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ABSTRACT

Accurate channel estimation is crucial to many digital
receiver schemes. The LMS algorithm run on a train-
ing sequence often does not show the expected behav-
ior since additional frequency offset corrupts the esti-
mation. This paper presents a new channel estimation
procedure, called constant modulus channel estimator
(CMCE). It works similar to a Constant Modulus Al-
gorithm (CMA) but uses a training sequence. It has
in common with the CMA that the estimation process
is robust against frequency offsets.

1 Introduction

The Constant Modulus Algorithm (CMA) is by now
well established in literature (see for example [1] and
the references therein) as well as in practical exper-
iments and even products (see for example products
by Applied Signal Technology, Inc. [2]). Although
theoretically not completely understood the algorithm
seems to work satisfactory in practical situations. One
big advantage (among other disadvantages) of this al-
gorithm is its insensitivity to frequency offsets. This
paper, however, does not deal with the CMA but a
similar algorithm for estimating the channel rather
than its inverse. It is assumed that the transmitted
symbols u(k) are known to the receiver, i.e., during
the training phase. They are arranged in a vector

i = [u(k), u(k = 1), ..., u(k - M)].

These symbols u(k) are corrupted in three directions:
the channel ¢ (column vector) adds intersymbol inter-
ference (ISI), additive noise v(k) and a frequency offset
2. The received symbol is thus given by:

d(k) = (ugc + v(k)) x e’

The problem is to estimate the channel ¢ and the fre-
quency offset at the same time while the observations
are corrupted by noise. If the LMS algorithm is used
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for this estimation, the channel estimates are only
accurate for relatively small frequency offsets. The
LMS algorithm is not capable of tracking fast changes
caused by frequency offsets and thus looses also its ca-
pability to estimate the channel [3]. A slightly better
algorithm to estimate frequency offsets was proposed
in [4], however, it turned out that this algorithm is
very sensitive on timing offset errors while the LMS
algorithm is more robust against it.

The algorithm proposed here is similar to the CMA
but operates on the symbols rather than on the re-
ceived signal. In the following a theoretical evaluation
of the algorithm is presented and on typical examples
the usefulness of the new algorithm is shown and com-
pared to LMS performance.

2 The Algorithm

The following algorithm called the constant modulus
channel estimator (CMCE) is largely insensitive to fre-
quency offsets:

wi + p(ld(k)|? — [y (k)[*)y(k)ui
upwg

Wk+1

y(k)

where the column vector wy, is an estimate of the chan-
nel coefficients ¢ at time instant k. The symbol ™*’
denotes conjugate transpose. The idea is that |d(k)|
is not dependent on the frequency offset. Therefore,
it is of advantage to use |d(k)| rather than d(k). This,
of course, leads to a loss of phase information when
estimating the channel. On the other hand the abso-
lute phase of the channel is not important for many
digital modulation schemes and can, if necessary, be
corrected.

Since the step-size p is a free parameter, it is of inter-
est to know bounds on p so that the algorithm con-
verges and to know the relation of the algorithms accu-
racy and convergence speed in relation to the step-size
p. It has been shown that rewriting the algorithm in
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an a-posteriori form is usually of advantage (see [5]),
and restricts the free parameter considerably. The a-
posteriori form of this algorithm is similar to the one
for the CMA (normalized CMA) and can be found to
be

y(k) up
ly(®)] Tuxl

where a proper normalization has been introduced.
The update equation also leads to the relation of y(k)
to the a-posteriori y,(k):
2
_“ly(’ﬂ)
ly (%)l

when multiplied the update (1) by ug from the left.
Replacing the later relation in the update and com-
puting the l>-norm leads to

Wit = Wi + a(|d(k)| — |y(k)]) = (1

lyp (k) = y(k)” (1 + o198

2, B _ 2, ly(k)?
Wil + luxl? = [lwell® + el
This can be rewritten into
1—~(k 1—v(k
”wk+1“2+ “uk](|2) !y(k)|2 = ”wk“2+ “ukl(|2) |d(k)|2

with the abbreviation

[d(B)|(A = o) + |y(k)|(1 — )
(k) + ly (k)]

a value that lies between zero and one for o € [0,1].
Now, summing up over a number IV of elements leads

to:
1—-~(k)

Z ”2

Since ||wo|| can be neglected when IV tends to infinity,
both sums approach each other and therefore |y(k)}
will approach |d(k)| asymptotically.

(k) =

1- 'r(k)

ly(R) < || on2+2 = |d(k)|?

Problem:

Note that the error running toward zero does not mean
the channel is identified. In fact for constant modulus
signals it can be shown that the channel -even with
arbitrary phase- is not always a unique information,
i.e., there can exist several channels with the same
output amplitude. For example consider the channel
¢ = [a,b]. The squared amplitude of the outcome is
given by:

a?|u(k)|? + ?|u(k — 1)|? + 2ab x
[Re{u(k)}Re{u(k — 1)}
+ Im{u(k) Hm{u(k

X

D}
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Note that the product ab is already ambiguous. Now,
if Ju(k)| ¢ is a constant, the first two terms are
also ambiguous and so is the whole expression. In
other words, the channel [b, a] is a solution as well. As
soon as the signal is not constant modulus any more,
the solution becomes unique. It might seem that this
channel is just one exception. However, every channel
with just two coeflicients is as well, for example ¢ =
[a,0,0,b] behaves like ¢ = [,0,0,a]. In practice it is
not necessary that the remaining channel coefficients
are perfectly zero. If they are small compared to the
two major coefficients the same effect can occur. Thus,
the algorithm is to be used carefully in the context of
constant modulus sequences. For higher constellation
QAM this effect was not found.

