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ABSTRACT

For adaptive filters that employ training signals,
the relationship between the a priori and a posteri-
ori error signals can be used to quickly and eas-
ily characterize the stability and robustness of any
given adaptive algorithm. In this paper, we extend
these analytical techniques to Bussgang-type and
Godard/CMA blind equalizers. We derive condi-
tions on the nonlinearity and step size parameter
to guarantee L, stability of the adaptive filter coef-
ficients, and we study the resulting behavior of the
algorithms in a deterministic context. In addition,
we give conditions under which an algorithm that
is based on an a posteriori blind error criterion is Lj
stable.

1. INTRODUCTION

Adaptive filters employing training signals are widely used
in a number of practical applications. One of the most
popular adaptive filters is the normalized least-mean-square
(NLMS) adaptive filter, in which the FIR filter coeflicients
are updated as

wk+1) = w(k)+ﬁ%)l?e(k)x*(k) o

e(k) = d(k)—y(k) (2

yk) = x"(k)yw(k), (3)

where w(k) = [wo(k) wr—1(k)]T and x(k) =

[x(k) --- z(k— L+1)]7 are the coefficient and input signal
vectors at time k, respectively, e(k) is the a priori error sig-
nal at time k, ||x(k)||*> denotes the Ly-norm of the vector
x(k), E(k) is a step size parameter, and * denotes complex-
conjugate. Various analytical studies of the NLMS adap-
tive filter have been provided in the literature, in which
its stability and robustness properties have been elucidated
[1]-[11]. Recently, a novel analytical method employing the
relationship between the a posteriori error signal

ep(k) 2 d(k) - xT(R)w(k+1) (4)

and the e priori error signal in (2) has been developed
and applied to a wide class of adaptive filtering algorithms
[12]. This technique provides a simple way of character-
izing the stability and robustness of adaptive filters that
employ training signals without statistical assumptions on
the signals being processed.
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In some adaptive filter applications, it may be undesir-
able to employ a training signal d(k). For example, in wire-
less communication from a basestation to multiple receivers,
having the basestation transmit a training signal to each re-
ceiver reduces the effective data rate at which information
can be broadcast and complicates the transmission proto-
col. For this reason, blind adaptive algorithms have been
developed that can, in certain circumstances, acquire a de-
sirable solution for w(k) without a training signal. A large
class of such blind algorithms can be expressed in the gen-
eral form

w(k+1) = w(k)+uEyk)glyk)x k), (5)

where g(y) is an even function that depends on the nature
of the received signal z(k). For example, if

9w) = WA = I P TAT - )] (6)

for some integers (p, ¢) > 1 and real-valued A > 0, then
(5) is the Godard blind equalizer [13], and if p = ¢ = 2,
the constant modulus algorithm (CMA) is obtained [14].
Generally, the analysis of blind algorithms is much more
challenging than algorithms employing training signals. In
particular, developing conditions on the step size p(k) and
nonlinearity ¢g(y) to guarantee the stability of w(k) is par-
ticularly problematic. While some statistical analyses have
been provided in the literature [15]-[17], few deterministic
methods have been developed [9]-[10}.

In this paper, we provide a deterministic analysis of blind
adaptive algorithms of the form in (5). Unlike other meth-
ods [15]-[17], ours yields results that hold for any bounded-
magnitude received signal z(k). We develop conditions on
1(k) and g(y) that guarantee the L stability of the filter co-
efficients and of the equalizer output sequence. Focusing on
the Godard/CMA family, we then show that the algorithm
that provides zero a posteriori error is normalized CMA
[18]-[21]. Since NLMS and other zero-a-posteriori-error al-
gorithms are known to have fast convergence properties, our
results provide some justification for the use of normalized
CMA. We also examine a posteriori Godard/CMA forms
and explore their stability properties.

2. A POSTERIORI ANALYSIS FOR TRAINED
ADAPTATION

We first review the a posteriori analysis results in [12] to

provide a point of comparison with the newly-derived re-

sults for blind adaptation in the next section. In this case,

all quantities are assumed to be real-valued.
1. For the trained algorithm

x(k)

wk+1) = w(k)+[elk) - [|x(%)||?

Qe s (N



where Q(e) is any function, the a posterior: error is

ep(k) = Q(e(k))- (8)
2. Let d(k) be of the form
d(k) = x"(k)wopt +(k), ©)

where wo,p: is an optimum coefficient vector, n(k) is
L>-bounded, and ||x(k)||*> > § > 0 for all k. Define the
noiseless error €(k) as

gk) = e(k)—n(k). (10)
Then, if Q(e) is contractive such that
lep (k)| < B(k)|e(k)| (11)
for some
0 < Bk) <1, (12)
then the algorithm is Lz-stable and satisfies
nwanZIQéﬁv" nﬂwn§:|§éyv 19

for some 0 < K < co.

