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ABSTRACT

In adaptive FIR filters, the least-mean-square
(LMS) adaptive algorithm uses the a priori error
signal to update the filter coefficients. In this pa-
per, we study the forms and properties of a pos-
teriori adaptive filter updates in a general context.
We provide a technique by which the stability of
an adaptive filter’s coefficient update can be easily
analyzed using the relationship between the a priori
and a posteriori error signals. Using this knowledge,
we then develop methods for choosing the algorithm
step size to guarantee the robustness and stability
of the system and to provide fast adaptation be-
havior. Simulations verify the usefulness of a poste-
riori—error—based adaptive algorithms for unbiased
adaptive IIR filtering.

1. INTRODUCTION

The normalized least-mean-square (NLMS) adaptive filter
is a useful technique for adjusting the I coefficients of a
finite-impulse-response (FIR) filter. The NLMS coefficient
updates are

w(k+1) = w(k)+nk)e(k)x(k) (1)
e(k) = d(k)—x"(K)w(k) ()
_ _ polk)
PO = Tl ©
where w(k) = [wo(k) wr—1(k)]T and x(k) =

[z(k) -+ z(k—L+1)]7 are the coefficient and input signal
vectors at time k, respectively, e(k) is the a priori error sig-
nal at time k, ||x(k)||* denotes the Lz-norm of the vector
x(k), and po(k) is a step size parameter.

The NLMS adaptive filter is a version of the LMS
adaptive filter in which the effective step size is z(k) =
po(k)/|[x(k)||*. Since the LMS adaptive filter is usually de-
rived and analyzed in a statistical context [1], such a view
ignores certain useful stability and robustness properties
possessed by the update in (1)-(3). In particular, it can be
shown that the NLMS adaptive filter is a projection-type
update, and its stability and robustness can be guaranteed
so long as 0 < po(k) < 2 [2, 3]. Recent techniques re-
lating adaptive filtering algorithms to H°° stability theory
show that the NLMS algorithm possesses a characteristic
robustness that is independent of the statistical realizations
of the signals in x(k) and d(k) [4]-[6]. Moreover, a deter-
ministic view of the NLMS algorithm elucidates the rea-
sons behind the fast convergence behavior of this system
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over that of the LMS adaptive filter. For example, when
d(k) = xT(k)wopt with wop, being an unknown FIR coeffi-
cient vector, then w(k) can be made to converge to Wep: In
L iterations via (1-(3) for po(k) = 1, so long as the sequence
x(k), 0 < k¥ < L — 1 spans the L-dimensional coefficient
space [3]. These results complement the understanding of
the NLMS adaptive algorithm obtained in various statisti-
cal contexts [8]-[11].
Consider the following adaptive algorithm:

w(k) + u(k)ep(k)x (k) (4)
d(k) —x" (F)yw(k + 1), (5)

w(k+1)
ep(k)

where e;(k), the a posteriori error signal, depends on the
updated coeflicients w(k). Using the matrix inversion
lemma [12], one can show that (4)—(5) is equivalent to {1)-
(2) for m(k) = w(k)/(1 + p(k)||x(k)||?). Thus, the NLMS
adaptive algorithm can be related to a coefficient update
employing the a posteriori error signal. Although men-
tioned in several studies of (1)-(3), this fact has not pre-
viously been used to elucidate the useful properties of the
NLMS algorithm. In addition, to our knowledge, the rela-
tionship between e, (k) and e(k) has not previously been ex-
ploited to understand the behaviors of other adaptive algo-
rithms whose updates are nonlinear with respect to the co-
efficient vector w(k). Examples of such algorithms include
stochastic gradient methods based on non-mean-squared
error criteria [13, 14] and recently-developed methods for
adaptive IIR filters [15, 16]. Such results could have poten-
tial benefits in selecting step sizes for these algorithms to
guarantee their stable operation and to provide fast conver-
gence, particularly as such results are difficult to obtain via
statistical characterizations due to the assumptions used in
such analyses {17, 18].

In this paper, we develop a general theory for under-
standing the behavior of adaptive filtering algorithms whose
updates depend on the coefficient vectors at time k and
k + 1. Our technique attempts to characterize the stability
of any such algorithm using the nonlinear relationship be-
tween e,(k) and e(k) as induced by the coefficient updates.
So long as

lex(K)] <

Ble(k)l, 0 < p <1 (6
at each iteration, we prove that an algorithm employing
non-mean-square error criteria is guaranteed to be both ro-
bust and stable. Such results are useful for several practical
reasons. For example, it is possible to easily determine the
form and value of the step size u(k) that guarantees the
stable operation of such an adaptive algorithm update. We



then consider coefficient updates that, like {4)-(5), effec-
tively employ the a posteriorierror signal to update the fil-
ter coeflicients, proving for a particular class of algorithms
that such updates are stable for any positive bounded step
size value. Simulations of a posterior: algorithms for un-
biased adaptive FIR and IIR filtering indicate the useful
convergence properties of the proposed schemes.

