Abstract— The paper establishes robustness, optimality, and
convergence properties of the widely used class of instantaneous-
gradient adaptive algorithms. The analysis is carried out in a
purely deterministic framework and assumes N0 a priori statisti-
cal information. It employs the Cauchy-Schwarz inequality for
vectors in an Euclidean space and derives local and global error-
energy bounds that are shown to highlight, as well as explain,
relevant aspects of the robust performance of adaptive gradient
filters (aleng the lines of H° theory).

I. INTRODUCTION

NE of the most widely used adaptive schemes in current
Opractice 1is the least-mean-squares (LMS) algorithm [1],
[2]. Its simplicity and computational efficiency, coupled with
its good performance under varied operating conditions, have
made the LMS a standard tool in a wide range of applications
in signal processing, communications, control, and computa-
tions. Its widespread applicability has also led to an enormous
interest in the analysis of its performance and convergence
properties (e.g., [3]1-[14]) and to the introduction of many
different variants (e.g., [11, [2], [15]-[17]) with the intent of
improving several of its characteristics,

Most of the available analyzes of gradient schemes rely on
certain statistical assumptions that are part of the so-called
independence theory {1, p- 315]. These assumptions may, in
several instances, be restrictive, as pointed out in [1, p. 335]
and in earlier references (e.g., [6], [9D). They may also be far
from the conditions under which the LMS algorithm and its
variants have proven themselves in practical situations. Only
a handful of studies have avoided the statistical assumptions,
albeit at the expense of either excluding the noise component
[5] or requiring additional conditions on the data and.the
step-size parameter [6], [14].

This paper pursues an analysis of the class of instantaneous-
gradient adaptive algorithms (with the LMS being a special
case) within a purely deterministic framework. The derivation
avoids statistical assumptions and proceeds to establish error-
energy bounds that hold independent of stochastic considet-
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ations. The error bounds are further shown to explain the
robustness behavior of gradient recursions on a step-by-step
basis, as well as over intervals of time (cf., H* filtering
results). A convergence analysis is also provided that shows,
under certain deterministic conditions on the data and noise
sequences, that the estimate of the weight vector converges to
the true weight vector. ,

The appealing nature (and, in a sense, the strength) of
gradient-type algorithms is primarily due to their simplicity:
They are simple to derive, simple to program and implement,
and simple to explain. Keeping. with this tradition, we try, in
this work, to motivate the analysis from very first principles
and with minimum background.

A. Notation

We use small boldface letters to denote vectors and capital
boldface letters to denote matrices. In addition, the symbol
“*” denotes Hermitian conjugation (complex conjugation for
scalars), and the letter E stands for expectation. The symbol
I denotes the identity matrix of appropriate dimensions, and
the boldface letter 0 denotes either a zero vector or a zero
matrix. Finally, the notation ||z denotes the Euclidean norm
of a vector. All vectors are column vectors except for the input
data vector denoted by w;, which is taken to be a TOW vector.

IIl. THE STEEPEST DESCENT AND LMS ALGORITHMS

This section reviews the standard stochastic model that is
often used to motivate gradient-descent algorithms.

Consider a zero-mean random signal d(7) and a zero-mean
M-dimensional input row vector u; with

o* = E(d"(1)d(i)), R=B(uiu), p= Eluid(1)).

Consider further a column weight vector w;, and let e(4)
denote the estimation error between the desired signal d(7)
and the inner product u;w;,

e(?) = d(i) — w;w;.

The mean-squared error (or cost function) is the variance of
e(i) and is given by '

J(i) = 0 — p*w; — wip + w! Rw;. BG))

This is a quadratic cost function in w;, and the objective is to
minimize it. The optimal choice w° can be easily seen to be -
the solution of the normal system of equations p = Rw® [1].
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A major inconvenience of solving the normal equations is
that they require a priori knowledge of the autocorrelation and
crosscorrelation quantities R and p, respectively. However,
even if these quantities were available, the M x M linear
system of equations p = Rw? still needs to be solved for the
optimal (Wiener) weight w°. This may require a significant
amount of computational effort, especially for large values of
M.

This problem can be ameliorated by employing an approx-
imate gradient-descent algorithm. In this method, the weight
estimates are recursively updated along the negative direction
of the instantaneous gradient of J(7), leading to the so-called
LMS recursion:

w; = w;—1 + pu [d(5) — wiwi_1] 2)

where y is a positive constant step-size parameter and w_; is
an initial value (or guess).

