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ABSTRACT

In this paper, we develop two simple gradient-based
algorithms for unbiased adaptive IIR filtering in the
presence of zero-mean output noise. The algorithms
are derived according to a constrained minimization
problem that is known to have a unique solution and
are generalizations of bias removal techniques for
equation-error-based filters for uncorrelated output
noises. We propose simple methods for estimating
the noise correlation statistics within the algorithm.
Our stochastic analyses of these algorithms yield
necessary conditions on the step sizes for the sta-
bility of the mean values of the coefficients. In addi-
tion, we give a more accurate mean-square analysis
of one of the algorithms assuming jointly Gaussian
input and desired response signals. Simulations in-
dicate that the algorithms can achieve unbiased pa-
rameter estimates at least as accurately as other,
more-complex techniques.

1. INTRODUCTION

The potential advantages of an adaptive infinite-impulse-
response (IIR) filter over the more-conventional adaptive
finite-impulse-response (FIR) filter have long been recog-
nized (1, 2, 3]. However, the convergence and stability prop-
erties of the simplest gradient-based adaptive IIR filters of-
ten prevent their use in real-world systems. Equation-error
adaptive IIR filters have predictable convergence charac-
teristics, but the parameter estimates at convergence are
biased in the presence of any output noise. Output-error
adaptive IIR filters implemented in direct form can pro-
duce unbiased parameter estimates, but their ability to con-
verge to these estimates is hampered by strictly positive real
(SPR) constraints on the autoregressive portion of the un-
known system. A desirable direct-form adaptive IIR filter
would combine the convergence properties of the equation-
error-based filters with the ability to produce unbiased co-
efficient estimates possessed by output-error-based filters.

To this end, researchers have modified the equation error
adaptive algorithm using bias removal or constrained mini-
mization techniques. Bias removal methods compensate for
the bias in the autoregressive parameter estimates by in-
troducing a correction term within the coefficient updates.
The simplest algorithm employing this concept is [5]

a;41 = a; 4 /J.e(i)d,'_l + l“;'\?/(i)ai (1)
biy1 = b+ pe(d)x; (2)
e(i) = d(i)—aldi-a —bixi, (3)
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where a; = [a1(1) az(i) - -+ an]7 is the autoregressive coef-
ficient vector, b; = [bo(i) b1(3) - -+ bar—-1(8)]7 is the moving
average coefficient vector, d; = [d(i)---d(i — N + 1)} and
xi = [g(d) - z(i = M +1)]7 are the desired response and

input signal vectors, respectively, o2(z) is an estimate of the
observation noise power, e{1) is the equation error, and g is
the step size. This adaptive filter assumes that the desired
response signal is generated from an IIR filter with param-
eter vectors a and b whose output y(7) is corrupted by an
additive zero mean uncorrelated noise signal v(:) such that

d(4) y(1) + v(%) (1)
y(1) a"yi_1 + b xi, (5)

where yi = [y(i)---y(i — N +1)]7. If the estimate of the

o~

noise variance o2(i) equals the true noise variance o3(i),
the adaptive filter in {1)-(3) can be shown to give unbiased
estimates in the mean at convergence if v(3) is uncorrelated.
However, in most cases, the noise variance is unknown and
thus must be estimated. More recently, other modifications
of this idea have been introduced [4], including those that
are loosely grouped under the label of instrumental vari-
able (IV) techniques [6]. Although IV techniques can be
generalized to include correlated observation noises, these
methods require a prewhitening filter to decorrelate the er-
ror residuals, thus complicating the system.

By contrast, constrained minimization techniques employ
a cost function that is designed to have a single unique
minimum at the optimum parameter estimates. These tech-
niques include Steiglitz-McBride methods [3] and unit-norm
constraint methods [7], in which the error signal e.(s) is de-
fined as

ec(1)

where ao(i), a; = [e1(i)a2(s) - - an(3)]¥, and 8,
[Bo(8) B1(5) - -+ Bar—1(4)]” contain the parameters of the sys-
tem. These parameters are updated using a gradient search
on the mean-squared error E[e2(:)] whereby a unit-norm
constraint on [ao(3) @7 ] is imposed [7]. The original pa-
rameters can then be recovered via the relations

(6)

ao(8)d(i) + of die1 + BT xs,

Q; —ao(t)ai (7
ﬁ‘_ = —ao(1)b;. (8)

In [8], 2 stochastic gradient algorithm is given for adjusting
the parameters ao(i), @;, and §, in which the constraint

is imposed by dividing ao(z) and g; by \/o2(:) + af o, at

infrequent intervals.



