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A feedback structure is proposed for the design of l,-stable algorithms for

nonlinear adaptive filtering and identification. The structure further high-

lights explicit connections between classical schemes in IIR modeling and
more recent results in H* theory
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Abstract—This paper proposes a feedback structure for the
design of /,-stable algorithms for nonlinear adaptive filtering
and identification, and establishes explicit connections
between classical schemes in IIR modeling and more recent
results in H> theory. In particular, two algorithms due to
Feintuch and to Landau, as well as the so-called
pseudo-linear regression and Gauss—Newton algorithms, are
discussed within the framework proposed here. Additional
examples and simulation results are included to illustrate the
applicability of the approach to several nonlinear scenarios.
© 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Considerable research activity has been devoted
over the last two decades to the analysis and
design of adaptive algorithms in both signal
processing and control applications. In particu-
lar, several ingenious methods have been
proposed for the performance and stability
analysis of the varied adaptive schemes. Among
these, the most notable are the hyperstability
results of Popov, an account of which is given by
Landau (1979), the ODE approach of Ljung
(Ljung, 1977; Ljung and Soderstrom, 1983), and
the related class of averaging methods for
trajectory approximation, as described in the
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books by Anderson ez al. (1986) and Solo and
Kong (1995).

Correspondingly, in the last decade, there has
been an explosion of research in the areas of
robust (H™) filtering and control, as indicated by
several of the references at the end of this
paper—e.g. Doyle et al. (1989), Khargonekar
and Nagpal (1991), Basar and Bernhard (1991),
Yaesh and Shaked (1991), Green and Limebeer
(1995) and Hassibi et al. (1996). A major concern
in the H™ setup has been the design of filters and
controllers that are robust to parameter varia-
tions and to exogenous signals. In the filtering
context, for instance, it is currently known how
to design estimators with bounded 2-induced
norms, and the available results provide us with
(i) solvability and existence conditions, as well as
(ii) recursive methods for the construction of a
solution.

Motivated by these results, we take here an
alternative look at the analysis and design of
adaptive and identification schemes. One of the
objectives of this work is to show how to
reconcile, within a nonlinear estimation context,
earlier developments in stable adaptive schemes
with more recent developments in H™ design.
For this purpose, the discussion in this paper
exploits a useful tool in system theory that is
widely known as the small-gain theorem. While
this theorem can be reformulated in terms of
hyperstability or passivity results (Landau, 1979;
Anderson et al, 1986; Green and Limebeer,
1995), the analysis provided here has several
distinctive features that will become clear as the
discussion progresses.

At this stage, however, we only wish to
highlight the fact that by relying on the
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small-gain theorem, we can now advantageously
exploit the wealth of results that are already
available in the H™ setting. This is especially
helpful in the design (i.e. synthesis) phase. In
particular, it will allow us to propose an adaptive
structure that will be shown to include, as special
cases, several algorithms that have been derived
earlier in the literature (even prior to the
emergence of the H™ point of view). The
feedback formulation will also enable us to
establish that these earlier schemes are special
instances of the more recent class of H™ filters!

Moreover, although the feedback nature of
adaptive schemes has been advantageously
exploited in earlier places in the literature (e.g.
Ljung 1977, Landau, 1979), the feedback
configuration in this paper is of a different
nature. It not only refers to the fact that the
update equations of an adaptive scheme can be
put into a feedback form (as explained in
Landau, 1984), but is instead motivated by our
concern with the overall robustness performance
of the algorithm. For this reason, the feedback
configuration is defined here in such a way so as
to explicitly consider the effect of both the
measurement noise and the uncertainty in the
initial weight-vector guess on the overall
algorithm performance.

Notation. We use lower-case boldbace letters to
denote vectors (e.g. h) and capital boldface
letters to denote matrices (e.g. P). The asterisk *
denotes Hermitian conjugation (complex con-
jugation for scalars), and the notation ||x|3
denotes the squared Euclidean norm of a vector.
Also, A'? denotes a square-root factor of a
matrix A, namely, any matrix satisfying
APA*? = A,

We also use subscripts for time-indexing of
vector quantities (e.g. h;) and parenthesis for
time-indexing of scalar quantities (e.g. d(i)). We
further employ the shift operator notation
g 'u(k) =u(k —1). Hence applying an operator
W@ =3 ,wq* to a sequence d(i)
means W(g )d(i) = 3., wid(i — k).

2. AN EXAMPLE AND MOTIVATION

Consider a linear time-invariant autoregressive
model that is described by the difference
equation

M

d(i)= D, aid(i — k) + u(i). (1)

k=1
Here M is the order of the filter (assumed
known), u(i) is the value of the input sequence
at time / (also known), and the {a,} are unknown
filter coefficients that we wish to estimate from

noisy measurements of the output signal d(i),
say from m(i)=d(i) +v(i) for 0=i=<N. Here
m(i) and v(i) denote the noisy measurement and
the additive noise respectively at time i.

If we collect the past M values of d(i) into a
row vector d;_,,

d_,=[d(i-1) di-M), @)

and the M unknown coefficients a, into a column
vector w,

w=col{a;, a,,...,au} 3)

then (1) can be rewritten in a compact vector
form as d(i)=d,_;w+ u(i). Consequently, the
noisy measurements m(i) satisfy

m(i)=d,_,w+u(@)+v(@). )]

In (4) the quantities m(i) and u(i) are known,
and we can therefore introduce the known
quantity y(i) = m(i) — u(i) and write instead the
equivalent expression

y(i) = diyw +v(i). ®)

The problem can then be interpreted as follows:
we are given noisy quantities (or measurements)
y(i) that are related to the unknown w via the
term d,_,w as in (5). This term is not only
time-variant, but also nonlinear in w because
each entry of d;_, is itself a function of w, as is
evident from (1) and (2).

We can indicate more explicitly the nonlinear
dependency of the measurements {y({)} on the
unknown vector w by rewriting (5) in the more
generic form

y(&) = hi(w)w + v (i), (6)

where h,(w) denotes a time-variant nonlinear
(row vector) function of w. In the special case of
the above autoregressive example we have
h;(w)=d,;_,. More generally, however, we may
have situations with alternative forms for the
nonlinear term h;(w). Examples of such cases are
provided later in Section 5.

Now given the noisy measurements y(i) of (6),
we may distinguish between two problems.

(1) The first problem is to use the given
measurements y(i) in order to estimate the
unknown vector of parameters w. This
formulation has been extensively studied in
the literature, and several algorithms have
been proposed (see e.g. Landau, 1979;
Ljung, 1977; Ljung and Soderstrom, 1983).
We shall return to these classical solutions in
later sections of this paper (Sections 7-9).

(i) The second problem is to use the given
measurements y(i) in order to estimate the
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uncorrupted terms h;(w)w in (6). While a
distinction between cases (i) and (ii) may
not seem necessary in least-squares formula-
tions, it is nevertheless crucial in H™-based
designs. It turns out that if one poses an H™
problem for estimating w and an H~
problem for estimating h;(w)w, the solutions
will in general be distinct. More interesting
perhaps, it is the H™ estimation of h;(w)w,
rather than w, that will allow us to establish
connections with the classical schemes
mentioned in (i).

To accommodate case (ii) above, we shall
define an auxiliary variable

z(i) = h(w)w, @)

and pose the problem of estimating z (i) from the
y(i) (according to a certain H™ criterion to be
defined below). In fact, we can allow for more
general cases and define auxiliary variables of
the form

z(i) = g(w)w, (8)

for some given (row vector) function g;(w) that
may also be time-variant and a function of the
unknown w. It may also be a constant vector that
is independent of both time and w, say
2(i) =gw=z. This level of generality allows us
to handle other situations of interest. For
example, assume that we are only interested in
estimating the third filter coefficient of the
autoregressive model; then we would choose
g=[00100...0]inz=gw.

We are now in a position to state the
nonlinear estimation setting of this paper. For
convenience of presentation, the problem will be
formulated in a state-space context.