Several other variants (such as ¢ — LMS, a« — LMS, and
projection LMS—see, e.g., [12]-[16]) have been proposed
in the literature with the intent of improving several of the
convergence and robustness properties of (2). These employ
time-variant step-sizes and take the general form (¢ in (2) is
now replaced by u(¢) in (3))

w; = wi—1 + p(d)u; [d(7) — uswi—1] 3

with many possible choices for (i), such as

N % D= %
M(Z) - ”uz”Z lu( ) €+ ”ung?
0 = Tl

or some other choice, including matrix step-sizes, as briefly
indicated in Section VI. Here, o and ¢ are resistive real
numbers.

A. The Data Model

The analysis in this paper assumes the following model for
the given data {d(7),u;}

d(%) = wyw + v(3). C)]

That is, it assumes that there exists an unknown column
vector w that relates u; and d(i) via a noisy perturbation v(z).
The term v(4) may account for measurement noise, modeling
errors, or some other uncertainties.

The following issues regarding the behavior of recursion (3)
when applied to model (4) are addressed in this paper:

1) A min-max interpretation relative to w is provided in
Section IV for the estimates w; obtained from (3).

2) Deterministic error-energy bounds are established for
recursion (3) on step-by-step and global bases when
applied to data generated by model (4). This is addressed
in Theorem 1.

3) The convergence behavior, under purely deterministic
conditions, of the gradient-based estimates w; to the
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unknown weight vector w of (4) is discussed in Theorem
2. :

II. ENERGY BOUNDS OR PASSIVITY RELATIONS

We start by invoking a simple Cauchy—Schwarz argument
to establish several local energy bounds that characterize the
behavior of the gradient recursion (3) on a step-by-step basis.

For this purpose, it is instructive to ignore at this stage
the gradient recursion (3) all by itself and to simply note the
following general fact. Let w be any unknown weight vector
that we wish to estimate, and let »; be any given input vector
at time 4. Now, pick any positive real number 4(¢) that satisfies

1(8) e ||? < 1, 5)

and pick any vector ¢ as an estimate for the unknown weight
vector w. This is clearly a very crude estimator; it randomly
picks a vector ¢ and uses it as an estimate for w, but still, and
because of the condition (5) on u(%), this estimator guarantees
that the following bound is always satisfied:

|wiw — uig|®
pt (@) [w — ql?
since it follows from the Cauchy—-Schwarz inequality that

<1 - ®©

uiw — wigl® < [uil|*|lw — q]]*.

We have also assumed that the obvious choice ¢ = w is
excluded in order to avoid a ratio in (6) with zero numerator
and denominator. However, here and in later places in the
paper, we can avoid this technicality by working through with
differences rather than ratios, say

fuiw — wigl® — (i) Jw — > < 0.

However, we shall continue, for now, to express our results in
terms of ratios for convenience of exposition.

Now note that the quantity in the numerator of (6) is the
square of the error in estimating w;w by using u;q. Likewise,
the quantity in the denominator of (6) is the square of the
distance between the true w and its estimate q (weighted
by 1~ 1(i)). Hence, (6) is the ratio of the “energies” of two
error quantities: the error in estimating w;w and the error in
estimating w.

It is further obvious that if the denominator of (6) is
increased by any nonnegative value, say, by the energy of
a noise term |v(7)|2, then the ratio will still be bounded by 1

|uiw — uigl® <
WDl — gl + P~ @
The denominator is now composed . of two energy terms: one
relative to the noise signal and the other relative to the error
in our guess for w.

The inequalities (6) and (7) are valid for any data u; as long
as u(i)|lusl]? < 1 (cf. (5)), and they are valid for any choice
of q. They are, therefore, certainly valid for a ¢ that has been
generated by the gradient recursion (3). Therefore, if instead
of ¢ we employ the estimate w;_1, it also follows that

Juiw — waw; 1|2
- 5 < 1. ®
p (@)l — wia |12 + (D2 T
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However, how ‘does the fact that the estimate w;_q1 18
generated by recursion (3) alter (8)? It turns out that (3) allows
us to further tighten the inequality (8) and to conclude that the
following also holds (as we shall promptly verify):

p ) lw — wil|* + [eq (i)
(D) —wia P+ P = -

where we have replaced, for notational convenience, the term
w;(w — w;_1) by e,(z), which is also known as the a priori
estimation error '

) Ba(i) = 'U,i(ﬂ) — wi_l).