Recently, adaptive IIR filters based on total least squares
(TLS) concepts have been proposed [9, 10]. Because the
algorithm in [9] is a true TLS formulation, it is guaranteed
to converge, but its overall complexity is much greater than
those of gradient-based techniques. The approach in [10] is
not guaranteed to converge, and its stability behavior has
not been analyzed.

In this paper, we develop two new stochastic gradient
adaptive filters based on a constrained minimization cost
function. Unlike the algorithms described in [4, 5, 8, 9, 10],
our adaptive filters can be employed in cases where the ob-
servation noise signal v(4) is correlated. Since our algo-
rithms adapt the coefficient vectors a; and b, directly, we
avoid the costly square roots and numerous divisions inher-
ent in the algorithm of [8]. We show how the resulting al-
gorithms can be related to the bias removal technique of [5]
and to the anti-Hebbian adaptation algorithm in [10] in the
white noise case. As the correlation statistics of v(z) may
not be known, we provide simple methods for estimating
these statistics. Our stochastic analyses of the algorithms
indicate that they produce unbiased estimates of the true
parameter values for system identification tasks. Simula-
tions show that these adaptive filters perform as designed,
producing unbiased parameter estimates at convergence.

2. ALGORITHM DERIVATIONS

For our derivation, we define the equation error cost func-
tion as

7.(3) -12-13 {(d(i) —aldios - b,-Txi)Z] .

For the constrained minimization problem, define J(7) as
J(1)
By substituting (7)-(8) into (10), we have that

J (1) RHORADN (11)

So long as @o(7) # 0, minimization of J.(i) with respect to
a; and b; is equivalent to minimization of J(z) with respect
to a; and ﬁ but the resulting solutions are biased due to
the noise 51gnal v(2) in d(4). If the noiseless observation
signal y(i) were available, minimizing the criterion

L) = %E [(d(i) —alyig — b?Xi-)Q]

—;—E {(ao(z')d(i) +afdi, +p_fxi)2] . (10)

(12)
with respect to a; and b; produces unbiased estimates.

If the second-order joint statistics of z(i) and y(i) are
well-defined, it can be shown via (9) and (12) that [7]

I60) = QA)Il) + 502 ()CG),

where we have defined C(3) as

(13)

A

Ci) = ob(i)+ 2a0(i)Proe; + of Ruvey

= ag(i) (1 —2pLa; + aiTRwa.')

(14)
(15)

and p,v and Ry, are the normalized auntocorrelation vector
and matrix of the noise defined as

Efo(i)o(i - m)}/o%(3)
Efo(i = mu(i - n)}/o3 (i)

[pv ”]m
[Roo]

(16)
(17)

mn
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for {m, n} = {1, 2, ..., N}, respectively. From (13), J(3)
and Jo(i) have the same global minimum if C(z) is held
constant. Thus, we adapt a; and b; to solve:

minimize J(z) subject to C(7) = 1.

(18)

The constraint in (18) ensures that the algorithm achieves
the proper estimates of the unknown system. Moreover, an
algorithm that solves (18) does not require knowledge of
the noise variance ¢2(i) for implementation purposes. For
white noise, (18) simplifies to the constraint used in [8].

Substituting (15) into (18), we can derive the relationship
between ao(i) and a; as

1
1- ng‘vai + a;'ervai '

o (i) (19)
2.1. Algorithm #1

To derive our first gradient descent algorithm, we can dif-
ferentiate J(¢) in (11) directly with-respect to a; and b;
given (19). Differentiating J(z) with respect to b; gives

B0 o _Blad(elix)].

ob;
Differentiating J(7) with respect to a; gives

(20)

8J(i)
3a,‘

1 3010( )

- [aooe( )i+ (02280 | o)

Using (19), the derivative within the second term is

30 (1) 205 (1)
da; 1-— zpvvaz + aTva a4

(puv - vaat) (22)

Substituting (22) into (21) and using the standard instan-
taneous gradient approximation, we arrive at the following
parameter updates for a; and b;:

. e(i)(R'uvai - pvv)
1 = & i 3
Ait1 a; + ue(z)(d 1+ 1—2phoa: + a?Rwai (23)
biti = b+ pe(i)x;, (24)

where ag(i) is absorbed into g as both are always positive.
The algorithm in (23)—(24) is a modified equation error
scheme in which a correction term is added to the update

of a;. If v(4) is uncorrelated, this update is
ai> . (25)

e(i)
Note that the quantity Efe?(:)/(1 + afai)] is equal to the
noise variance o,(4) as &; — a and b; — b for a system
that is Dot undermodeled. Thus, (25) is analogous to (1)
where 0% (1) = (4 )/(1 + a] a,) is the estimate of 02( ).

