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Abstract

This paper provides a time-domain feedback analysis of the robustness performance of Gauss—Newton recursive methods
that are often used in identification and control. These are recursive estimators that also involve updates of sample covariance
matrices. Several free parameters are included in the filter descriptions while combining the covariance updates with the
weight-vector updates. One of the contributions of this work is to show that by properly selecting the free parameters, the
resulting filters can be made to impose certain bounds on the error quantities, thus resulting in desirable robustness properties
(along the lines of H filter designs). It is also shown that an intrinsic feedback structure, mapping the noise sequence and
the initial weight error to the a priori estimation errors and the final weight error, can be associated with such schemes. The
feedback configuration is motivated via energy arguments and is shown to consist of two major blocks: a time-variant lossless
(i.e., energy preserving) feedforward path and a time-variant feedback path. Emphasis is further given to filtered-error variants
that give rise to dynamic time-variant feedback loops rather than memoryless loops. Such variants arise in [IR modeling.

Zusammenfassung

Dieser Artikel prisentiert eine Robustheitsanalyse im Zeitbereich von rekursiven Gauss—Newton Verfahren wie sie oft
bei der Systemidentifikation und im regelungstechnischen Bereich auftreten. Es handelt sich hierbei um rekursive Schétzer,
die implizit die Zeitkovarianzmatrix des Anregungssignals invertieren. Die Filterbeschreibung beinhaltet verschiedene freie
Parameter sowohl fiir die Bestimmung der Parameterschitzwerte als auch der Zeitkovarianzmatrizen. Ein Beitrag dieser
Arbeit besteht darin zu zeigen, dafl bei sorgfiltig gewdhiten freien Parametern die FehlergroBen des resultierenden Filters
beschrankt bleiben, wodurch die gewiinschte Eigenschaft der Robustheit (gemaB der H.. Terminologie) erzielt wird. AuBerdem
wird gezeigt, daB8 fiir diese Schétzverfahren stets eine riickgekoppelte Struktur existiert, welche die Storsequenz und den
Initialschdtzfehler auf dic a priori Fehler abbildet. Die Riickkopplungsstruktur wird durch EnergiegroBen motiviert und
besteht aus zwei Blocken: einem zeitvarianten, verlustfreien (also energieerhaltenden) Vorwartspfad und einem zeitvarianten
Riickwirtspfad. Ferner werden Algorithmusvarianten mit gefiltertem Fehler beschrieben, die statt zu einer gedichtnisfreien
zu einer dynamischen Riickkopplung fiihren. Solche Varianten treten bei der Modellierung von IIR Filtern auf.
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Résumé

Cet article fournit une analyse par rétroaction temporelle des performances en termes de robustesse des méthodes récursives
de type Gauss—Newton qui sont souvent utilisées en identification et contrdle. Ce sont des estimateurs récursifs qui impliquent
également des mises a jour des matrices de covariance obtenues a partir des échantillons. Plusieurs paramétres libres sont
inclus dans les descriptions des filtres lorsque les mises a jour de la covariance sont combinées avec les mises a jour du
vecteur de coefficients. Une des contributions de ce travail est de montrer que par une sélection appropriée des paramétres
libres, les filtres résultants peuvent étre capables d’imposer certaines limites sur les erreurs, ce qui donne comme résultat
des propriétés souhaitables de robustesse (selon la terminologie des filtres Heo ). 11 est également montré qu’une structure de
rétroaction intrinseéque, faisant correspondre a la séquence de bruit et 4 'erreur initial sur les coefficients de pondération les
erreurs d’estimation a priori et ’erreur finale sur les coefficients de pondération, peut étre associées a de tels algorithmes. La
configuration de rétroaction est justifiée par des arguments sur I’énergie et est montrée consister en deux blocs principaux:
un chemin direct variant dans le temps et sans perte (conservant ’énergie) et un chemin de rétroaction variant dans le temps.
L’accent est également mis sur les variantes a erreur filtrée qui donnent lieu & des boucles de rétroaction variant dans le
temps dynamiques plutot qu’a des boucles sans mémoire. De telles variantes apparaissent en modélisation [IR.

Keywords: Adaptive Gauss—Newton filters; Filtered-error algorithms; Feedback connection; />-stability; The small gain
theorem; Contraction mapping; Passivity relations; Error bounds

1. Introduction

This paper provides a time-domain feedback anal-
ysis of the class of Gauss—Newton recursive schemes,
which have been employed in several areas of iden-
tification, control, signal processing, and communica-
tions (e.g., [6, 13, 16, 17, 19, 31]). These are recursive
methods that are based on gradient-descent ideas and
employ sample covariance matrices to control the up-
date directions. Their descriptions involve two update
relations: one for the update of the weight estimate
and the other for the update of the inverse of the sam-
ple covariance matrix. An important special case is the
exponentially weighted recursive-least-squares (RLS)
algorithm (e.g., [9, 24]), which employs a decaying
exponential weighting in the covariance update. But
other possibilities exist and in this paper several free
parameters are included in the filter descriptions while
combining the covariance updates with the weight-
vector updates. These parameters allow for a reason-
able degree of freedom in setting up filter configu-
rations, and one of the contributions of this work is
to show that by properly selecting the free parame-
ters, the resulting filters can be made to impose certain
bounds on the error quantities. These bounds are fur-
ther shown to result in desirable robustness properties
along the lines of H,, filtering [7, 8, 23, 29].

Intuitively, a robust filter is one for which the es-
timation errors are consistent with the disturbances

in the sense that ‘small’ disturbances would lead to
‘small’ estimation errors, no matter what the distur-
bances are. This is not generally true for any adaptive
filter: the estimation errors can still be ‘large’ even in
the presence of small disturbances (e.g., RLS algo-
rithms).

The robustness issue is addressed here in a purely
deterministic framework and without assuming prior
knowledge of noise statistics. This is especially useful
in situations where prior statistical information is miss-
ing since a robust design would guarantee a desired
level of robustness independent of the noise statistics.
In loose terms, by robustness we mean that the ratio
of the estimation error energy to the noise or distur-
bance energy will be guaranteed to be upper bounded
by a positive constant, say the constant one,

estimation error energy <

<L (1)

disturbance energy

The disturbance energy may include the energies of
the measurement noise, modeling uncertainties, errors
in initial weight guess, etc. From a practical point of
view, a relation of the form (1) is desirable since it
guarantees that the resulting estimation error energy
will be upper bounded by the disturbance energy, no
matter what the nature and the statistics of the dis-
turbances are. In this case, the algorithm will not un-
necessarily magnify the disturbance energy and,
consequently, small estimation errors will result when
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small disturbances occur. One of the contributions
of this work is to show how to select the parameters
that define a Gauss—Newton update in order to guar-
antee such robust behavior. This can be contrasted
with results in stochastic settings where stability and
convergence statements are often given in the mean
and mean-square sense. In such settings, even for the
simple LMS algorithm, a constant step-size u that is
bounded by twice the inverse of the maximal eigen-
value of the autocorrelation matrix can still lead to
blow up in a practical experiment (see, e.g., [21]).

To address the above issues, the paper suggests a
time-domain approach that proves to be useful in both
the analysis and design of robust estimators. It high-
lights and exploits an intrinsic feedback structure that
can be associated with Gauss—Newton schemes, map-
ping the noise sequence and the initial weight error
to the a priori estimation errors and the final weight
error. The feedback configuration is motivated via en-
ergy arguments and is shown to consist of two ma-
jor blocks: a time-variant lossless (i.e., energy pre-
serving) feedforward path and a time-variant feedback
path.

