Adaptive TDMA-DFE Algorithms Under IS-136

Markus Rupp and Ahmad Bahai
Lucent Technologies, Wireless Research Laboratory
791 Holmdel-Keyport Rd., Holmdel, NJ 07733-0400
Fax: (908) 888 7074, Tel: (908) 888 7104, Internet:rupp@lucent.com

Abstract

The 15-136 standards define conditions under which
wireless TDMA systems are required to work. Adap-
tive equalizers are unavoidable in order to satisfy these
requirements. We extend common results in track-
ing theory for system identification to the equalization
case. Unlike in system identification where a steady-
state error energy is minimized, the optimization cri-
terion here is the minimum of the BER. However, we
show that both are related by a monotone function and
therefore minimizing the BER is equivalent to min-
imizing the steady-state-error energy. Optimum pa-
rameters for LMS as well as RLS algorithms are de-
rived and simulation results indicate that under the
conditions defined in the 15-136 standards, the perfor-
mance of the two methods is comparable.

1 Introduction

The IS-136 standards{1] define transmission proto-
col (offset 4DPSK) and conditions under which a wire-
less system is supposed to work. For a Rayleigh fad-
ing channel, for example the standard requires that
the Bit-Error-Rate (BER) for a Signal-to-Noise Ratio
of about 20dB does not exceed 3%. Although it is
known how a communication system with this modu-
lation performs for an ideal equalizer, the tracking ef-
fects of the equalizer itself have not been investigated.
Usually, slow fading channels are assumed so that the
effect of the equalizer is much smaller than the BER
caused from the Rayleigh channel. The IS-136 stan-
dards however, require the 3% BER also for Doppler
speeds up to 100Km/h. In this case the tracking noise
of the equalizer becomes much larger than the error
caused by the Rayleigh channel. Hence, any analysis
of the performance of such a communication system
must take the equalizer tracking noise into account.
Note that tracking analyzes for LMS and RLS algo-
rithms in the context of system identification can be
found in literature (see[2,3]). In this paper we show

1. How to extend the tracking theory from [2,3] to
the equalization case.

2. How to compute the steady-state-error energy
and
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3. minimize this energy with respect to the free pa-
rameters.

4. How to map the steady-state-energy to the BER.
The DFE Reference Model

In order to treat the equalization problem like an
identification problem, we assume that there exists an
optimal equalizer (model reference) with the structure
depicted in Figure 1. The reference model consists of a
linear filter that performs an equalization of the chan-
nel. Since a general channel can be perfectly equalized
only by a filter of (double) infinite length, a finite (and
general small) filter order can only achieve a rough
equalization. The nonlinear decision device (slicer)
following the equalizer guarantees that the outcome
of the reference model equals the transmitted signal
y(k) = s(k — D), where we allow for a delay of D
samples. The difference of the reference model output
s(k — D) and the estimate z(k) leads to the error e(k)
that is used for updating the estimates wi. A final de-
cision device delivers estimates §(k — D) of the trans-
mitted sequence. In the following the delay D will be
dropped for convenience. The outcome of the linear
part is denoted z(k) = upwg~1 where the sampled re-
ceiver values have been combined in a row vector uy
and the filter taps in a column vector wi_1. In order
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Figure 1: Model reference structure for DFE equalizer.

to describe an adaptive DFE structure in terms of the
reference model and investigate the desired tracking
behavior we have to make some assumptions.

Assumption 1 (Input Statistics)
The white symbol sequence s(k) is linearly filtered



by the channel C' and thus the received sequence
u(k) = C[s(k)]+v(k) is expected to be correlated. We
assume that the received sequence has nearly Gaussian
statistics. This assumption has a strong impact on the
tracking behavior of the (N)LMS algorithm, where the
expectation of fi(k) = 1/||u|? plays an important
role. If we assume u(k) to be a complex valued white
Gaussian process of variance one, the expectation of
B(k) = 1/|jug|)} is given by
1

EIER) = 57— »

M
M being the linear equalizer length. Although this
assumption is not precisely satisfied, more accurate
terms are not easily available. For larger filter order
M, the expression becomes more precise. We also as-
sume the additive noise v(k) to be a Gaussian random
process.