3. THE NONLINEAR H* PROBLEM

Consider a collection of noisy measurements
{y(i)}L, that are related to a column vector of
unknown parameters w via the nonlinear
relation

y(@) =hi(w)w + v (0). ®

Here v(i) stands for the noise component (or
modeling uncertainties) at the discrete time
instant i, and h;(w) denotes a known time-
variant row vector whose entries are themselves
functions of the unknown entries of w.

A special example of an autoregressive model
that leads to an equation of the form (9) was
discussed in the previous section. However,
other nonlinear problems also lead to measure-
ment structures that are similar to (9), and hence
the discussion in this section applies to these
problems as well. Examples to this effect will be

postponed to Sections 5, 6.2 and 6.3 (see,
though, (42), (46) and (51)).

The measurements {y(i)} can be alternatively
interpreted as the noisy outputs of a simple
state-space model of the form

X1 =X, Xg=W, (10)

y(i) = h(x)x; + v(i). (1)

The state equation in (10) is trivial: the state
vector does not change with time, and it
therefore remains equal to the initial state
vector, which is taken to be w, i.e.
X =X, =... =X =W,

(We may add, though, that the analysis of this
paper extends to more general state-space
models, e.g. with driving inputs in the state
equation and nonunity transition matrices.)

Let z(i) denote a desired combination of the
unknown vector w, say

z(i) = g(w)w = gi(x,)x;, (12)

for some known function form gi(-). The
objective is to employ the available measure-
ments y(i) in order to estimate z(i). The
estimate of z(i) is to be computed in a causal
manner, ie. it can only depend on the
observations that are available up to time i,
{y(), 0=j=i}. A motivation for this problem in
the context of autoregressive modeling was
provided in Section 2. Similar problem formula-
tions also arise in other contexts, and will be
illustrated in Section 5.

So let Z(i | i) denote an estimate for z(i) that
is dependent on the available observation data
{y()} up to time i, and which is defined
according to the following H™ criterion.

Let II, be a given positive-definite matrix and
choose any initial guess for w, which we shall
denote by X,. Define the weighted initial weight
error %, = Iy "*(xo ~ X,), as well as the estima-
tion error

e (i) =z (i) = 2(i | i). (13)
For every time instant i, define the ratio
i N2
r([) _ Ej:()lep(])| (14)

%ol + Zjmo (DI

This ratio provides a relative measure of the
energies due to the estimation errors, the error
in the initial guess X,, and the disturbances v(-).

Problem 1. (Nonlinear H™ estimation). Given
(10)-(12), determine, if possible, causal estimates
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z‘(j]j), for j=0,1,..., N, so as to guarantee
that, for any X, and v(-), the ratios r(i) will be
bounded by a given positive constant y?, say

riy<vy* for 0<i=<N. (15)

Assume we collect the estimation errors e, (i)
into a column vector, say
e, =col{e,(0), e,(1),...,¢,(N)}, (16)
and the noise sequence and the initial weight-
error into another column vector, say

n = col {X,, v} = disturbance vector, (17)
where v contains the additive noise sequence
v =col{v(0), v(1), ..., v(N)} (18)

That is, n contains the disturbance signals (these
are signals that we have no control over) while
€, contains the resulting estimation errors (these
are the errors that result from the solution). Now
if a solution to the estimation problem exists, it
should induce a mapping, say J,, from the
quantities in (17) to the quantities in (16)
satisfying r(N) < y°. In this case we say that the
level of robustness is vy.

As mentioned earlier, while the state equation
(10) is trivial, the nonlinear H™ problem can be
stated in full generality (i.e. for general
state-space equations). In this paper, however,
we focus on the special state equation form (10).
Such forms arise also in adaptive least-squares
problems (Sayed and Kailath, 1994), and, for this
reason, we may refer to the special Problem 1 as
a nonlinear H™-adaptive (or identification)
problem.

4. AN APPROXIMATE H*-LINEAR SOLUTION

The presence of the w-dependent (nonlinear)
functions h;(w) and g;(w), in both the numerator
and the denominator of the cost ratio r(i) in
(14), complicates the solution of Problem 1. For
this reason, we proceed here in two steps.

(i) We first assume that the nonlinear terms
h;,(w) and g,(w) (which are dependent on w)
are replaced by estimates h; and g that do
not depend on w but only causally on the
given measurements. This allows us to
approximate the nonlinear problem by a
standard linear H™ setting, and therefore
proceed with a linear filter design. Lineari-
zations of this kind are common in the
literature, and have often been invoked in
many different contexts in order to handle

nonlinear situations. However, a linearized
design need not (and it often does not)
guarantee that performance specifications
for the original nonlinear problem will
necessarily be met by the linearized solution.
For this reason, our design procedure
proposes a second step, the purpose of
which is to clarify under what conditions,
and subject to what modifications, the
linearized design can still guarantee the
desired performance for the nonlinear
setting.

(ii) More specifically, by using the estimates h;
and § to design a linear H™ filter with a
desired level of robustness, we end up with a
modified mapping, say I, from a modified
disturbance vector m' to a modified

estimation error vector, e, = col{¢,(i)}. But

since our objective is to induce a robust
mapping relative to the original disturbance
vector m, rather than a modified version of
it, we proceed to embed the linear H™
design into a feedback structure. The
purpose of the feedback configuration is to
guarantee that the resulting induced map-

ping from the original disturbance vector n

(rather than m’) to the modified estimation

errors e, will satisfy a desired level of

robustness (see Theorem 1 below). We shall
also argue later that, in several cases, the use

of the modified estimation errors e,(*),

instead of the original e,(-), does not affect

the overall desired performance (see e.g.

Sections 5 and 6.1).

4.1. Vector estimates

We first assume that we have available at each
time instant i, estimates h;, and g for h;(w) and
g/(w) respectively. These estimates may be
computed in different forms and should only
depend on known quantities (or measurements)
up to time { — 1.

One possibility is the so-called bootstrap
technique (Ljung and Soderstrom, 1983); it
assumes that we have access to recursive
estimates of the parameter vector w, which are
then employed in approximating h;(w) and g;(w);
if we let w,_; denote the estimate of w at time
i — 1 that is based on the measurements available
up to that time instant then the bootstrap
method uses

h; =hi(w;,_ ), &=g(w.) (19)
That is, it evaluates the nonlinear functions h;(w)
and g(w) at the weight estimate w;,_,. A
construction along these lines for the class of
so-called modifiable nonlinear functions is
discussed in Jang and Speyer (1994) in the
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context of continuous-time filtering. In general,
however, the bootstrap construction (19) may
not be sufficient to guarantee an overall /,-stable
filter. Examples are provided in Sections 5.1
and 7.

We may remark here that the time variations
in h, and g will be due to both known time
dependences in the original functions h;(w) and
g:(w), as well as nonlinear dependences on the
weight-vector estimates themselves.

4.2, Step 1: a linear design

Assume that, in some way, at each time
instant i we have available estimates h; and §
that may have been computed either according
to (19) or according to some other construction.

Using the {(h;, g}, we can rewrite the earlier
nonlinear state-space model (10), (11) in terms
of the ‘linearized’ version

Xis1=X;, Xo=W, (20)
y(i) =hx; +v' (i), (21)

where h; is now independent of the state vector
x;, and v'(i) denotes the difference between y(i)
and the approximate term h;x;. The v'(i) can be
interpreted as a modified disturbance, and it can
also be related to the original disturbance v(i)
since
v'(D)=y()— ﬁixi
= hy(x;)x; + v(i) - iiixi
=hw -hlw+o@). (22

That is, v'(i) and v(i) differ by [h,(w)— h]w,
which essentially measures how far is the
approximation h; from h;.

Let also z'(i) denote the approximation of z(i)
in (12), namely

(i) =gw=gx, (23)

Since § is a known vector, z'(i) simply
corresponds to a linear combination of the
entries of w.