2. AN A POSTERIORI STABILITY THEORY

The technique for studying the stability of adaptive filters
using the relationship between the a priori and a posteriori
errors is an extension of the deterministic framework pre-
sented in [4]-{6], in which it is shown how adaptive filters
can be related to well-known robustness schemes in control
theory. Among other results, the theory provides conditions
for L, stability, and it relates the noises and uncertainties
within the system to the a priori and a postertor: errors.
Algorithms that map uncertainties to smaller error values
are inherently more robust.

In our extension, we consider the general algorithm form

wk+1) = w(k)+ u(k)f(e(k))x(k), (7

where the odd function f(e) is the derivative of a chosen
convex cost function ¥(e). This algorithm is a stochastic
gradient method for minimizing E{¢(e(k))} iteratively with
respect to w(k) [14], and its form includes many popular
algorithms such as the sign-error, least-mean- K, and power-
of-two quantized algorithms [7, 13].

For our analysis, we assume that d(k) is generated ac-
cording to the system identification model

x" (k)wepe +n(k), (8)

where Wopt is an unknown coefficient vector and n(k) is an
observation noise signal. We also assume that ||x(k)||> > €
for some ¢ > 0. Under such assumptions, we first state and
then prove the following theorem:

d(k) =

Theorem 1: Assume that an adaptive algorithm can be
written in the form

x(k)
(k)12

where Q(e) is any function. Then, the a posteriori error is
given by

w(k+1) = w(k)+[e(k) - Qe(k))] (9)

ep(k) = Qe(k)). (10)
Moreover, if Q(e) is contractive for all e such that
lex(R)] < Ble(R)], (11)

for some 0 < < 1, then the algorithm is Lo-stable.

Proof: To show that e,(k) is the a posteriori error for the
update in (9), assume that d(k) is of the form in (8). By
subtracting wop: from both sides of (9), we obtain

w(k +1) = w(k) — [e(k) — Q(e(k))] % (k))Hz’ (12)

where W(k) = wopr — W(k) is the coefficient error vector.
Pre-multiplying both sides  of this relation by xT (k) and

adding n(k) on both sides, we obtain (10), where ep(k) is
defined in (5).
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To prove the second part of the theorem, we take the Lo-
norms of both sides of (12). After some simplification the
relationship

& 2 22 (k) = I 2 [ep(k)—n(k)]%
I+ DI Ty = IO+ e 09

is obtained, where we have defined the noiseless error [signal

e(k) as
Wk = e(k)—n(k) = x“(BW(E). | (14)

It can be shown for any two real numbers a and b and any
positive constant ¢ that

a+t? < (1+C)[a2+%b2}. (15)

By assigning a = ep(k) and b = 5(k), we obtain

e®) =k < (1) 2R + 2P (R)] | (16)

Using the condition in (11), (16) becomes
lea () = n(B)]" < (1) [8*42(R) + n(k)Y* + Z0*(B)] (17)
Then, employing (15) for {e(k) + 7(k)}* yields

fen(k) — n()
< (140PF [m) (14 ) e ] (18)

If ¢ 1s chosen such that

1
0<e< -1, (19)

then

lep(k) —a(B)? < m (k) + v (k), (20)

where v1 and +, are positive constants such that 0 < 3 < 1.
Combining (13) and (20), we obtain the relation

G+ )P + (1 = )
n (k)

Iterating (21) from k£ =0 to k = n — 1 yields

I + (1 =) Z .

< 722 it & l)lz + WO, (22)

and thus
PR WL, 7’ (k)
Z HX(k)H2 1-m 1 M Z x®)2 (23)




Therefore, as n — oo, the weighted sum-of-s
e*(k)/||x(k)||* remains bounded so long as 7
is bounded O.

gua.red-errors

(B)/11x(R)II®

The above theorem indicates that the robustness of any
adaptive algorithm of the form in (7) can be determined
by considering the form of u(k)f(e(k)) that appears in the
coefficient updates. If the function

Q(e(k)) e(k) — u(R)|x(k)||* £ (e(k))

is contractive for all possible e(k), then the algorithm is ro-
bust in the sense of the bounded error condition in (23).
Such a technique can yield useful information about select-
ing p(k) for the chosen algorithm. The following example
indicates how to use these results.

(24)

Ezample: Consider the algorithm

w(k) + u(k)|e(k)| " e(k)x (k). (25)

This algorithm approximately minimizes the mean-Kth er-
ror criterion E{|e(k)|*} iteratively with respect to w(k)
over time. Since the algorithm is of the form in (7), the
stability of the algorithm is assured if the polynomial

Q(e(k)) (1~ w(®) e 2Ix(k)IP)e(k)  (26)

is contractive for all (k). Such will be the case if

w(k+1)

2

0 < uk) < le(®)|E=2||x(k)|]?"