Comparing (9) with (8) we see that the numerator of (9)
is larger since the nonnegative term u~'(7)||w — w;||? has
been added to the numerator. However, although the numerator
increased in value, the ratio is still guaranteed to be bounded
by one. A simple proof of (9) is the following. Starting with
the update equation (3), subtracting the true solution w from
both sides and squaring, we obtain :

[lw — wil|* = (w ~ wi—1) — p(i)uf (i) — wwi_1)|?
=l(w - wi—1) = u(i)u[ea(d) + v (]|

where we have used d(¢) — w,w;—1 = u;(w — w;—1) +v(i) =
ea(4) + v(z). Expanding the right-hand side and rearranging
terms leads to the equality

llw — wil® — llw — wi_a|* + p(@)]ea(@)® — u(@)o(0)?
= i)l ea () + (@) P[u(D)lus]|* — 1.

The right-hand side in the above equality is the product of three
terms: Two of them are nonnegative (u(7) and e, (4) +v(4)|?),
whereas the third one ((7)u;u} —1) may be positive, negative,
or zero, depending on how u(i) compares with ||ju;||?. In
particular, for (i)||w;||? < 1, the right-hand side is negative
or zero, and therefore

[ — wil|* + u(D)lea()* < lw = wioa]® + u(i)|o(@)®

which is equivalent to the desired inequality (9).

A. Interpretation

In other words, we have established that inequality (9) holds
for gradient recursions of the form (3). This can be regarded
as-a local passivity relation: It states that no matter what the
value of the noise component v(z) is and no matter how far the
estimate w;_; is from the true vector w, the sum of energies
@) ||lw — wi|* + |eq(4)|? will always be smaller than or
equal to the sum of the energies of the starting errors (or
disturbances) p~1(3)||lw — w;-1]? + |v(4)]?.

In fact, other local relations can be established by fol-
lowing similar arguments, and we shall forgo the details
here—derivations are provided in Appendix A. We instead
collect the results into a theorem. Let

ep(t) = ui(w — w;)

denote the so-called a posteriori estimation error at time 7. In
addition, define the factor (i) = [u™1(3) — |jus]|%].
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Theorem 1: Given the gradient recursion (3) and model (4),
the following local energy bounds always hold at each time
instant %:

w — wil]2 + (i) ea i) |
lw — w12 + p(@)|v(?)]? <1 (10)
lea(8)1* + lep(9)[?

PJ"l(z)Hw - "”i—1||2 + |U(Z>I2 <1, . ab
&)l = wil|? + ey (i) 2
12
’Y(i)“‘w — wi41||2 + |U(z)!2 <1 ( )
(2 ) ) |
lealP +le(i + D _ -

7 @)l — il + [o(@)2 T

where it is assumed that p(i)|ju;||2 < 1 for the first three
bounds, whereas

(i) < min{1/ |||, 1/l ]}

for the last bound.

The above local bounds show, on a step-by-step basis, how
the energies of the a priori and a posteriori residuals compare
with the energies of the disturbances due to v(¢) and to the
weight estimation errors (w — w;_1) or (w — w;).

Moreover, since the contractivity relation (10) holds for each
time instant ¢, it should also hold globally over an interval of
time. Let

wW; =w — w;

denote the weight-error vector. Assuming 1(7)||u;||* < 1 over
0 <7< N, it follows from (10) that

N
low]? + Y [ea(d)]?
i=0 <1

N
-2+ ()2

=0

14

where we have introduced the normalized a priori residuals
and the normalized noise signals

€a(i) = m?a(i), o(1) = vV u()v(2).

The numerator of (14) is the sum of the energies of the
normalized a priori residuals €,(i) over 0 < ¢ < N and
the energy of the final weight-error at time N. Likewise, the
sum in the denominator consists of two terms: the energy
of the normalized noise signal over the same time interval
and the energy of the weight error due to the initial guess.
Consequently, (14) states that the (block lower triangular)
matrix that maps the normalized noise signals {v(i)},
and the initial uncertainty w_; to the normalized a- priori
residuals {2,(i)}}, and the final weight error @y is always
a confraction mapping (see Fig. 1). This means that the 2-
induced norm of this mapping, which is denoted by Ty,
is always upper bounded by one (||Zn||2ina < 1). In the
language of robust filtering and control, the 2-induced norm
is referred to as the H*°-norm (due to connections with a
frequency domain interpretation that we forgo here (see [18])).