We can now pose the problem of linearly and
causally estimating the z'(i) from the available
measurements y(i) and using the linear state-
space model (20), (21).

So let 2'(i | i) denote an estimate for z'(i) that
is dependent on the available observation data
{y(*)} up to time i, and which is defined
according to the following H™ criterion. Define

(i) =2'()—2'(i | i), (24)

as well as the ratios

iy = Sheolef0)F

= . . 25
1%l + 2o v () @)

Problem 2. (Linearized H™ estimation). Given
(20)-(23), determine, if possible, causal estim-
ates £'(j|j), for j=0,1,...,N, so as to
guarantee that, for all X, and v'(-), the ratios
r'(i) will be bounded by a given positive constant
£, say:

r@)<¢& for 0<i<N. (26)

Assume again that we collect the estimation
errors e,(i) into a column vector e,, the modified
noise sequence v’'(i) into v', and define the
modified disturbance vector n’ = col{X,, v'}. If a
solution to the linearized estimation problem
exists then it would induce a (block) lower
triangular mapping from n’ to e, say J, whose
2-induced norm will be bounded by &.

Problem 2 is a special case of a standard
finite-horizon linear H™-filter design. One pos-
sible solution is the following H™ filter. (see e.g.
Yaesh and Shaked, 1991; Hassibi et al. 1996).

Algorithm 1. (A posteriori filter). Estimates
2'(j |j) that meet the requirements (26) exist if
and only if the matrices P;.; given below are
positive-definite for j=0,1,..., N. In this case
we can take £'(j|j)=gg;, where the state
estimates X;; (also denoted by w;) can be
evaluated recursively as follows:

X =Xy- Phx(1 +hPhr)"!
X [y() =& 1], (27)

with initial condition X_;_; =X, and where P;
satisfies the Riccati difference equation: Py, = I,

P}'+1 = Pj - Pj[gj* ﬁ/*]Re_.jll:i‘glj:jIPj’ (28)

J
with

r={[ i Jeiee i1}

The Riccati difference equation (28) can be
rewritten in an alternative form that will be more
convenient for our analysis. By employing the
matrix-inversion formula (see e.g. Kailath, 1980),
we obtain the following update for P; ;

Pi:‘ll = l)/"l - gvzgi*gj + ﬁf*ﬁj' (29)

This form shows how the positivity of P; is
affected by the vectors {g;, h;} and will be useful
in later sections.

The filter of Algorithm 1 is a so-called filtered
or a posteriori version, since each estimate
2'(i|i) also depends on the most recent
measurement y(i).
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There is a related estimation or a priori
version, which estimates the z'(i) by using only
the data {y(j)} up to time i — 1 rather than time
i. If we denote these estimates by '(i | i — 1) and
the corresponding estimation errors by

e()=z'()-2'Gli-1), (30)

then the a priori fllter considers instead the
ratios

: 2o lea()l
r'@i)=— > 31
O mizmeor OV
and tries to bound them, say by
r'@i)<¢& for 0<i=<N. (32)

Algorithm 1A. (A priori filter). Estimates
2'(j|j—1) that meet the requirements (32)
exist if and only if the matrices l~’,- given below
are positive-definite for j=0,1,..., N. In this
case we can take £'(j | j — 1) = §&;;_,, where the
state estimates X;|;_; (also denoted by w;_;) can
be evaluated recursively as follows. Let

P=(P' - £7%8r8) "
Then
i) =R
+Bhr(L+ BB [y () - h&ym] (33)
with initial condition X, =X, and P; is as in
Algorithm 1.

We focus in the next few sections on the a
posteriori filter (Algorithm 1), and return in later
sections to the a priori version (Algorithm 1A).

4.3. Step 2: a feedback structure

As mentioned earlier, the solution given by
Algorithm 1 induces a mapping 7, from the
modified disturbance vector m’ to the modified
estimation errors e, (see definitions after (26)).
Its 2-induced norm is guaranteed to be bounded
by ¢ in view of (26). This is indicated
schematically in Fig. 1.

In view of (22), the modified disturbance v’(i)
is related to the original disturbance v(i) and to
the difference [h,(w)— h;Jw. However, it may
often happen (see examples in the next section)
that the difference [h,(w) — h]w can be related
to e, (i), and in these cases we should be able to
re-express the modified disturbance v'(i) in
terms of {v(j), e,(j)}.

This possibility is dependent on how the
estimates {fl,-, g} are constructed, and several

Xo —>
Ty [ e()

() —

Fig. 1. Induced map.

examples are provided in the next section. For
the time being, let us simply assume that such a
construction has been determined. It would then
induce a relation between the original noise
vector v, the modified estimation errors e, and
the modified noise vector v’, say of the general
form

v = Vv + Fne,, 34)

where %y and ¥y denote causal linear operators
(or filters). Incorporating these operators into
Fig. 1 would lead to the feedback structure of
Fig. 2.

5. SEVERAL ILLUSTRATIVE EXAMPLES

Before discussing the implications of the
feedback scheme of Fig. 2 on the overall desired
robustness performance, we first exhibit several
examples that illustrate how such feedback
structures can be induced by proper construc-
tions of the estiamtes {h,, g:}. We start with the
autoregressive model of Section 2.

5.1. Back to the autoregressive example

In the autoregressive problem of Section 2, we
were given noisy measurements y(i) satisfying
(6) with the row vector h;(w) being equal to d;_,
in (2). That is, the entries of h,(w) where
time-delayed versions of each other,

h(w)=[d(i -1) d(i-2) d(i — M)],
(35)
where each d(i) in turn satisfied
d(i)=d;_yw+ u(i) = h(w)w+u(@). (36)

Moreover, we were interested in estimating the
uncorrupted term d,_;w, which we defined as
z(i) = hy(w)w in (7). Therefore, for this example,
we have g;(w) = h;(w). R

A construction for the estimate h; is suggested
by the above expressions. Indeed, assume we
incorporate a similar time-shift structure into the
enetries of h; (or d,_,), say (cf. (35)):

h=[di-1) aG-2) @i —M)], (37)

where the estimates d (i) are further evaluated as
suggested by the defining relation (36), namely

) =d,_w, +u@) =hw, +u@). (38)

Xo e;,(-)
v() | T

v(-) = vy 'qp

Fn

Fig. 2. Feedback structure of the linearized solution.
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Here, as mentioned earlier, w; denotes an
estimate for w that is based on the data up to
time i. We may further note that the estimate h;
in (37) is not of the bootstrap type (19). The
reason is that each entry d(j) in (37) is
dependent on w; (in view of (38)), and
consequently h; is not only a function of the most
recent estiamte w;_;.

The constructions (37) and (38) lead to a
relation of the form (34) between v'(i) and
{v(i), e,(i)}, where now (since g; = h;)

e (i) = hw — hw,. (39)

To wverify this claim, let us denote the
difference d(i) —d(i) by d(i) (which is in fact
equal to e,(i)). This measures the error in
estimating d(i) by employing d(i). Let us also
associate with the unknown vector w the
polynomial A(g~") =34, a,g ¥, where the {a,}
denote the entries of w.

It is then easy to see that the expression (4.22)
for v'(i) becomes

v'(i) = [hi(w) — h]w + v(i)
= A(g " )d (@) + v(i). (40)
We now relate d(i) to e, (i). Indeed,
d(i) = h(w)w — hw,
= {b(w) — h}w + /(i)
=A(g~")d (@) + ;i)

1 )
= rg(“q—r)ep(t)- 41)
Combining with (40), we see that
. . A(g™ Vo
)= v + T,

which provides an explicit relation among the
variables {v'(i), v(i), e,(i)}, as desired.

In terms of the structure of Fig. 2, we have
Vv =1 (the identity operator), and %y equal to
the (N + 1) X (N + 1) leading triangular Toeplitz
operator that describes the action of A/(1— A)
over the first N+1 samples of {e,(-)} (in the
absence of initial conditions). The entries of %y
are the first N+ 1 coefficients of the expansion
of A/(1— A) in terms of powers of g~'. This is
depicted schematically in Fig. 3.