(27)
This condition can be used to test and adjust the value of

p(k) at each iteration, if necessary, to ensure the system’s
stability O.

It should be stated that the result in (27) simply con-
strains p(k) so that the magnitude of u(k)f(e(k)) never
exceeds that of 7i(k)e(k) in the NLMS update in (1). The
true utility of these ideas is seen when one considers algo-
rithms of a somewhat-more-general nature than that in (7),
as described in the following sections.

3. A POSTERIORI ERROR ADAPTATION

Since the stability of an adaptive algorithm can be de-
termined from the relationship between the a priori and
a posteriori errors, it is reasonable to consider algorithms
that by their very structure guarantee their stability for all
possible parameter choices (k). In this section, we dis-
cuss algorithms whose forms satisfy this constraint. Such
algorithms employ the a posteriori error directly within the
coefficient updates. We first state and then prove the fol-
lowing theorem.

Theorem 2: Assume that an adaptive algorithm can be
written in the form

w(k+1) w(k) + u(k)f(ep(k))x(k),  (28)

where the a posteriori error ey(k) is as defined in (5) and
f(e) is any function satisfying

sgn(f(e)) (29)

1f(e)l (30)

for some v > 0. Then, the algorithm is Ly-stable for any
bounded p(k) > 0.

sgn(e)

> el
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Proof: By pre-multiplying both sides of the above equation
by x" (k) and subtracting d(k) from both sides, we obtain
the relation

ep(k)

e(k) ~ p(k)Ix(R)I[*f(ep(R)),  (31)

or

ep(k) + u(k)|1x(k)|]* f (ep(k)) (k).  (32)

Since sgn(f(e)) = sgn(e), we have that sgn(ey(k)) =
sgn(e(k)) when pu(k) > 0, and thus

lep(k)] + w(R)IXBIPIf (W) = le(k)l.  (33)
Using (30), we obtain
(1 + u(k)er)les(k)] < [e(k)]. (34)

Since the factor premultiplying |ep(k)| in (34) is strictly
greater than one, then the relation in (11) is satisfied. Thus,
from Theorem 1, the algorithm is stable O.

The above result is the extension of the a posteriori ver-
sion of the NLMS algorithm in (4) to the general case of
a nonlinear coefficient update. As is the case with the al-
gorithm in (4), we can freely choose any positive step size
p(k) in (28) and obtain stable behavior, regardless of the
forms of d(k) and x(k). Because ep(k) depends on w(k+1),
however, (28) is not an update, and thus to use this form,
one must explicitly find a solution to (33) so that the RHS
of (28) can be expressed in terms of w(k). An example
illustrates this calculation.

Ezample: Consider the algorithm
w(k+1)
= w(k) + u(k)[v]es(k)| + e5(k)lsgn(en(k))x (), (35)

which is of the form in (28). Thus, from (33), the relation-
ship between |ep(k)| and |e(k)] is

len(B)| + a(F)[vlep(k)| + lex(R)*] = le(k)l, (36)
where we have defined
a(k) = w®)|lx(F). (37)
This is a quadratic equation in [ep(k)| with positive root
lex (k)]
= :)_a‘l(—]a (—1 —a(k)y + /(1 + a(k)y)? + 4a(k)[e(k)D .
i (38)
As v tends to zero, the algorithm becomes
w(k+1) w(k) + ngn(e(k))x(k)(%)
h(e) = ! (1+2e — V1 +4e). (40)

2

Figure 1 plots the function h(e) for positive values of e,
where it is seen that it has similar behavior as e? near the
origin and similar behavior as e when e — oco. Thus, the
update in (39) guarantees that the magnitude of the update
direction never exceeds |e(k)| for any p(k) > 0 O.

As the previous example shows, the a posteriori version
of any algorithm can be quite complicated when placed in
standard a priori form. Such complexity issues must be
weighed in any particular application.
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Fig. 1: The function h(e) in (40).

