contrast to the non-blind training mode, which requires h
itself to be positive real.

One can verify the following for 2-PSK operation. Assume
the optimal receiver guarantees |u;w| = 1 and its distortion
vz(-) is negligible or has finite energy. If the adaptive weights
are only updated whenever [u;w;_1| > 1 and if p(¢) is chosen
according to

2(1)| +1
£(1)| -1

p(i) < 24(1)

then \/p(i) eq(z) — 0.

Likewise, assume the weight updates in the normalized
CM algorithm are performed only whenever |u;w;_1| > 1+¢
for some given positive € € 1. Assume also that the optimal
receiver guarantees |u;w| < 1+ e. If p(2) < 2f(7), and if the
optimal channel-receiver distortion is negligible or has finite
energy, then we also obtain /(i) eq(z) — 0.

5 SIMULATION RESULTS FOR CHANNEL
EQUALIZATION

The channel employed in all simulations was C(g™') = 1 +
0.9¢71, and the receiver length was taken as M = 3.

We consider first the non-blind mode of operation. The
step-size parameter was chosen in two ways: a non-
normalized mode where pu(:) < f(i) (as is the case with
standard gradient algorithms [2]) and a normalized mode
where p(i) < f(2)|£(2)| as suggested by the discussion at the
end of Sec. 4.1. Fig. 7 depicts the results for the two modes,
where « denotes p(1)/ji(¢). The figure shows the Bit-Error-
Rates (BER); the ratio of falsely detected bits to the overall
transmitted bits. The algorithms were run for N = 200 steps
and the results averaged over 20 Monte Carlo runs.

0.5

BER a4

without norm

with norm

O.‘5 1‘ 1.5
Step-size «

Figure 7: BER for 2-PSK with various step-sizes a for

normalized and non-normalized mode.

We now consider the blind mode of operation. As sug-
gested by the discussion in Sec. 4.2, a convergent (and ro-
bust) performance in the blind mode of operation can be
guaranteed as long as the operation of the adaptive equal-
izer is restricted to “large” enough values of £(i). To verify
this fact, we ran several simulations with o = 0.1 = p(2)/p(2)
and for different values of § (where f is used to determine
when to update the weight estimates, viz., for |2(z)| > 3).
Fig. 8 depicts BER values as a function of #. For # = 0, the
standard 2-PSK algorithm is obtained. The experiment was
run for N = 200 steps and the results averaged over 20 runs.
For values of # > 0, the algorithm shows a considerably im-
proved behaviour. However, the larger the £, the smaller

becomes the improvement, since then the updates become

less frequent.
0.18

BER

0.1

L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Threshold £
Figure 8: BER for 2-PSK with different thresholds
(. =0.1).

The next experiment is for the normalized CM algorithm.
Fig. 9 depicts three averaged learning curves obtained from
averaging |e(d)|> = |s(i — D) — 2(£)/]|2(¢)|* over 200 runs. It
shows that the normalized CMA has superior performance
if it is not updated at every time instant.

E[|6(1)|2] 1.4F B=0
121
b 8=05
08 |
0.6
ol g=11

0.2

0 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Number of iterations 1

Figure 9: Instantaneous error energy for normalized
CM algorithm with step-size « = 1 and threshold § =
0,0.5,1.1.
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(f, u(2)) under which e,(z) — 0 as i — oo and, consequently,
£(1) — 2(¢) and §(2) — y(2).

We shall assume, without loss of generality, that the up-
date equation (2) is only employed when e,(z) # 0 (i.e., we
ignore the non-active steps and focus only on updates that
involve nonzero error terms eo(z)). In this case, our objec-
tive becomes the following: given a sequence of updates with
nonzero errors eo(i), do the resulting weight vector estimates
w; tend to a value that guarantees e,(z) — 0 (and, conse-
quently, eo(i) — 0)7

4.1 Non-Blind Mode of Operation

The analysis can be carried out by showing that a simi-
lar feedback structure to the Perceptron case arises in the
context of channel equalization. This is shown in Fig. 5,
where h is the function that relates e, and e, eo(i) =
h[z(3), 2(7)]ea(i), and is given by

B
A

Y

1 — 29 p12(4), 2(1)]

Figure 5: Structure for non-blind equalization.

If we define

0<i<N B(2) o<i<N (e

AN = max |1 2hr) 20|, v = max A

~—

Then it can be checked (along the lines of [1, 2]) that if
A(N) < 1 then the following bounds on the weighted ener-
gies of the a priori estimation errors hold:

[[w-a][ - (7)

Relations (6) and (7) are desirable because they imply,
when they hold, that in the limit (as N — oo) the weighted
energy of the a priori estimation errors remains bounded
or, equivalently, that {\/u(?) eq(2)} and {\/f(2) eq(i)} are
Cauchy sequences that tend to zero.