The contractivity of 7 provides an interesting explanation
for the robust behavior of gradient-type algorithms of the form
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> Wy

In

> {éa(i)}ilio

Fig. 1. Causal mapping calT .

(3): It shows that the energy of the residuals will never exceed
the energy of the disturbances. We shall refer to (14) as a
global error bound since it is valid over an interval of time.

Alternatively, if we denote by Ay (w_1,v(-)) the difference
between the numerator and the denominator of (14)

AN(w—l’ U())

N
= {Hﬁwll2 + léa(i)F}

i=0

- {Hfb—lll2 +y lﬁ(i)lz} |

=0

15)

then we also conclude from the argument prior to (14) that we
always have, for any w_; and v(.)

AN(‘U)_l,’U(-)) S 0. (16)

Global bounds that are similar to (14) and (16) and that are
based on a posteriori rather than a priori residuals, can also
be established by invoking the third inequality in Theorem 1.
For example, assuming 11(4)|]#;]|? < 1, we conclude that

N
l@nll? + > 6 (i)
1=0

<1

N
l@-all2+ > [50))>
1=0

where we have defined €,(i) = \/7~1(¢)e,(¢) and T(s) =
V@) v(d).

In the next section, we expand on the significance of
such global relations. This will be achieved, for instance, by
showing how the global relation (14) allows us to provide
a statement concerning the min-max nature of gradient al-
gorithms (thus complementing the interesting conclusions of

(18]).

IV.- MINIMAX OPTIMALITY OF GRADIENT RECURSIONS

The global property (14) (or (16)) is valid for any initial
guess w_; and for any noise sequence v(.) as long as the
(%) are properly bounded as in (5). One might then wonder
whether the bound in (14) is tight or not. That is, are there
choices {w_1,v(-)} for which the ratio in (14) can be made
arbitrarily close to one (or Ay in (16) arbitrarily close to
zero)? The answer is positive. To clarify this point, we rewrite
the gradient recursion (3) in the alternative form

w; = w1 + p(i)u;[eq(3) + v(2)]. an

- We can now envision a noise sequence v(4) that satisfies
v(i) = —e,(4) at each time instant i (after all, we have no
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say in the values that the v(-) can assume). In this case, the
above gradient recursion trivializes to w; = w;_; for all i,
thus leading to wy = w_1, and the ratio in (14) will be one
for any w_; # w. Correspondingly, Ay will be zero for any
w_;. This means that the maximum value of the ratio in (14),
over the unknowns {w_1,v(-)}, is equal to one

N
o = wn |+ > [ea(i)]?
1=0

max
{w_, 7w ()} oo
flw—w_1]2 + Z [(4)]?
1=0

(18)
In addition

X {An(w_r, ()} =0.
Another question of interest is the following: How does the
gradient recursion (3) compare with other possible recursive
algorithms for the update of the weight estimate? We assume
the algorithms are causal in the sense that the weight estimate
at time ¢ is only a function of the data {u;,d(j)} up to and
including time 7.

Let A denote any given causal algorithm and assume we
perform the following experiment on .A: We initialize it with
w-1 = w and define the noise sequence v(z) in terms of the
resulting (successive) a priori estimation errors as-follows:
v(4) = —eq(i) for 0 < ¢ < N. Then, it always holds that

N N
YO =Y [Eui)? < flw — wy?
=0 =0

+ 2@
=0

no matter what the resulting value of wy is. Therefore,
this particular choice of initial guess (w_; = w) and noise
sequence {v(-)} will always result in a difference Ay that is
nonnegative, This implies that for any causal algorithm A, it
always holds that '

max

Aw_1,0()}

For the gradient recursion (3), we were able to show that the

maximum has to be exactly zero because the global property

(16) provided us with an inequality in the other direction. This

may or may not hold for a generic causal algorithm. We can

therefore state that among all causal algorithms, the gradient-

type recursion (3) is one that solves the following optimization
problem:

{An(w_1,v(-))} 2 0.

Alggrlirtlhm {{wr_nff,((.)} An(w-1,v()}

a9

and that the optimal value is equal to zero.