4. EXTENSION TO BIAS REMOVAL
ALGORITHMS

We now consider algorithms of a different form than
that in (7). The algorithms considered here are designed
to reduce coefficient biases due to noisy regressor vectors
in adaptive FIR and IIR filters and are known as bias
removal, unit-norm-constrained, or anti-Hebbian methods
(15, 16, 19]-[22]. The coefficient updates for these algo-
rithms are

w(k+1) = wik)+a(R)e(k) [x(k) + g(k)w(k)] ,(41)

where g(k) is a term that depends on d(k), x(k), and/or
w (k). Two common choices for g(k) are

91(k) — e(k)

I—f——llv;(—k)w and  g2(k) =d(k).  (42)

We can determine the relationship between the a pri-
ori and a posteriori errors for these algorithms. Pre-
multiplying both sides of (41) by x” (k) and subtracting
d(k) from both sides, we obtain

ep(k) = {1—u(R)IIx(WI + g(k)y(k)]}e(k). (43)
From this equation, we see that |ep(k)| < |e(k)| when

|1 - wB)xEIP +g(R)yR)]| < 1, (44)

and thus we propose the step size choice

if |1x(k)11” + g(k)y(k) > 6,

otherwise,

Ho
w(k) = { (IJIX(k)Ilz + g(k)y(k)
(45)

where 0 < po < 1 and § is a positive constant. This choice
guarantees that |e (k)] < |e(k)| and sgn(ep(k)) = sgn(e(k))
for (41), which are two conditions that are also satisfied by
the a posteriori NLMS update in (4).

We can also determine a bias removal algorithm that ef-
fectively employs the updated coefficient vector w(k + 1)
within the coefficient updates, as defined by

w(k + 1) = w(k) + p(k)ep(k) [x(k) + d(R)w(k +1)]. (46)

By subtracting d(k)ep(k)w(k + 1) from both sides of (46)
and dividing the resulting expression by (1—pu{k)d(k)ep(k)),
we obtain

w(k+1) = [w (k) + n(k)ep(k)x(k)]. (47)

1
L—p(k)d(k)ep(k)

Then, using similar manipulations as in previous cases, we
obtain

B(R)A(EYE(K) + ep()b(R) = e(k) (48)
b(k) = 14 u(B)[||x(k)I* + d° (k)] (49)

such that
ep(k) = q(u(k)d(k),b(k), e(k)) (50)

g{a, b, c)

I

5]; {—b + M} : (51)

We have simulated the behaviors of the proposed bias
removal algorithms for a particular autoregressive modeling
task. In these simulations, the input and desired response
signals are generated as

sk) = 3+ v(h) (52)
z(k) = 1.317%(k —1) — 0.81%(k — 2) + s(k) (53)
dik) = =z(k+1)—s(k+1), (54)

where-s(k) and v(k) are zero-mean Gaussian signals with
variances of unity and 0.01, respectively. In each case, we
have chosen L = 3, such that wopr = [1.317 —0.81 0)7 in the

absence of any observation noise, and w(0) = [0 0 0]7 in all
cases. For each algorithm, we compute the average value of
the total coefficient error power ||W(k)||* as obtained from
ensemble averages of one hundred different simulation runs
on pseudo-random signals. We have chosen step sizes of
po(k) = 0.1, po = 0.1, po = 0.1, and pu(k) = 0.05 in
the NLMS algorithm in (1)-(3), the two bias removal al-
gorithms employing g; (k) and g2 (k) in {(41),(42),(45)], and
the a posteriori bias removal algorithm in [(47),(49)-(51)],
respectively.

Figure 2 shows the average behaviors of the various meth-
ods on these signals, where it is seen that the bias removal
algorithms perform better than the NLMS algorithm in es-
timating the coefficients of the unknown model. In partic-
ular, the a posteriori algorithm of [(47),(49)-(51)] is found
to provide much-faster convergence than that provided by
the other schemes for equal or lower coefficient error powers
in steady-state. Although simulations are not shown, vari-
ous tests confirmed that one cannot choose a fixed step size
for the bias removal algorithms in [(41),(42),(45)] and ob-
tain fast convergence behavior as exhibited by the schemes
shown. Clearly, the proposed methods provide faster, more
accurate convergence to a lower error state through their
choices of step sizes.

It should be noted that at the time of writing, the gen-
eral stability theory of the previous sections, and Theorems
1 and 2 in particular, have not been directly extended to
these cases. Even so, the simulated performance of the al-
gorithms appears to be quite good, and the stability of the
algorithms appears to be maintained in situations where
they are appropriate. Further analysis and study is needed
before a definitive statement regarding the robustness of
these algorithms can be given.
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Fig. 2: Convergence of the averaged total coefficient error

powers for the various algorithms in the simulation example.
CONCLUSIONS

In this paper, we have presented a general theory for un-
derstanding the robustness of non-mean-square-error-based
adaptive filtering algorithms using the relationship between
the a priori and a posteriori error signals. The theory pro-
vides a simple method for characterizing the stability prop-
erties of these adaptive filtering schemes that complements
more-complicated statistical analyses of the nonlinear co-
efficient updates. In addition, we have indicated how to
express and derive adaptive filtering algorithms that are
based on a posteriori error minimization, and we have ver-
ified their stability and robustness properties. Simulations
indicate the useful convergence properties of the resulting
algorithms as applied to bias removal techniques. The pro-
posed methods are expected to be useful for a number of
adaptive filtering algorithms and applications.
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