Although the feedback nature of these, and related
recursive schemes, has been pointed out and advan-
tageously exploited in earlier places in the literature
(see, e.g., the discussions in [13, 17]), the feedback
configuration in this paper is of a different nature. It
does not only refer to the fact that the update equa-
tions can be put into a feedback form (as explained in
[4, 14, 18]), but is instead motivated via energy argu-
ments that also explicitly take into consideration both
the effect of the measurement noise and the effect of the
uncertainty in the initial guess for the weight vector.
These extensions are incorporated into the feedback
arguments of this paper because the derivation here is
interested in a formal study of the robustness proper-
ties of Gauss—Newton schemes in the presence of un-
certain disturbances. This is especially useful when the
statistical properties of the disturbances are unknown.

In this regard, the feedback connection provided
herein is shown to exhibit three main features that dis-
tinguish it from earlier studies in the literature: the
feedforward path in the connection consists of a loss-
less (1.e., energy preserving) mapping while the feed-
back path consists either of a memoryless interconnec-
tion or, in the case of filtered-error variants, of a dy-
namic system that is dependent on the error filter. Also,

the blocks in both the feedforward and the feedback
paths are allowed to be, and in fact are, time-variant.

It is then shown that the feedback configuration
lends itself rather immediately to stability analysis via
a so-called small gain theorem, which is a standard
tool in system theory (e.g., [11, 32]); it provides con-
tractivity conditions that are shown to guarantee the
{,-stability of the algorithms, with further implications
on the convergence behavior of the estimator. This is
demonstrated by studying the energy flow through the
feedback configuration and by exploiting the lossless
nature of the feedforward path.

Empbhasis is also given to filtered-error variants that
are useful in IIR modeling and in noise control appli-
cations (e.g., [2, 5, 12, 15]). Such variants give rise to
dynamic time-variant feedback loops and a procedure
for computing optimal step-sizes in order to guaran-
tee robustness and improved speeds of convergence is
suggested. Simulation results are included to support
the theoretical conclusions.

1.1. Notation

We use lower case boldface letters to denote vec-
tors and capital boldface letters to denote matrices.
Also, the symbol ‘x’ denotes Hermitian conjugation
(complex conjugation for scalars). The symbol I de-
notes the identity matrix of appropriate dimensions,
and the boldface letter 0 denotes either a zero vec-
tor or a zero matrix. The notation ||x||* denotes the
squared Euclidean norm of a vector, and 4"/ denotes
a square-root factor of A, viz., any matrix satisfy-
ing A'24*2 = A. For convenience, we shall also
write (A]/'Z)* — A*,/Z’ (Al,/2)—1 — A—1/2, (A—1/2)* -
A~*2. Thus note the expressions 4 = A'2A4*? and
A~ = A=*2 4712 Also, all vectors are column vec-
tors except for the so-called input data vector denoted
by #;, which is taken to be a row vector.

2. Gauss—Newton recursive methods

There is an abundant literature on the analysis and
design of Gauss—Newton methods, especially in the
area of parametric system identification (see, e.g.,
[10,16,17,31]). Here we only wish to briefly re-
view this class of algorithms before proceeding into
a closer analysis of their behavior.
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We consider a collection of noisy measurements
{d(i)}Y, that arise from a linear model of the form
(we use subscripts for indexing of vector quantities
and parenthesis for indexing of scalar quantities)

d(i) = uw + v(i), (2)

where v(i) denotes measurement noise or disturbance
(or modeling errors/uncertainties) and #; denotes a
row input vector. The column vector w consists of un-
known parameters that we wish to estimate. In this
paper we focus on the following so-called Gauss—
Newton recursive estimator.

Algorithm 2.1 (Gauss—Newton procedure). Given
measurements {d(i)}Y. o> an initial guess w_y, and
a positive-definite matrix Ily, recursive estimates of
the weight vector w are obtained as follows:

wi = w1 + u(i) P/ (d(i) — uiw;i—y), (3)

where P; satisfies the (Riccati) update

1 P,_ufuP;_
P=— Pi—l—rlulul“—l— » Py =1y,
70 D P
4)

B()
and {A(i), (i), (i)} are given positive scalar time-
variant coefficients, with A(i) < 1.

The effect of the coefficients {A(7), u(?), f(i)} on the
performance of the algorithm (3)—(4) will be studied
in later sections. In particular, conditions will be de-
rived for choosing these parameters in order to guar-
antee that small disturbance energies will necessarily
result in small estimation error energies (and, hence,
in robust filters).

Note that by applying the matrix inversion formula
(e.g., [9]) to (4) we obtain that the inverse of P; sat-
isfies the simple time-update

P =2() P+ BG) u ;. (5)

This establishes that P; is guaranteed to be positive-
definite for A(i), f(i) > 0 since I1y > 0.

2.1. The RLS algorithm

An important special case of (3) is the so-called
recursive-least-squares (RLS) algorithm (see, e.g.,

[9,24]), which corresponds to the choices (i) =
u(i) = 1 and A(i) = A = cte. In this case, the Riccati
recursion (4) reduces to

Pi—llli*uiPi—l)
b

P=i""'{P_, -
! ( ! A+ wPi_ul

which also implies that

*
Pu: = Pi—lui
M = ) .-
A+ u,-P,-_lui

Using this last equality in (3) leads to the update equa-
tion

P;_u} ,
m(d(l) wwi_1),

i

Wi =W+
which is the standard form of the RLS algorithm.

2.2. Error signals

The difference [d(i) — u;w;—1] in (3) will be de-
noted by é,(i) and will be referred to as the output
estimation error. The following error measures will
be useful for our later analysis: W; denotes the differ-
ence between the true weight w and its estimate w;,
W; = w — w;, e,(i) denotes the a priori estimation er-
ror, e,(i) = u;W;_1, and e,(i) denotes the a posteriori
estimation error, ey(i) = u;W;.

It follows from the update equation (3) that the
weight-error vector W;_; satisfies the recursive equa-
tion:

W = Wi — u(i)Piu &,(i) . ©

It is also straightforward to verify that the a priori
estimation error, e,(i), and the output estimation error,
(1), differ by the disturbance v(i), i.e., €.(i) = e,(i)+
v(i). Hence, the update relation (3) is also equivalent
to e

w; = wi_y + u(i) P [ea(i) + v(D)]. N

If we further muitiply (6) by #; from the left we
obtain the following relation (used later in (21)) be-
tween ep(7), ea(i) and v(7),

ep(i) = [1 — (i) Put] ea(i) — u(i)u; P v(i). (8)
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3. A time-domain analysis

We now pursue a closer analysis of the Gauss—
Newton recursion (3) in order to highlight an impor-
tant feedback structure that is implied by the algo-
rithm. This structure plays an important role in our
discussions and serves as a basis for the robustness
analysis provided herein.

Our purpose in this and the following two sections
is threefold:

1. to show that certain local and global energy (pas-
sivity) relations can be associated with the Gauss—
Newton recursion (3);

2. to employ these relations in order to highlight a
feedback structure;

3. to derive conditions on the parameters {A(/),
p(i), B(i)} in order to guarantee that the feedback
structure will behave as a robust filter.

3.1. Local passivity relations

To begin with, the following result is immediate
from the time-domain update recursion (6) — see Ap-
pendix A for a proof.

Lemma 1 (Energy Relation). The following equality
holds for all i:

7P+ (i) — B ea(i)
+u(i) [ 1 - /l(l')llz'Pi”;] 'éa(i)lz

= W P+ (i) () )

Expression (9) relates five ‘energy’ terms:

1. The weighted energy of the current weight error w;,
namely w; P,-Iﬁrj, where the weighting is with re-
spect to the inverse of P;.

2. The weighted energy of the previous weight error

Wi—1, namely A(D)W;_, P‘.__]1 W;_ 1, where the weight-

ing is with respect to the inverse of 2~ !(i)P;.

The weighted disturbance energy, (i) |[v(i)[*.