Assumption 2 (Approximation)
We obtain for the update error

e(k) = (k) — 2(k) . 2)

By adding and subtracting the symbol s(k) this error
can be rewritten as

e(k) §(k) — s(k) + s(k) — 2(k)

8(k) — s(k) + glz(k)] + ea(k)  (3)

where the a-priori error

ea(k) 2 2(k) — 2(k) = up[Wr_y — We_1] = wpWi_1

(4)
and the error function describing the equalizer imper-
fection is defined as

glz(k)] £ dec[z(k)] — z(k) (5)

The definition (3) for the error e(k) in terms of the
a-priori error eq(k) and the equalizer imperfection
gl2(k)] requires modification when a DFE structure
is used. The elements of the vector u; are then

ug = [u(k),...,u(k— M +1),s(k—1),...,s(k — N)],
while the adaptive branch uses a different vector

uy, = [u(k), ..., u(k— M +1),8(k — 1),...,5(k — N)] .
The linear combiner w; then consists of weights for

the received sequence u(k) and the feedback symbols
{s(k—-1),...,s(k— N)}. Correspondingly, w; consists
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of weights for the received sequence u(k) and the esti-
mated feedback symbols {§(k — 1),...,8(k — N)}. The
a-priori error can now be redefined in terms of uy:

(6)

The relation between z(k)—Z(k) and the a-priori error
is given by

z(k) — 2(k) = eq (k) + Als(k) — 3(k)],

ea(k) 2 @x[wioy — Wg_1]

(M)

with the linear operator A containing the feedback
coefficients of the reference equalizer. Thus, for the
DFE structure we obtain instead of (3)

e(k) = (1= A)[8(k) — s(k)] + g[=(k)] + ealk)  (8)

As long as the symbols are estimated correctly, s(k) =
5(k), and we assume that

e(k) ~ ea(k) + g2(k)] -

Assumption 3 (Equalizer Imperfection)

When (9) is compared to a system identification
scheme, the term g[z] plays the role of additive noise.
Note that g[z] can also be expressed as

(9)

glz]=(1-WC - A)[s(k)] - W[e(k)],  (10)

where W is an operator that describes the feedforward
part of the equalizer coefficients. The first term in (10)
describes the equalization effect. If the equalization is
perfect, it is close to zero. This is rarely the case, how-
ever, and we therefore have to deal with equalizer im-
perfection. Thus, we assume for the symbol error-free
case that e,(k) in (6) is disturbed by the compound
noise g[z(k)]. Since we assume s(k) and v(k) to be
independent, the variance of g[z(k)] is given by

o) = Wil + o2

(11)

with 02 = ||l — WC — A||?> . With this approxima-
tion we can treat the reference model completely like
a linear identification scheme. The additive noise is
described by the compound noise with variance given
by (11) and the unknown system by the linear com-
biner wy. Its dynamics are described in the following
section.

3 Channel and Reference Model Dy-
namics
In 1S-136 either a one or a two path Rayleigh model

is assumed for modeling the channel. Thus, we can
describe the channel coefficients ¢ as

Cp = Cl(k)hl + Cz(k)hg , (12)



the vectors h; and h; being the transfer functions of
the actual paths and ¢;(k), c2(k) the random coefli-
cients with Rayleigh distribution. We assume the fol-
lowing linear AR model for ¢;(k):

L
ak) =) frak=D+Gk) ,i=12,

=1

(13)

The driving processes (;(k) are assumed to be white
complex Gaussian and independent of each other. The
filter coefficients {fi} define the correlation of the pro-
cess and are determined by the Doppler speed. Com-
bining (12) and (13) yields

L
ck = Y fick-1 +hiCi(k) +haGa(k) . (14)

=1

Based on (14) we make the following assumptions on
the channel and reference model:

Assumption 4 (Channel Model)
In order to simplify matters we assume L = 1 and
combine the driving terms into one new white noise
term.

fer-1+V1=-f2qx
sgcx + v(k)

(15)
(16)

where qj is a white complex-valued Gaussian vector
random process of unit variance, i.e., E[||qg||3]= 1 for
a one path model or twice that amount for a two path
‘model. The row vector sj consists of the transmitted
symbol sequence s(k).