Xo e
O T )
v(-) Y

——A—
1-4

Fig. 3. The autoregressive model.

5.2. An example of a sinusoidal nonlinearity

Assume w is a scalar parameter that we wish
to identify. For this purpose, noisy measure-
ments {y(i)} are available that are related to w as
follows:

y(i) ={c +a(i)cos [b())w]iw + v(i), (42)

where a(i) and b(i) are known (scalar-valued)
sequences and c is a known positive constant. In
the language of the model (9), this corresponds
to the choice.

hi(w)=c + a(i) cos [b(i)w].

(hi(w) is now a scalar-valued function rather
than a vector function. For this reason, we are
not employing boldface notation to refer to
h;(w) in order to be consistent with our earlier
convention.)

The quantity z(i) that is of interest in this
problem is z(i)=w and therefore (cf. (12)),
giw)=1. That is, g(w) is simply the unit
constant, and consequently we can set §,=1=
g(w). In this example the functions h(w) and
gi(w) are different and, furthermore, e,(i) = e,(i)
since no approximations are needed for g;(w).

We proceed to replace h;(w) by the estimate

h,=c+a(i)cos [b(i)w;_] = hi(w;_y), (43)

where w;_; denotes an estimate for the
coefficient w that is based on the observations up
to time i{ —1. This is now an estimate of the
bootstrap form (19). Based on this construction,
we have

e,(N=e()=8(w—-—w)=w-w, (44)
and (cf. (22))
v'(i) =v(i) + [A(w) — hi(w,-)]w. (45)

Assuming the function h(w) is real-valued and
sufficiently smooth (or continuous), we now
invoke a wuseful result from mathematical
analysis, namely the mean-value theorem. It
allows us to replace the difference #h;(w)—
h;(w;_,) by scalar multiple of w —w,_,. More
precisely, the mean-value theorem guarantees
the existence of a point @;,_, (lying along the
segment connecting w and w;_,) such that the
following exact equality holds:

hi(w) — hi(w;_) = fli(“—’pl)(w —Wi_1),

whe_re #; denotes the derivative of 4, and is equal
to h;(w)= —a(i)b(i)sin [b(i)w]. This allows us
to rewrite (45) as

v'(i) =v(i) — a(i)b(i)we,(i — 1) sin [b(i)W;-,].

This again establishes a relation among the
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V(") T ey()

—a(3)b(i)w sin[b(i)w;_1] ¢~

Fig. 4. A sinusoidal nonlinearity.

quantities {v'(-), v(), e,(-)}, as shown in Fig. 4.
In this case the feedback loop is a unit delay with
coefficient —a(i)b(i)w sin [b(i)w,_,].

We shall see later in our analysis of the I,
stability of the approximate solution that what
matters is the norm of the feedback loop. In
other words, the fact that w,_; is an unknown in
Fig. 4 does not pose a significant problem, since
its presence will be overcome by noting that a
sinusoidal function is always bounded by one no
matter what the value of its argument is (see the
discussion in Section 6.2).

A related example that fits into this remark
arises in the context of Perceptron training in
neural networks. In this case, a feedback
structure of the form shown in Fig. 4 also arises,
with a feedback loop that depends on the
derivative of the activation function. A discus-
sion along these lines can be found in Sayed and
Rupp (1995), where it is further shown how to
improve the convergence speed of the training
phase by studying the energy flow through the
feedback interconnection.

5.3. A third example: a squaring system
Assume again that w is a scalar parameter that
we wish to identify and that

y(i) = w? + v(i). (46)
This corresponds to A;(w) =w and g(w)=1. We
set h(w)=w,_, and gi=g(w)=1. Conse-
quently,

e(i)=e,(i)=w—-w, 47)
and (cf. (22))
V') =v()+ (w—wi_)w=v(i) +e,(i — D)w.

In this case the feedback loop is also a unit
delay, with gain equal to w itself. See Fig. 5.

Xo .
7o 7 L

)
v(") 'Y

~1

wg

Fig. 5. A squaring system.

S.4. A fourth example: the vector case

We may as well mention here that we can
replace the row vectors h;(w) and g;(w) in (11)
and (12) by matrices, say H;(w) and G,(w)
respectively. Accordingly, the scalar quantities
{y(@), v(@), z(i), e,(i), e,(i)} would become
column vectors, say {y;, v, z,e,; €,;} (recall
that we use subscripts, rather than parentheses,
to time-index vector and matrix quantities).

The statements and solutions of Problems 1
and 2 remain unchanged except for the
notational change of replacing h; and g by H;
and G, respectively. We also replace the scalar
quantities by the respective vector quantities.

For example, consider again the expression

(11),

y(i) = hi(w)w + (i), (48)
and assume we are interested in estimating the
column vector w. In this case h;(w) is still a row

vector, but G,(w) =1 is now the identity matrix.
If we replace h,(w) by h;(w;_,) and use
€,=€, =W—W, (49)
then, according to (22),
v’ (i) = v(i) + [hi(w) — hy(w,_;)]w. (50)

As an illustration, consider the following
contrived example:

y(i) = v(i)
wq
+[e™™ In[BGi)w,] y(@i)| wy |, (51)
Wi

where {w;, w,, w;} are the entries of the
unknown vector w, and {a(i), B(i), y(i)} are
known sequences. Let {w;, w,; wsy;} denote
estimates of the weight-vector entries. Then,
using the mean-value theorem, we can write

v'(i)=v(i)+e),

a(i)e* - 0 0
1
X 0 = 0 w,
Wai-1
0 0 2y(i)Ws; 4

where

T _
€= [w) — Wi, Wra— Wy Wi wyl

6. I, STABILITY OF THE FEEDBACK STRUCTURE

We now return to the general setting of the
feedback structure shown in Fig. 2 and assume
tha the mappings 5, V5 and %, have been
identified (as demonstrated in the above
examples).

The question of interest in this section is to
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verify under what conditions on the norms of
{In, Vv, Fv} the overall mapping from the
original disturbance vector m (which includes X,
and v(-), as defined in (17)) to the modified
estimation errors e, (defined after (4.26)) is /,
stable.

For this purpose, we let | - |, i.a denote the
2-induced norm of a linear operator, e.g.
ITnxIl2

| TN |l2,ina = sup
" x#0  ||1x[|,

Theorem 1. Consider the recursive solution of
Algorithm 1 and assume that the estimates h;
and g result in a feedback structure of the form
indicated in Fig. 2. If the condition

N TMN2ina | Fnll2ina <1, (52)

is satisfied then the mapping from the original
disturbances n to the modified errors e, is /,
stable in the sense that

lesll2 =< ka{llXollz + | Vallzina I¥ll2},  (53)
where
_ [
1- ||g’1'v "2,ind ”gNllz,ind '

N

Proof. The filter % maps the vector e, to
another vector, say m;. Likewise, the filter ¥y
maps the vector v to another vector, say m,. It
follows from the definition of the 2-induced
norm of an operator that

Iy 112 =< | Vil 2.ina (V125

Imell2 =< | Fvllzina ll€pll2-
But v/ =n, + n,, and it follows from the triangle
inequality for norms that

¥ [l2< [im, |l + [Img 2.

Therefore

IVl = 1 Vi llzina 1¥l2 + | Fnll2ina ll€pll2 . (54)
Now T maps {X,, v’} into e}, and hence

lepllz= 1 Tnllzina Rl + IV 1l2).  (55)
Using (52) and (54) in (55), we obtain (53). O

The above statement can be regarded as a
special manifestation of the small-gain theorem
(see e.g. Khalil, 1992, p.214; Vidyasagar, 1993,
p. 337) when applied to the feedback connection
of Fig. 2.

