
contrast to the non�blind training mode� which requires h
itself to be positive real�

One can verify the following for ��PSK operation� Assume
the optimal receiver guarantees juiwj � � and its distortion
vz��	 is negligible or has 
nite energy� If the adaptive weights
are only updated whenever juiwi��j � � and if ��i	 is chosen
according to

��i	 � ����i	
j�z�i	j
 �

j�z�i	j � �

then
p
��i	 ea�i	 � ��

Likewise� assume the weight updates in the normalized
CM algorithm are performed only whenever juiwi��j � �
�
for some given positive �� �� Assume also that the optimal
receiver guarantees juiwj � �
 �� If ��i	 � ����i	� and if the
optimal channel�receiver distortion is negligible or has 
nite
energy� then we also obtain

p
��i	 ea�i	� ��

� SIMULATION RESULTS FOR CHANNEL

EQUALIZATION

The channel employed in all simulations was C�q��	 � � 

���q��� and the receiver length was taken as M � ��

We consider 
rst the non�blind mode of operation� The
step�size parameter was chosen in two ways� a non�
normalized mode where ��i	 � ���i	 �as is the case with
standard gradient algorithms ���	 and a normalized mode
where ��i	 � ���i	j�z�i	j as suggested by the discussion at the
end of Sec� ���� Fig� � depicts the results for the two modes�
where � denotes ��i	����i	� The 
gure shows the Bit�Error�
Rates �BER	� the ratio of falsely detected bits to the overall
transmitted bits� The algorithms were run for N � ��� steps
and the results averaged over �� Monte Carlo runs�
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Figure �� BER for ��PSK with various step�sizes � for
normalized and non�normalized mode�

We now consider the blind mode of operation� As sug�
gested by the discussion in Sec� ���� a convergent �and ro�
bust	 performance in the blind mode of operation can be
guaranteed as long as the operation of the adaptive equal�
izer is restricted to �large� enough values of �z�i	� To verify
this fact� we ran several simulations with � � ��� � ��i	����i	
and for di�erent values of 	 �where 	 is used to determine
when to update the weight estimates� viz�� for j�z�i	j � 		�
Fig� � depicts BER values as a function of 	� For 	 � �� the
standard ��PSK algorithm is obtained� The experiment was
run for N � ��� steps and the results averaged over �� runs�
For values of 	 � �� the algorithm shows a considerably im�
proved behaviour� However� the larger the 	� the smaller

becomes the improvement� since then the updates become
less frequent�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Threshold 	

BER

Figure �� BER for ��PSK with di�erent thresholds �
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The next experiment is for the normalized CM algorithm�
Fig� � depicts three averaged learning curves obtained from
averaging je�i	j� � js�i�D	� �z�i	�j�z�i	j� over ��� runs� It
shows that the normalized CMA has superior performance
if it is not updated at every time instant�
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Figure �� Instantaneous error energy for normalized
CM algorithm with step�size � � � and threshold � �
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�f
��i		 under which ea�i	� � as i�� and� consequently�
�z�i	 � z�i	 and �y�i	 � y�i	�

We shall assume� without loss of generality� that the up�
date equation ��	 is only employed when eo�i	 �� � �i�e�� we
ignore the non�active steps and focus only on updates that
involve nonzero error terms eo�i		� In this case� our objec�
tive becomes the following� given a sequence of updates with
nonzero errors eo�i	� do the resulting weight vector estimates
wi tend to a value that guarantees ea�i	 � � �and� conse�
quently� eo�i	 � �	�

��� Non�Blind Mode of Operation

The analysis can be carried out by showing that a simi�
lar feedback structure to the Perceptron case arises in the
context of channel equalization� This is shown in Fig� ��
where h is the function that relates ea and eo� eo�i	 �
h�z�i	
 �z�i	�ea�i	� and is given by

h�z�i	
 �z�i	� �
f �z�i	�� f ��z�i	�

z�i	� �z�i	
� ��	

k �Tik � �

q��

i

�

�

�

�

�

p
���i	 ea�i	

� � ��i�
���i�h�z�i	
 �z�i	�

p
���i	ep�i	

�wi�wi��

Figure 	� Structure for non�blind equalization�

If we de
ne

��N	 � max
��i�N

������ ��i	

���i	
h�z�i	
 �z�i	�

���� 
 ��N	 � max
��i�N

��i	

���i	
�

Then it can be checked �along the lines of ��� ��	 that if
��N	 � � then the following bounds on the weighted ener�
gies of the a priori estimation errors hold�vuut NX

i��

���i	 jea�i	j� � �

����N	
k �w��k � ��	

vuut NX
i��

��i	 jea�i	j� � �����N	

� ���N	
k �w��k � ��	

Relations ��	 and ��	 are desirable because they imply�
when they hold� that in the limit �as N � �	 the weighted
energy of the a priori estimation errors remains bounded
or� equivalently� that f

p
��i	 ea�i	g and f

p
���i	 ea�i	g are

Cauchy sequences that tend to zero�
The condition ��N	 � � requires �in terms of the real and

imaginary parts of h	 that

�
�� ��i	

���i	
hR�i	

��



���i	

����i	
h�I�i	 � � 
 ��	

which shows that h should necessarily be positive�real� These
conditions can be veri
ed for many of the algorithms listed
in Table ��

For example� for ��PSK it can be veri
ed that if juiwj
and juiwi��j are uniformly bounded from above� and if
��i	 is chosen such that � � ��i	 � juiwi��j�kuik�
 thenp
��i	 ea�i	 � � as i���
Likewise� for the CM algorithm� if juiwj and juiwi��j are

uniformly bounded from below and if ��i	 is chosen such that������i	���i	
hI�z�i	
 �z�i	�

���� and

������ ��i	

���i	
hR�z�i	
 �z�i	�

���� 

and both less than ��

p
�� where h�z�i	
 �z�i	� is evaluated as

h�z�i	
 �z�i	� �
s�i�D	� uiwi��juiwi��j�

s�i�D	js�i�D	j��

� � uiwi��




then we also obtain
p
��i	 ea�i	 � ��

��� Blind Mode of Operation

In the blind mode of operation� the feedback path is modi�

ed as shown in Fig� �� with �� � h	 replacing h and where
vz�i	 � f�uiw	� uiw denotes the distortion introduced by
the channel and by the optimal receiver w�

k �Tik � �

q��

i
i	 ��

i
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�

�

�

�

�

p
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�� ��i�
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Figure �� Structure for blind operation�

A contractive map will now require������ ��i	

���i	
��� h�z�i	
 �z�i	�	

���� � � ��	

for all possible combinations of z�i	 and �z�i	 over the desired
interval of time� A necessary condition for this to hold is
to require the function � � h to be positive real� This is in



to compute an error quantity eo�i	 that is employed in the
training algorithm�

wi � wi�� 
 ��i	u�i eo�i	 
 ��	

with ui �
�
u�i	 � � � u�i�M 
 �	

�
� The de
nition of

the error quantity eo�i	 depends on whether the equalizer
operates in a blind mode or not� which in turn determines
the nature of the additional measurement used in Fig� �� In
non�blind operation� the measurement is s�i�D	 �a delayed
version of s�i		 and eo�i	 � s�i�D	� f�uiwi��	� In blind
operation� eo�i	 is taken as eo�i	 � f�uiwi��	�uiwi��� We
assume for our analysis that there exists an optimal receiver
w with such a structure� FIR followed by the nonlinearity�
and which guarantees detection� viz�� f�uiw	 � s�i�D	�

wi��

�z�i�
C�q��	

s�i� u�i�
f

�y�i�

eo�i	
Measurement

Error

Figure 
� Structure of the nonlinear adaptive equalizer�

Table � lists several nonlinear functions that have been used
in channel equalization �see� e�g�� ���	�

Equalization type algorithm f �z�

Direct�decision ��PSK sign�z�
Direct�decision equalizer dec�z�
CMA �Godard ���	 zjzj�
Norm� CMA �Godard ���	 z

jzj

Sato!s algorithm �sign�z�

Table �� Nonlinear devices for equalization�

� PERCEPTRON TRAINING

The following quantities are useful for our analysis� �wi �
w � wi
 ea�i	 � ui �wi�� � z�i	 � �z�i	� ep�i	 � ui �wi
 and
���i	 � ��kuik�� It has been shown in ��� that the following
equality holds for all possible choices of ��i	�

k �wik� 
 ���i	e�a�i	

k �wi��k� 
 ���i	e�p�i	
� � 
 ��	

which establishes the existence of a lossless mapping
T i from the signals f �wi��


p
���i	ep�i	g to the signals

f �wi

p

���i	ea�i	g�
If we further apply the mean�value theorem to the activa�

tion function f�z	� and write

f �uiw�� f �uiwi��� � f ����i	�ea�i	


for some point ��i	 along the segment connecting uiw and
uiwi��� we can further show that

���
�

� �i	ep�i	 �
��i	

��
�

� �i	
v�i	�

�
��f ������i	
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kT ik � �
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Figure �� Feedback mapping for Perceptron�

This relation shows that the overall mapping from the origi�
nal �weighted	 disturbances

p
����	v��	 to the resulting a pri�

ori �weighted	 estimation errors
p

����	ea��	 can be expressed
in terms of the feedback structure shown in Figure ��

De
ne ��N	 � max��i�N ��i	����i	 and

��N	
�
� max

��i�N

������ f ����i	�
��i	

���i	

����
It can also be veri
ed ��� that if ��i	 is chosen such that
� � ��i	f ����i	� � ��kuik� then the section shown in Fig� �
is contractive and leads to an l��stable �and� hence� robust	
algorithm� Moreover� if ��i	 is chosen in the middle of the
interval speci
ed above� say �opt�i	f