4. The weighted a priori error energy [u(i) —
B(i)] lea(i)]* (assuming p(i) > B(i); more on this
condition later).

5. The weighted output-error energy, u(i)}[1 — u(i)
w;Putl|é,(i))%.

(95

Eq. (9) therefore allows us to study how the ener-
gies of the error terms propagate as the algorithm pro-
gresses. In particular, it follows from (9) that the fol-
lowing energy sum (which appears on the left-hand
side),

WP W+ [u(i) — B eI

can be larger, smaller, or equal to the energy sum on
the right-hand side,

ok pel s i (2
W P Wiy + (i) o))",

depending on whether the term u(i) [ 1 — p(i)u; Pyu;
|é.(i)]* is negative, positive or zero, respectively.
This is summarized in the following statement where
we have introduced the notation ji(i) = (u;Pue)™!
(the inverse of the weighted energy of the input
data).

Lemma 2 (A local passivity relation). Consider the
Gauss—Newton recursion (3). It always holds that

WP+ (u(i) — B0)) |ea(i))
MiyE PRy 4 (i) )]

<1 for 0< u(i) < i),
=1 for p@@) = (i), (10)
=1 for pu@@i) > p(@).

(Such relations also arise in the case of instantaneous-
gradient-based algorithms (i.e., algorithms that avoid
the propagation of Riccati variables P;, as detailed in
[25,28].)

Interpretation. The first two bounds in the above
lemma admit an interesting interpretation that high-
lights a robustness property of the Gauss—Newton re-
cursion (3). To clarify this, assume that §(;) < p(7) in
order to guarantee that the factor (u(i) — B(i)) |ea(i )
can be interpreted as an energy term.

In this case, we can interpret the first two bounds in
the lemma to state the following: if the adaptation gain
u(i) is chosen according to u(i) < u(i), then no mat-
ter what the value of the denominator in (10) is, the
numerator will always be smaller than the denomina-
tor. Intuitively, the denominator consists of the sums
of the “disturbance’ energies, namely noise and previ-
ous weight error, while the numerator consists of the
sums of the energies of the current weight error and
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> P2

(i) — BG) ea(d)

Contraction

-

V() v(i) — ]

Fig. 1. A local contraction mapping.

the a priori error,

W P + (i) — () lea(DI
< MO P Wiy + (i) o))
if (i) < ). (1)

This is a desirable robustness property in the sense
that it guarantees that if the ‘disturbance’ energy is
small then the resulting estimation error energies will
accordingly be small (more on this in the next section).
It establishes, as shown in Fig. 1, a contractive map
from

(VIOP i1,/ uGyo(i)} (12)

to

(P 25, \/u() = BDealD}- (13)

(In simple terms, a map that takes x to y, say y =
T{x], is said to be contractive if for all x we have
IT(x])?* < ||x||*. That is, the output energy does not
exceed the input energy). The symbol g~! in Fig. 1
denotes a unique delay.

3.2. A global contraction mapping

Since the contractivity relation (11) holds for each
time instant 7, it should also hold globally over an
interval of time. Indeed, assuming p(i) < (i) over
0 <i <N, it follows from (11) that

N
WPy oy + D (u(i) — BENATTM e, ()
i=0

N
< AN PTy + y pu(DAT P
i=0
(14)

where we have employed the notation A/ =
IF_ k), with ANV+1N = 1,

This relation has essentially the same structure as
the one in (11), except for the additional scaling of the
terms |e.(i)|? and |0(i)? by AUTIN) = 4G + DAG +
2)--- A(N). It can as well be interpreted as establishing
a contractive mapping from the signals

{\/)JO»N]HO_ V25 /OO, ...,
Vi) § (15)

to the signals
{ V(@) = B0V ey 0),....
VW) = BN Py P | (16)

In other words, assume we stack the entries of (15)
into a column vector and the entries of (16) into a
second column vector, and let 7y denote the mapping
that maps the first vector (15) to the second one (16).
The entries of this mapping can be determined from
the update relation (6) and from the definitions of the
a priori estimation errors e,(-). The specific values of
these entries are not of immediate interest here except
to say that it can be verified that Zy turns out to be a
block lower triangular operator of the form

V((0) — B(0)Vil1Ne,(0)
V(1) — BA))VilNle, (1)

Py
x VNI Py
_|FF VaO)V AT o(0) an
xxxx vV UN)(N)
In

(For example, the first block entry of 7y, which
relates e,(0) to w_;, can be easily seen to be

\/ ;1(0/)1(—0)(0)”0”(1)/2_) The contractivity of 7y means

that its maximum singular value is always guaranteed
to be upper bounded by one,

a(Ty) < 1. (18)

The quantities in (15) involve the disturbances, i.e.,
noise and initial uncertainty in the guess for w. The
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quantities in (16), on the other hand, involve the re-
sulting estimation errors e,(-) and wy. In loose terms,
the statement (18) establishes the following interesting
fact: the Gauss—Newton algorithm (3), under the as-
sumption f(i) < p(i) < a(i), always guarantees that
the weighted error energy due to the initial distur-
bances will not be magnified.

As a special case, assume A(i) = p(i) = (i) = 1
{which corresponds to an RLS problem in the absence
of exponential weighting). Then the above conclusion
implies that the mapping from {v(-), 11, 1/ 2}5_1} to
{Py Y255} is always a contraction. That is,

N
B <L 4 3 O,
i=0

which is a well-known result in least-squares theory
[17].

4. The feedback structure

We now employ the above local and global passiv-
ity relations in order to highlight a feedback structure
that can be associated with Gauss—Newton recursions.
This structure will be helpful in determining more re-
laxed conditions on the parameters {u(i), A(i), 8(i)}
for robustness and also for suggesting choices for the
adaptation gains that would result in faster speeds of
convergence.

We have argued above that if the adaptation gains
are chosen such that (i) < u(i) < ji(i) then robust-
ness (or contractivity) is guaranteed in the sense that
the ‘resulting weighted energies’ will never exceed the
‘weighted disturbance energies’ (cf. (11) and (18)).
The term ‘robustness’ is used in this paper to indi-
cate that a ratio of suitably defined weighted energies
is bounded by some positive number. The analysis
in the earlier sections guarantees that for the choice
B(i) < pu(i) < (i), the ratio of the energies of the sig-
nals in (15) and (16) will be bounded by one. How-
ever, the condition on u(i) can be further relaxed at
the expense of guaranteeing energy ratios that will
be bounded by some other positive number (possibly
larger than one), say

weighted error energy <

- K, 19
disturbance energy (19)

for some constant K (to be determined). This is also a
desirable property since it means that the disturbance
energy will be at most magnified (or de-magnified) by
a factor of K. Hence, from a practical point of view,
it will mean that small disturbance energies cannot
result in relatively substantial error energies.

These issues will be clarified in this section, along
with procedures for choosing the adaptation gains u(i)
in order to result in faster speeds of convergence. The
latter point will be addressed by studying the energy
flow through the feedback structure.

But before proceeding to a discussion of the feed-
back structure, we first state the following two useful
facts (proofs of which can be found in Appendix B).
The first lemma provides a lower bound for ji(i).

Lemma 3 (A lower bound on i(i)). Consider the
Gauss—Newton algorithm (3) with the free positive
parameters {A(i), u(i), B(i)}. Define (i) as before,
viz., J(i) = (; P )~1. It always holds, for nonzero
vectors u;, that a(i) > B(i).