Note also that since we already know that
| TNll2ina <& (when a solution to the design
Problem 2 exists), a sufficient condition for (52)
to hold is to require that

| Fallz,ina = 1/€. (56)

6.1. A remark on the limit behaviour

Assume a limiting (infinite-horizon) solution
Iy exists to Problem 2 as N — » (examples are
discussed in Sections 7 and 8, where it is shown
that in some cases of interest the solvability
condition of Algorithm 1 becomes trivial).
Accordingly, let J’, &% and V7 denote the
(corresponding) semi-infinote operators satisfy-
ing (52) and (53) with N— « and || ¥|2,ing < .

In this situation, with the noise sequence
{v(-)} having finite energy, i.e.

%

> ()P <=,

j=0

the estimation errors will also have finite energy
(cf. (53)),

E les (I < 2.

This implies that error convergence is guar-
anteed, 1.e.

lim e, () = 0.
joo

If we return to the example of Section 5.1, we
see from (41) that a convergent e, (i) would
imply a convergent d(i), which would in turn
imply that z(i) is recovered, since d(i)— d(i)
and z(i) = d(@i) — u(i).

6.2. Back to the sinusoidal example
In the sinusoidal example of Section 5.2 the
feedback loop is a unit delay that is given by

—a(i)b(iyw sin [b(i)w,_,]q "

That is, at each time constant i, the error
e,(i —1) is simply scaled by the scalar quantity
—a(D)b()w sin [b()W;_,].

Assume for now that a feedforward robust
filter I, of level £ exists (i.e. that the solvability
conditions of Algorithm 1 are satisfied). The /,
stability of the overall system of Fig. 4 can then
be guaranteed if we require (cf. (56))

la(i)b(i)w sin [b(z')\a_z,-_1]|5§t for all i. (57)

This condition is in terms of w,_,, which is
unknown. To overcome this difficulty, we may
simply invoke the fact that —1 <sin [b({)®;,_] =
1 no matter what w,_, is. In this case a sufficient
condition for (57) to hold is to require that

Sl‘}p la(@)b(w| = é (58)

This in effect specifies a region of the real axis



22 A. H. Sayed and M. Rupp

for which /, stability can be guaranteed: if w lies
in this region then a robust nonlinear estimator
can be designed according to the explanation in
the ecarlier sections. We now clarify this
statement.

Recall from Algorithm 1 that the existence of
a robust feedforward filter 7 requires the
positivity of the Riccati variables P, In the
current context, using (43), the expression (29)
becomes (P; is now a scalar quantity written as

r(j)
p G+ ) =p7'(j)— ¢
+ ¢ + a(j) cos [b(j)w; ]I

Since the initial value p(0) is assumed positive
(because of the choice of Il;), the above update
shows that as long as |c + a(j) cos [b(j)w;_,]” is
not smaller than £, the successive p(j) will be
guaranteed to remain positive. Now the function
cos(-) is always bounded by 1. Therefore a
sufficient condition for the existence of the filter
~ 1s for the {a(j)} to satisfy

[c—la(DIF=¢

Assume ¢ >sup; |a(j)l. Then the above result
may also be interpreted as follows: it suggests a
choice for £ In other words, if one chooses ¢
such that

§l=c- sup la(/)I (59)

then a filter 7 will be guaranteed to exist.
Assume, for example, that ¢ =6 and

b)) <02, 2.0<la(i)|<40  (60)

for all i. According to (59), one can choose any ¢
such that £7' =2.0 and the feedforward filter
of Algorithm 1 will exist.

The particular choice of ¢ will end up
restricting the interval over which w can lie for a

55
y(3)
4
0 5 100 150 200
0.01
w — w;|
0.008
0.008
0.004
000

0

[¢] 50 100 150 200

Fig. 6. Simulation for a sinusoidal nonlinearity.

guaranteed overall /,-stable design (because of
(58)). In particular, the choice £ =1 requires (cf.
(58)) 10.8w| =1 or, equivalently,

w e [~1.25,1.25)

To confirm the above results, noisy measure-
ments y(i) were generated via

y() ={6 + a(i) cos [b()w]}w + v(i),

with w = 0.54 and where the sequences a(i) and
b(i) were generated randomly with values
bounded as in (60). Also, the noise sequence was
randomly chosen in /,, and the level of
robustness ¢ was chosen to be £ = 1. Algorithm 1
was then used with initial conditions X, =0 and
p(0) = 1. Figure 6 shows the signal y(i) and the
resulting error signal w —w;. It is clear from the
figure that the error e,(i) of the robust filter
approaches zero rather rapidly.

6.3. Back to the square system

A similar discussion holds for the squaring
system of Section 5.3, where the feedback loop is
determined by w itself. Assume again that a
feedforward robust filter J5 with level ¢ exists.
The [, stability of the overall system of Fig. 5
would then require (cf. (56)) that

|w|51<:>—15w5—.
& £ 3
In other words, if the unknown w lies in the
interval [—1/¢ 1/£¢] then a robust nonlinear
estimator can be designed by following the
discussion of the earlier sections.
Moreover, in this example, 4, =w;_, and the
solvability conditions would require the positi-
vity of the Riccati variables p(j) in (cf. (29))

Pkl(]. +1) :P_l(j) - 5“2 + |Wj—1|2-

This suggests that if £ 2 is chosen small enough
(smaller than the energies of the successive
weight estimates) then |w,_,|> — £7>=0 for all j
and the successive p(j) will be positive.

Figure 7 shows the results of a simulation for a
squaring system y(i) =w?”+ v(i) with w =0.54.
The noise sequence was randomly chosen in [,
and the initial guess was x,=0.5 with p(0)=1
and £=3.0. It was observed for this example
that the difference |w,|* — £ 2 remained positive
so that the solvability conditions were satisfied
during the simulation.

7. THE CASE OF SYSTEMS WITH SHIFT
STRUCTURE

The case of systems where the h;(w) vector has
time-shifted entries often arises in applications.
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w-—w;| o4

50 100

Fig. 7. Simulation for a squaring system.

We examined an example to this effect in the
context of autoregressive modeling in Section 2.
A similar situation also arises in ARMA
modeling, as discussed later. For this reason, we
shall now study in more detail this subclass of
systems and clarify the connections with several
earlier results in the literature.

We still consider the measurement model
y(i) = hy(w)w + v(i) with the desired signal taken
as z(i)=h(w)w, and assume the row vector
h;(w) has shift structure,

h(w)=[d(i—1) dG-2) ... d(i—-M)]. (61)

For generality, we further assume that each
entry d(i) is generated via a relation of the form

d(i) = S(g~")[h(w)w], (62)

where S(g”') denotes a known linear time-
invariant filter. This means that d(i) is obtained
by filtering the signal h,(w)w through S. The
special case S(g~')=1 arises in autoregressive
modeling, and was considered in Section 2.

Following the discussion of Section 5.1, we
again define

h=[dGi-1) dG-2) d(i—M)], (63)
where the {d(-)} are evaluated via (as suggested
by (62))

d(i)=S(g~")(hw,). (64)

In this case we have

ey (i) = hw — hw,,
and we get
v'(i)) = W(g Hd(®)] +v(), (65)
with
. S(g™")
YOS W

le,()],  (66)

where W(g~') is the polynomial associated with
the entries of w. Consequently,

S(g W™
1-S(@ HYW(™)
which again provides an explicit relation
between the variables {v'(-), v(-), e,(-)}. This is
depicted in Fig. 8.