. Setting B(k) = 0 in (11) yields the NLMS algorithm
in (1) with E(k) = 1, an algorithm that is known to
provide fast adaptation behavior.

. The a posteriori update given by

w(k) + pp(k) fep(R))x(k) (14)

w(k + 1)
with f(e) being any odd-symmetric monotonically-
increasing function is La-stable in the sense of (9)-(13)
for any pp(k) >0

. Letting pp (k) — oo for (14) yields the NLMS algorithm
in (1) with (k) = 1.

3. A POSTERIORI ANALYSIS FOR BLIND

ADAPTATION

‘We now consider the behavior of the blind adaptive algo-
rithm in (5) from a deterministic standpoint. For this anal-
ysis, we have several choices to make regarding the nature
of the performance evaluation. Perhaps the most impor-
tant is the choice of error criterion from which to evaluate
the algorithm’s performance and behavior. Here, we take
the property-restoral viewpoint that motivates the use of
Godard/CMA adaptation in blind equalizers, which states
that |y(k)| should tend to a constant factor A over time.
Thus, we choose as our error function the quantity

e(k) = A” — ly(k)|*. (1)

If |e(k)| tends to small values over time, then we shall say
that the algorithm has properly converged. Note that such
a condition does not necessarily guarantee that w(k) con-
verges to a desirable solution, as this more-stringent condi-
tion depends on the nature of z(k).
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3.1. L, Output Stability of Adaptive Blind Equal-
izers
As in the trained adaptation case, define
A
ep(k) = A* — lyp (R)I”, (16)
where the a posteriori output is defined as
wk) 2 xTE)wk+1). an

Using (5), the relationship between y,(k) and the a prior:
output y(k) is

Yp(k) = [1+a(k)g(y(k)ly(k) (18)
alk) = pE)|x(E) (19)
Substituting this relationship into (16), we obtain
ep(k) = (1—a(k))e(k) (20)
a  a®)|yk)’g(y(k)
a(k) = W[2+a(k)g(y(k))]. (21)
Define
Bk) = [1-a(k) (22)

‘We now state and prove the following theorem.

Theorem 1: If g(y) and a(k) are chosen such that (11)-

(12) are true for the definitions in (15)-(22), then (5) is

L;-stable and produces an output sequence y(k) that satisfies
ly(B)|?

l““‘E(’“)suk)uz—

with 0 < a(k) < 2.

n—1

1
nZ}“M<wP(%>

Proof: To prove the theorem, we first show that the mag-
nitude of ||w(k)]|* remains bounded over time. Taking the
squared Ly norms of both sides of (5) yields

lwk+ DI = |Iw(k)|
+g@¥§%ﬁg&2p+qmﬂmmm%>
_ 2, e(k) — ep(k)
= ||lw(k)||" + Ix®IE (25)

where we have used the relationships in (15)—(19) in going
from (24) to (25). Noting (20), we have

w 2 w 2, e(k)
ik + DIF = IwBIP +at) s (26)
or
w s o O
s+ DIF + a0
= w 2 a i—
From the Cauchy-Schwartz inequality, we have
ly®* = y®)=EI W) (28)



where 0 < y(k) <1, and 0 < (k) < 1 if we ignore updates
for which x(k) and w(k) are orthogonal. Thus,

A2

[ (R)I?

This recursion is La-bounded so long as |1 — y(k)a(k)] < 1.
Since 0 < (k) £ 1, a sufficient condition on A(k) in (22)
to guarantee stability of ||w(k)||> stability is that given in
(12).

To prove the second part of the theorem, we iterate (27)
from 0 < k < n —1 to obtain

n-1 Py
W + 3 a(k) AR
k=0

liw(k + DI = A=7(k)a®)IwF)|* + a(k) (29)

(< (k)1

WO+ YoMt G0
k=0

Since [|w(n)||? is bounded, we divide both sides of the above
equation by n and take limits as n approaches oo, which
yields (23) O.

3.2.

We can make several remarks regarding the results of The-
orem 1.

Implications of Analysis

Remark #1: The condition in (23) is somewhat weaker than
that in (13) for the trained case. Eqn. (23) implies that the
blind adaptive algorithm can provide proper gain control
of the output signal y(k) and can be compared to “conver-
gence in the mean” in a statistical environment. Even so,
this result is independent of the nature of z(k). Obtain-
ing stronger stability conditions would require assuming a
model structure for z(k) such that there exists a w(k) for
which |y(k)| = A. For an analysis of this type, see [9]-[10].