The second lemma rewrites the Gauss—Newton up-
date equation (3) in an alternative convenient form by
using (8), which is rewritten here as

: u(i)) N (O
ep(i) = |1 — —= } ea(i) — —=0v(i). (20)
0= (1- 5 ) 50~ 53
Lemma 4 (Alternative update form). The Gauss—
Newton algorithm (3) can be rewritten as follows:

wi = wi_1 + ()P [ea(i) — ep(i)]. (21)

The alternative form (21) shows that the original
weight-update equation (3) can be rewritten in terms
of a new step-size parameter (i) and a modified
‘noise’ term that we denote by 7(i), and which is equal
to —ep(i) (compare with (7)).

If we now follow arguments similar to those prior to
(10), we readily conclude that the following equality
holds for all u(i) and v(i) since the adaptation gain
in (21) is now equal to ji(i) itself, as required by the
second condition in (10),

WP+ (AG) ~ B leaD) _ |
AW P Wiy + (i) |ep(D)]

(22)
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The quantities {W;, W;_1,e.(i), P;, P;_1} in the
above ratio are exactly the same as those in the ratio
(10). However, the normalizing factor u(i) is now re-
placed by fi(i) and the noise term v(i) is now replaced
by the a posteriori estimation error e,(i). Moreover,
in view of the auxiliary result of Lemma 3, the differ-
ence [i(i) — B(i)] is now always nonnegative. Hence,
the term ({(i) — B(i)) |ea(i )|2 can be interpreted as
an energy term regardless of any condition on the
original {u(2), B(i)}.

Relation (22) therefore establishes that the local
map, denoted by 7, from

(VAP i1, (e} (23)

to

[P, \/RG) — BDea(i)}, (24)

is always lossless, i.e., it preserves energy (compare
with the signals in (12) and (13) where the mapping
was contractive and not lossless). The lossless map
can be explicitly seen to be given by (in terms of i(i)):

[ [AG) — B ea(i)} B

P,
( [ﬁ(i)l(—i)ﬁ(i)}m uil,il,_/z1 0
PV (I — i) Paw] P20V 52y P
~—

y l:j]/Z(i)Pi—_li/Zﬁ,i_l:l
AP0 ep(i)
This map involves the a posteriori estimation error
ep(i) or, equivalently, the modified noise disturbance
—i(i). But since ey(i) (or #(i)) can be expressed in
terms of the original disturbance (i) and the a priori
estimation error (cf. (20)),

A2(0)i(0) = ﬂﬁ‘,ﬁ"()l.)vm (1 - %) A2(0)ea(i),
(25)

then the lossless map from (23) to (24) can be ex-
pressed as a feedback map that involves the origi-
nal weighted disturbance //(-)o(-). This is shown

in Fig. 2. The feedback loop consists of a memory-
less (or static) system that performs the scaling by
(Y = p@)/ @(i))/ /1 — BG)/ aG).

Comparing Fig. 2 with the earlier Fig. 1 we see that
the main differences are (i) in representing the con-
tractive map of the earlier Fig. 1 as a feedback in-
terconnection of a lossless system with a memoryless
system and (ii) in scaling the input and output sig-
nals v(i) and e,(i) differently, where u(i) is now re-
placed by fi(i). Intuitively, the configuration of Fig. 2
shows how the different error and disturbance sig-
nals {W;, W;_,e,(i),v(i)} in a Gauss-Newton recur-
sion are connected. It highlights an implicit feedback
structure that consists of two simple blocks: a lossless
block that preserves energy and a static block with no
memory. The feedback structure also explicitly incor-
porates the noise v(i).

The point now is that such feedback configurations
lend themselves rather immediately to stability and ro-
bustness analysis via tools that are standard in system
theory, such as the small gain theorem [11, 32], as we
now verify.

5. bL-stability and the small gain theorem

The purpose of this section is to derive conditions on
the adaptation gain u(i) in order to guarantee that the
overall system of Fig. 2 is /;-stable. By this we mean
that it maps a finite energy sequence {\//(-) v(-)}
to a finite energy sequence {1/f(-) — B(-) es(-)} ina
sense precised in (27) below. In other words, while the
choice B(i) < u(i) < (i) guarantees the contractivity
property (18), with the signals defined in (17), the
more relaxed condition on p(i) that is derived further
ahead in (30),

(i) will guarantee the [;-stability of the mapping
in Fig. 2, which involves the alternative signals
{V/aC)e()} and {/A() — B(-Dea(-)} with (i)
replacing u(7) (see (28) and (29) below), and

(i1) will also allow us to conclude, under an additional
condition on f(7), that the original mapping in
(17) has a 2-induced norm that is bounded by
another positive number (generally different from
one).

In either case, the point is that we can relax the
condition on u(7) and still conclude that a relation of
the form (19) can be established.
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Fig. 2. A time-variant lossless mapping with gain feedback.

The main result is stated below (a proof of which
can be found in Appendix C — the proof is based on
the triangle inequality of norms).

Define
iy
AN) = max |——20
o<isN | /1 _ 8w
(i)
and p(N)= max Eg—z (26)

o<i<N (i)’

That is, A(N) is the maximum absolute value of the
gain of the feedback loop over the interval of time
0 <i < N. Likewise, y(N) is the maximum value of
the scaling factor u(i)/ (i) at the input of the feedback
interconnection.

Theorem 1 (/,-stability). Consider the Gauss—
Newton recursion (3). If ANN) < 1 then

N
D (@) = AN ey (i)

i=0

1
<-— [ON] 43 1~
1— A(N) [\/}” w—1P—1w—l

N
+v(N)\' D AN |v(i)|2] . @7)

i=0

Interpretation. The terms {(i(i) — B(i))AU+IM
lea(D))?, A(i)AU+1N|o(i)]?} that appear in expression

(27) are essentially the same as the ones that appear
in the earlier expression (14), except that u(i) is now
replaced by fi(i). Therefore, expression (27) is still a
relation that compares the energies of two weighted
sequences. Moreover, the energy of the sequence
{A()AUT N ()2} is further scaled by y(N). Rela-
tion (27) then shows that the sum of the energies due
to the weighted disturbances (noise and initial weight
error) can at most be magnified by 1/[1 — A(N)].
In particular, if the right-hand-side energy in (27) is
bounded (finite) and if the gain 1/[1 — A(N)] is finite,
then relation (27) also means that the map from

{VILFINIE(Y o), VAORNIPZ Pi_1} (28)
to
{VALLN(a() — B(i)) ea(-)} (29)

is [,-stable (it maps a finite energy sequence to another
finite energy sequence).

The difference [1 — A(N)] is positive and smaller
than one in view of the restriction on A(N), which is
necessarily less than one. Therefore, the gain 1/{1 —
A(N)] can become large only when A(N) approaches
1, but is otherwise reasonable for other values of A(N).
For example, A(N) = 0.9 leads to a magnification
factor of 10.

In fact, the condition A(N) < 1 can also be inter-
preted as a manifestation of the so-called small gain
theorem in system analysis [11, 32]. In simple terms,
the theorem states that the /;-stability of a feedback
configuration (that includes Fig. 2 as a special case)
requires that the product of the 2-induced norms of
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the feedforward and the feedback operators be strictly
bounded by one. Here, the feedforward map has the
2-induced norm equal to one (due to its losslessness)
while the 2-induced norm of the feedback map is
A(N), which therefore needs to be less than one.

It is also straightforward to verify that A(N) < 1
is equivalent to requiring that u(i) be chosen in the

interval
B
( ) ) (30)

If B(7) is further assumed to satisfy S(i) <
it also holds that the map from

{ VAT o0, VIORPZ 5, |
to
(VI = B ea())

(i.e., with a(-) replaced by u(-), as in the original
relations (14) and (17)) is /;-stable in the following
sense. Define

0 < u(i) < (@) (1 +

u(i) then

u(i) = BG)
0<i<w (D) — BG)

This measures how far are the differences [u(i) — f(i)]
and [(i) — B(i)] apart from each other (see Appendix
C for a proof of the following result).