A sufficient condition for (52) to hold is to
require that || %y |l2.ina < 1/€. This is satisfied if

v'(i) = (i) +

lex ()],

is stable, (67)
» 1=
and
| ESE@W(e)
o 11— 8(e“)W(e*)

for0=w=2nm

Writing down Algorithm 1 for this case (with
h; = &), we obtain the following filter equations
for 0<j= N (the equations are now written, for
convenience of exposition and for ease of
comparison with results from the literature, in
terms of w; rather than &;;; the initial condition
is now also denoted by w_, rather than X,):

X [y() = hyw ], (69)

(70)

<1, (68)

.o~ Th
P,., =P, P[h* h]*]Re'}[ﬁ’_]Pj,

]

e S B i)

)

The positivity of the matrices P;,; over
0<j=N, as well as the condition (68),
guarantee that the above filter attains a level of
robustness that is upper-bounded by

_ 1T ]12,ima
1- || *OJ.I’VHZJnd ||=07’N||2ind

That is, in view of (6.53),
llepll2 = kn(llXolla + IIVIl2). (71)

The positivity condition is in fact always met if £
is chosen to be a positive real number not
smaller than one. This is clarified in the next
section, where we highlight a connection to the
so-called PLR algorithm.

kn

%o enl’)
Ol Ty
o) ¥

Fig. 8. The case of systems with shift structure.
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7.1. The pseudo-linear regression algorithm

An interesting point to note here is that the
H™-based algorithm (69) can in fact be related to
so-called pseudo-linear regression (PLR) algo-
rithms in IIR modeling (see e.g. Landau, 1979,
p. 167). To clarify this, we first note, as in (29),
that the Riccati recursion for P; in the above
algorithm is equivalent to

P, =P+ (1 - ¢ )hrh, (72)
This means that the positivity condition on the
{P;} is always satisfied for any choice ¢ =1 and
Il, > 0. Moreover, if we again invert (72), we
find that the Riccati recursion (70) can be

rewritten in the equivalent (and more recog-
nizable) form

_ Piﬁl*ﬁipi
(1-¢3 +hPh*

P., =P, (73)
The expressions (69) and (73) constitute the a
posteriori form of the so-called PLR algorithm.
A related a priori version is derived at the end of
Section 9.2.

The expression (69) also includes as special
cases forms of recursive identification schemes
other than the PLR algorithm discussed above,
such as the important class of instantaneous-
gradient-basis filters. This is detailed in the next
section.

8. INSTANTANEOUS-GRADIENT-BASED IIR
ADAPTIVE FILTERS

Note that the Riccati recursion (70) (or (72))
trivializes in an important special case given
below. This fact was first noted in Hassibi ez al.
(1993) in the linear context of FIR (or MA)
identification (for a related discussion in the
continuous-time case, (see also Didinsky et al.
1995; Sayed and Kokotovic, 1995). We now
extend the result to the nonlinear scenario of the
previous sections.

If £ is chosen to be one, £=1, then the
recursion (72) trivializes to

P]:.I] = Pj_l = H(;ly

where Il is the initial condition. The solvability
condition then becomes II,>0, which is always
satisfied, since Il, is assumed to be positive-
definite. In particular, this holds for a special
choice of the form I, = al, a (positive) constant
multiple of the identity. For this choice, the
update of the weight estimate (69) reduces to

W (y()) —hw_i], (74)

[44
W=wW_ +————
A T E

which is an instantaneous-gradient-based recur-
sion (also known as NLMS: Goodwin and Sin,

1984; Anderson et al., 1986) with a step size of
the form

_*_
1+ o |hji3

Exponential stability of the NLMS algorithm
(74) in the noise-free case (v'(i)=0) has been
extensively discussed in the literature (see e.g.
Anderson et al., 1986, Section 2.6). It has been
shown to require, along with a persistence-of-
excitation condition on {h;}, the strict positive-
realness of the transfer function 1/(1-—SW)
(Anderson et al., 1986), Theorem 2.9).

In the next subsection we connect the
framework of this paper with these earlier
studies by showing that the positive-realness
condition alone also arises in the noisy case, as a
result of (68), and it serves to guarantee an
overall /,-stable (or robust) algorithm.

8.1. Stability analysis and loop transformations

The [,-stability condition (68) for Fig. 8
requires SW/(1 — SW) to be strictly contractive
(since £ is now taken to be one). Noting that we
can write

sSWo 1
1-SW 1-SW

1, (75)

and using the fact that for any complex number
z, the conditions

1
IZ—1|<1¢>R8<2>>%

are equivalent, we conclude that the contrac-
tivity requirement on SW/(1 — SW) is equivalent
to the positive-real part of 1 — SW being larger
than 3:

Re [1 — S(e“)W ()] > 5. (76)
This guarantees an /,-stable system
from {a ""W_,,v(:)} to {e;(")} (77)

where w_; = w — w_,. The condition (76) can be
relaxed by applying a scaling tool that can be
related to so-called loop transformations in
passivity analysis. For this purpose, we first
establish two preliminary results. The first result
rewrites (74) in an alternative form, which has
already been noted earlier in the literature in the
noise-free case (v'(i)=0) (see e.g. Anderson et
al., 1986, Section 2.6.1).

Lemma 1. (Alternative update). The update
equation (8.74) can be rewritten in the
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equivalent form
w; =w,_, + ah[e;(j) + v (j)], (78)
where, as deﬁged earlier, e,(j) = ﬁjw - ﬁ;w,, and

v'() = y(j) — hyw.

Proof. Note that e,(j) + v'(j) = y(j) — hyw,.
Therefore all we need to establish is the identity

f L a . 'y
aly()) —hw] =7 PATHE [y () —hw; ],
]

But it follows from the update equation (74) that

R hw. h |2 y(;
h]w] — ,w} Al > + a “h] ”22’(]2)‘
1+alhl} 1+alhi3

Subtracting y(j) from both sides and multiplying
by « leads to the desired equality. 0

The map from {a™"*W_,, v'(-)} to {e,(-)} is a
strict contraction, since, as argued above, the
recursion (78), which is equivalent to (74), is an
a posteriori H” filter, and the positivity condition
is always satisfied because P; =1, = al >0, and
=1

It is also clear that, in fact, this result holds for
any update filter of the form (78) and for any
noise sequence v'(-). In other words, it holds
whenever we have a recursive equation of the
form (we are deliberately changing the notation
here to {B, ¢,, v} for generality):

w,=w,_ + Bh*[e,(j) + 5(j)],  (79)

for an arbitrary noise sequence {v(-)},
arbitrary positive number B, and for é,(j)=
hyw — hyw;,, We summarize this in the form of a
lemma, the proof of which follows immediately
from the original H* motivation.

Lemma 2. (A contractive mapping). Consider
an update relation of the form (79). It always
holds that

'—o| (])|
BHIW_il5+ 2o [9()F

<1. 80)

Proof. Given an arbitrary noise sequence {v(:)},
we can define the sequence {y(-)}

7(j) = byw + 5(j).

Now, the recursion (79) can be rewritten
equivalently in the form (in view of Lemma 1)

_ B_
which can be readily seen to be a special case of
the H™ filter of Algorithm 1 with Il =81>0
and £ = 1. This establishes that (80) holds.

Using the relation established after (66), and
the expression (75), we have

V() = ~e() + 75y [N + V()

which allows us to rewrite (78) in the form

T+ 5 v,

These observations motivate us to reexpress the
update recursion (78) in the equivalent form

w=wes s Bt ]+ 5 00))

=W + Bﬁj*[ep(]) + U"(])], (81)

where we have now defined

V() = —ep(j) + [ep(l)]+ Zu(j), (82)

1- SW
and where B is any positive real number. The
recursion (81) guarantees, in view of Lemma 2, a
strictly contractive map from {8~'*W_,,v"(-)} to
{e,()}. Accordingly, an overall /,-stable system

(cf. (77))
from {B"’zﬁ_l,gv(-)} to {e,(-)} (83)

B
will be guaranteed if we impose
al/B [
- ——1| <1, 84
T = S(@)W(e?) &)
which requires (cf. (8.76))
Re [1 = S(e“)W ()] > % (85)

Since this should be true for any choice of B8, we
therefore conclude, by choosing 8 large enough
(but finite), that a sufficient condition for the I,
stability of (74), in the sense of (83), is the strict
positive-realness of the function 1 — SW.

Now recall that if the real part of a complex
number z is positive then the same is true about
the real part of 1/z. This allows us to conclude
that a sufficient condition for the /, stability of
(74) is the strict positive-realness of the function
1/(1 — SW). Hence if {v(-)} is a finite-noise
energy sequence then so is {(a/B)v(-)}, and we
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can still conclude from the /,-stability condition
that e, (i)— 0.