2.2. Algorithm #2

We can derive a second gradient descent algorithm by dif-
ferentiating J(%) with respect to o, and B,, where ao(i) is
expressed in terms of ; and 8. Then, using (7)-(8), we
express the resulting updates in terms of a; and b;.

aip1 =  a; + pe(i) <di—1 +

Differentiating both sides of (14) with respect to o; gives
03 (4) 8010( ) pt
aﬁ,‘ +2 (9Qt~ Pyl + 20’0( )va + 2R vol; — =0 (26)



or, equivalently,

3010(i) __ aO(i)puv + R'vvﬂi (27)
ag.i (10(1:) -+ pz’{vgi
By substituting o; = —ao(?)a; into (27), we arrive at
Oavg (z) Rvuai — Puv
da; 1-pla; (28)

Taking the derivative of J(i) with respect to j, gives
2J(3)

53] = FEloo(i)e(z)x:]. (29)
Differentiating J(i) with respect to g, gives
2I6) _ (o 0)
i E [ao(z)e(z) (d,_l +d(5) ——= 9a, )] (30)

Now, we can substitute (28) for dao(¢)/8a; on the RHS of

(30), giving
)] (31)

8J(5)
Ba;

Equations (29) and (31) are the gradients of the cost func-
tion with respect to o; and Ei. Since the gradients are al-
ready in terms of a; and b;, we can immediately specify the
coefficient updates using (7)—(8) as

=F [ao(i)e(i) ( i1 +d(i )_%

i d(#)(Rovai — Doo
ait1 = a;+ pe(i) (di—l + (z)(l — o7 alp )) (32)
bi+1 = b;+ /LC(i)Xi. (33)

Similar to Algorithm #1, (32)-(33) is a modified equation
error scheme with a correction term in the update for a;. If
v(¢) is uncorrelated, this update is

ai41 a; + [l.e(i)(di_1 =+ d(z)a,) (34)
For a; = a and b; = b, the quantity Eld(3)e(s)] is equal

to the noise variance o2(i); thus, a',,( ) = d(i)e() is an
estimate of the noise variance. The algorithm in (33)~(34) is
different from that in {10] as our algorithm uses the standard
equation-error update for b;.

3. IMPLEMENTATION ISSUES

The two algorithms we have derived require knowledge of
the correlation statistics of the output noise v(z) corrupting
the desired response signal d(¢). If this noise is uncorre-
lated, Ry = I and py, = 0, and thus (25) or (34) can be
used to update a; in this case. Algorithm #2 requires only
3N +2M +1 multiplies per iteration to implement in this sit-
uation. For Algorithm #1, the quantity ala; = ||a||2 can
be computed from its previous value and other quantities
that can be recursively updated, such that its complexity is
also O(3N +2M).

In cases where v(i) is correlated, we can employ esti-
mators for Ry, and p,, within the algorithms. From the
nature of the bias removal term in Algorithm #2, we have
several possibilities. It can be shown that

RYY = E[diiel1]/02(3) (35)
R = Ele..1dfi]/o?(i) (36)
Row = E[diiel; +ei-d?,]/(202()  (37)
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Equation Mults.

Initialization: a9 = g)o =0,

by =0, Rq =41, g2(0) = 4.
e%zi = d(z< -ald,_; - bTx;
€(i) = pe(d)
g(i) = e(4)d(s)
gi = 5(’) i1 _
Pi = APi.1 + 8: + d(i)€,_4
a3(5) = o3 (i — 1) + 29(d)
ry=Ik; ;a;

= 4 e(8)e(d)
7@ { g(z)/(aé
a; 41 =8+ +

- £
22»—‘1—-""
~

Z%H

Alg. #1
Alg. #2

—
—

o BZ 4+

(e2(5) + (i — 2D; T a)
b1 i+ ()X .
Pi

(z)—p,a)
-0 g ]

J@)@: = Pl
0
Total Computation: N2 4 6N + 2M + 4 (one<)

Table 1: Two unbiased adaptive IIR filtering algorithms for
correlated observation noise.

are all unbiased estimators for the normalized covariance
matrix R,, at parameter convergence. The unbiased es-
timators for p,» at convergence are similar. By replacing
expectations in (35)—(37) with filtered sample averages, sev-
eral different algorithms are possible. The complexities of
the algorithms are N? + O(N) + O(M ) with one divide.
To maintain symmetry of the estimates, we employ
exponentially-windowed time averages of the quantltles
d(2)e(s), (d(3)ei-1 + e(3)di-1) and (di~1el; + ei—1d? ).
To furthe/r\ reduce the complexity, we calculate scaled ver-

sions of 62(i), Puv,i, and ﬁw,i. The resulting algorithms
are given in Table 1. The complexities of the algorithms
are quite manageable for typical choices of M and N.