As explained before, Ay has the following physical in-
terpretation: For any causal algorithm, we define the (block
lower) triangular operator 7y that maps the initial disturbances
{w — w_;,73(")} to the resulting estimation errors {w —
wy,€(-)}. Then, Ay measures the difference between the
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output energy and the input energy of 7. The gradient
recursion (3) is therefore an algorithm that minimizes the
maximum possible difference between these energies over
all disturbances. More intuitively, it minimizes the maximum
effect of the input disturbances on the resulting estimation-
error energy. For the case of a conmstant step-size u, this
optimality result is in agreement with the H°° characterization
of the LMS algorithm; this is a conclusion that was first
derived in [18] (contrary to the statement on page 70 of the
third edition of [1]).

V. SUFFICIENT CONVERGENCE CONDITIONS

The contractive relation (14) also has implications on the
limiting performance of the errors in the gradient recursion (3)
as time progresses to infinity. To clarify this, we proceed with
our analysis in a purely deterministic framework and assuime
no statistical information about the noise sequence and the
input data.

Recall the definition of the weight-error vector w; = w—w;,
which therefore measures the error of the weight-estimate
relative to the true weight vector w of model (4), rather than
the Wiener solution w®. It follows from the gradient recursion
(3) that @, satisfies the update relation

W = Wi—1 — T [€a(?) + D(3)] (20)
where ,(i) = /p(i)eq(), B(i) =

w(d)u;.

Our purpose is to provide sufficient conditions that would
guarantee the weight-error vector i; in (20) to tend to zero
as time progresses.

The analysis in this section is based on the following two

deterministic assumptions (see the example and simulation in
next section):

p(iyv(i), and w; =

‘1) Finite normalized-noise energy: Our first condition
requires the normalized noise measurement {v(-) =
u(-)v(-)} to have finite energy, i.e.

Z u(#)|v(i)]? < oo. 21
=0 :

2) Persistent excitation: Our second condition requires the
normalized input rows {@; = +/p(i)u;} to be persis-
tently exciting. By this, we mean that there exists a finite
integer K such that the smallest singular value of

u;
: (22)
Uiy K
is uniformly bounded from below by a positive quantity,
say, 8, for sufficiently large <.
The following result is now immediate, a proof of which
follows from the contractivity relation (14) and can be found

in the companion paper [21] (where the condition on 4(%)]|u; |12
is further relaxed and allowed to be bounded by 2).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 8, AUGUST 1996

Theorem 2: Assume that p(3)|ju;]|* < 1 and ||@_1]] < oo.
If {v(-)} has finite energy, then g,(i) — 0. If {;} is further
persistently exciting, then w; — w.

Note that if 9(-)} is instead a finite-power sequence (rather
than finite-energy), i.e., if U(-) = 1/p(-)v(-) satisfies

N

lim & Y WO = Py <oo

N ‘
=0

then, in this case, we conclude from (16) that

hm NZ

=0

i)lea(i)|” < Po.

In other words, a bounded noise power leads to a bounded
estimation error power.

A. Discussion and a Numerical Example

There is an abundance of (almost-sure) convergence results
for stochastic gradient algorithms in the literature, (e.g., [6],
[141, [19]). They all exhibit a set of sufficient conditions that
include, among others, requirements on the step-size parameter
(i) and on the distribution of the input data. For example,
it is usually required for almost-sure convergence of w; (to
some fixed point) that the step-size parameter }L(Z) be chosen
such that [6]

[ee]
> uli) = oo 23)-
i=0
If one adopts this requirement for the choice of (i), then the
finite-energy condition (21) would require the noise sequence
v(4) to vanish, ie., v(z) — 0.

We include an example to show that convergence may still
occur when (23) is violated, and the noise does not vanish. For
this purpose, we construct an example with a nonvanishing
noise sequence that satisfies conditions (21) and (22) and,
therefore, guarantees the convergence of w; to w. The example
however is such that the noise-to-signal energy decays to zero.
That is, although the noise signal never vanishes, the input
data vector u; becomes more powerful (energy-wise) as time
progresses.

Assume the noise sequence is never vanishing and that it is
bounded by a certain constant, say, [v(4)] < « for all ¢ and
for some finite o> 0. There is no restriction on how big or
how small « can be.