HN) =

Theorem 2 (/,-stability). Consider again the Gauss—
Newton recursion (3). If

ﬁ(i)SAt(i)<ﬁ(i)<1+ F6)

holds, then

N
> (aG) = BEHAI e ()]

i=0

~1/2]\/ -
1—4(1(13){\/’1”] WP

N
() Zu(i)ﬂi"ﬂﬂ]lv(i)?]. (32)

i=0

Interpretation. We see that by allowing u(i) to as-
sume larger values than (), as suggested by (31),
the gain factor that was one in (14) and (18) is now
changed to 7'*(N)/[1 — A(N')]. How big or how large
this gain is depends on how close or how far is A(N)
from one and also on the value of (). Relation (32)
tells us how much the (weighted) estimation error en-
ergies in a Gauss—Newton recursion are magnified rel-
ative to the (weighted) disturbance energies.

Therefore, we conclude from the last two theorems
that a sufficient condition for the energy amplification
to remain bounded is to choose the adaptation gains as
indicated in the statements of the theorems (cf. (30)
or (31)).

Notation. Before proceeding further, it will be con-
venient here to introduce a matrix notation that will
be helpful in the sequel. Define the diagonal matrices

My = diag{a(0), z(1),..., A(N)},

By = diag{B(0), (1),..., B(N)}, 34)
= diag{ A0V AN},

and the vectors

e:,N = [6:(0),6:(1), ""e:(N)]’ (35)

vy = [0*(0),v*(1),...,t*(V)].

That is, My is the diagonal matrix with the adapta-
tion gains along its diagonal. Likewise, My has the
(inverse of the) input energies along its diagonal. The
e, v and vy are column vectors with the a priori esti-
mation errors and the noise sequence, respectively.
Correspondingly, the matrix [1 — ByM y ' ~/2[I —
MNV;I] is diagonal with the gains of the feedback

loop along its diagonal. Likewise, the matrix M, Nﬁ;‘
is diagonal with the input gains u(i)/f(i) along its
diagonal.

If we Eg(l)te the 2-induc&i_r}orms of thirzllatrices
(I - ByM, 1721 - MyM, ] and MyM,, by

——1._y —
H[I ~ ByMy,' 17V — My My ]’

2,ind

and ”MNM;]I

Lo
2,ind
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respectively, it is then easy to see, due to the diagonal
structure of My and My, that these norms are given
by A(N) and y(N ), respectively,

AN) = |17 - ByM VR - My M|

2,ind

and y(N) = HMNM;‘ H .
2,ind

The I,-stability condition then amounts to guarantee-

ing a contractive feedback map,

[l — ByMy' 1"V — MyMy 1.

The map is memoryless in this case: it consists of a
diagonal matrix that simply scales the input sequence
{V/AUFENI(A(-) — B(+)) ea(-)}. We shall see later, es-
pecially in the context of filtered-error variants, that a
more involved dynamic feedback map arises.

6. Energy propagation and convergence speed

The feedback structure and the associated lossless
block in the direct path provide a helpful physical pic-
ture for the energy flow through the system. To clar-
ify this, let us ignore the measurement noise v(i) and
assume that we have noiseless measurements d(i) =
u;w. The weight-error update equation (6) can then be
easily seen to collapse to

‘I’i = [I — ,u(l)P,u,*ll,] wi—h (36)

where the M x M coefficient matrix [ — u(i)P;u}u;]
is simply a rank one modification of the identity
matrix. It is known in the stochastic setting that for
Gaussian processes [1], as well as for spherically in-
variant random processes [20], the maximal speed of
convergence for gradient-type algorithms is obtained
for u(i) = ji(7), i.e., for the so-called projection LMS
algorithm (with P; replaced by the identity matrix)
[33]. We now argue that this conclusion is consistent
with the feedback configuration of Fig. 2 in the case
of Gauss-Newton methods.

Indeed, for u(i) = (i), the feedback loop is dis-
connected. This means that there is no energy flowing
back into the lower input of the lossless section from
its lower output e,(:). To understand the implications

of this fact, let us study the energy flow through the
system as time progresses. At time i = —1, the initial
energy fed into the system is due to the initial guess
w_, and is equal to W™ ;P W_;. We shall denote
this energy by E,,(—1). Now, at any subsequent time
instant i, the total energy entering the lossless system
should be equal to the total energy exiting the system,
viz., MD)E(i — 1) = E,(i) + E.(i), or, equivalently,

E(i) = ADEW( — 1) = Ee(i), (37)

where we are denoting by E.(i) the energy of
V(i) — B(i)e,(i) and by E,(i) the energy of

P
E(i) 2 (i) — BA) w1, Ewli) £ % P71,

Expression (37) implies that, for A(i) < 1, the weight-
error energy is a non-increasing function of time, i.e.,
E,(i) < E,(i—1) for all i. Strict inequality is guaran-
teed if E,(i) # 0. This is in general the case especially
when the input vectors #; satisfy some persistence of
excitation conditions. Note also that the so-called for-
getting factor A(i) plays an important role. The smaller
the A(Z), the smaller the E,(7).

But what if u(i) # i(i)? In this case the feedback
path is active and we now verify that the convergence
speed is affected since the rate of decrease in the en-
ergy of the weight-error vector is now lowered. In-
deed, for u(i) # ji(i) the feedback path is connected
and, therefore, we always have part of the output en-
ergy at e,(-) fed back into the input of the lossless
system. More precisely, if we let E5(i) denote the en-
ergy term ji(i)|#(i )|, then the following equality must
hold (due to energy conservation):

MDE (i — 1)+ Es(i) = E(i) + Ee(i)

at any time instant i. Also, the feedback loop implies
that

!
2 | E,(i) < E.(i),

/1 - £D
L=

Es(i) =
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since we are assuming a contractive feedback connec-
tion. Therefore,

u)

1 - =
E(i) = ADEi — 1) —| 1 - | —22) |E.(i)
u(i

rz)
= MDE (i — 1) — 1()E.(i),

where we have defined the coefficient (i) (compare
with (37)). It is easy to verify that as long as u(i) #
(i) we always have 0 < 7(i) < 1. That is, (i) is
strictly less than one and the rate of decrease in the
energy of w; is lowered, thus confirming our earlier
remark. Simulation examples are included in a later
section.

Finally, what if the measurement noise v(-) is
nonzero? In a deterministic setting, the samples
v(-) can assume any values. In particular, we can
envision a noise sequence that happens to assume
the special value v(i) = —e,(i). In this case, the
update relation (6) collapses to w; = w;_; and,
hence, w; = w_ for all time instants i. This means
that no improvements over the initial guess are ob-
tained and, consequently, convergence will never
be attained if w_; # w. In other words, no sensi-
ble statements can be made about the convergence
of the algorithm if no restrictions are imposed on
the noise sequence uv(-). However, it is known,
from theoretical as well as experimental results for
stochastic noise sequences, that the noise does not
affect the rate of convergence but rather the steady-
state value. This is consistent with the feedback
configuration of Fig. 2 where it is clear that the
fine structures of the feedforward and the feedback
paths are independent of the specific values of the
noise sequence; it only depends on {u(i), A(i), B(i)}
and u;.

7. Filtered-error algorithms with Gauss—Newton
update

The feedback loop concept of the former sections
applies equally well to Gauss—Newton algorithms that

Fléa(3)]

Fr —

u;

/

Fig. 3. Structure of filtered-error adaptive algorithms.

employ filtered versions of the output estimation error,
€.(7) = d(i)—u;w;_. Such algorithms are useful when
the error &,(i) cannot be observed directly, but rather
a filtered version of it, as indicated in Fig. 3. The
operator F denotes the filter that operates on é,(i). It
may be assumed to be a finite-impulse response filter
of order Mp, say

Mr—1

Fgx()] = Flx(D] = Y fxli = ).
j=0

It may also be a time-variant filter, in which case
the coeflicients f; will vary with time, say f;(i).
A typical application where the need for such algo-
rithms arises is in the active control of noise (see,
e.g., [5,12,15]). In the sequel we shall discuss two
important classes of algorithms that employ filtered
error measurements: the filtered error Gauss—Newton
algorithm for transversal filters and its counterpart for
adaptive IIR filters, also called the pseudo linear re-
gression (PLR) algorithm.