The condition A(N) < 1 requires (in terms of the real and
imaginary parts of ) that

wi), oL w0
1—ThRi + = .h2i<1, 8
|: U(l) ( ):| u2(l) I( ) ( )
which shows that h should necessarily be positive-real. These
conditions can be verified for many of the algorithms listed
in Table 1.

For example, for 2-PSK it can be verified that if |u;w|
and |u;w;_1| are uniformly bounded from above, and if
p(2) is chosen such that 0 < p(1) < |uiwi_1|/||ui||2, then

p(1) eal(?) — 0 as 1 — oo.

Likewise, for the CM algorithm, if |u;w| and |u;w;_1| are
uniformly bounded from below and if p(7) is chosen such that
O pli)
—= h[z(2), (2 1— == hgr[z(2), 2(3)]| ,
M ), 20) M ), 200

and both less than 1/+/2, where h[2(i), 2(i)] is evaluated as

and

s(i = D) —wiwisa|Jwiwia |
s(i— D)|s(i— D)3 —wiwi_y

hlz(2), 2(2)] =

then we also obtain +/pu(2) eq(z) — 0.

4.2 Blind Mode of Operation

In the blind mode of operation, the feedback path is modi-
fied as shown in Fig. 6, with (1 — A) replacing h and where
v2(1) = f(u;w) — u;w denotes the distortion introduced by
the channel and by the optimal receiver w.

q -
|17 = 1 A eali)
M\
. U‘
1— B8 (1= la(i), 2(i)))

Figure 6: Structure for blind operation.

A contractive map will now require

p(2) N
1— —=%(1=h[z(2), (2 <1 9
u(z)( [2(2), 2(3)]) (9)
for all possible combinations of z(i) and £(¢) over the desired
interval of time. A necessary condition for this to hold is
to require the function 1 — h to be positive real. This is in



to compute an error quantity eo(z) that is employed in the
training algorithm:

w; = w1 + p(i)ules(i) (2)

with w; = [ u(i) u(i — M +1) |. The definition of
the error quantity e.(:) depends on whether the equalizer
operates in a blind mode or not, which in turn determines
the nature of the additional measurement used in Fig. 2. In
non-blind operation, the measurement is s(¢ — D) (a delayed
version of s(i)) and e, (1) = s(1 — D) — f(u;w;—1). In blind
operation, e,(1) is taken as e,(1) = f(uiw;—1) —u;wi_1. We
assume for our analysis that there exists an optimal receiver
w with such a structure, FIR followed by the nonlinearity,
and which guarantees detection, viz., f(u;w) = s(i — D).

SN P ETON B KO [ | K70
Error
eo(i) ——
Measurement

Figure 2: Structure of the nonlinear adaptive equalizer.

Table 1 lists several nonlinear functions that have been used
in channel equalization (see, e.g., [4]):

| Equalization type/algorithm | Fikd! |

Direct-decision 2-PSK sign|[z]
Direct-decision equalizer dec[z]
CMA (Godard 2-2) z|2]?
Norm. CMA (Godard 1-2) B
Sato’s algorithm ysign[z]

Table 1: Nonlinear devices for equalization.
3 PERCEPTRON TRAINING
The following quantities are useful for our analysis: w; =
W — W, ea(i) = WW;_1 = Z(l) — 2(1), ep(i) = u;w;, and
A(i) = 1/|ju;||*. Tt has been shown in [5] that the following
equality holds for all possible choices of p():

|[Wi][* + A(d)ea(d)
[Wiall” + £(i)ep(2)
which establishes the existence of a lossless mapping
T, from the signals {Wi_1,\/i(1)ep(1)} to the signals

(%0, A/Aea()).
If we further apply the mean-value theorem to the activa-
tion function f(z), and write

fluiw] — fluewia] = f[n(i)]ea(s),

for some point 7(i) along the segment connecting u;w and
u;w;_1, we can further show that

=1, (3)

b (i) = L0

Figure 3: Feedback mapping for Perceptron.

This relation shows that the overall mapping from the origi-

nal (weighted) disturbances /ji(-)v(-) to the resulting a pri-

ori (weighted) estimation errors /fi(-)eq(-) can be expressed

in terms of the feedback structure shown in Figure 3.
Define v(N) = maxo<i<ny p(t)/i(i) and

=

(2
(2

It can also be verified [5] that if p(7) is chosen such that
0 < u(9)f'[n(:)] < 2/||ui||* then the section shown in Fig. 3
is contractive and leads to an I —stable (and, hence, robust)
algorithm. Moreover, if u(2) is chosen in the middle of the
interval specified above, say pop:(1)f'[7(1)] = B(3), then the
feedback loop is disconnected and the convergence speed is
faster. In this case, there will be no energy flowing back into
the lower input of the lossless section.