In the next section we consider an important
special case that arises in ARMA modeling (see
also Anderson et al., 1986 Section 5.1.3).

8.2. Landau’s scheme for IIR modeling
Consider a linear time-invariant system that is

described by a recursive (i.e. pole-zero or IIR)
difference equation of the form

()= 3 ad(j— k) + 2 byu(j - k),

o]

= hy(w)w, (86)
where
d_=[d(j—1) d(j — M,)],
;= [u()) u(j— M, +1)],
a=col{a;, a;,...,aum},
b=col{by, by, ..., bu,-1},

The row (data) vector
h(w)=[d;-, w)]

is dependent on w, since the entries of d;_,
depend on w. Here w is a column vector that
contains the parameters a and b.

The problem of interest is the following: given
noisy measurements {y(-)} of the system output
{d(-)} in response to a known input sequence

{u(-)}, say,
y(j) =d(j) + v(j) = h(w)w + v(j),

estimate the system parameters a and b (or w).
An existing approximate solution, which is
based on instantaneous-gradient ideas (Landau,
1979), is one that updates the weight estimate
according to (8.74) and where ﬁ,» is computed as

ii, = [aj_l “,].
Note that w; is known, while the entries of
d_,=[d(j-1) d(j - M,)),

are estimated recursively: start with initial
guesses {d(—1),d(-2),...,d(—M,)} and com-
pute successive estimates d(j), for j=0, via the
recursion

d(j)=d,_,a; +ub;, (87)

where {a;, b;} denote estimates of {a, b} at the jth
iteration. This is a special case of the
construction (64) (with § =1). We also see here
that we only need to estimate the leading part of
h; (the part corresponding to d;_;), since the w;
part is given. Nevertheless, the same framework

as discussed so far in the paper applies. All we
have to do is employ the results of Algorithm 2
with W(g ") replaced by A(q~"'), where A(g™")
is the shift polynomial that is associated with the
coefficients in a. This is because the difference
h; — h; now has the form [d,_, —d,_, 0]. That
is, its second block entry is zero, and
consequently

(h; — ﬁi)w =(d- - aj—])ﬂ-

We then conclude that a sufficient condition for
the /, stability of Landau’s scheme is to require
the strict positive-realness of 1/(1 — A).

While this is a known result for Landau’s
scheme (see e.g. Solo and Kong, 1995, pp.
146-150), we have rederived it here within the
general framework of this paper. In particular,
we have established that Landau’s scheme is in
fact a special case of the a posteriori H~ filter of
Algorithm 2, and that the corresponding
solvability condition has been trivialized by
choosing II, = al.

9. I, STABILITY OF THE APPROXIMATE A PRIORI
FILTER

The analysis of Sections 4-8 is equally
applicable to the a priori filter of Algorithm 1A.
For this reason, we shall be brief in this section
and highlight only the points that are distinctive
of the a priori case. As it turns out, some subtle
points persist that turn out to mark the
difference between the a posteriori and a priori
filters.

In fact, most of the analyses in the literature
address stability issues of a posteriori versions
only, such as the NLMS algorithm, the PLR
algorithm and Landau’s scheme that were
discussed in the earlier sections (see e.g. Landau,
1979, Section 5.3; Anderson et al., 1986, Sections
2.6 and 5.1; Solo and Kong, 1995, Section 6.2).

While an averaging analysis, along the lines of
Benveniste er al. (1990) and Solo and Kong
(1995), can be pursued for a priori adaptive
schemes, the conclusions would generally hold
only for very small adaptation gains. In Sections
9.4 and 9.5 we study the a priori versions without
requiring beforehand that the adaptation gains
be very small. Instead, the solvability conditions
of the a priori H* formulation will be shown to
indicate how large the adaptation gains can be
for guaranteed [, stability (see e.g. (105) and
(106)).

In other words, the point of view taken in this
paper helps clarify some subtle differences that
exist between the a priori and a posteriori
versions. This. is achieved by raising and
exploiting connections with the design of a priori



An [,-stable structure for nonlinear identification 27

and a posteriori H™ filters and by highlighting
the differences in their solvability (or existence)
conditions.

9.1. The approximate a priori solution
To begin with, note that the numerator in the
ratio r"(i) in (31) includes the a priori error term

ea"(]) = glw - gjwj—b
while the denominator includes the modified
noise sequence v'(j) = y(j) — hjw.
Assume again that we collect the a priori
errors into a column vector

e, = col{e,(0), e,(1), . . ., e.(N)},

the original and modified noise sequences into
two vectors

v=col{v(0), v(1),...,v(N -1)},
v =col{v'(0),v'(1),...,v'(N - 1)},

and the initial weight error X, along with v’ into
a modified disturbance vector m’ = col {X,, v'}.
Define also n=col{X,, v}. Let J5 denote the
(causal) operator that maps the modified
disturbances mn’ to the estimation errors e,. In
view of Algorithm 1A, this operator is
constructed so as to have a 2-induced norm that
is bounded by & R

If we further assume that estimates h; and §;
are constructed in such a way so as to result in
an explicit relation between v'(j) and
{v(j), es(j)} (Fig. 9) then the following state-
ment is immediate in much the same way as in
the a posteriori version of Theorem 1.

Theorem 1A. Consider the recursive solution of
Algorithm 1A and assume that the estimates b
and g result in a feedback structure of the form
indicated in Fig. 9. If the condition

Il TN 200 1 Fw 200 <1, (88)

is satisfied then the mapping from the original
disturbances n to the modified errors e, is [,
stable with finite gain in the following sense:

leallz = kn(I%oll2 + I ¥allzina IVli2),  (89)

where
oo B
M 1= 1Tl zina | Fullzing
Xo - | eal)
;r\”(’) Ty |
v()TR YN P

Fn

Fig. 9. Feedback structure of the a priori solution.

9.2. The case of systems with shift structure

We reconsider the example of Section 7 and
also assume that h;(w)=g(w) exhibits shift
structure as in (61), with the estimate ﬁ, given by
(63) except that now the {d(-)} are evaluated via

a(l) =s(q—1)(ﬁiwi—1)- (90)

Comparing with (64), we see that we now have
w,_, instead of w,. This allows us to relate v’(i)
and {v(i), e,(i)} as follows (Fig. 10):

S(g""YW(g™"
1-S(g HYW(g™)

Again, a sufficient condition for (88) to hold is
to require that || Fyll2ina < 1/€. This is satisfied if

v'({i)=v()+

el(i).

)

is stable. 91

—sw stable 1)
and

o | ESE@IW )

o |1 - S(e)W(e®)

<1 (92)

for 0= w =2nm.

Writing down Algorithm 1A for this case, we
obtain (we use w; instead of X;,,; and also
denote the initial condition by w_;)

~

w,- = Wj—l + F_’ii]*(l + l‘i}' ]'AI*)_I[y(j) - ﬁjwf‘l]’
(93)

A a h,
P,., =P, —Pj[h* h,*]R;,-‘[ﬁ{]Pj, (94)

]

{6 3 e s

B, =(P;' - ¢ %hrh) .

The positivity of the matrices f’, over
0<j=<N, as well as the condition (92),
guarantee that the above filter attains a level of
robustness that is upper-bounded by

P | TNl 2,ina
N~ .
1- ”g'zlvnz,ind || OJN"Z,ind

That is, in view of (89),

flezllz =< kn(l1Xoll2 + [ ¥ll2). (95)
Xo 0]
AN S
o) ¥
SW
1-5

Fig. 10. Systems with shift structure: a priori case.
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9.3. Gauss—Newton updates and PLR algorithm

The recursion (94) can also be rewritten in a
more familiar form. As argued before, the
inverse of the Riccati variable P;., in (94) can be
updated as in (72). Therefore

P! +hxh =P

Consequently, using the matrix inversion for-
mula (Kailath, 1980), we obtain

(1+hBh*) =1 hhxh + P, ") 'hy,
Likewise,

ii.jfl;* =(P; '—¢ _2ﬁ/*ﬁj)‘]ﬁj*’
= (P, — h*h,)'h,
=P, hr(1 — hP; hx) "
Therefore
Phr(1+hPh) ' =P, h*
This allows us to rewrite the recursions (93) and

(94) in the compact (and more recognizable a
priori PLR) form

W; = W 1+P,+1h () - h i-1h
Ph*hP
P- =P _ Ve v } - —
T A=) +hPhy
In the special case of FIR (or MA) filters the
above form is often known as the Gauss-
Newton update. More details on the robustness

and stability of such updates can be found in
Rupp and Sayed (1966a).