7.1. The filtered-error Gauss—Newton algorithm
The so-called filtered-error Gauss-Newton algo-

rithm (FEGN) retains the input vector unchanged,
viz., it uses an update equation of the form

wi =w;_1 + ()Pl F[d(i) — uw;_]
= w1 + p()Pu; Flé,(i)], (38)

where the difference [d(i) — w;w;_1] is further fil-
tered by F. We can repeat here the same feedback
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analysis as in the previous sections. This will estab-
lish a similar feedback structure to the one in Fig. 2,
except that the feedback loop will now be dynamic;
the impulse response of the filter F will also enter into
the composition of the feedback loop.

Since the discussion in this section follows rather
closely the development in the earlier sections, we
shall be brief and will only emphasize the differences
that arise in the current context.

7.1.1. The feedback sructure for the filtered-error
Gauss—Newton algorithms

Following the discussion of Appendix B that led to
(21), we get the following sequence of equalities:

Wy = Wiy + ()P Flea(i)] + p(i) P} F[o(0)]
= Wit + u() P Flea(i)] + p(i)Pt? Fo(i)]
(Pt eu(i) — ()P eu(i)
= w1 + APl ea(i)
P [u(F[0()] — i(D)ea(d)
+H(D)F[ea(D)]]
=w;_1 + ()P} (el (i) + o(i)], (39)

where we have defined the modified noise sequence

{o()}

1()o(i) = p()F [v(i)] — fli)ea(i) + p(i)F [ea(D)],
(40)

and i~'(i) = wPu.

Expression (39) rewrites the filtered-error update
relation (38) in a form similar to the original Gauss—
Newton update (3) (i.e., without an explicit filtering
operation by F'). This is achieved by redefining a mod-
ified noise sequence (i) that incorporates the action
of the filter F, as well as by employing an adaptation
gain that is equal to (7).

Based on this rewriting, and using the same argu-
ments following Lemma 4, we readily obtain that the

following equality should hold for all i:

P+ () = BE) e _ |

(41)
AW P iy + i) [50))

This again establishes that the map from {+/A(i)

LR VROED) to (BT \/RG) — BG)
eq(i)}, denoted by 7, is also lossless, and that
the overall mapping from the original disturbance
+/ (- )v(+) to the resulting a priori estimation error
v/ () — B(i)ea(-) can be expressed in terms of a
feedback structure, as shown in Fig. 4, which now
explicitly includes the action of the filter F in the
feedback loop.

We further remark that the notation,

p(i) 1

1
el F * ’
/_1_% V(D) . @) — p)

that appears in the feedback loop should be inter-
preted as follows: we first divide /(i) — f(i) ea(i)
by /(i) — B(i), followed by the filter F and then
by a subsequent scaling by u(i)/+/ii(i). Likewise, the
term +/ f21(i)v(7) is first divided by +/ (i), then filtered
by F and finally scaled by u(i)/+/fi(i).

The feedback loop now consists of a dynamic sys-
tem. But we can still proceed to study the /5-stability
of the overall configuration in much the same way as
we did in Section 4. Similar arguments will lead to a
sufficient condition for stability that we now exhibit.
For this purpose, we use the convenient vector and
matrix quantities as in (33)—(35) and also define a
vector ¥y similar to vy but with the entries (- ) instead
of v(-).

We further define the lower triangular matrix Fy
that describes the action of the filter ' on a sequence at
its input. This is generally a band matrix since Mp <
M, as shown below for the special case Mr = 3,

fo
fi fo
Fy= | /21 fo
f2 f1 fo
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AB(i)P 3 Wiy

gy,
V() v(3)

ITi =1

[(5) — B(9)]7 eals)

014 i
[l - %8] - 7“;% Pl [n(»')—lﬁ(-')l*

3

Fig. 4. Filtered-error Gauss-Newton algorithm as a time-variant lossless mapping with dynamic feedback.

It is thus immediate to verify that the successive out-
puts of F[e,(+)] can be obtained by simply computing
the matrix—vector product Fye, y. Also, if the filter
F were time-variant all that changes is that the ma-
trix F will not be Toeplitz anymore. Instead, its first
diagonal will consist of the values of the first coef-
ficient fo(-) at the successive time-instants, and so
on.

The following result follows from precisely similar
arguments to those in the proof of Theorems 1 and 2
in Appendix C. Define

AN = |[M( - MyDL, Ey) (M — By)™!

and 9(N) = HM‘N MNFNM;W‘

2ind

Here, A(N) is the 2-induced norm of the feed-
back loop whose action is described by the matrix
M) — MyMy Fy)[My — By]"2. Likewise,
¥(N) is the 2-induced norm of the filter at the input of
the feedback structure and whose action is described

——1/2 —-——1/2
by MN MNFNMN .

Theorem 3. Consider the filtered-error Gauss—
Newton recursion (38). If A(N) < 1 then

N
ST — BENATFEN ey (i)

i=0

2,ind

1 - ~ % —1 .~

N
+(N) Zﬂ(z‘w‘+wllv(i)|2} (42)

i=0

Moreover, if we further have (i) < u(i) then

N
3 (i) — BENAHN ey ()

=0

~12
TEIN) e oo
l—A(N) {\ﬁom * Pl

N
+7A(N) Zu(i)i““’”]lv(i)lz} : (43)

i=0

We thus see that the major requirement is for the feed-
back matrix

MJI\;Z(I MNMN Fy)[My — By]™!

to be contractive. We shall denote this matrix by Gy.
It can be easily seen to have the following triangular
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form (it also has a band of width Mr):

1~ 850 . \
1 - A0
2(0) h
_ w(1) /1 ZE])fO
Gy=| VHDVE0)—BO) o (44)
_ #2)f> ~ u(2) /) 1— 42 fo
VAW = FO)  VEQVED D) /1 i3

The entries of Gy depend on four parameters: the step-
sizes u(i), the B(7), the energies of the input sequence
i(1), and the error filter F. Several special cases may
be of interest. For example, the special case F = 1
(i.e., no filter) immediately leads to

w0y HN)

) A
_BQ " [ B
() W)

which is precisely the case we encountered earlier
in Section 4. A sufficient condition for the con-
tractivity of Gy was seen to choose p(i) such that
0 < p(i) < () + \/1 — i)/ a(i)). Another spe-
cial case is F = ¢! (i.e, a simple delay). The
filtered-error Gauss—Newton recursion (38) then col-
lapses to

W, = w_| + u(z)P,u,* éa(i — 1) (45)

Gy = dlag

The corresponding Gy is given by (since fy = 0 and
JSi=1)

Gy =
1
B(0) 0
-0
p(1)
B (1) 1
V i(0) — B(0) 1 - D
)
w2)
ViQ) 1
INOEO) Vl [
0 )

(46)

We see that Gy cannot be a contractive matrix since,
for example, its leading (0,0) entry is not less than
one, because of B(i) < (i) (if a matrix is contrac-
tive, then all its principal leading submatrices have
also to be contractive). This is consistent with re-
sults in the literature where it has been observed that
the delayed-error algorithm usually leads to unstable
behavior.

We also see from the general expression for Gy
in (44) that a simple gain filter F = f, with a neg-
ative fo leads to a noncontractive Gy. We con-
sider in the next section another important special
case.