But 7(z) is still unknown and therefore three suitable ap-
proximations for f'[n(i)] have been suggested in [5], leading
to:

o Choice A: pope(i) =
. . l/ﬁln[l/d(l) —1]—|—uiwi_1
- - aT ;
(i) min ( (a0 1+
where T is used as a threshold value in order to prevent
large step-sizes.
e Choice B: For (d(z) — %) (f(uiwi_1) — %) > 0 we set
N 2a(1)
Her) = PRI T Taw ] ¥ e

~—

Am £ ma,
0

1= f'[n(3)]

~—

=

otherwise popt(i) = f(1)/ fhax-
e Choice C:
()= A1) 4
3 7 Ty 7y

where € 1s a small positive constant.

Figure 4 shows the resulting learning curves for a partic-
ular simulation, where it is clear that the optimal step-size
choices (the two left-most curves) lead to excellent conver-
gence. Extensions to recurrent networks are studied in [6].

4 CHANNEL EQUALIZATION

In channel equalization, we are interested in the limiting be-
haviour of the adaptive scheme (2) as time progresses to in-
finity. In particular, our objective is to exhibit conditions on
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ABSTRACT

We pursue a time-domain feedback analysis of adaptive
schemes with nonlinear update relations. We consider com-
monly used algorithms in blind equalization and neural net-
work training and study their performance in a purely de-
terministic framework. The derivation employs insights from
system theory and feedback analysis, and it clarifies the com-
bined effects of the step-size parameters and the nature of
the nonlinear functionals on the convergence and robustness
performance of the adaptive schemes.

1 INTRODUCTION

In recent work [1, 2], the authors have formulated a time-
domain feedback approach for the analysis and design of
adaptive schemes with emphasis on robust performance and
improved convergence in the presence of measurement noise
and modeling uncertainties. In particular, we have addressed
the following two issues:

1. We have shown how to select the adaptation gain (step-
size) in order to guarantee a robust behaviour in the
presence of noise and modeling uncertainties.

2. We have also shown how to select the adaptation gain
in order to guarantee faster convergence.

In this paper, we briefly outline extensions of this formula-
tion to adaptive schemes that involve nonlinear update laws,
with special emphasis on the Perceptron Learning Algorithm
(PLA, for short) in neural network training and on blind and
non-blind equalization schemes in communications. By so
doing, we further highlight some common features that ex-
ist between neural network structures and blind equalization
structures. However, in blind equalization, some complica-
tions arise that require a closer analysis. These complications
are primarily due to i) the complex nature of the signals in-
volved, ii) to the constant modulus constraints on the signals
in the system, and iii) to the blind mode of operation itself.

Notation. We use small boldface letters to denote vectors,
“+” for Hermitian conjugation, “I” for transposition, and
||x|| for the Euclidean norm of a vector. All vectors are
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doctoral fellow in the ECE Dept., UCSB, CA. He is currently with
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Holmdel-Keyport Rd., Holmdel NJ 07733-0400.

column vectors except for the input data vector denoted by
u;, which is taken to be a row vector. We also use the shift
operator ¢~ ', defined by ¢7's(i) = s(i — 1), to denote the
unit time delay.

2 NONLINEAR ADAPTIVE SCHEMES

The Perceptron consists of a linear combiner, whose column
weight vector we denote by w, followed by a nonlinearity f,
known as an activation function. It is depicted in Figure 1
where u denotes an input (row) vector. A common choice

for f is the sigmoid function fs(z) = 1+€+ﬂz’ with 3 > 0 [3].
But, more generally, it can be any monotonically increasing
function.
; . f(z)
u 0 =

w

Figure 1: The Perceptron structure.

Let {y(:)} be a collection of output (or reference) values
that are assumed to belong to the range of the activation
function f(-), i.e., there exists a w and a row input vector
u; such that y(¢) = f(u;w). In supervised learning, the Per-
ceptron is presented with given input-output data {u, d(¢)},
where d(i) are possibly noisy or perturbed versions of y(i),
say d(1) = y(¢) + v(i), and the objective is to estimate w.
The PLA computes recursive estimates of w as follows:

wi = w1 +p(iu; [d(i) — fawia)] (1)

where p(i) denotes the step-size parameter (possibly time-
variant).

A similar nonlinear training structure arises in channel
equalization, as depicted in Fig. 2. The figure shows a se-
quence {s(¢)} (usually complex and of constant modulus) be-
ing transmitted through an unknown channel C(¢™"). The
receiver is assumed to have an adaptive M-th order FIR
structure with weights w;_1, followed by a nonlinear deci-
sion device f. The output of the decision device is used