Assume further that the time-variant step-size u(7) is taken
to be

1

It is easy to check that this choice violates (23) since

oo o0

A 1
Z*M(i) = ; m.<00

i=0
However, the finite-energy condition (21) is not violated since

(o] . oo

3 @@ < Jal® Y- i) < oo

=0 P =0
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Assume further that the data {d(¢)} is generated via
d(i) = wiw + v(3)

for a noise sequence that satisfies the above boundedness
requirement and where the u; are 1 X 3 row vectors that
are constructed as follows. Let {eg,e1,e2} denote the basis
vectors

eo=[1 0 0,
CQI[O 0 1]

e =[0 1 0],

and choose for 1 = 0,3,6,9,--- (multiples of 3)
u; =0.1- (l + 1) €0y, Uit1 = 0.1- (’L+ 2) * €3,
w2 =0.1-(i+3) - es. 25)

That is, for the first six time instants

u0=[0.1 0 0], ’U,3=[0.4 0 0],
w =[0 02 0], us=[0 05 0],
wy=[0 0 03], us=[0 0 0.

In other words, the u; are multiples of the basis vectors, with
the coefficient changing from one time instant to another.

If we pick any ¢, say, w.l.o.g. a multiple of 3, then it can
be easily seen, using the choice (24) for (%), that

u; 01 0 0
Wy | =10 01 0 (26)
Uit2 0 0 0.1 -

which is always a full rank matrix. This means that the
sequence {+/pu(i)u;} is persistently exciting, and we can
choose K = 3 in the definition of persistence of excitation
after (22).

In addition, the requirement (5) is satisfied here since for
any ¢ .

0.12(5 4+ 1)2
(1+1)2
In fact, note that we do not need to restrict the coefficient in
(25) to be the same and equal to 0.1 for all . It can be taken to
be any nonzero number whose absolute value is smaller than
1 (say, sufficiently bounded away from zero). It can also vary
from one time instant to another. In this case, the resulting
matrix in (26) will still be full rank, and the condition (27)

will still be satisfied.

Therefore, all the requirements of Theorem 2 are met and we
conclude that if the gradient recursion (3) is applied to the data
{d(?),u;} of this example, then we must obtain convergence
to w, ie., w; — w.

Fig. 2 confirms the above discussion. It is the result
of a MATLAB' simulation. The data was generated for
w* = [l 3 0.5] with zero initial guess w_; = 0, and
the noise level was allowed to take random values in the
range [—0.5,0.5] (i.e., |v(¢)| < 0.5 for all 7). In addition, the
coefficient 0.1 in (25) was replaced by a nonzero random
number always less than 1 and sufficiently bounded away
from zero. The figure shows the convergence of both w; and
eq(%) to zero in about 200 iterations.

(i) el |2 = =001<1L. @)

Matlab is a copyright of The MathWorks Inc.
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4 %
[} ea(1)

3 0

2 10

1 )

e e % w w aw

Iterations ¢

Fig. 2. Convergence of @; and eq (i) to zero.

VI. ALGORITHMS WITH MATRIX “STEP-SIZES”

The derivation in the earlier sections allows us to extend
the results to cases where the step-size parameter is assumed
to be a matrix quantity, diagonal or not;, thus extending
earlier results in the literature (see, e.g., [16] where, motivated
by statistical considerations, a constant diagonal step-size
matrix with exponential entries was used). We thus' consider
a recursive update of the form

w; = w;—1 + Djul[d(?) — u;w;_1] 28)

where a general (not necessarily diagonal) time-variant
positive-definite step-size matrix D; is allowed.

Following similar arguments to what we have done before,
we obtain the following result.

Theorem 3: Given (28), the following three relations hold
for 0 <u;D;u; < 1:

lea(4)]?
w_ D Yy — wiD M + |v(d)|?
|ep(i)|2
(1 — w; D) [w}_ D] 'i;—1 ~ ] D; ;] + [v(i)|2

<1

lea(D)]® + lep ()]
w)_y D My + Jo(i)]2 T

while
lea(d)]* + lea(i + DI
w;_1D; iy + |v(i)]2 T

holds for 0 < max{u; D;u},u;r1Dyu;  } < 1.
If D; is a scalar multiple of a constant positive-definite
matrix D, say

D =)D, (i)>0,

then we can extend the earlier global relations to this case and
verify that

D>o0,

(w—wy) D w —wy) + ) [Ea(i)?
=0

N <1
(w=w-0)* D™ (w—w_1)+ Y ()
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for 0 <wu;D;ul < 1, whereas

N
(w—wy)* D™ (w —wy) + Z [€a ()|

N
(w—w_1)* D w—w_y)+ > [7(i)]
=0

for 0 <u;D;u; <1. Here
2ali) = VA(Dea(i).T; = VA(D0(0),
eali) =/(r1() - wDup) ea(d),
B(i) =/ (r=1(0) — wDuf) ~o(i).