4. STOCHASTIC ANALYSIS

In this section, we provide stochastic analyses of algorithms
#1 and #2 assuming a system identification model of the
form in (4)-(5). For both algorithms, we derive recursive
equations characterizing the mean behaviors of the coeffi-
cients. From these equations, we derive necessary condi-
tions on the step size for the stability of the algorithms.
Moreover, we show that one of the stability points of the
recursions yields the optimum parameter values for both al-
gorithms. Note that it has been proven that the constrained
cost function in (11) is convex with a single minimum [7].
Finally, we provide a mean-square analysis of Algorithm #2
as given in (33)—(34) for white observation noises assuming
Gaussian input and desired response signals.

For these analyses, we define the vectors w, w;, W;, u;,
(9

u;, and u;”’, as
W=|:§}, Wi=[gi}, Wi=W; — W, (38)
ue=[y;1 ], W=w+z, ) =1u-2,(39)

respectively, where ZEj ) for j = {1, 2} and z; are given by

) DPyv — vaai 6(2)
2V = | T-2plea + a?Rwai (40)
Pvv — R..a;
252) = |: 1-— Pwa; ( ) ] (41)
. [ ] @



and v;

4.1.

Using the notation defined in (38)-(42), we can compactly
express the updates in both (23)-(24) and (32)-(33) as

(43)

[v(i) -+ v(i — N +1)]7, respectively.

Mean Behaviors

w; + ue(z’)usj)

Wit

where e(i) can be expressed as

e(d) = d(E@) -withi = va(i) —ufW; (44)
and v.(7) is defined as
va(i) = v(i) — a] vi_1. (45)
We subtract w from both sides of (43), giving
Wig1 = Wi—p (uiu;‘T + Z"UIT - ZEj)uiT) Wi
+ poa(?) (u,- +z; — zgj)> . (46)

For both algorithms, we find an approximate evolution
equation for the means of the filter coefficients by tak-
ing expectations of both sides of (46) assuming that i) the
commonly-used independence assumptions hold [11] and ii)
the fluctuations in the coeflicient errors are small such that
the elements of w; can be replaced by their expected values
within the nonlinear terms of (46). This operation gives

EWin] = (1= p(Ruu — E[z0]]) B[]
+ s (Bloa(a] = Bloa(i)2) . (47)

By straightforward evaluation of the expectations on the
RHS of (47), we find that

ElzEw] = [ P _%va[ai] ] (48)
Bloaizd = o3 [ P~ Rt ] o)
Bloaia] = o) [ P e ] (s0)

where cgj) for j = {1, 2} is

C(-l) _ E[VA‘;?]Rqu[VAGl] (51)
t 1-— 2p,,TUE[a¢] -+ E[aiT]R,,uE[ag]
T il
652) W' Ry E[W] (52)

1-pl,Ela:]’
Substituting the relations in (48)—(50) into (47), we find
E[Wina] = (I-p(Ruu — E[z70])E[Wi]. (53)

This nonlinear equation is difficult to analyze without
knowledge of the input, desired response, and output noise
statistics. However, note that E[w;] = 0 is a stationary
point of (53), indicating that one of the solutions obtain-
able by the algorithm is the correct one. In addition, by
premultiplying (53) by E[w;], it can be shown for Algo-
rithm #1 that 051) = 0 at the only stationary point of the
analysis equation, yielding E[w;] = 0 at convergence. For
Algorithm #2, it can be shown that for uncorrelated noises
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v(3), the correct minima is the only achievable one within
the set of stable IIR models for N < 2. Although such
statements are not proofs of convergence, extensive simu-
lations of the two algorithms have shown that they have
well-behaved adaptation characteristics.

We can use (53) to develop necessary conditions on the
step size p for stability of the algorithms. Noting that
E{w;] ~ 0 about the optimum solution, the conditions

0 < n < 2/Amaa: (54)
are necessary for convergence of (53), where Amaz is the
maximum eigenvalue of R... Typically, u is chosen in the

range 0 < p < 2/(NE[d*(i)] + M E[5%(x))).
4.2. Mean Square Behavior

We now analyze the mean-square behavior of algorithm #2
in (33)—(34) for jointly-Gaussian input and desired response
signals and uncorrelated output noises. Since this algorithm
is a modified two-channel version of the anti-Hebbian adap-
tive FIR filter analyzed in [12], the analytical results from
this work can be applied. The equations describing the ap-
proximate mean-square evolution of the coefficients are

mip1 = (I—pR)m; + p(I- LK,)D (55)
Kiy1 = Fi+Gi +H; + Hf (56)
F;, = K; ~ u(ﬁi +K,'E) + /J?(ZRWK,‘RW
+ Ragztr[RazKi] + 303 LK: 1,
- CK:I, - LLK;C) (57)
Gi = 4*(C-CEK; —mim!)I, - I,(K; —m;m})C
+2LK:CK: I, + LKL t:[K;C]
—2L,m;m{ (m7 Cm;)L,) (58)
Hi = p(I+3p0iL)(md” +P mi(2mim] - Ki)L