7.2. The projection filtered-error algorithm

The projection filtered-error algorithm em-
ploys a special choice for the step-size parame-
ter, viz., a scaled multiple of the reciprocal input
energy,

Wiy = a @), > 0. @7)

This leads to an update recursion that is often referred
to as a projection update,

W, =w,_1 +a

e FIE)

In this case, it can be seen that the contractivity re-
quirement now collapses to requiring the contractivity
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of Gy, where Gy is now given by

1 —afo 0
1 — 89
A(0)
__a/AD) 1 —afo
V() — B(0) \/1 - ﬁg—}g
a2y o o /ji2) 1 —afy
VEO) = BO)  VED ) | 1B

We further assume that the (weighted) energy of
the input sequence #; does not change very rapidly
over the filter length Mg, ie., (i) = a(i—1) ~ -+ - =
ji(i — Mp). This is a reasonable assumption since, as
mentioned earlier, we often have My < M. We also
assume that the 8(7) satisfy f(i) = Bi(i) with f < 1.
(A particular choice with « = 1 and 8 = 0.5 will be
discussed later in the context of the PLR algorithm.)
In this case, Gy collapses to

GN ~I— OCFN, (49)

and the contractivity of [ — «Fy] can be guaranteed
if we choose the o so as to satisfy

mgx‘l —aF(e?)] < 1. (50)

This is equivalent to requiring that F(e/?) should lie
inside a circle of center (1,0) and radius 1/o. Thus,
the smaller the step-size «, the wider the circle, and,
consequently, the easier for the condition to be met.
This also suggests that, for faster convergence (i.e., for
smallest feedback gain), we should choose a optimally
by solving the min-max problem:

min max |1 — aF(e?)] . (51)
x Q

If the resulting minimum is less than 1 then the corre-
sponding optimum « will result in faster convergence
and also in an overall robust system (cf. (43)).

(48)

7.3. A note on the pseudo-linear regression
algorithm

Another case of filtered error variants that arises in
IR modeling is the so-called pseudo-linear regression
algorithm [3, 30]. In this case, the filter ' in the feed-
back path takes the special form (see also the discus-
sion in [22])

1
1—A(g7'y
for some unknown recursive filter 4. The results of
this paper are also applicable to this case. In particular,

1;-stability would require the following contractivity
condition:

F(g™")=

|M3a - My by - An1 )
X [MN '—BN]_l/ZHZ’ind < 17

where the matrix A is lower triangular (as in the def-
inition of Fy ) and describes the action of the unknown
filter A(g~1).

Assume, for example, that (i) = y (i) and u(i) =
v fi(i), with y; < y, < 1. The condition then simpli-
fies to choosing the two parameters y; and y; so as to
satisfy

——1/2
M Uy — ol — AN Ty aina < VAT

A sufficient but conservative condition 1s to require
1y — 72l — ANTY2ina

5 ming<;<n A/ #(i)
|
maxo<igy v a()
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which establishes a dependency on the time-variations
in the input vector energy.

Other choices of the adaptation gains have been
shown to lead to results independent of these varia-
tions (see [26]). The above condition is still dependent
on the (usually unknown) filter A(g~"). However, if
we could choose u(i) = B(i) = j(i), then the scal-
ing factor v/ ji(i) — B(i) of the a priori error sequence
would become zero and the feedback-path will have
no effect on the overall stability. But, unfortunately,
fi(i) is a function of B(i) and they can only become
equal for /(i) = 0. The choice of the projection step-
size helps here, if u(i) = «f(i) and (i) = Bﬁ(i). In
a recent paper [3], the following choices were pro-
posed:

=05 a=1, Ai@i)=0.54,

with the intent of minimizing the a posteriori error.
In this case, (i) — B(i) = 1/(1 + @~ '(ili — 1))
does not become zero, but wp(i) = f[(i) and
the feedback loop gain becomes zero in the un-
filtered case. The forgetting factor A has been
chosen to be 1 — B(i), since this choice is ad-
vantageous for fixed-point realizations. The ele-
ments of the Riccati matrix P; can then easily be
bounded.

8. Simulation results

In the following simulations we demonstrate sev-
eral of the points raised in our previous discussions.
We considered the following two error-path filter func-
tions:

Fi(g)=1-12¢"14+0724¢72

19 o 1- g
and Fy(q) = Zq =
k=0
The real parts of F; and F, are shown in Fig. 5, which
shows that F; has a strictly positive real part while F,
does not.
We employed the projection normalization (47)
with B(i) = 0.051(i), A = 0.99 and u(i) = aji(7).
The input sequence u(i) (assuming a u; with shift
structure) was chosen sinusoidal with frequency €2
so that the a priori error signal can be assumed to be
dominated by this frequency. In this case, the optimum
a of (50) can be approximated by the simpler expres-
sion
. ‘QG
min |1 — aF (&),

which can be solved explicitly and we get

1
Xopt = Real {F;(C_TO)}

Re[Fy(e! )"io
Re[Fy(e? )] |

10

o) 0.5 1

1.5 2 25 3 3.5

Fig. 5. Real parts of F1(612) and F>(e/?).
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Fig. 6. Convergence behavior for the FEGN algorithm with sinusoidal input sequence and various step-sizes (a) & = 0.085, (b) & = 0.15,

(c) o = 0.18.

to be the step-size that causes faster convergence
speed.

Following the same procedure, the step-size ojim
for which the stability limit (49) is achieved can be
calculated to be aim = 2aop:.

To verify these statements, we created an input se-
quence of the form

u(i) = sin[1.2i + ¢],

where 50 different values for ¢ were uniformly chosen
from the interval [—m,n]. The reason for adding a
random phase ¢ is to obtain smoother learning curves
after averaging. The optimal step-size o, can thus be
calculated to be oy = 0.085 and the stability bound
1s obtained for ajiy, = 20t = 0.17. Fig. 6 shows three
runs of the FEGN for the choices o« = 0.085,% = 0.15
and « = 0.18. As expected, the first value of « leads to
the fastest convergence speed. In every simulation we
averaged over 50 trials. The additive noise v(i) was
assumed to be —40 dB below the input power during
the experiments and the order of the adaptive filter was
set to M = 10. The algorithm was run for N = 5000
iterations. We see that for the first two values of «, the
sample average of |€,(i)|* decreases with time, while
for the last value it increases.

To derive conditions (50) and (51) we used the
approximation (49) with the requirement that the
energy of the input vector changes slowly over the

filter length M. To measure the impact of this varia-
tion, the change in the input vector energy from one
time-instant to the following can be used, viz.,

N O I 2
(A -a'G-1)".
This difference collapses to the simple expression
(Ju(i)? — u(i —M)IZ)2 when a time-shift structure
for u; is assumed. In a stochastic setting, the above

measure of the input energy variation can be explicitly
evaluated via

E (lu(i) — lu(i — M)P)’

= 2Eu(d)]* — Elu(i)*[u(i — M)|?),
which can further be reduced to
2(x — DE[Ju(i)*1%,

if we assume that |u(i)|? is uncorrelated with |u(i—
M)[?, which is a reasonable assumption for M rela-
tively large. Hence, the kurtosis parameter « gives a
measure of the input energy variations. To describe
the impact of these variations on the FEGN algorithm,
we applied various random input sequences with dif-
ferent kurtosis as listed in Table 1. A bipolar random
sequence with amplitude 4 avoids, of course, any vari-
ation in the input energy since we have now a constant
fi~'(i) = M4 and the kurtosis becomes one. For Gaus-
sian sequences the kurtosis becomes three and for a
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Fig. 7. Learning curves for the FEGN algorithm with 7| and various random input processes with different pdf (o = dopt = 0.3). (a)

bipolar, uniform, gaussian; (b) Ko; (¢) gamma.
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Fig. 8. Learning curves for the FEGN algorithm with 7, and random input process: (a) Gaussian, o = 0.05; (b) Ko, « = 0.05.