[l

Assumption 5 (Reference Model Fluctuations)
We assume that the dynamic of the reference model
equalizer behaves like the channel, i.e., it follows the
same model (15):

1-f%q;.

This is true in particular when only one coefficient f
is used with values close to one (as it is the case here).
The variance of the fluctuations becomes

Ay = Elllwi — we—s[”) = 21 ~ HE[la:|”]. (18)

4 Tracking Theory
We first write the LMS update equation

wp = fwp_1+ (17)

wi = w1 + p(k)uge(k) (19)
n terms of W = Wy — W as
Wi = AwWg + Wiy — p(k)uze(k) , (20)
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with Awy = wi —wg-1. Aslong as no error occurs we
simply have e(k) = upWi_1 + g[2(k)]. We replace the
step-size (k) by the projection step-size afi(k) with

(k) = 1/|laell3
and calculate the quadratic l;— norm of the parameter
error vector
IWells = [JAWk|3 + [[Wr-all3 + ®m(k) le(k)[?
+ 2 Re{wj_;Awg —ae"(k)p(k)urAwyg
—ae*(k)ﬂ(k)ukv?ik_l} . (21)

We take the expectation of both sides and use the
following terms:

BlER vl = 79513 (22
BER)e (usawy] = yBWesAwi] ()
PlRefinsdwel] = (oo Eladd),

with v between zero and one depending on the corre-
lation of the received sequence. The derivation for the
last line is somewhat lengthy and therefore not given
here.

Assumption 6 (Correlations)

In order to continue we assume that all processes
u(k), g[z(k))], and q are mutually independent. Note
that if the equalizer imperfection is caused mainly by
the linear part (1 — WC — A), it will be correlated
with the received sequence u(k), and this assumption
does not hold. We thus consider two cases: one for
which the linear part is small but uncorrelated to the
signal, the other where it is part of the signal (see
(33) ahead). We will later give the results in form of
bounds between these two cases.

With these assumptions, (21) now reads

AN Ay + (2a7) E[|[ Wk -1]13]

o [YE[|[Wi-1]3] + Ela(k)]og]
(1=ayn(-f)? 2

2 Bl

Ay + E[|[Wr-1]13][1 + va(a — 2)]

(I-an(=f)*
2 1 — f(l — 057) E[”qk“z]
+ o’c2Ef(k)] . (24)

In steady-state, E[||Wx||2] = E[||Wr-1]/3] and (24) be-

comes
- 1— 1~£)?
Ay +a?o? B(k)] — 29500 ] g
72(2 - o) ‘

-+

El|wl3] =
(23)



Substituting for A, from (18), we finally get
AuigEigss + o202 Bla(H)]

~ 2] _
E[|Iwell2] = va(2 - a) (26)
For the update error e(k) we use the relation
Elle(8))*] = yM oL E[||[¥i-1[13] + o7 ,
and obtain for 02 = 1
. n TMA,
A Ble® = i —aa=e @

2-o(l - ME[ARK))
2~a g

If we compare this result with the one from [1] we note
that 1/« is replaced by 1/[1 — f + fay]. In fact, as
a — 0, the steady-state error energy will not grow be-
yond all limits but will remain bounded by the equal-
izer fluctuations A,,. Thus, (27) is a more accurate
description.

Let us consider the flat Rayleigh fading channel
for which the receiver sequence u(k) can be assumed
to be a white random process with v = 1/M. If

we further recall that the compound noise 03 =

E(|W(v(k)] + e.(k)I?] = E[lwi(0)[’]od + 0, and that
Ay = 2(1— f)E[|wx(0)[?], we find the final expression
for flat Rayleigh fading
Ay
A-Ff+%)@2-
2—ao(l-ME[i
2= MEGD (2 B{lwe(0)] + o]

Thus, it is possible to compute the optimal step-size
for minimal steady-state error. We obtain a quadratic
equation in the step-size «

Jim Ble(k)?] = 28)

a?4+20A+B=0, (29)
with the terms
_ [MA-=1)
A = [ 7 ] 1+0)
_ [MA-f)
B = [ - ] (4-20)
[wx (0)}2

© = MEE®IIw:O)For o7

The optimal solution is then given by

The result for the RLS algorithm is not shown here
explicitly but can be obtained following similar argu-
ments.