����i	� � ���i	� then the
feedback loop is disconnected and the convergence speed is
faster� In this case� there will be no energy "owing back into
the lower input of the lossless section�

But ��i	 is still unknown and therefore three suitable ap�
proximations for f ����i	� have been suggested in ���� leading
to�


 Choice A� �opt�i	 �

���i	min

�
���	 ln���d�i	� �� 
 uiwi��

d�i	� f �uiwi���

 T

�



where T is used as a threshold value in order to prevent
large step�sizes�


 Choice B� For
	
d�i	� �

�


 	
f�uiwi��	� �

�



� � we set

�opt�i	 �
����i	

f ��d�i	� 
 f ��uiwi��� 
 �

otherwise �opt�i	 � ���i	�f �max�


 Choice C�

�opt�i	 �
���i	

	
�
�f ���i	���� �f ���i	�	

�

 �


 ��	

where � is a small positive constant�

Figure � shows the resulting learning curves for a partic�
ular simulation� where it is clear that the optimal step�size
choices �the two left�most curves	 lead to excellent conver�
gence� Extensions to recurrent networks are studied in ����

� CHANNEL EQUALIZATION

In channel equalization� we are interested in the limiting be�
haviour of the adaptive scheme ��	 as time progresses to in�

nity� In particular� our objective is to exhibit conditions on
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ABSTRACT

We pursue a time�domain feedback analysis of adaptive
schemes with nonlinear update relations� We consider com�
monly used algorithms in blind equalization and neural net�
work training and study their performance in a purely de�
terministic framework� The derivation employs insights from
system theory and feedback analysis� and it clari
es the com�
bined e�ects of the step�size parameters and the nature of
the nonlinear functionals on the convergence and robustness
performance of the adaptive schemes�

� INTRODUCTION

In recent work ��� ��� the authors have formulated a time�
domain feedback approach for the analysis and design of
adaptive schemes with emphasis on robust performance and
improved convergence in the presence of measurement noise
and modeling uncertainties� In particular� we have addressed
the following two issues�

�� We have shown how to select the adaptation gain �step�
size	 in order to guarantee a robust behaviour in the
presence of noise and modeling uncertainties�

�� We have also shown how to select the adaptation gain
in order to guarantee faster convergence�

In this paper� we brie"y outline extensions of this formula�
tion to adaptive schemes that involve nonlinear update laws�
with special emphasis on the Perceptron Learning Algorithm
�PLA� for short	 in neural network training and on blind and
non�blind equalization schemes in communications� By so
doing� we further highlight some common features that ex�
ist between neural network structures and blind equalization
structures� However� in blind equalization� some complica�
tions arise that require a closer analysis� These complications
are primarily due to i	 the complex nature of the signals in�
volved� ii	 to the constant modulus constraints on the signals
in the system� and iii	 to the blind mode of operation itself�

Notation� We use small boldface letters to denote vectors�
��� for Hermitian conjugation� �T� for transposition� and
kxk for the Euclidean norm of a vector� All vectors are
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column vectors except for the input data vector denoted by
ui� which is taken to be a row vector� We also use the shift
operator q��� de
ned by q��s�i	 � s�i � �	� to denote the
unit time delay�

� NONLINEAR ADAPTIVE SCHEMES

The Perceptron consists of a linear combiner� whose column
weight vector we denote by w� followed by a nonlinearity f �
known as an activation function� It is depicted in Figure �
where u denotes an input �row	 vector� A common choice
for f is the sigmoid function f��z	 �

�
�	e��z

� with 	 � � ����
But� more generally� it can be any monotonically increasing
function�

f�z�

w

z
u

Figure �� The Perceptron structure�

Let fy�i	g be a collection of output �or reference	 values
that are assumed to belong to the range of the activation
function f��	� i�e�� there exists a w and a row input vector
ui such that y�i	 � f�uiw	� In supervised learning� the Per�
ceptron is presented with given input�output data fui
 d�i	g�
where d�i	 are possibly noisy or perturbed versions of y�i	�
say d�i	 � y�i	 
 v�i	� and the objective is to estimate w�
The PLA computes recursive estimates of w as follows�

wi � wi�� 
 ��i	uTi �d�i	� f�uiwi��	� 
 ��	

where ��i	 denotes the step�size parameter �possibly time�
variant	�

A similar nonlinear training structure arises in channel
equalization� as depicted in Fig� �� The 
gure shows a se�
quence fs�i	g �usually complex and of constant modulus	 be�
ing transmitted through an unknown channel C�q��	� The
receiver is assumed to have an adaptive M �th order FIR
structure with weights wi��� followed by a nonlinear deci�
sion device f � The output of the decision device is used