3 Experiments

3.1 Learning Curve

In the first experiment a 16QAM is used with a three
tap channel ¢ = [4,2,3] and an SNR of 30 dB. We
run the CMCE algorithm with a normalized step-size
of @ = 0.5 and compare its behavior with the LMS
algorithm. Plotted in Figure 3 is the relative system
match over number of iterations. In order to have a
fair comparison the relative system mismatch was now
chosen to be

llell® + [Iwell* — 2le*we|

Sraalk) = lel?

(2)

which is different to a conventional system mismatch.
However, because of the frequency offset and the
chosen algorithm the channel cannot be estimated
uniquely. Every value ce’? is a valid solution. Thus,
in order to minimize the estimate with respect to ¢,
the definition (2) has been selected.

The experiment was run for a frequency offset of
8000/24300, thus a relatively large amount. In this
case the LMS algorithm does not exhibit any learning
behavior while the CMCE algorithm converges rapidly.

3.2 Frequency Offset Estimation for 16QAM

In the next experiment the algorithms capability of es-
timating the frequency offset is investigated. For this
reason the frequency offset was estimated based on
the channel estimate wy, obtained after 150 iterations
of training. The amount of 150 symbols for training
might appear very high for practical reasons. How-
ever, a given smaller set (for example only 15 symbols
in IS-136) can be reused in order to obtain this accu-
racy. Figure 4 depicts the relative system mismatch
after 150 iterations for LMS and CMCE algorithm re-
spectively over various frequency offsets.
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Figure 1: Relative frequency estimation error for SNR=10dB and 16QAM.
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Figure 2: Relative frequency estimation error for SNR=20dB and 16QAM.
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Figure 3: Learning curve comparison of LMS and

CMCE algorithm.
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Figure 4: Relative system mismatch for 16QAM at an
SNR of 10dB and 20dB, respectively.

The angle estimate is obtained by

Q=1/NY Ldk)y" (k)d (k+ Dy(k + 1))
N

The squared differences of
6f = (1-Q/(2nTf,))*

are depicted in Figures 1 and 2 for SNR of 10dB and
20dB, respectively. The results are averaged over 1000
runs. In this experiment a three tap channel with three
independent Rayleigh fading weights is assumed. Dur-
ing the training the channel is assumed to be constant
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and the random variables are changed for every run.
Every tap is given a variance of one. The transmitted
sequence is chosen to be 16QQAM and the additive noise
is white complex Gaussian. The channel estimator is
thus of M = 3 coefficients. Offset frequencies are used
at  [10,20,40,80,160,320,640,1000,2000,4000,8000]Hz
for an IS-136 system (see [6]) with 24300Hz sampling
rate. The step-size was chosen to a = 0.5, a compro-
mise between fastest possible convergence (o = 1) and
smallest noise influence a =~ 0. The initial channel
estimate was set to [0.0001,0,0] in all cases.

Both algorithm show high sensitivity towards ad-
ditive noise. The CMCE algorithm typically depicts
strong improvement compared to the LMS algorithm
once the frequency offset is larger than 30Hz at 20dB
SNR and 150Hz at 10dB SNR. Thus, a possibility is
to run CMCE first, estimate the frequency offset, and
than run LMS on the de-rotated signal to eventually
obtain a precise channel estimate with correct phase
information.

3.3 Frequency Offset Estimation for QPSK

In a third experiment the algorithm will be employed
in a QPSK modulated scheme. A channel length of
M =5 was used in order to avoid (or at least make it
very unlikely) to have a situation with only two strong
coefficients. since a longer channel is employed a train-
ing time of N = 300 symbols was chosen. Running
QPSK showed slower convergence than 16QAM. In or-
der to compensate for that the step-size was increased
to a = 0.9. Apart from that all conditions from the
previous experiment were repeated. The results are
shown in Figure 5 for the relative system mismatch
and in Figure 6 for the frequency estimation at SNR of
10dB. If compared to the previous experiment the pre-
cision of the frequency estimate is even better. How-
ever, if compared CMCE results with those of LMS,
the improvement for QAM was much larger than it is
now for the QPSK case. The relative system mismatch
reveals that the channel estimate is even less accurate
for QPSK than for QAM.

A possible application can be to combine the LMS
and CMCE algorithm. If the estimated frequency off-
set is small (below a certain threshold), LMS is used
otherwise CMCE. Figure 7 depicts the relative fre-
quency error over the iterated data blocks. If only the
LMS algorithm is used, it takes about ten blocks until
the frequency offset of 8kHz (sampling rate 24.3kHz)
drops to a small value, while for the CMCE algorithm
only two blocks are required to achieve an estimate
closer than one percent of the true value. Note that if a
pure CMCE is used the fine estimate is somehow rough
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Figure 5: Relative system mismatch for QPSK at an
SNR of 10dB and 20dB, respectively.

while if switched to LMS it can be further improved.
Therefore, a logic was introduced that monitors the
additional frequency offset estimates and switches to
pure LMS once the error is small enough. The SNR in
this experiment was 20dB.

4 Conclusion

A new algorithm that is as simple to implement as
the LMS algorithm has been proposed with the intent
to decompose channel estimation from frequency offset
estimation. On typical examples for digital data trans-
mission it has been shown that the new algorithm can
achieve considerable improvement compared to LMS
when the frequency offset becomes relatively large.
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Figure 6: Relative frequency estimation error for
SNR=10dB and QPSK.
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Figure 7: Relative frequency estimation error for
SNR=20dB .