Remark #2: The condition on B(k) in (12) can be expressed
in terms of a(k) in (21) as

0 < a(k) < 2. (31)
Similar bounds exist for a(k) in the trained adaptation case.
Moreover, (23) is similar in structure to the bound in the
trained adaptation case for a(k) = a(k). Thus, a(k) for (5)
plays the role of a(k) in the trained adaptation case; i.e.
values close to zero provide slower adaptation but more-
accurate gain control, whereas a(k) = 1 (equiv. (k) = 0)
provides fast adaptation but worse data averaging within
the updates. Interestingly, the choice a(k) =1 yields

1

KB = EmE (32)
A

s = Ao (33)

such that normalized CMA is obtained. Since normalized
CMA is known to provide fast adaptation behavior, such
a result is consistent with previous results on a posteriori
error algorithms [6, 12, 18]-[21]. In fact, we can choose
a(k) to be a certain sequence satisfying (12) and obtain the
form of g(y) from (22) for this choice. An example below
illustrates this calculation.
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Remark #3: The condition in (12) implies that u(k) and
9(y(k)) must satisfy certain constraints for all k. Define

9(y)
A — |yl

A

h(y) (34)

Since a(k) in (21) must be positive, we have for p(k) > 0
that

9(4)

(35)
and

>

h(y) 0 (36)

for all y, with the unique possibility that h(A4) = 0. Several
choices of g(y) are therefore possible, including

9(y) = log(A) —log(lyl) (37)
1( A?
9(y) = -1+ 3 (W + 1) (38)
A—lyl

and (6). Different choices for g(y) clearly lead to different
algorithm behavior depending on the underlying structure
of z(k). Once g(y) has been selected, the upper bound on
(k) guaranteeing (12) can then be calculated. An example
below illustrates this calculation.

Alternatively, if a u(k) is desired that does not depend
on y(k) or need not be bounded by a function of y(k) for
stability, then g(y) must satisfy the boundedness conditions

lgw)l < M (40)

and
hiy) < N (41)

for finite values of M and N, in addition to (35) and (36).
Note that the common choice in (6) for g(y) generally does
not satisfy (40)—(41), whereas (39) does satisfy (40)—(41).
3.3. Examples

Ezample #1: Consider g(y) in (6) with p = g = 2, such that
standard CMA is obtained. Substituting this expression
into (21), a(k) is found to be

a(R)y(k)I*[2 + a(W{A” — ly(B)}. (42)

The bounds in (12) can then be expressed as

a(k)

-1 < [L-a®ly®)Pf - A% ®yEP < 1. 43)
Eqn. (43) is similar to that found for a statistical analysis
of a blind decorrelation algorithm [22], and thus we can use
the results of [[22], Appendix A] directly. We have stability
of CMA if

Fmas (U(K), A)

where
8 242
el or 1) il <AV
Frnas(y, A)= A S WV Il (45)
WE =A% if y| > AV2



This condition can be used to test and adjust the value of
u(k) at each iteration, if necessary, to ensure the system’s
stability O.

Ezample #2: Suppose the choice a(k) = ag in (20) is de-
sired. Substituting this choice into (21) yields the quadratic
equation

2
la(k)g(y(k))I” + 2a(k)g(y(k)) + ao [1 - ﬁcﬁf] =0 (46)
which has the positive solution
A2
a(k)g(y(k)) = -—1+4/ao (W - 1) +1. (47)

If ao = 1, then normalized CMA with p(k) and g(y) given
by (32) and (33) are obtained, respectively, whereas if
ao = 0.5, then u(k) and g(y) are given by (32) and (38),
respectively.

3.4. L Error Stability of Adaptive Blind Equal-
izers

Although useful, Theorem 1 indicates only that a blind
adaptive algorithm can achieve proper output gain con-
trol. A more-desirable result would place bounds on the
sequence of normalized squared errors |e(k)|?/||x(k)||?, as

in the trained adaptation case. In this section, we develop
such an analysis, which yields additional restrictions on the
step size p(k).

Theorem 2: - Suppose that g(y) and a(k) are chosen such
that Theorem 1 is true. If in addition g(y), h(y) in (34),
and a(k) satisfy (40), (41), and

2
ly (k)12 (y (k)

for all k, respectively, then (5) produces an error sequence
e(k) that is La-bounded and satisfies

0 < ak) < (48)

z%ﬁp (k) y (&) "Ry (k) ]le (k)]
< lwOIF +Z 228 ey ) Pgy(k). (49)
)]

Proof: To prove the theorem, we consider the update
equation in (5). Taking the squared Ls-norms of both sides
gives

iw(k +1))1?

llw(®)I* + I (k)llgly(k)li’ga(y(k))

2a(k)

|| (k)”z‘y(kﬂ g(y(k)) (50)
= )P + O ()

2a(k) .