9.4. Instantaneous-gradient-based algorithms

The recursions (93) and (94) also collapse to
an instantaneous-gradient-based filter. Indeed, if
& 1s chosen to be one, £ =1, then we obtain

-1 —_p-1 _ —1
P =P =11,

where II; is the initial condition. In particular,
for the special choice II,=ul, a (positive)
constant multiple of the identity, we obtain

W, =w,_; + #ﬁ,*[}’(f) - ﬁ,-w,--;], (96)

which is an instantaneous-gradient-based recur-
sion with a constant step-size parameter (also
known as the LMS algorithm: Hassibi er al.,
1993).

Now note that the solvability requirement
P, >0 is not automatically satisfied. It requires
that

p~I-hh >0, 0=isN.

The matrix ™ '1— ﬁ,—*ﬁ, is a rank-one modifica-

tion of the identity, and hence we may
equivalently require that

1
S R oD
This is in clear contrast to the a posteriori case in
(74), where no condition is imposed on a.
Moreover, in order to guarantee a non-zero
upper bound on u (as N becomes larger), we
now require that the sequence {h} be bounded.

9.5. A stability analysis

The stability condition of Algorithm 1A
requires SW/(1 — SW) to be strictly contractive,
which is equivalent to requiring the positive-real
part of (1 — SW) to be larger than }:

Re [l — S(e“)W ()] > L.

This condition, along with (97), guarantees an
l,-stable map from {&,, v} to e,, where X, =
#TI/ZW—].

Now note that an [,-stable map allows us to
conclude convergence of e;(:) to zero for a
finite-energy noise sequence {v(-)}. But if {v(-)}
has finite energy then the same holds for any
noise sequence that is a constant multiple of
v(-), say {Av(-)}, for a finite constant A. This
suggests that we may replace (97) by another
condition, with the intent of guaranteeing an
l,-stable map from {Av(-)} to {e,(-)} rather than
from {v(-)} to {e,(-)}, for some constant A. This
is clarified in the sequel.

First, note that

yG) = hw;y = hw + ' (j) — hyw;
=e,(j) +v'(j)-
Hence, the update equation (96) can be

rewritten in the form
W, =W, + uﬁ,*[e,;(j) + U’(j)]’ (98)

where, as established earlier,

V()= —e)F gy leDI+ (). (99)

We can also use (99) to write (98) in the
equivalent form

w =W+ b e )]+ 00

Let us for the moment ignore any restriction on
u, such as (97), and simply require that it be a
positive constant. Now choose any constant 8
and assume that it satisfies

1
<inf—=— 100
TS (100)
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Using B, we can rewrite the above update
recursion for w; in the equivalent form

w=wos+ BT e + v

= ,--1+Bﬁ,-*[ea(;>+a'(;)1, (101)

where we have now defined

()= —el) + T e+ v, )

In view of (100), the recursion (101) also
guarantees a strict contraction map from
{B7"W_,,9'(-)} to {ei(*)}, Accordingly, an
overall /,-stable system

from {B"’zﬁ_l,gv(-)} to {e.(-)}

will be guaranteed if we impose

©/B
1 - S(e)W(e*)
which requires

max

1‘ <1, (103)

Re [1 — S(e“)W (e)] > B>o (104)

Assume 1 - S(e")W(e™) has a strictly positive
real part and let

k =min Re [1 — S(“)W(e*)].  (105)

Then, according to (100) and (104), the step size
w has to be chosen to satisfy

p <2Bk <2k inf-—=— 1 (106)
i i3
If this restriction is satisfied then an I,-stable
map from {B~2W_, (u/B)v(-)} to {ei(-)} will
result, as desired.
We thus see that the following sufficient
conditions will guarantee e,(i{)— 0 for a finite-
energy noise {v(-)}:

(i) 1—S(e™)W(el*) is strictly positive-real; Let
k be as in (105);

(i1) choose p as in (106).

In the next section we consider a special case
that arises in IIR modeling.

9.6. Feintuch’s scheme for 1IR modeling

The recursion (96) was suggested by Feintuch
(1976) in the context of IIR modeling, though
from a very different point of view. Here we
have established that it is in fact a special case of
the nonlinear H” structure studied in this paper.

Moreover, and considering the same setting as
in Section 6.2, the estimate h is computed with

the {a;, b} in (87) replaced by {a,_;,b;_},
namely we now use
2(j)= i+ ub;_ (107)

Hence, the sufficient conditions derived in the
previous section are applicable here as well. We
nevertheless see that, in addition to a strict
positive-realness condition, we also require that
the step-size parameter be properly chosen as in
(106).

10. CONCLUDING REMARKS

We have posed a nonlinear identification
problem and proposed a solution in terms of a
feedback structure that consists of two steps.
First, a linear approximation was employed and
a standard H™-filter design was carried out. This
provided a filter with a 2-induced norm that was
guaranteed to be bounded by a given constant.
Then, a feedback interconnection was intro-
duced in order to guarantee an overall /,-stable
filter, under suitable conditions on the data and
system parameters.

An interesting fall-out of the discussion was
that it explicitly clarified the connections among
several earlier IIR modeling schemes with more
recent results in H™ theory. In particular, we
have addressed the so-called Landau’s scheme,
Feintuch’s scheme, PLR algorithm, Gauss—
Newton updates, and instantaneous-gradient
schemes, as special cases of the general
algorithms (Algorithms 1 and 1A) derived here.

Moreover, the approach of this paper further
clarified the connections between Landau’s and
Feintuch’s schemes in IIR modeling. While a
sufficient stability condition has been available
for Landau’s scheme in terms of a positive-
realness constraint (see e.g. Solo and Kong,
1995, pp. 146—150), a more restrictive condition is
required for the closely related, yet different,
Feintuch’s algorithm. An explanation was
provided here by showing that Feintuch’s
recursion required an additional condition on the
data. This was obtained by establishing the
following interesting fact: Landau’s scheme was
shown to be a secial case of a so-called a
posteriori H™ filter while Feintuch’s algorithm
was shown to be a special case of a so-called 2
priori H™ filter. It is known in H™ theory that the
solvability and existence conditions for the two
filters are different. Here we showed that in
Landau’s case the condition trivialized and was
therefore unnecessary, but it remained in
Feintuch’s case and was therefore required,
along with a positive-realness condition.

Finally, and although not treated in this paper,
we may remark that the feedback analysis
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suggested herein can further be shown to
provide an interpretation of most adaptive
schemes in terms of a feedback interconnection
that consists of two major blocks: (i) a lossless
(i.e. energy-preserving) feedforward mapping
and (ii) either a memoryless or a dynamic
feedback mapping. In contrast to some earlier
analyses via hyperstability results that require
one of the paths to be time-invariant (Landau,
1979, p.381), both mappings in the feedback
composition of this work are allowed to be
time-variant (Rupp and Sayed, 1996b). Ex-
amples to this effect have in fact been provided
in this paper (see e.g. Fig. 4 and also Section
6.2). Moreover, the losslessness of the feedfor-
ward path can be shown to allow for interesting
energy arguments that help analyze the perfor-
mance of the algorithms as well as design
variants with improved convergence speed (see
e.g. Sayed and Rupp, 1995). These details will be
discussed elsewhere.
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