5 Computing the BER

Although the steady-state-error energy is a good
measure for the tracking performance of an equalizer,
one is more interested in the final BER for such sys-
tems. We therefore need to relate the steady-state
error energy to the BER. To this end, we first note
that the outcome of the linear equalizer filter 2(k) is
an estimate of s(k), i.e.,

Z(k) = s(k) — e(k) . (81)
In the steady-state situation the error term e(k) plays
the role of additive noise. Using (9) and (31) we have

(k) dec[2(k)] = dec[s(k) — e(k)]  (32)

dec(s(k) — g[z(k)] — ea(k)] . (33)

Since we can consider the channel and equalizer com-
bination as an equivalent additive noise channel with
two noise sources g[z(k)] and ey(k). If the noise
sources are assumed to be independent, their energy
is given by o2 + Efleq(k)|?] which leads to an up-
per bound on the BER. However, the compound noise
g[z(k)] also consists of signal components. If they are
large, they cannot be considered independent of the
actual symbol s(k) any more. In this case we consider

P24

§(k) = dec[(WC + A)[s(k)] — Wlv(k)] = ea(k)], (34)

which leads to a lower bound.

For a Rayleigh fading channel and additive Gaus-
sian noise the BER for the differentially encoded case
is given by [4,5]

1
BER = TTSNR (35)
For the LMS algorithm the SNR is given by
- 2
SNRi s et % (36)

(1-f+5H)@-0) Elw:(0)[]

2—a(1- ME[) [
7= a [ * vak(on?]]

The optimal step-size for minimum BER can be ob-
tained by differentiating (35) with respect to a. The
result for RLS is similar and can be obtained by sub-
stituting 2 — a(l — ME[g]) by 2and A=1—a/M in
the above expression.

6 Simulation Results
We provide three simulation runs for 8, 100 and 237
Km/h with the optimal step-sizes cop: = 0.02,0.21 and



0.42 computed for the LMS algorithm and optimal for-
getting factors Agp: = 0.99,0.95 and 0.9 for the RLS
algorithm. Both sets are obtained for a channel SNR
of 19.2dB. The modulating frequency was assumed to
900MHz. The speed of 237Km/h is not included in
the 1S-136 specifications but corresponds to 100Km/h
when using a modulating frequency of 1900MHz which
is the condition for the PN 3386 PCS standards. We
averaged the simulations over 1000 runs.

The BER for the LMS case is shown in Figure 2 and
for RLS in Figure 3. For LMS we obtained the BER
values (theoretical lower and upper bounds in paren-
thesis) 0.0106 (0.0082-0.012), 0.0145 (0.0109- 0.0151)
and 0.024 (0.017-0.022) for the three speeds respec-
tively. Clearly the theoretical values are very close to
the simulation results. In particular, the upper bounds
that incorporate the correlation in the equalizer im-
perfection are very precise. At the iteration number
100 we switched from training to data mode. For the
low speed nothing noticeable changes while there is
a slight increase in BER (14% increase for 100Km/h
and 40% for 237Km/h) for higher speeds.

The behavior for RLS is similar, with BERs of
0.0097 (0.0082-0.012), 0.0138 (0.00109-0.0151) and
0.022 (0.017-0.022) for the three speeds. These ‘er-
ror rates are comparable to those from the LMS al-
gorithm. When there is a delay spread the differences
between the two algorithms are more pronounced, but
both equalization methods satisfy the standards when
using a DFE structure.
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Figure 2: BER curves for DFE-LMS algorithms for
the speeds 8,100 and 237 Km/h when using differen-
tially encoded {QPSK.
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Figure 3: BER curves for DFE-RLS algorithms for the
speeds 8,100 and 237 Km/h when using differentially
encoded {QPSK.
7 Conclusions

Our theoretical investigations as well as our simu-
lations indicate that the LMS and the RLS algorithms
exhibit similar performance in their tracking behavior
when used under IS-136 conditions. Both meet the 3%
BER bound as required by IS-136 for Doppler speeds
up to 100Km/h. Hence the LMS algorithm with much
lower complexity can be applied for 1S-136. Finally,
neither of these schemes meet the BER requirements
for the PCS band.
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