Ky density, a modified Bessel function or McDonald
function of the second kind for order zero, which is
used to describe the density of speech samples, the
kurtosis is equal to nine. All random sequences were
white processes with variance one. Fig. 7 depicts the
simulation results, where we again averaged over 50
trials. Unlike the previous simulations, the power of
the additive noise v(i) was set at —60dB relative to
the input sequence since then the effect of the various

kurtosis can be observed better. As can be seen from
the figure, the higher the kurtosis, the more the varia-
tion in the steady-state value. The convergence speed
and the stability bounds, however, remain unchanged.
We repeated the above experiment with white random
processes for the filter F,. The stability bound was
calculated at & = 0.097 and the fastest convergence at
o = 0.05. The simulation resulted in a stability bound
at 0.09 and fastest convergence at 0.05 for the first
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Table 1
Kurtosis of various density functions.

Distribution Kurtosis
Bipolar 1
Uniform 1.8
Gaussian 3

Ko 9
Gamma 11.66

four random processes of the table. For the gamma
density, however, the values were smaller (stability
bound at 0.05 and fastest convergence at 0.025). This
is due to the strongly variant input sequence in this
case. Since the filter F, is much longer than F;, the
effect of approximation (49) becomes visible. Fig. 8
depicts some learning curves for F,. The noise was
again set to —60 dB. One learning curve was obtained
for a Gaussian sequence and the other for a K, density.

We may finally remark that we have also realized
experiments under the same conditions for the so-
called filtered-error LMS (least-mean-squares) algo-
rithm. This is an instantaneous-gradient-based estima-
tor that avoids the propagation of a Riccati variable
[28]. Not only the conditions for stability and faster
convergence speed were the same, but also the learn-
ing curves were the same. Hence, although Gauss—
Newton type algorithms exhibit a higher convergence
speed in the unfiltered case, especially for strongly cor-
related signals, this behavior is apparently lost in the
filtered variants, i.e., when a filter F exists in the error
path. In other words, in the filtered case, the Gauss—
Newton schemes do not seem to converge faster than
the LMS schemes and, hence, the additional complex-
ity required to run Gauss—Newton filters in this case
may not be justified. One possible explanation for this
is that the Riccati variable P;, which is regarded as
an estimate of the autocorrelation matrix of the in-
put vectors {u;}, loses this interpretation due to the
filtering operation.

9. Concluding remarks

We have provided a time-domain analysis of
Gauss—Newton-based adaptive schemes with em-

phasis on /,-stability or robustness issues. This was
achieved by highlighting an intrinsic feedback struc-
ture that arises in this context, and which maps the
noise sequence and the initial weight error to the a
priori estimation errors and the final weight error.
The feedback configuration was motivated via energy
arguments and was shown to consist of two major
blocks: a time-variant lossless (i.e., energy preserv-
ing) feedforward path and a time-variant feedback
path. Emphasis was further given to filtered-error
variants that give rise to dynamic time-variant feed-
back loops rather than memoryless loops.

The analysis was carried out in a purely determinis-
tic framework and conditions on the adaptation gains
u(i) and on the parameters f(i) were derived so as to
guarantee robustness in the presence of disturbances,
in the sense that small energy disturbances would con-
sistently lead to small estimation error energies. Such
a property does not hold if the above parameters are
not properly chosen.

The discussion was also extended to the filtered-
error case, where a filter is included in the update
equation. It was shown to lead to a dynamic feedback
structure with implications on the convergence speed
and robustness performance of the Gauss—Newton up-
dates. Optimal choices for the step-size parameters
in the projection filtered-error case were derived and
simulation results confirmed the validity of the expres-
sions.

The analysis presented here extends to other classes
of algorithms as well, e.g., to block adaptive filters
and to updates that involve nonlinear functionals
(such as Perceptron training). The results can also be
shown to be related to developments in H,.-theory.
Results and connections in this direction are reported
in [22,26,27].

Appendix A (Proof of Lemma 1)
Multiply (6) by P; 2 from the left, and compute

the squared norm (i.e., energies) of both sides of the
resulting expression, i.e.,

WP = 1P — )PP,
=W P7 Wi — p(i)ea(i)é; (i)

—u(D)e; ()ea(i) + (P 18,0
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If we now replace €,(i) by €,(i) = e,(i) + v(i) and
use the fact that

|ea(D)? = lea(d) + v(D)I
= ea(1)v" (i) + v(D)e; (1) + lea(D” + |0,
we conclude that the following equality always holds:
WP+ (i) lea(i)
+u() (1 — p(u Pt ) 8,()
= Wi P Wy + (i) o)

Substituting recursion (5) for P~ !in the right-hand
side, we obtain (9). [

Appendix B (Proofs of Lemmas 3 and 4)

Proof of Lemma 3. Introduce the notation j(ili —
1) = (u;P;,_ ur)~'. Then, we can write

A7) = w P

1 u; P; u?‘ 2
=T~ ulPl 1" - A(f) i )
A1) T wlP;_u’

a3l = 1) -

0 ( i ;{’,ﬁ + '_l(ili— 1)>
1

—BG) + MGl - 1)

In other words, we obtain that ji(i) = f(i)+A(@)a(i]i—
1), where the term A(i)j(i|i — 1) is strictly positive
since P;_; > 0. O

Proof of Lemma 4. We use (20) to re-express the
update equation (3) as follows:
w; =wi_1 + p(i)Pu] e, (i) + u(i)Pul v(i)
=w;1 + p()Pe ey (i) + p(i)Pul v(i)
+A(Pt ea(i) — )Pl ex(d)
=w;_; + fi(i)Pu e, (i)
+Piuf [p(D)v(i) — (i) — p(i))eali)],
—i)ep(i)
which leads to (21).

Appendix C (Proofs of Theorems 1 and 2)

Proof of Theorem 1. It follows from (22) that, over
0<i<N,

N

Z LN — B(i)) |€a(i)l2

i=0

= AN P ey — oy Py ey

N
+ 3 AN G |50
i=0

which also implies that (by ignoring the term
Wy Py W)

N
> A NIGa(E) ~ ) eI

i=0

< IO Pl 3 G [
i=0

Consequently,

i=0

N
\j D AN - (D)) lea(i)

<\/A[ON - ﬂ, i

N
+J > AN EG) (3G

i=0

But it follows from (25), and from the triangular in-
equality for norms, that

N
J > ARG [

i=0

< i;h[m,m@w(mz
“\N& fi(i)

_HDf
()

f()ea (D

N
_|_J Z,{[m,m 1
i=0
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We thus conclude that

N
Zl[i+l’N](ﬁ(j) — B(i)) |ea(i)|2

i=0

< AN P

ST TR T G
+\Z/L > —ﬁalv(l)l

i=0
+ izmwl Ol ile(P (%)
\ % G| M

and, consequently,

N
> AHLNIGEG) — B(D)) lea(D)]

i=0

< \JAONN_ Pl

N
9N )| D AN o(i)]2

i=0

N

AN | D AN — (i) ea()2.

i=0

If[1—-A(N)] > 0 we conclude from the last inequality
that (27) holds. O

Proof of Theorem 2. Expression (x) in the above
proof implies that

N
Z MHLNI((i) — B(i)) leal)|

i=0

< \JAOME Pl

N
+y PN )| D AN () (i) 2
i=0

N

HAN) | D AHENI(EG) — B(7))|eal i)

i=0

But note that

N
> ANy = BG)ead)I

i=0

N . .
= S BRES () - By
i=0

N
<HN) D ATV — B(i))leai)

i=0
Hence (32) follows. O
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