— (Kipm] + mip” Ki)La) + #° ((2RzwK;
+ tr[RguK:])Pm{ L + (Rzzmib” + pm{ Rz
+ 9 m;Raz) 2K L, — 2m;m/ I, — I) (59)

where m; = Elw;], K; = Elw.w{], Rez = E[ai7),
p = E[d(z)ﬁ%L E = Rz — 0'310., C = ZﬁT'+ O'ZRW,
and [I);j =1for1 <i=j < N and is zero otherwise.

The analysis in (55)~(59) can be iterated via computer
given the initial coeflicient values and the signal statistics,
and the effects of step size on the algorithm’s behavior can
be easily studied.

5. SIMULATIONS

We now verify and explore the performance of the new
algorithms via simulations. Averaged results have been ob-
tained from 100 independent simulation runs in each case.

Figure 1 shows the convergence of the average total
squared parameter error, given by ||W;||3, for several al-
gorithms operating on signals generated from the system

0
1.1314 ]
= , b=| 005 [, (60)
[ ~0.25 [ Toq ]

where both the input and observation noise signals are un-
correlated zero-mean Gaussian with variances o2(i) = 1
and 02(i) = 0.01, respectively. Here, we have chosen step
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Fig. 1: Convergence of average squared parameter errors
for the competing algorithms, uncorrelated output noise.
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Fig. 2: Convergence of average squared parameter errors
for the competing algorithms, correlated output noise.

size parameters of 0.03, 0.031, 0.033, 0.034, 0.031, 0.033,
and 0.03, for the equation error, Feintuch’ [1], Treichler’s
(5], BRLE [4], Ho and Chan’s [8], and Algorithms #1 and
#2, respectively, to obtain approximately the same average
parameter error powers in steady-state, if possible. In this
case, we have set 7(1) = 1 — A", A = 0.99 for the BRLE
algorithm. As can be seen, the two new algorithms outper-
form all but the algorithm in [8]. Note that the behavior
of Algorithm #2 closely follows that of the algorithm in [8]
without need for either costly divides or an additional adap-
tive parameter. Because of their computational simplicity,
the new algorithms are to be preferred in this situation.
Figure 2 shows the average total squared parameter er-
ror for the various algorithms for a system identification
task identical to that above, except that v(z) is correlated
Gaussian with E[v(i)v(s ~ m)] = 0.01(=0.9)™. In this
case, Algorithms #1 and #2 are implemented as in Table 1
with A = 0.99, and g = 0.03 for all algorithms. While all
algorithms except the equation error scheme produce unbi-
ased estimates, the new algorithms offer robust adaptation
without careful choice of the convergence parameters.
Figure 3 shows the mean behavior of the filter coefficients
for a two-parameter system identification task in which
a1 = 0.9, bp = 4/0.19, p = 0.003, and the input and ob-
servation noise signals are uncorrelated zero-mean Gaus-
sian with variances o2 (1) = 1 and 02(3) = 0.1, respectively.

1097

—-
4

k4
©
T

a_1(i)

e
@
"

e
5
T
"

bod

o
T
:

Ave. Parameter Values
o
o
T
L

04r b_0() ]

0.3} ]

0.2 —— Theory -‘
— = Simulation

041 4

o L N r . 1 . L :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
number of iterations

Fig. 3: Convergence of parameters as predicted from (55)-
(59) and from simulation.

Also shown for comparison is the predicted performance
of the system using (55)-(59). The steady-state values of
the coefficients are close to their optimum values, and the
mean-square analysis accurately predicts the behavior of
the system in this situation.

6. CONCLUSIONS

In this paper, we have derived two new algorithms for un-
biased adaptive IIR filtering in the presence of potentially-
correlated output noise. Analyses and simulations indicate
that the algorithms are well-behaved and provide unbiased
estimates at convergence. An important issue for these al-
gorithms is the existence and nature of any strictly positive
real (SPR) conditions that the unknown system must satisfy
for algorithm convergence. These issues and the robustness
of the algorithms are explored in a companion paper [13].
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