VII. CONCLUDING REMARKS

We have provided a time-domain analysis of gradient-based
adaptive schemes with emphasis on robustness, optimality,
and convergence issues. This was achieved by highlighting
a fundamental contraction mapping property of the algorithm
(3), as summarized in (14). The result states that a gradient
recursion 'always results in a contraction mapping from the
initial disturbances (noise and initial uncertainty) to the final
estimation etrors (viz., a priori estimation errors and final
weight estimate). This conclusion was motivated by first es-
tablishing several error bounds on a local level, as summarized
by Theorem 1. The bounds involve not only the a priori
estimation error but the a posteriori estimation error and
combinations of both as well. '

The min-max optimality of the gradient recursion (3) was
also addressed in Section IV. Recursion (3) is usually de-
rived as an approximate solution for the minimization of
the quadratic cost function J(¢) in (1): The approximation
is due to the use of instantaneous estimates for the second-
order statistics of the data. The significance of the discussion
in Section IV is that it provides an optimality criterion for
gradient recursions. In simple terms, it states that the gradient
approximations are in fact min-max filters. This result was
first established for the the LMS algorithm, and in the infinite-
horizon case, ¢ — oo in [18] by exploiting connections with
estimation in indefinite metric spaces and H°-theory. We
have considered here general time-variant steps sizes as in
(3) and have a stronger finite-horizon bound in (14) as well.

We may finally remark that the approach of this paper can
be extended to more general scenarios that arise, for instance,
in adaptive schemes for IIR identification, in filtered-error
variants, and in Gauss—Newton methods. The relevant details
can be found in [20]-[22].

APPENDIX A
PROOF OF THE LOCAL PROPERTIES OF THEOREM 1

Let @(Z) = d(’t) —u;w;_1, and note that ea(i) = u;w;_1 and
ep(i) = wsi;—1 — p8)|lusl|*0(3).
ea(z' + l) =Ui1Wi—1 — u(z)ul+1u;“f)(z)
v(4) =9(2) — wi;—1.
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1) To prove the third property in Theorem 1, we note that

2)

3)

P

ll@:]1* = [[di—1 — p(i)ui o (D)),
(@) = [9(d) - w1 )%,
lep ()% = luitbi—1 — p(9)lus|*5(0) .
Using these expressions for-||@;||?, |v(7)[?, and {e,(4)|%,
we get
) = P il — )
+ (@) ~ lep(0)I*
= (1= p(@) [l *)[o()* > 0.

To prove the second property in Theorem 1, we note
that it requires

pH@llw — wisa|” + (@) = lea (D)
— lep ()" > 0.
Replacing the quantities v(%), eq(¢), and e, (%) in terms

of 9(4) and @;_1, the above inequality then collapses to
the following quadratic inequality in 9(4) and @;—1:

o @p [

= (I — pli)ufus)u;
1 — p?(d)uulwul

>0

[} >

—

where

p (D — g

P = : .
—u;(Ipr — p(d)wfu;)

The leading block of P, viz., p~ (i) Iy — ulu; is
a positive-semidefinite matrix due to the condition on
1(i). The Schur complement of P with respect to
this block is equal to (1 — u(%)||%|?), which is again
nonnegative. We therefore conclude that P is a positive-
semidefinite matrix, and the required inequality is thus
guaranteed.

To prove the fourth property in Theorem 1, we note that
it requires

pTH@) lw = wie|[® + (i) — lea ()]
—lea(i+ DP? > 0.
Replacing the quantities v(i),e,(4), and e, (¢ + 1) in
terms of 9(¢) and ;_1, the above inequality then

collapses to the following quadratic inequality in ©(%)
and @;—_1, '

p Oy = wiguip (I — p(ufy i)
—ui(In = p(ufuir1) 1= 2 (uiufuly,

~ %

[@7_, >0

()P [’f;i(lf)l

where now

|

The leading block of P, viz., u™*(i)Ia — u) %41
is a positive-semidefinite matrix due to the condition
on p(7). The Schur complement of P with respect to
this block is equal to (1 — u(7)||u;]|?), which is again

/
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nonnegative. We therefore conclude that P is a positive-
semidefinite matrix, and the required inequality is thus
guaranteed.
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