Hx(k)llz s (Y (R)* — A%)g(y(k))

)
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Assume that h(y(k)) satisfies (36). Then, we can rewrite
(51) as

Wk + D7 = [wb)lP
PR WA -
- SR BA® ~ P
+ S B A%y, (52
or, equivalently,
et + DI + 2 — oIy IR0
= IwIP + 2w A%k, (53)

(k)11

Iterating this relation from k = 0 to kK = n — 1 produces
(49). Now, if (48) is true, then all of the factors premulti-
plying le(k)|?/lix(k)||? on the LHS of (49) are positive, and
if Theorem 1 and (40) are true, then the RHS of (49) is
finite. Taken together, these two facts prove the theorem
0.

Remark #4: The boundedness condition in (40) is a crit-
ical component of the above theorem. Thus, algorithms
in which g(y) is bounded above are inherently more-robust
than those for which g(y) does not satisfies such a bound.
As an example, we have simulated the behavior of (5)
with the choices in (6) (e.g. CMA) and (39), respectively,
for g(y) with p = ¢ = 2 and under different coefficient
initializations, channels, and receiver noise level conditions.
Our qualitative observations are that
e the bounded nonlinearity in (39) appears to provide
more-uniform convergence behavior across different
channels and noise conditions for a fixed value of u(k)
than does CMA, and

o both algorithms perform well when operating in their
robust step size regimes as determined by 0 < a(k) < 2.

In other words, choosing a bounded g(y) seems to yield an
algorithm that requires less tuning of the step size param-
eter p(k) to obtain good performance for a wide variety of
conditions. These issues are the subject of on-going study.

4. A POSTERIORI OUTPUT ADAPTATION

For trained adaptation, it has been shown that algorithms
that employ the a posteriors error directly within the coef-
ficient updates provide guaranteed stability behavior inde-
pendent of the value of p(k) > 0. Given the parallels be-
tween the trained and blind adaptive cases indicated above,
it is reasonable to consider blind adaptive algorithms that
employ the a posteriori output signal y,(k) directly within
the coeflicient updates. Do such algorithms possess the nice
stability properties of their trained counterparts? To this
end, we provide the following theorem:

Theorem 3:
in the form

If a blind adaptive algorithm can be written

w(k+1) w(k) + p(k)yp(k)g(yp (k))x"(k), (54)



where the a posteriori output yp(k) is as defined in (17),
9(y) and h(y) satisfy the conditions in (35)-(86), and u(k)
is chosen such that (54) is angle-preserving, i.e.

Lyp(k) = Ly(k),

then (54) is L2 stable in the sense of Theorem 1.

(55)

Proof: Pre-multiplying both sides of (54) by x” (k) and us-
ing the definitions in (15)—(19), we obtain

(1 — el g(yp(k))

| p(k)lzep(k)) yp(k) = y(k) (56)

A

pp (k)| (R) .

where we have defined a,(k)
angle-preserving, then

If (54) i

( Sy e ) CIEVCID

Consider the case where |yp(k)] = A+ 6, § > 0. Then,
ep(k) = —2A45 — 6% < 0, and from (36), h(yp(k)) > 0.
Thus, the factor premultiplying |y, (k)| on the LHS of (57)
is strictly greater than one, such that e,(k) < e(k) < 0.
Similarly, consider the case where |y,(k)] = 4 — ¢4, 0 <
§ < A. Then, ey(k) = 246 — 6% > 0. Thus, the factor
premultiplying |y,(k)| on the LHS of (57) is strictly less
than one, such that e(k) > ey(k) > 0. Combining these
two results, we have a guaranteed contraction from |e(k)|
to |ep(k)|, and thus (11)—(12) are satisfied 0.

Remark #5: As in the trained adaptation case, (54) must
be placed in the form of a true update for implementation
purposes, such that y,(k) no longer appears. As typical
choices of g(y) are highly nonlinear, such a problem can be
difficult to solve. For example, an a posteriori form of CMA
involves the solution of a a cubic equation in |y, (k)| at each
time instant, which is a computationally-challenging task.
Hence, the a posteriori algorithm forms appear to be less
practical in the blind adaptation case as compared to the
trained case. Note that if the normalized CMA nonlinearity
in (33) is chosen for g(y), then the resulting algorithm is (5)
with

up (k)
L+ pp(K)lx(R)|[2”

a result identical to that of the trained case [6].

u(k) (58)

5. CONCLUSIONS

In this paper, we have explored the use of a posterior: anal-
ysis methods for blind adaptive equalizers. We have derived
conditions on the algorithm update form and the step size
to guarantee L stability of the filter coefficients, the out-
put sequence, and the error sequence as defined in (15).
Our result provide additional justification for the use of a
posteriori-error-based schemes such as normalized CMA by
indicating in what ways their behaviors are robust. In addi-
tion, our results suggest new ways of designing algorithms
to provide additional levels of robustness. The theoretical
results provide a nice connection with existing results in
the trained adaptation case [12] and complement statistical
analyses of these schemes [15]-[17].
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